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We analyze cosmology assuming unitary quantum mechanics, using a tripartite partition into system,
observer, and environment degrees of freedom. This generalizes the second law of thermodynamics to
“The system’s entropy cannot decrease unless it interacts with the observer, and it cannot increase unless
it interacts with the environment.” The former follows from the quantum Bayes theorem we derive. We
show that because of the long-range entanglement created by cosmological inflation, the cosmic entropy
decreases exponentially rather than linearly with the number of bits of information observed, so that a
given observer can reduce entropy by much more than the amount of information her brain can store.
Indeed, we argue that as long as inflation has occurred in a non-negligible fraction of the volume, almost
all sentient observers will find themselves in a post-inflationary low-entropy Hubble volume, and we
humans have no reason to be surprised that we do so as well, which solves the so-called inflationary
entropy problem. An arguably worse problem for unitary cosmology involves gamma-ray-burst con-
straints on the “big snap,” a fourth cosmic doomsday scenario alongside the “big crunch,” *big chill,”
and “big rip,” where an increasingly granular nature of expanding space modifies our life-supporting laws
of physics. Our tripartite framework also clarifies when the popular quantum gravity approximation
G, = 8wG(T,,) is valid, and how problems with recent attempts to explain dark energy as gravitational
backreaction from superhorizon scale fluctuations can be understood as a failure of this approximation.
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I. INTRODUCTION

The spectacular progress in observational cosmology
over the past decade has established cosmological inflation
[1-4] as the most popular theory for what happened early
on. Its popularity stems from the perception that it ele-
gantly explains certain observed properties of our Universe
that would otherwise constitute extremely unlikely fluke
coincidences, such as why it is so flat and uniform, and
why there are 10~ 3-level density fluctuations which appear
adiabatic, Gaussian, and almost scale-invariant [5-7].

If a scientific theory predicts a certain outcome with
probability below 107°, say, then we say that the theory
is ruled out at 99.9999% confidence if we nonetheless
observe this outcome. In this sense, the classic big bang
model without inflation is arguably ruled out at extremely
high significance. For example, generic initial conditions
consistent with our existence 13.7 billion years later predict
observed cosmic background fluctuations that are about
10° times larger than we actually observe [8]—the
so-called horizon problem [1]. In other words, without
inflation, the initial conditions would have to be highly
fine-tuned to match our observations.

However, the case for inflation is not yet closed, even
aside from issues to do with measurements [9], competing
theories [10-12], and the so-called measure problem
[8,13-33]. In particular, it has been argued that the so-
called “‘entropy problem” invalidates claims that inflation
is a successful theory. This entropy problem was articu-
lated by Penrose even before inflation was invented [34],
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and has recently been clarified in an important body of
work by Carroll and collaborators [35,36]. The basic prob-
lem is to explain why our early Universe had such low
entropy, with its matter highly uniform rather than clumped
into huge black holes. The conventional answer holds that
inflation is an attractor solution, such that a broad class of
initial conditions lead to essentially the same inflationary
outcome, thus replacing the embarrassing need to explain
extremely unusual initial conditions by the less embarrass-
ing need to explain why our initial conditions were in the
broad class supporting inflation. However, [36] argues that
the entropy must have been at least as low before inflation
as after it ended, so that inflation fails to make our state
seem less unnatural or fine-tuned. This follows from the
mapping between initial states and final states being inver-
tible, corresponding to Liouville’s theorem in classical
mechanics and unitarity in quantum mechanics.

The main goal of this paper is to investigate the entropy
problem in unitary quantum mechanics more thoroughly.
We will see that this fundamentally transforms the prob-
lem, strengthening the case for inflation. A secondary goal
is to explore other implications of unitary cosmology, for
example, by clarifying when the popular approximation
G,, = 8wG(T,,) is and is not valid. The rest of this paper
is organized as follows. In Sec. II, we describe a quantita-
tive formalism for computing the quantum state and its
entropy in unitary cosmology. We apply this formalism to
the inflationary entropy problem in Sec. III and discuss
implications in Sec. IV. Details regarding the big snap
scenario are covered in Appendix B.
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II. SUBJECT, OBJECT, AND ENVIRONMENT
A. Unitary cosmology

The key assumption underlying the entropy problem is
that quantum mechanics is unitary, so we will make this
assumption throughout the present paper.' As described in
[40], this suggests the history schematically illustrated in
Fig. 1: a wave function describing an early Universe quan-
tum state (illustrated by the fuzz at the far left) will evolve
deterministically according to the Schrodinger equation
into a quantum superposition of not one but many macro-
scopically different states, some of which correspond to
large semiclassical post-inflationary universes like ours,
and others which do not and completely lack observers.
The argument of [40] basically went as follows:

(1) By the Heisenberg uncertainty principle, any initial
state must involve micro-superpositions, micro-
scopic quantum fluctuations in the various fields.

(2) Because the ensuing time evolution involves insta-
bilities (such as the well-known gravitational insta-
bilities that lead to the formation of cosmic
large-scale structure), some of these micro-
superpositions are amplified into  macro-
superpositions, much like in Schrodinger’s cat
example [41]. More generally, this happens for any
chaotic dynamics, where positive Lyapunov expo-
nents make the outcome exponentially sensitive to
initial conditions.

(3) The current quantum state of the Universe is thus a
superposition of a large number of states that are
macroscopically different (Earth forms here, Earth
forms 1 m further north, etc.), as well as states that
failed to inflate.

(4) Since macroscopic objects inevitably interact with
their surroundings, the well-known effects of deco-
herence will keep observers such as us unaware of
such macro-superpositions.

This shows that with unitary quantum mechanics, the
conventional phrasing of the entropy problem is too sim-
plistic, since a single preinflationary quantum state evolves
into a superposition of many different semiclassical post-
inflationary states. The careful and detailed analysis of the
entropy problem in [36] is mainly performed within the
context of classical physics, and quantum mechanics is
only briefly mentioned, when correctly stating that
Liouville’s theorem holds quantum mechanically too as
long as the evolution is unitary. However, the evolution that

"The forms of nonunitarity historically invoked to address the
quantum measurement problem tend to make the entropy prob-
lem worse rather than better: both Copenhagen-style wave-
function collapse [37,38] and proposed dynamical reduction
mechanisms [39] arguably tend to increase the entropy, trans-
forming pure (zero-entropy) quantum states into mixed states,
akin to a form of diffusion process in phase space.
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FIG. 1 (color online). Because of chaotic dynamics, a single
early-Universe quantum state | ) typically evolves into a quan-
tum superposition of many macroscopically different states,
some of which correspond to a large semiclassical post-
inflationary universe like ours (each with its galaxies, etc. in
different places), and others which do not and completely lack
observers.

is unitary is that of the fotal quantum state of the entire
Universe. We unfortunately have no observational infor-
mation about this total entropy, and what we casually refer
to as “‘the” entropy is instead the entropy we observe for
our particular branch of the wave function in Fig. 1. We
should generally expect these two entropies to be quite
different—indeed, the entropy of the entire Universe may
well equal zero, since if it started in a pure state, unitarity
ensures that it is still in a pure state.

B. Deconstructing the Universe

It is therefore interesting to investigate the cosmological
entropy problem more thoroughly in the context of unitary
quantum mechanics, which we will now do.

Most discussions of quantum statistical mechanics split
the Universe into two subsystems [42]: the object under
consideration and everything else (referred to as the envi-
ronment). At a physical level, this “splitting” is simply a
matter of accounting, grouping the degrees of freedom into
two sets: those of the object and the rest. At a mathematical
level, this corresponds to a choice of factorization of the
Hilbert space.

As discussed in [43], unitary quantum mechanics can be
even better understood if we include a third subsystem as
well, the subject, thus decomposing the total system (the
entire Universe) into three subsystems, as illustrated in
Fig. 2:
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FIG. 2 (color online). An observer can always decompose the
world into three subsystems: the degrees of freedom correspond-
ing to her subjective perceptions (the subject), the degrees of
freedom being studied (the object), and everything else (the
environment). As indicated, the subsystem Hamiltonians H,
H,, H, and the interaction Hamiltonians H,,, H,,, H,, can
cause qualitatively very different effects, providing a unified
picture including both decoherence and apparent wave-function
collapse. Generally, H,, increases entropy and H,, decreases
entropy.

(1) The subject consists of the degrees of freedom
associated with the subjective perceptions of the
observer. This does not include any other degrees
of freedom associated with the brain or other parts
of the body.

(2) The object consists of the degrees of freedom that
the observer is interested in studying, e.g., the
pointer position on a measurement apparatus.

(3) The environment consists of everything else, i.e., all
the degrees of freedom that the observer is not
paying attention to. By definition, these are the
degrees of freedom that we always perform a partial
trace over.

A related framework is presented in [43,44]. Note that
the first two definitions are very restrictive. Suppose, for
example, that you are measuring a voltage using one of
those old-fashioned multimeters that has an analog pointer.
Then, the “object” consists merely of the single degree of
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freedom corresponding to the angle of the pointer, and
excludes all of the other ~10?7 degrees of freedom asso-
ciated with the atoms in the multimeter. Similarly, the
“subject” excludes most of the ~10?® degrees of freedom
associated with the elementary particles in your brain. The
term ‘‘perception” is used in a broad sense in item 1,
including thoughts, emotions, and any other attributes of
the subjectively perceived state of the observer.

Just as with the currently standard bipartite decomposition
into object and environment, this tripartite decomposition is
different for each observer and situation: the subject degrees
of freedom depend on which of the many observers in our
Universe is doing the observing, the object degrees of
freedom reflect which physical system this observer chooses
to study, and the environment degrees of freedom correspond
to everything else. For example, if you are studying an
electron double-slit experiment, electron positions would
constitute your object and decoherence-inducing photons
would be part of your environment, whereas in many quan-
tum optics experiments, photon degrees of freedom are the
object while electrons are part of the environment.

This subject-object-environment decomposition of the
degrees of freedom allows a corresponding decomposition
of the Hamiltonian:

H=H+H,+H,+H,+H, +H, +H,, (1)

where the first three terms operate only within one sub-
system, the second three terms represent pairwise interac-
tions between subsystems, and the third term represents
any irreducible three-way interaction. The practical use-
fulness of this tripartite decomposition lies in that one can
often neglect everything except the object and its internal
dynamics (given by H,) to first order, using simple pre-
scriptions to correct for the interactions with the subject
and the environment, as summarized in Table I. The effects
of both H,, and H,, have been extensively studied in the
literature. H,, involves quantum measurement, and gives
rise to the usual interpretation of the diagonal elements of
the object density matrix as probabilities. H,, produces
decoherence, selecting a preferred basis and making the
object act classically under appropriate conditions. H,,,
causes decoherence directly in the subject system. For
example, [43] showed that any qualia or other subjective
perceptions that are related to neurons firing in a human

TABLE I. Summary of three basic quantum processes discussed in the text.
Interaction Dynamics Example Effect Entropy
Object-object p— UpU* ((1) 8) — (% %) Unitary evolution Unchanged
- LN (1o
Object-environment p > Y PipPeile;) (i i) — ( (2) % ) Decoherence Increases
Object-subject p— [E["’ppl}l‘if =Y (silo)P; (é (%)) — ( (1) 8) Observation Decreases
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brain will decohere extremely rapidly, typically on a time
scale of order 10720 seconds, ensuring that our subjective
perceptions will appear classical. In other words, it is
useful to split the Schrodinger equation into pieces: three
governing the three parts of our Universe (subject, object,
and environment), and additional pieces governing the
interactions between these parts. Analyzing the effects of
these different parts of the equation, the H, part gives most
of the effects that our textbooks cover, the H,, part gives
Everett’s many worlds (spreading superpositions from the
object to you, the subject), the H,, part gives traditional
decoherence, the H,, part gives subject decoherence.

C. Entropy in quantum cosmology

In the context of unitary cosmology, this tripartite de-
composition is useful not merely as a framework for clas-
sifying and unifying different quantum effects, but also as a
framework for understanding entropy and its evolution. In
short, H,, increases entropy while H,, decreases entropy,
in the sense defined below.

To avoid confusion, it is crucial that we never talk of the
entropy without being clear on which entropy we are
referring to. With three subsystems, there are many inter-
esting entropies to discuss, for example, that of the subject,
that of the object, that of the environment, and that of the
whole system, all of which will generally be different from
one another. Any given observer can describe the state
of an object of interest by a density matrix p, which is
computed from the full density matrix p in two steps:

(1) Tracing: Partially trace over all environment de-

grees of freedom.

(2) Conditioning: Condition on all subject degrees of

freedom.

In practice, step 2 often reduces to what textbooks call
““state preparation,” as explained below. When we say “‘the
entropy”” without further qualification, we will refer to the
object entropy S,: the standard von Neumann entropy of
this object density matrix p,, i.e.,

S, = —trp, logp,. (2)

Throughout this paper, we use logarithms of base two so
that the entropy has units of bits. Below, when we speak of
the information (in bits) that one system (say the environ-
ment) has about another (say the object), we will refer to
the quantum mutual information given by the standard
definition [45-47]

I, =8 +8,— S 3)

where S|, is the joint system, while §; and S, are the
entropies of each subsystem when tracing over the degrees
of freedom of the other.

Let us illustrate all this with a simple example in Fig. 3,
where both the subject and object have only a single degree
of freedom that can take on only a few distinct values (3 for
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FIG. 3 (color online). Time evolution of the 6 X 6 density
matrix for the basis states [= 1), |[= 1), [< D, < D, [=D, [= D
as the object evolves in isolation, then decoheres, then gets
observed by the subject. The final result is a statistical mixture
of the states [~ 1) and |~ |), simple zero-entropy states like the
one we started with.

the subject, 2 for the object). For definiteness, we denote
the three subject states |<), [<), and |~), and interpret
them as the observer feeling neutral, happy, and sad,
respectively. We denote the two object states |1) and |[),
and interpret them as the spin component (“up” or
“down”) in the z direction of a spin-1/2 system, say a
silver atom. The joint system consisting of subject and
object therefore has only 2 X 3 = 6 basis states: |= 1),
[= D, 1= D, 1= D, 1= 1D, |~ ). In Fig. 3, we have therefore
plotted p as a 6 X 6 matrix consisting of nine two-by-two
blocks.

1. Effect of H,: Constant entropy

If the object were to evolve during a time interval ¢
without interacting with the subject or the environment
(Hy, = H,, = H,,, = 0), then its reduced density matrix
p, would evolve into Up,U" with the same entropy, since
the time-evolution operator U = e~ o’ is unitary.

Suppose the subject stays in the state | <) and the object
starts out in the pure state |1). Let the object Hamiltonian
H, correspond to a magnetic field in the y direction
causing the spin to precess to the x direction, i.e., to the
state (|1) + |1))/+/2. The object density matrix p, then
evolves into

po = UINXIIUT =301 + 1N+ (LD
=S+ DAL+ [DAT + 1D, ©)

corresponding to the four entries of 1/2 in the second
matrix of Fig. 3.

This is quite typical of pure quantum evolution: a basis
state eventually evolves into a superposition of basis states,
and the quantum nature of this superposition is manifested
by off-diagonal elements in p,. Another familiar example
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of this is the familiar spreading out of the wave packet of a
free particle.

2. Effect of H,,: Increasing entropy

his was the effect of H, alone. In contrast, H,, will
generally cause decoherence and increase the entropy of
the object. Although decoherence is now well understood
[48-52], we will briefly review some core results here
that will be needed for the subsequent section about
measurement.

Let |o;) and |e;) denote basis states of the object and the
environment, respectively. As discussed in detail in
[50,52], decoherence (due to H,,) tends to occur on time
scales much faster than those on which macroscopic ob-
jects evolve (due to H,,), making it a good approximation to
assume that the unitary dynamics is U = e~ Ho! on the
decoherence time scale and leaves the object state un-
changed, merely changing the environment state in a way
that depends on the object state |o;), say from an initial
state |ey) into some final state |€;):

U|€0>|0i> = |€i>|0i>- (5)

This means that the initial density matrix p = |eg)eo| ® p,
of the object-environment system, where p, =
Y.ioilp,loploXo;l, will evolve as

p > UpUT = Uleg)eglp,UT
= Y (0ilp,loUleg)lo;)eql(o,;1U*
ij

= D (0ilplo)lenlog)elo;l. (6)

The reduced density matrix for the object is this object-
environment density matrix partial-traced over the environ-
ment, so it evolves as

po = w,p = Z<€k|P|ek>
3

= D (oilp,loXejlen)edlelogo;l

ijk

= Z|0i><0i|Po|0j><0j|<€j|€i>
ij

= ZPipon<Ej|Ei>: (7)
ij

where we used the identity Y ,|e;){e;| = I in the penulti-
mate step and defined the projection operators P; = |0;)0;]
that project onto the ith eigenstate of the object. This well-
known result implies that if the environment can tell
whether the object is in state i or j, i.e., if the environment
reacts differently in these two cases by ending up in two
orthogonal states, (€;|€;) = 0, then the corresponding (i, /)
element of the object density matrix gets replaced by zero:

pPo = ZPipoPiv (8)

PHYSICAL REVIEW D 85, 123517 (2012)

corresponding to the so-called von Neumann reduction [53]
which was postulated long before the discovery of decoher-
ence; we can interpret it as an object having been measured
by something (the environment) that refuses to tell us what
the outcome was.”

This suppression of the off-diagonal elements of the
object density matrix is illustrated in Fig. 3. In this ex-
ample, we have only two object states |o;) = [1) and
lo,) = |1), two environment states, and an interaction
such that (€;|€,) = 0, giving

po = HDXTT+ [IXLI- 9)

This new final state corresponds to the two entries of 1/2 in
the third matrix of Fig. 3. In short, when the environment
finds out about the system state, it decoheres.

3. Effect of H,,: Decreasing entropy

Whereas H,, typically causes the apparent entropy of
the object to increase, Hy, typically causes it to decrease.
Figure 3 illustrates the case of an ideal measurement, where
the subject starts out in the state |=) and H,, is of such a
form that the subject gets perfectly correlated with the
object. In the language of Eq. (3), an ideal measurement
is a type of communication where the mutual information
I, between the subject and object systems is increased to
its maximum possible value [46]. Suppose that the mea-
surement is caused by H,, becoming large during a time
interval so brief that we can neglect the effects of H; and
H,. The joint subject + object density matrix p,, then
evolves as p,, — Up,,UT, where U = exp[—i [ H,,d1].
If observing | 1) makes the subject happy and ||) makes the
subject sad, then we have U|= 1) = |[< 1) and U|= |) =
|~ ]). The state given by Eq. (9) would therefore evolve
into

po =3U(=X=D e (DIl + DUt
= LUl= (= 1ut + Ul= = Ut
=T+ 1A A LD = Mpe + pa),

as illustrated in Fig. 3, where p- = |~ %< 1] and p. =
|~ I}~ ||. This final state contains a mixture of two sub-
jects, corresponding to definite but opposite knowledge of
the object state. According to both of them, the entropy of
the object has decreased from 1 bit to zero bits. As men-
tioned above, there is a separate object density matrix p,

(10)

ZEquation (34) is known as the Liiders projection [54] for the
more general case where the P; are more general projection
operators that still satisfy P;P; = §;;P;, 3. P; = I. This form
also follows from the decoherence formula (7) for the more
general case where the environment can only tell which group of
states the object is in (because the eigenvalues of H,, are
degenerate within each group), so that (e;le;) =1 if i and j
belong to the same group and vanishes otherwise. One then
obtains an equation of the same form as Eq. (8), but where each
projection operator projects onto one of the groups.
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corresponding to each of these two observers. Each of these
two observers picks out her density matrix by conditioning
the density matrix of Eq. (10) on her subject degrees
of freedom, i.e., the density matrix of the happy one is
p- and that of the other one is p ... These are what Everett
termed the ‘“relative states” [46], except that we are
expressing them in terms of density matrices rather than
wave functions. In other words, a subject by definition
has zero entropy at all times, subjectively knowing her
state perfectly. Related discussion of the conditioning
operation is given in [43,44].

In many experimental situations, this projection step in
defining the object density matrix corresponds to the
familiar textbook process of quantum state preparation.
For example, suppose an observer wants to perform a
quantum measurement on a spin 1/2 silver atom in the state
[1). To obtain a silver atom prepared in this state, she can
simply perform the measurement of one atom, introspect,
and if she finds that she is in state | =), then she know that her
atom is prepared in the desired state |)—otherwise, she
discards it and tries again with other atom until she suc-
ceeds. Now, she is ready to perform her experiment.

In cosmology, this state preparation step is often so
obvious that it is easy to overlook. Consider, for example,
the state illustrated in Fig. 1 and ask yourself what density
matrix you should use to make predictions for your own
future cosmological observations. All experiments you can
ever perform are preceded by you introspecting and im-
plicitly confirming that you are not in one of the stillborn
galaxy-free wave-function branches that failed to inflate.
Since those dead branches are thoroughly decohered from
the branch that you are in, they are completely irrelevant to
predicting your future, and it would be a serious mistake
not to discard their contribution to the density matrix of
your Universe. This conditionalization is analogous to the
use of conditional probabilities when making predictions
in classical physics. If you are playing cards, for example,
the probabilistic model that you make for your opponent’s
hidden cards reflects your knowledge of your own cards;
you do not consider shuffling outcomes where you were
dealt different cards than those you observe.

Just as decoherence can be partial, when (€;|€;) # 0, so
can measurement, so let us now derive how observation
changes the density matrix also in the most general case.
Let |s;) denote the basis states that the subject can per-
ceive—as discussed above, these must be robust to deco-
herence, and will for the case of a human observer
correspond to ‘“‘pointer states” [55] of certain degrees of
freedom of her brain. Just as in the decoherence section
above, let us consider general interactions that leave the
object unchanged, i.e., such that the unitary dynamics is
U = e~ Hw! during the observation and merely changes the
subject state in a way that depends on the object state |o;),
say from an initial state |s,) into some final state |o;):

Ulso)lo;) = laplo;). (11)
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This means that an initial density matrix p = |s¢){so| ® p,

of the subject-object system, where p, =
Y.iioilp,loplo)o;l, will evolve as
p = UpUT = U|SO><SO|PUUT
= > (oilp,loUlso)lo;)sol{o,|U*
ij
=D (oilpoloplanlo)a;lo;l. (12)
ij

Since the subject will decohere rapidly, on a time scale
much shorter than that on which subjective perceptions
change, we can apply the decoherence formula (8) to this
expression with P; = |s;)(s;|, which gives

p HZPkPPk = lek><sk|p|sk><sk|
k k

=Y {oilpoloXsilaXolslsi)

ijk
X (sl ® |o,)o)

= > lse)sil ® pi, (13)
k

where

ps) = S oilp,lo)XsilaXalsloXo,l
ij
=Y Pip,PisiloXsilay)” (14
i

is the (unnormalized) density matrix that the subject per-
ceiving |s;) will experience. Equation (13) thus describes a
sum of decohered components, each of which contains the
subject in a pure state |s;). For the version of the subject
perceiving |s;), the correct object density matrix to use
for all its future predictions is therefore pg,k) appropriately
renormalized to have unit trace:

pY X PipoPisiloXsila)y TIpIl]

o = - - »
P trpi) Y. trp, Pil(slol? Tl T}
(15)
where
I, = D (sl )P, (16)

This can be thought of as a generalization of Everett’s so-
called relative state from wave functions to density matri-
ces and from complete to partial measurements. It can also
be thought of as a generalization of Bayes’ theorem from
the classical to the quantum case: just like the classical
Bayes’ theorem shows how to update an observer’s classi-
cal description of something (a probability distribution) in
response to new information, the quantum Bayes’ theorem
shows how to update an observer’s quantum description of
something (a density matrix).
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We recognize the denominator trp(ok) =

S (oilp,lopl{sila)? as the standard expression for the
probability that the subject will perceive |s;). Note that
the same final result in Eq. (15) can also be computed
directly from Eq. (12) without invoking decoherence, as
0o — (silplsi)/tr(s,|plsy), so the role of decoherence lies
merely in clarifying why this is the correct way to compute
the new p,,.

To better understand Eq. (15), let us consider some

simple examples:

(1) If (s;lo;) = &,;, then we have a perfect measure-
ment in the sense that the subject learns the exact
object state, and Eq. (15) reduces to p, — Py, i.e.,
the observer perceiving |s,) knows that the object is
in its kth eigenstate.

(2) If |o;) is independent of i, then no information
whatsoever has been transmitted to the subject,
and Eq. (15) reduces to p, — p,, i.e., nothing
changes.

(3) If for some subject state k we have (s;|o;) = 1 for
some group of j values, vanishing otherwise, then
the observer knows only that the object state is in
this group (this can happen if H,, has degenerate
eigenvalues). Equation (15) then reduces to lgrkp”rﬂk,

where II; is the projection operator onto this group
of states.

4. Entropy and information

In summary, we see that the object decreases its entropy
when it exchanges information with the subject and in-
creases it when it exchanges information with the environ-
ment. Since the standard phrasing of the second law of
thermodynamics is focused on the case where interactions
with the observer are unimportant, we can rephrase it in a
more nuanced way that explicitly acknowledges this
caveat:

Second law of thermodynamics: The object’s entropy
cannot decrease unless it interacts with the subject.

We can also formulate an analogous law that focuses on
decoherence and ignores the observation process:

Another law of thermodynamics: The object’s entropy
cannot increase unless it interacts with the environment.

In Appendix A, we prove the first version and clarify the
mathematical status and content of the second version.
Note that for the above version of the second law, we are
restricting the interaction with the environment to be of a
form of Eq. (5), i.e., to be such that it does not alter the state
of the system, merely transfers information about it to the
environment. In contrast, if general object-environment
interactions H,, are allowed, then there are no restrictions
on how the object entropy can change: for example, there is
always an interaction that simply exchanges the state of the
object with the state of part of the environment, and if the
latter is pure, this interaction will decrease the object
entropy to zero. More physically interesting examples of
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entropy-reducing object-environment interactions include
dissipation (which can in some cases purify a high-energy
mixed state to closely approach a pure ground state) and
error correction (for example, where a living organism
reduces its own entropy by absorbing particles with low
entropy from the environment, performing unitary error
correction that moves part of its own entropy to these
particles, and finally dumping these particles back into
the environment).

In regard to the other law of thermodynamics above,
note that it is merely on average that interactions with the
object cannot increase the entropy (because of Shannon’s
famous result that the entropy gives the average number of
bits required to specify an outcome). For certain individual
measurement outcomes, observation can sometimes in-
crease entropy—we will see an explicit example of this
in the next section.

For a less cosmological example, consider helium gas in
a thermally insulated box, starting off with the gas particles
in a zero-entropy coherent state, where each atom is in a
rather well-defined position. There are positive Lyapunov
exponents in this system because the momentum transfer in
atomic collisions is sensitive to the impact parameter, so
before long, chaotic dynamics has placed every gas particle
in a superposition of being everywhere in a box—indeed,
in a superposition of being all over phase space, with a
Maxwell-Boltzmann distribution. If we define the object to
be some small subset of the helium atoms and call the rest
of the atoms the environment, then the object entropy S,
will be high (corresponding to a roughly thermal density
matrix p, « e H#/kT) even though the total entropy S,,
remains zero; the difference between these two entropies
reflects the information that the environment has about the
object via quantum entanglement as per Eq. (3). In classi-
cal thermodynamics, the only way to reduce the entropy of
a gas is to invoke Maxwell’s demon. Our formalism
provides a different way to understand this: the entropy
decreases if you yourself are the demon, obtaining infor-
mation about the individual atoms that constitute the
object.

II1. APPLICATION TO THE INFLATIONARY
ENTROPY PROBLEM

A. A classical toy model

To build intuition for the effect of observation on en-
tropy in inflationary cosmology, let us consider the simple
toy model illustrated in Fig. 4. This model is purely clas-
sical, but we will show below how the basic conclusions
generalize to the quantum case as well. We will also see
that the qualitative conclusions remain valid when this
unphysical toy model is replaced by realistic inflation
scenarios.

Let us imagine an infinite space pixelized into discrete
voxels of finite size, each of which can be in only two
states. We will refer to these two states as habitable and
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FIG. 4 (color online).

Our toy model involves a pixelized
space where pixels are habitable (green/light grey) or uninhabit-
able (red/dark grey) at random with probability 50%, except
inside large contiguous inflationary patches where all pixels are
habitable.

uninhabitable, and in Fig. 4, they are colored green/light
grey and red/dark grey, respectively. We assume that some
inflationlike process has created large habitable patches in
this space, which fill a fraction f of the total volume, and
that the rest of space has a completely random state where
each voxel is habitable with 50% probability, indepen-
dently of the other voxels.

Now, consider a randomly selected region (which we
will refer to as a “‘universe” by analogy with our Hubble
volume) of this space, lying either completely inside an
inflationary patch or completely outside the inflationary
patches—almost all regions much smaller than the typical
inflationary patch will have this property. Let us number
the voxels in our region in some order 1,2,3,..., and
let us represent each state by a string of zeroes and ones
denoting habitable and uninhabitable, where a 0 in the
ith position means that the ith voxel is habitable. For
example, if our region contains 30 voxels, then
000000000000000000000000000000” denotes the state
where the whole region 1is habitable, whereas
“101101010001111010001100101001””  represents  a
rather typical noninflationary state. Finally, we label each
state by an integer i which is simply its bit string inter-
preted as a binary number.

Letting n denote the number of voxels in our region,
there are clearly 2" possible states i = 0, ..., 2" — 1 that it
can be in. By our assumptions, the probability p; that our
region is in the ith state (denoted A;) is
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+(A =12 ifi=0,
po=pay= {0 T
(1—=p)2" if i >0,
i.e., there is a probability f of being in the i = O state
because inflation happened in our region, plus a small
probability 27" of being in any state in case inflation did
not happen here.

Now, suppose that we decide to measure b bits of
information by observing the state of the first b voxels.
The probability P(H) that they are all habitable is simply
the total probability of the first 2"~ states, i.e.,

2 b—1
PH) = > p;
i=0
=f+ =2+ @ = (1= 2
=f+0-f2", (18)

independent of the number of voxels n in our region. This
result is easy to interpret: either we are in an inflationary
region (with probability f), in which case these b voxels
are all habitable, or we are not (with probability 1 — f), in
which case they are all habitable with probability 27°.

If we find that these b voxels are indeed all habitable,
then using the standard formula for conditional probabil-
ities, we obtain the following revised probability dis-
tribution for the state of our region:

pi (A;|H) P
[HO=fR e
Feipee =0
1A iti=1 - (19)
0 if i =20 ... 2" —1.

We are now ready to compute the entropy S of our region
given various degrees of knowledge about it, which is
defined by the standard Shannon formula

21
) = Z h[pgb)]: h(p) = —plogp, (20)
i=0

where, as mentioned, we use logarithms of base two so that
the entropy has units of bits. Consider first the simple case
of no inflation, f = 0. Then, all nonvanishing probabilities

reduce to pgb) = 2677 and the entropy is simply
SO = pn — b (21)

In other words, the state initially requires »n bits to describe,
one per voxel, and whenever we observe one more voxel,
the entropy drops by 1 bit: the 1 bit of information we gain
tells us merely about the state of the observed voxel, and
tells us nothing about the rest of space since the other
voxels are statistically independent.
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More generally, substituting Eq. (19) into Eq. (20) gives

f+Ha-=n2r _ (1—f)2n

(b) — n—b _

> h[f+(1—f)2‘b]+(2 1)h[j“r(l—f)z—b]'
(22)

As long as the number of voxels is large (n >> b) and the

inflated fraction f is non-negligible (f > 27"), this en-
tropy is accurately approximated by

Y R S WV [t L

> h[f+<1—f>zb]“ h[f+(1—f)2b]
o0 h(D+2h(1— ) .
_%ff_f_l—i_ f+(1—f)27b +10g[f+(1 f)z b]'
23)

The sum of the last two terms is merely an n-independent
constant of order unity which approaches zero as we
observe more voxels (as b increases), so in this limit,
Eq. (23) reduces to simply

-1 _
S(b) =~ u
2b ’
For the special case f = 1/2 where half the volume is
inflationary, Eq. (23) reduces to the more accurate result

SO ~ 2b’1 - logl1 +277] (25)

(24)

without approximations.

Comparing Eq. (21) with either of the last two equations,
we notice quite a remarkable difference, which is illus-
trated in Fig. 5: in the inflationary case, the entropy de-
creases not linearly (by 1 bit for every bit observed), but
exponentially. This means that in our toy inflationary uni-
verse model, if an observer looks around and finds that
even a tiny nearby volume is habitable, this dramatically
reduces the entropy of her universe. For example, if
f = 0.5 and there are 10'?° voxels, then the initial entropy
is about 10'?° bits, and observing merely 400 voxels (less
than a fraction 10~ !'!7 of the volume) to be habitable brings
this huge entropy down to less than 1 bit.

How can observing a single voxel have such a large
effect on the entropy? The answer clearly involves the
long-range correlations induced by inflation, whereby
this single voxel carries information about whether infla-
tion occurred or not in all the other voxels in our Universe.
If we observe b > — logf habitable voxels, it is exponen-
tially unlikely that we are not in an inflationary region. We
therefore know with virtual certainty that the voxels that
we will observe in the future are also habitable. Since our
uncertainty about the state of these voxels has largely gone
away, the entropy must have decreased dramatically, as
Eq. (24) confirms.

To gain more intuition for how this works, consider what
happens if we instead observe the first b voxels to be
uninhabitable. Then, Eq. (19) instead makes all nonvanish-
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FIG. 5 (color online). How observations change the entropy
for an inflationary fraction f = 0.5. If successive voxels are all
observed to be habitable, the entropy drops roughly exponen-
tially in accordance with Eq. (25) (green/grey dots). If the first
voxel is observed to be uninhabitable, thus establishing that we
are in a noninflationary region, then the entropy instead shoots
up to the line of slope —1 given by Eq. (21) (grey/red squares).
More generally, we observe b habitable voxels and then one
uninhabitable one, the entropy first follows the dots, then jumps
up to the squares, then follows the squares downward regardless
of what is observed thereafter. This figure illustrates the case
with n = 50 voxels—although n ~ 10'?° is more relevant to our
actual Universe, the drop toward zero of the green curve would
be too fast to be visible in the such a plot.

ing probabilities p; = 2°7", and we recover Eq. (21) even
when f # 0. Thus, observing merely the first voxel to be
uninhabitable causes the entropy to dramatically increase,
from (1 — f)n to n — 1, roughly doubling if f = 0.5. We
can understand all this by recalling Shannon’s famous
result that the entropy gives the average number of bits
required to specify an outcome. If we know that our
Universe is not inflationary, then we need a full n bits of
information to specify the state of the n voxels, since they
are all independent. If we know that our Universe is infla-
tionary, on the other hand, then we know that all voxels are
habitable, and we need no further information. Since a
fraction (1 — f) of the universes are noninflationary, we
thus need (1 — f)n bits on average. Finally, to specify
whether it is inflationary or not, we need 1 bit of informa-
tion if f = 1/2 and more generally the slightly smaller
amount A(f) + k(1 — f), which is the entropy of a two-
outcome distribution with probabilities f and 1 — f. The
average number of bits needed to specify a universe is
therefore
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SO ~ (1 = f)n + h(f) + h(1 — /), (26)

which indeed agrees with Eq. (23) when setting b = 0.

In other words, the entropy of our Universe before we
have made any observations is the average of a very large
number and a very small number, corresponding to infla-
tionary and noninflationary regions. As soon as we start
observing, this entropy starts leaping toward one of these
two numbers, reflecting our increased knowledge of which
of the two types of region we inhabit.

Finally, we note that the success in this inflationary
explanation of low entropy does not require an extreme
anthropic selection effect where life is a priori highly
unlikely; contrariwise, the probability that our entire
Universe is habitable is simply f, and the effect works
fine also when f is of order unity.

B. The quantum case

To build further intuition for the effect of observation on
entropy, let us generalize our toy model to include quantum
mechanics. We thus upgrade each voxel to a 2-state quan-
tum system, with two orthogonal basis states denoted |0)
(“habitable”) and |1) (‘“‘uninhabitable”). The Hilbert
space describing the quantum state of an n-voxel region
thus has 2" dimensions. We label our 2" basis states by the
same bit strings as earlier, so the state of the 30-voxel
example given in Sec. III A above would be written

[4,;) =1101101010001111010001100101001),  (27)

corresponding to basis state i = 759 669 545. If the region
is inflationary, all its voxels are habitable, so its density
matrix is

Pyes = 1000...0)000...0l. (28)

If it is not inflationary, then we take each voxel to be in the
mixed state

p« = 3110X0] + [1X1]], (29)

independently of all the other voxels, and the density

matrix p,, of the whole region is simply a tensor product

of n such single-voxel density matrices. In the general case

that we wish to consider, there is a probability f that the

region is inflationary, so the full density matrix is

P :fpyes + (1 _f)pno
= £1000...0){000...0l + (1 = f)p. ®p. ® p. ®...p..

(30)

Expanding the tensor products, it is easy to show that we
get 2" different terms, and that this full density matrix can
be rewritten in the form

2"—1
p = pilgXwil 31)
i=0

where p; are the probabilities given by Eq. (17).
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Now, suppose that we, just as in the previous section,
decide to measure b bits of information by observing the
state of the first b voxels and find them all to be habitable.
To compute the resulting density matrix p®), we thus
condition on our observational results using Eq. (15) with
the projection matrix P = [0...0)X0...0|, with & occur-
rences of 0 inside each of the two brackets, obtaining

PpP
trPpP’

®) = (32)

Substituting Eq. (31) into this expression and performing
some straightforward algebra gives

2"—1
P =3 pPly Xy, (33)
i=0

where pﬁ-b) are the probabilities given by Eq. (19). We can
now compute the quantum entropy S of our region, which
is defined by the standard von Neuman formula

S(b) = trh[p(b)], /’l(p) = —plogp. (34)

This trace is conveniently evaluated in the | ;) basis where
Eq. (33) shows that the density matrix p® is diagonal,
reducing the entropy to the sum

2"—1
5O =3 np® (35)
i=0

Comparing this with Eq. (20), we see that this result is
identical to the one we derived for the classical case. In
other words, all conclusions we drew in the previous
section generalize to the quantum-mechanical case as well.

C. Real-world issues

Although we repeatedly used words like “inflation” and
“inflationary” above, our toy models of course contained
no inflationary physics whatsoever. For example, real eter-
nal inflation tends to produce a messy spacetime with
significant curvature on scales far beyond the cosmic par-
ticle horizon, not simply large uniform patches embedded
in Euclidean space,® and real inflation has quantum field
degrees of freedom that are continuous rather than simple
qubits. However, it is also clear that our central result
regarding exponential entropy reduction has a very
simple origin that is independent of such physical details:
long-range entanglement. In other words, the key was
simply that the state of a small region could sometimes
reveal the state of a much larger region around it (in our
case, local smoothness implied large-scale smoothness).

31t is challenging to quantify the inflationary volume fraction f
in such a messy spacetime, but as we saw above, this does not
affect the qualitative conclusions as long as f is not exponen-
tially small—which appears unlikely given the tendency of
eternal inflation to dominate the total volume produced.
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This allowed a handful of measurements in that small
region to, with a non-negligible probability, provide a
massive entropy reduction by revealing that the larger
region was in a very simple state. We saw that the result
was so robust that it did not even matter whether this long-
range entanglement was classical or quantum mechanical.

It is not merely inflation that produces such long-range
entanglement, but any process that spreads rapidly outward
from scattered starting points. To illustrate this robustness
to physics details, consider the alternative example where
Fig. 4 is a picture of bacterial colonies growing in a Petri
dish: the contiguous spread of colonies creates long-range
entanglement, so that observing a small patch to be colon-
ized makes it overwhelmingly likely that a much larger
region around it is colonized. Similarly, if you discover that
a drop of milk tastes sour, it is extremely likely that a much
larger volume (your entire milk carton) is sour. A random
bacterium in a milk carton should thus expect the entire
carton to be sour just like a random cosmologist in a
habitable post-inflationary patch of space should expect
her entire Hubble volume to be post-inflationary.

IV. DISCUSSION

In the context of unitary cosmology, we have investi-
gated the time evolution of the density matrix with which
an observer describes a quantum system, focusing on the
processes of decoherence and observation and how they
change entropy. Let us now discuss some implications of
our results for inflation and quantum gravity research.

A. Implications for inflation

Although inflation has emerged as the most popular
theory for what happened early on, bolstered by improved
measurements involving the cosmic microwave back-
ground and other cosmological probes, the case for infla-
tion is certainly not closed. Aside from issues to do with
measurements [9] and competing theories [10-12], there
are at least four potentially serious problems with its
theoretical foundations, which are arguably interrelated:

(1) The entropy problem;

(2) The measure problem:;

(3) The start problem;

(4) The degree-of-freedom problem.

Since we described the entropy problem in the
Introduction, let us now briefly discuss the other three.
Please note that we will not aim or claim to solve any of
these three additional problems in the present paper,
merely to highlight them and describe additional difficul-
ties related to the degree-of-freedom problem.

1. The measure problem

Inflation is generically eternal, producing a messy
spacetime with infinitely many post-inflationary pockets
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separated by regions that inflate forever [S6-58]. These
pockets together contain an infinite volume and infinitely
many particles, stars, and planets. Moreover, certain
observable quantities like the density fluctuation ampli-
tude that we have observed to be Q ~2 X 107 in our
part of spacetime [7,59] take different values in different
places.4 Taken together, these two facts create what has
become known as the inflationary “measure problem”
[8,13-33]: the predictions of inflation for certain observ-
able quantities are not definite numbers, merely probability
distributions, and we do not yet know how to compute
these distributions.

The failure to predict more than probability distributions
is of course not a problem per se, as long as we know how
to compute them (as in quantum mechanics). In inflation,
however, there is still no consensus around any unique and
well-motivated framework for computing such probability
distributions despite a major community effort in recent
years. The crux of the problem is that when we have a
messy spacetime with infinitely many observers who sub-
jectively feel like you, any procedure to compute the
fraction of them who will measure say one Q value rather
than another will depend on the order in which you count
them, just as the fraction of the integers that are even
depends on the order in which you count them [8]. There
are infinitely many such observer ordering choices, many
of which appear reasonable yet give manifestly incorrect
predictions [8,20,25,31,33], and despite promising devel-
opments, the measure problem remains open. A popular
approach is to count only the finite number of observers
existing before a certain time ¢ and then letting t — oo, but
this procedure has turned out to be extremely sensitive to the
choice of time variable ¢ in the spacetime manifold, with no
obviously correct choice [8,20,25,31,33], The measure
problem has eclipsed and subsumed the so-called fine-
tuning problem, in the sense that even the rather special
inflaton potential shapes that are required to match obser-
vation can be found in many parts of the messy multidimen-
sional inflationary potential suggested by the string
landscape scenario with its 10°® or more distinct minima
[60—64], so the question shifts from asking why our inflaton
potential is the way it is to asking what the probability is of
finding yourself in different parts of the landscape.

In summary, until the measure problem is solved, infla-
tion strictly speaking cannot make any testable predictions
at all, thus failing to qualify as a scientific theory in
Popper’s sense.

40 depends on how the inflaton field rolled down its potential,
so for a one-dimensional potential with a single minimum, Q is
generically different in regions where the field rolled from the
left and from the right. If there potential has more than one
dimension, there is a continuum of options, and if there are
multiple minima, there is even the possibility that other effective
parameters (physical “constants’”) may differ between different
minima, as in the string theory landscape scenario [60—64].
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2. The start problem

Whereas the measure problem stems from the end of
inflation (or rather the lack thereof), a second problem
stems from the beginning of inflation. As shown by
Borde, Guth, and Vilenkin [65], inflation must have had a
beginning, i.e., cannot be eternal to the past (except for
the loophole described in [66,67]), so inflation fails to
provide a complete theory of our origins, and needs to be
supplemented with a theory of what came before. (The
same applies to various ekpyrotic and cyclic universe
scenarios [65].)

The question of what preceded inflation is wide open,
with proposed answers including quantum tunneling
from nothing [56,68], quantum tunneling from a
“pre-big-bang” string perturbative vacuum [69,70], and
quantum tunneling from some other noninflationary state.
Whereas some authors have argued that eternal inflation
makes predictions that are essentially independent of how
inflation started, others have argued that this is not the case
[71-73]. Moreover, there is no quantitative agreement
between the probabilities predicted by different scenarios,
some of which even differ over the sign of a huge exponent.

The lack of consensus about the start of inflation not
only undermines claims that inflation provides a final
answer, but also calls into question whether some of the
claimed successes of inflation really are successes. In the
context of the above-mentioned entropy problem, some
have argued that tunneling into the state needed to start
inflation is just as unlikely as tunneling straight into the
current state of our Universe [35,36], whereas others
have argued that inflation still helps by reducing the
amount of mass that the quantum tunneling event needs
to generate [74].

3. The degree-of-freedom problem

A third problem facing inflation is to quantum-
mechanically understand what happens when a region of
space is expanded indefinitely. We discuss this issue in
detail in Appendix B below, and provide merely a brief
summary here. Quantum gravity considerations suggest
that the number of quantum degrees of freedom N in a
comoving volume V is finite. If N increases as this volume
expands, then we need an additional law of physics that
specifies when and where new degrees of freedom are
created, and into what quantum states they are born. If N
does not increase, on the other hand, life as we know it may
eventually be destroyed in a ““big snap” when the increas-
ingly granular nature of space begins to alter our effective
laws of particle physics, much like a rubber band cannot be
stretched indefinitely before the granular nature of its
atoms cause our continuum description of it to break
down. Moreover, in the simplest scenarios where the num-
ber of observers is proportional to post-inflationary vol-
ume, such big snap scenarios are already ruled out by
dispersion measurements using gamma-ray bursts. In sum-
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mary, none of the three logical possibilities for the number
of quantum degrees of freedom N (it is infinite, it changes,
it stays constant) is problem free.

4. The case for inflation: The bottom line

In summary, the case for inflation will continue to lack a
rigorous foundation until the measure problem, the start
problem, and the degree-of-freedom problem have been
solved, so until then, we cannot say for sure whether
inflation solves the entropy problem and adequately ex-
plains our low observed entropy. However, our results have
shown that inflation certainly makes things better. We have
seen that claims to the contrary are based on an unjustified
neglect of the density matrix conditioning requirement (the
third dynamical equation in Table I), thus conflating the
entropy of the full quantum state with the entropy of
subsystems.

Specifically, we have showed that by producing a quan-
tum state with long-range entanglement, inflation creates a
situation where observations can cause an exponential
decrease in entropy, so that merely a handful of quantum
measurements can bring the entropy for our observable
Universe down into the low range that we in fact observe.
This means that if we assume that sentient observers
require at least a small volume (say enough to fit a few
atoms) of low temperature (<<10'® GeV), then almost
all sentient observers will find themselves in a post-
inflationary low-entropy universe, and we humans have
no reason to be surprised that we do so as well.

B. Implications for quantum gravity

We saw above that unjustified neglect of the density
matrix conditioning requirement (the third dynamical
equation in Table I) can lead to incorrect conclusions about
inflation. The bottom line is that we must not conflate the
total density matrix with the density matrix relevant to us.
Interestingly, as we will now describe, this exact same
conflation has led to various incorrect claims in the litera-
ture about quantum gravity and dark energy, for example,
that dark energy is simply backreaction from superhorizon
quantum fluctuations.

LIsG,, =8mG(T,,)?

Since we lack a complete theory of quantum gravity, we
need some approximation in the interim for how quantum
systems gravitate, generalizing the FEinstein equation
G, = 87GT,, of general relativity. A common assump-
tion in the literature is that to a good approximation,

Gy = 87G(T,,), (36)

where G, on the left-hand side is the usual classical
Einstein tensor specifying spacetime curvature, while
(T/“) on the right-hand side denotes the expectation value
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of the quantum field theory operator 7, i.e., (T,,) =
tr[pT,,], where p is the density matrix. Indeed, this as-
sumption is often (as in some of the examples cited below)
made without explicitly stating it, as if its validity were
self-evident.

So, is the approximation of Eq. (36) valid? It clearly
works well in many cases, which is why it continues to
be used. Yet, it is equally obvious that it cannot be univer-
sally valid. Consider the simple example of inflation
with a quadratic potential starting out in a homogeneous
and isotropic quantum state. This state will qualitatively
evolve as in Fig. 1, into a quantum superposition of many
macroscopically different states, some of which corre-
spond to a large semiclassical post-inflationary universe
like ours (each with its planets, etc. in different places).
Yet, since both the initial quantum state and the evolution
equations have translational and rotational invariance, the
final quantum state will too, which means that (T,,) is
homogeneous and isotropic. But, Eq. (36) then implies that
G, is homogeneous and isotropic as well, i.e., that space-
time is exactly described by the Friedmann-Robertson-
Walker metric. The easiest way to experimentally rule
this out is to stand on your bathroom scale and note the
gravitational force pulling you down. In this particular
branch of the wave function, there is a planet beneath
you, pulling you downward, and it is irrelevant that there
are other decohered branches of the wave function where
the planet is instead above you, to your left, to your right,
etc., giving an average force of zero. (T,,) is position-
independent for the quantum field density matrix corre-
sponding to the total state, whereas the relevant density
matrix is the one that is conditioned on your perceptions
thus far, which include the observation that there is a planet
beneath you.

The interesting question regarding Eq. (36) thus be-
comes more nuanced: when exactly is it a good approxi-
mation? In this spirit, [75] poses two questions: How
unreliable are expectation values? and How much spatial
variation should one expect? We have seen above that the
first step toward a correct treatment is to compute the
density matrix conditioned on our observations (the third
dynamic process in Table I) and use this density matrix p to
describe the quantum state. Having done this, the question
of whether Eq. (36) is accurate basically boils down to the
question of whether the quantum state is roughly ergodic,
i.e., whether a small-scale spatial average of a typical
classical realization is well approximated by the quantum
ensemble average (T,,) = tr[pT,,]. This ergodicity tends
to hold for many important cases, including the inflationary
case where the quantum wave functional for the primordial
fields in our Hubble volume is roughly Gaussian, homoge-
neous, and isotropic [14]. Spatial averaging on small scales
is relevant because it tends to have little effect on the
gravitational field on larger spatial scales, which depends
mainly on the large-scale mass distribution, not on the fine
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details of where the mass is located. For a detailed modern
treatment of small-scale averaging and its interpretation as
“integrating out” UV degrees of freedom, see [76]. Since
very large scales tend to be observable and very small scales
tend to be unobservable, a useful rule of thumb in many
situations is ‘“‘condition on large scales, trace out small
scales.”

In summary, the popular approximation of Eq. (36) is

accurate if both of these conditions hold:

(1) The spatially fluctuating stress-energy tensor for a
generic branch of the wave function can be approxi-
mated by its spatial average.

(2) The quantum ensemble average can be approxi-
mated by a spatial average for a generic branch of
the wave function.

2. Dark energy from superhorizon
quantum fluctuations?

The discovery that our cosmic expansion is accelerating
has triggered a flurry of proposed theoretical explanations,
most of which involve some form of substance or vacuum
density dubbed dark energy. An alternative proposal that
has garnered significant interest is that there is no dark
energy, and that the accelerated expansion is instead due to
gravitational backreaction from inflationary density pertur-
bations on scales much larger than our cosmic particle
horizon [77,78]. This was rapidly refuted by a number of
groups [79-82], and a related claim that superhorizon
perturbations can explain away dark energy [83] was
rebutted by [84].

Although these papers mention quantum mechanics
perfunctorily at best (which is unfortunate given that
the origin of inflationary perturbations is a purely
quantum-mechanical phenomenon), a core issue in these
refuted models is precisely the one we have emphasized
in this paper: the importance of using the correct
density matrix, conditioned on our observations, rather
than a total density matrix that implicitly involves incorrect
averaging—either quantum ‘“ensemble” averaging as in
Eq. (36) or spatial averaging. For example, as explained in
[84], a problem with the effective stress-energy tensor
(T,,) of [83] is that it involves averaging over regions of
space beyond our cosmological particle horizon, even
though our observations are limited to our backward light
cone.

Such unjustified spatial averaging is the classical phys-
ics equivalent of unjustified use of the full density matrix in
quantum mechanics: in both cases, we get correct statisti-
cal predictions only if we predict the future given what we
know about the present. Classically, this corresponds to
using conditional probabilities, and quantum mechanically
this corresponds to conditioning the density matrix using
the bottom equation of Table I—neither is optional. In
classical physics, you should not expect to feel comfortable
in boiling water full of ice chunks just because the spatially
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averaged temperature is lukewarm. In quantum mechanics,
you should not expect to feel good when entering water
that is in a superposition of very hot and very cold.
Similarly, if there is no dark energy and the total quantum
state p of our spacetime corresponds to a superposition of
states with different amplitudes for superhorizon modes,
then we should not expect to perceive a single semiclassi-
cal spacetime that accelerates (as claimed for some models
[77,78]), but rather to perceive one of many semiclassical
spacetimes from a decohered superposition, all of which
decelerate.

Dark energy researchers have also devoted significant
interest to so-called phantom dark energy, which has an
equation of state w < —1 and can lead to a big rip a finite
time from now, when the dark energy density and the
cosmic expansion rate becomes infinite, ripping apart
everything we know. The same logical flaw that we high-
lighted above would apply to all attempts to derive such
results by exploiting infrared logarithms in the equations
for density and pressure [85] if they give w << —1 on scales
much larger than our cosmic horizon, or more generally to
talking about “the equation of state of a superhorizon
mode” without carefully spelling out and justifying any
averaging assumptions made.

C. Unitary thermodynamics and the
Copenhagen approximation

In summary, we have analyzed cosmology assuming
unitary quantum mechanics, using a tripartite partition
into system, observer, and environment degrees of free-
dom. We have seen that this generalizes the second law of
thermodynamics to The system’s entropy cannot decrease
unless it interacts with the observer, and it cannot increase
unless it interacts with the environment. Quantitatively, the
system (object) density matrix evolves according to one of
the three equations listed in Table I depending on whether
the main interaction of the system is with itself, with the
environment, or with the observer. The key results in this
paper follow from the third equation of Table I, which
gives the evolution of the quantum state under an arbitrary
measurement or state preparation, and can be thought of as
a generalization of the positive operator valued measure
formalism [86,87].

Informally speaking, the entropy of an object decreases
while you look at it and increases while you do not [43]. The
common claim that entropy cannot decrease simply corre-
sponds to the approximation of ignoring the subject in
Fig. 2, i.e., ignoring measurement. Decoherence is simply
a measurement that you do not know the outcome of, and
measurement is simply entanglement, a transfer of quantum
information about the system: the decoherence effect on the
object density matrix (and hence the entropy) is identical
regardless of whether this measurement is performed by
another person, a mouse, a computer, or a single particle
that encodes information about the system by bouncing
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off of it.> In other words, observation and decoherence
both share the same first step, with another system obtain-
ing information about the object—the only difference is
whether that system is the subject or the environment, i.e.,
whether the last step is conditioning or partial tracing:

(i) observation = entanglement + conditioning;

(i) decoherence = entanglement + partial tracing.

Our formalism assumes only that quantum mechanics is
unitary and applies even to observers—i.e., we assume that
observers are physical systems too, whose constituent par-
ticles obey the same laws of physics as other particles. The
issue of how to derive Born rule probabilities in such a
unitary world has been extensively discussed in the litera-
ture [45,46,89-92]—for thorough criticism and defense of
these derivations, see [93,94], and for a subsequent deriva-
tion using inflationary cosmology, see [95]. The key point of
the derivations is that in unitary cosmology, a given quan-
tum measurement tends to have multiple outcomes as illus-
trated in Fig. 1, and that a generic rational observer can
fruitfully act as if some nonunitary random process (‘‘wave-
function collapse”) realizes only one of these outcomes at
the moment of measurement, with probabilities given by the
Born rule. This means that in the context of unitary cos-
mology, what is traditionally called the Copenhagen inter-
pretation is more aptly termed the Copenhagen
approximation: an observer can make the convenient
approximation of pretending that the other decohered
wave-function branches do not exist and that wave-function
collapse does exist. In other words, the approximation is
that apparent randomness is fundamental randomness.

In summary, if you are one of the many observers in
Fig. 1, you compute the density matrix p with which to best
predict your future from the full density matrix by perform-
ing the two complementary operations summarized in
Table I: conditioning on your knowledge (generalized
‘“state preparation”) and partial tracing over the
environment.

5As described in detail, e.g., [48-52], decoherence is not
simply the suppression of off-diagonal density matrix elements
in general, but rather the occurrence of this in the particular basis
of relevance to the observer. This basis is in turn determined
dynamically by decoherence of both the object [48—52] and the
subject [43,88].

SNote that the factorization of the Hilbert space into subject,
object, and environment subspaces is different for different
branches of the wave function, and that generally no global
factorization exists. If you designate the spin of a particular
silver atom to be your object degree of freedom in this branch of
the wave function, then a copy of you in a branch where planet
Earth (including you, your lab, and said silver atom) is a light
year further north will settle on a different tripartite partition into
subject, object, and environment degrees of freedom.
Fortunately, all observers here on Earth here in this wave-
function branch agree on essentially the same entropy for our
observable Universe, which is why we tend to get a bit sloppy
and hubristically start talking about the entropy, as if there were
such a thing.
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D. Outlook

Using our tripartite decomposition formalism, we
showed that because of the long-range entanglement cre-
ated by cosmological inflation, the cosmic entropy de-
creases exponentially rather than linearly with the
number of bits of information observed, so that a given
observer can produce much more negentropy than her
brain can store. Using this result, we argued that as long
as inflation has occurred in a non-negligible fraction of the
volume, almost all sentient observers will find themselves
in a post-inflationary low-entropy Hubble volume, and we
humans have no reason to be surprised that we do so as
well, which solves the so-called inflationary entropy prob-
lem. As detailed in Appendix B, an arguably worse prob-
lem for unitary cosmology involves gamma-ray-burst
constraints on the big snap, a fourth cosmic doomsday
scenario alongside the big crunch, big chill, and big
rip, where an increasingly granular nature of expanding
space modifies our effective laws of physics, ultimately
killing us.

Our tripartite framework also clarifies when the popular
quantum gravity approximation G ., = 87G(T ) is valid,
and how problems with recent attempts to explain dark
energy as gravitational backreaction from superhorizon
scale fluctuations can be understood as a failure of this
approximation. In the future, it can hopefully shed light
also on other thorny issues involving quantum mechanics
and macroscopic systems.
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APPENDIX A: ENTROPY INEQUALITIES FOR
OBSERVATION AND DECOHERENCE

1. Proof that decoherence increases entropy

The decoherence formula from Table I says that the
effect of decoherence on the object density matrix p is

pr>poE, (A1)

where the matrix E is defined by E;; = (¢;|€;) and the
symbol o denotes what mathematicians know as the Schur
product. Schur multiplying two matrices simply corre-
sponds to multiplying their corresponding components,
ie., (po E),-j = p;;E;;. Because E is the matrix of inner
products of all the resulting environmental states |€;), itis a
so-called Gramian matrix and guaranteed to be positive
semidefinite (with only non-negative eigenvalues).
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Because E also has the property that all its diagonal
elements are unity (E;; = (€;|€;) = 1), it is conveniently
thought of as a (complex) correlation matrix.

We wish to prove that decoherence always increases the
entropy S(p) = —trp logp of the density matrix, i.e., that

S(p ° E) = S(p), (A2)

for any two positive semidefinite matrices p and E such
trp =1 and E;; = 1, with equality only for the trivial
case where p o E = p, corresponding to the object-
environment interaction having no effect. Since I have
been unable to find a proof of this in the literature, I will
provide a short proof here.

A useful starting point is the Corrollary J.2.a in [96]
[their Eq. (7)], which follows from a 1985 theorem by

Bapat and Sunder. It states that
Alp) > A(p o E), (A3)

where A(p) denotes the vector of eigenvalues of a matrix p,
arranged in decreasing order, and the symbol > denotes

majorization. A vector with components Ay, ..., A, major-
izes another vector with components w, ..., u, if they
have the same sum and

J J

=D forj=1,...n (A4)

i=1 i=1

i.e., if the partial sums of the latter never beat the former:
AL = py, A+ Ay = py + uy, etc. In other words, the
eigenvalues of the density matrix before decoherence ma-
jorize the eigenvalues after decoherence.

Given any two numbers a and b where a > b, let us
define a Robin Hood transformation as one that brings
them closer together while keeping their sum constant:
ar>a—c and b+ a+ ¢ for some constant 0 < c¢ <
(a — b)/2. Reflecting on the definition of > shows that
majorization is a measure of how spread out a set of
numbers are: performing a Robin Hood transformation
on any two elements of a vector will produce a vector
that it majorizes, and the maximally egalitarian vector
whose components are all equal (A; = 1/n) will be major-
ized by any other vector of the same length. Conversely,
any vector that is majorized by another can be obtained
from it by a sequence of Robin Hood transformations [96].

It is easy to see that for a function £ that is concave
(whose second derivative is everywhere negative), the
quantify h(a) + h(b) will increase whenever we perform
a Robin Hood transformation on a and b. This implies that

", h(A;) increases for any Robin Hood transformation
on any pair of elements, and when we replace the vector
of A values by any vector that it majorizes. However, the
entropy of a matrix is exactly such a function of its
eigenvalues:

S(p) = —trplogp = 3 h(A,), (AS5)
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where the function h(x) = —xlogx is concave. This con-
cludes the proof of Eq. (A2), i.e., of the theorem that
decoherence increases entropy. By making other concave
choices of h, we can analogously obtain other theorems
about the effects of decoherence. For example, choosing
h(x) = —x? proves that decoherence also increases the
linear entropy 1 — trp®. Choosing h(x) = logx proves
that decoherence increases the determinant of the density
matrix, since log detp = >, logA;.

2. Conjecture that observation reduces
expected entropy

The observation formula from Table I can be thought of
as the quantum Bayes theorem. It says that observing
subject state i changes the object density matrix to

) PSS,
pli = = (A6)
Pi
where S;; = (s;|o;) and
(A7)

Pi = ijj|Sij|2
J

can be interpreted as the probability that the subject will
perceive state i. The resulting entropy S(p”) can be both
smaller and larger than the initial entropy S(p), as simple
examples show. However, I conjecture that observation
always decreases entropy on average, specifically, that
D piS(p?) < S(p) (A8)
1
except for the trivial case where p) = p, where observa-
tion has no effect. The corresponding result for classical
physics holds, and was proven by Claude Shannon: here,
average entropy reduction equals the mutual information
between object and subject, which cannot be negative.
For quantum mechanics, however, the situation is more
subtle. For example, for a system of two perfectly en-
tangled qubits, the entropy of the first qubit is S; = 1 bit
while the mutual information I = §; + S, — S|, = 2 bits,
so the classical result would suggest that S; should drop to
the impossible value of —1 bit whereas Eq. (A8) shows that
it drops to O bits. Although I have thus far been unable to
rigorously prove Eq. (A8), I have performed extensive
numerical tests with random matrices without encounter-
ing any counterexamples.

APPENDIX B: THE DEGREE-OF-FREEDOM
PROBLEM AND THE BIG SNAP

Let N denote the number of degrees of freedom in a
finite comoving volume V of space. Does N stay constant
over time, as our Universe expands? There are three logi-
cally possible answers to this questions, none of which
appears problem free:

(1) Yes

(2) No
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(3) N is infinite, so we do not need to give a yes or no

answer.

Option 3 has been called into doubt by quantum gravity
considerations. First, the fact that our classical notion of
space appears to break down below the Planck scale
roi ~ 1073 m calls into question whether N can signifi-
cantly exceed V/ rzl, the volume V that we are considering,

measured in Planck units. Second, some versions of the
so-called holographic principle [97] suggest that N may be
smaller still, bounded not by the V/rjy but by V¥/3/r2,

roughly the area of our volume in Planck units. Let us
therefore explore the other two options: 1 and 2. The
hypothesis that degrees of freedom are neither created
nor destroyed underlies not only quantum mechanics (in
both its standard form and with nonunitary Ghirardi-
Rimini-Weber-like modifications [39]), but classical me-
chanics as well. Although quantum degrees of freedom can
freeze out at low temperatures, reducing the “effective”
number, this does not change the actual number, which is
simply the dimensionality of the Hilbert space.

1. Creating degrees of freedom

The holographic principle in its original form [97] sug-
gests option 2, changing N.” Let us take our comoving
volume V to be our current cosmological particle horizon
volume, also known as our ‘‘observable Universe,”
of radius ~10%° m, giving a holographic bound of
N ~ 10'% degrees of freedom. This exact same comoving
volume was also the horizon volume during inflation, at the
specific time when the largest-scale fluctuations imaged by
the WMAP satellite [7] left the horizon, but then its radius
was perhaps of order 10~2% m, giving a holographic bound
of a measly N ~ 10'> degrees of freedom. Since this
number is ridiculously low by today’s standards (I have
more bits than that even on my hard disk), new degrees of
freedom must have been created in the interim as per
option 2.8 But, then we totally lack a predictive theory of
physics. To remedy this, we would need a theory predicting
both when and where these new degrees of freedom are
created, and also what quantum states they are created
with. Such a theory would also need to explain how de-
grees of freedom disappear when space contracts, as during
black hole formation. Although some interesting early
work in this direction has been pursued (see, e.g., [101]),
it appears safe to say that no complete self-consistent
theory of this type has yet been proposed that purports to
describe all of physical reality.

"More recent versions of the holographic principle have fo-
cused on the entropy of three-dimensional light sheets rather
than three-dimensional volumes, evading the implications below
[98,99].

An even more extreme example occurs if a Planck-scale
region with a mere handful of degrees of freedom generates a
whole new universe with say 10'®° degrees of freedom via the
Farhi-Guth-Guven mechanism [100].
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2. The big snap

This leaves option 1, constant N. It too has received
indirect support from quantum gravity research, in this
case the AdS/CFT correspondence, which suggests that
quantum gravity is not merely degree-of-freedom preserv-
ing but even unitary. This option suffers from a different
problem which I have emphasized to colleagues for some
time, and which I will call the big snap.

If N remains constant as our comoving volume expands
indefinitely, then the number of degrees of freedom per unit
volume drops toward zero’ as N/V. Since a rubber band
consists of a finite number of atoms, it will snap if you
stretch it too much. Similarly, if our space has a finite
number of degrees of freedom N and is stretched indef-
initely, something bad is guaranteed to happen eventually.

As opposed to the rubber band case, we do not know
precisely what this big snap will be like or precisely when
it will occur. However, it is instructive to consider the
length scale a = (V/N)'/3: if the degrees of freedom are
in some sense rather uniformly distributed throughout
space, then a can be thought of as the characteristic dis-
tance between degrees of freedom, and we might expect
some form of spatial granularity to manifest itself on this
scale. As the Universe expands, a grows by the same factor
as to the cosmic scale factor, pushing this granularity to
larger scales. It is hard to imagine business as usual once
a = 10% m so that the number of degrees of freedom in
our Hubble volume has dropped below 1. However, it is
likely that our Universe will become uninhabitable long
before that, perhaps when the number of degrees of free-
dom per atom drops below 1 (¢ = 17'° m, altering atomic
physics) or the number of degrees of freedom per proton
drops below 1 (a = 1~ !5 m, altering nuclear physics). This
big snap thus plays a role similar to that of the cutoff
hypersurface used to tackle the inflationary measure prob-
lem, endowing the “‘end of time”” proposal of [105] with an
actual physical mechanism.

Fortunately, there are observational bounds on many
types of spatial granularity from astronomical observa-
tions. For a simple lattice with spacing a, the linear dis-
persion relation w(k) = ck for light gets replaced by
w(k) « sin(ak), giving a group velocity

_dw _ (ak)* 1 faE\?
v—%mcosak~1 > =1 E(E) B1)

as long as a << k~!. This means that if two gamma-ray
photons with energies E; and E, are emitted simulta-

°Some interesting models evade this conclusion by denying
that the physically existing volume can ever expand indefinitely
while remaining completely “real” in some sense. De Sitter
equilibrium cosmology [102,103] can be given the radical inter-
pretation that once objects leave our cosmic de Sitter horizon,
they no longer have an existence independent of what remains
inside our horizon, and some holographic cosmology models
have related interpretations [104].
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neously a cosmological distance c¢/H away, where
H '~ 10" s is the Hubble time, they will reach us
separated in time by an amount

A~ a1 AY H'(“AE)2
v hc

(B2)

if the energy difference AE = |E, — E|| is of the same
order as E;. Structure on a time scale of 10~* s has been
reported in the gamma-ray burst GRB 910711 [106] in
multiple energy bands, which [107] interpret as a lower
bound Az =< 0.01 s for AE = 200 keV. Substituting this

into Eq. (B2) therefore gives the constraint

fic _
a < aggg ~ —(HANY2 ~1072! m. (B3)
AE

If N really is finite, then we can consider the fate of a
hypersurface during the early stages of inflation that is
defined by a = a.. for some constant a... Each region along
this hypersurface has its own built-in self-destruct mecha-
nism, in the sense that it can only support observers like us
until it has expanded by a factor a4 /a., where ay is the a
value beyond which life as we know it is impossible.
However, in the eternal inflation scenario, which has
been argued to be generic [56-58], different regions will
expand by different amounts before inflation ends, so we
should expect the probability to find ourselves in a given
region ~10!7 seconds after the end of inflation to be
proportional to (a/a.)? as long as a < ay, i.e., proportional
to the volume of the region and hence to the number of
solar systems in the region (at least for all regions that
share our effective laws of physics). This predicts that
generic observers should have a drawn from the probabil-

ity distribution
4_%3
flay=1%
0

The tight observational constraints in Eq. (B3) are thus
very surprising: even if we conservatively assume a; =
107! m, i.e., that a needs to be 10000 times smaller than
a proton for us to survive, the probability of observing
a < aggg 1s merely

if a< ai,
(B4)
if a = aj.

P(a = agrp) = fo " fla)da = (”2?3)4 ~ 1078, (BS)

thus ruling out this scenario at 99.999 999% confidence.
Differently put, the scenario is ruled out because it predicts
that a typical (median) observer has only a couple of billion
years left until the big snap, and has already seen the
tell-tale signature of our impending doom in gamma-ray
burst data.

This argument should obviously be taken with a grain of
salt; for example, one can imagine alternative dispersion
relations which weaken the bound in Eq. (B3). However,
to be acceptable, any future theory predicting a finite
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unchanging number of degrees of freedom N must repeat
this calculation using its own formalism and successfully
explain why we do not observer greater time dispersion in
gamma-ray bursts.

Another important caveat is that our space is not ex-
panding uniformly: indeed, gravitationally bound regions
like our Galaxy are not expanding at all. In specific models
where the degrees of freedom are localized on spatial
scales smaller than galaxies, one could imagine galaxy-
dwelling observers happily surviving long after intergalac-
tic space has undergone a big snap, as long as deleterious
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effects from these faraway regions do not propagate into
the galaxies. Note, however, that this scenario saves only
the observers, not the underlying theory. Indeed, the dis-
crepancy between theory and observation merely gets
worse: repeating the above volume weighting argument
now predicts that we are most likely to find ourselves alive
and well in a galaxy after the big snap has taken place
throughout most of space, so the lack of any strange
observed signatures in light from distant extragalactic
sources (energy-dependent arrival time differences for
gamma-ray bursts, say) becomes even harder to explain.
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