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We consider the dynamics of a 3-brane embedded in an extra-dimensional Tolman-Bondi Universe

where the origin of space plays a special rôle. The embedding is chosen such that the induced matter

distribution on the brane respects the spherical symmetry of matter in the extra-dimensional space. The

mirage cosmology on the probe brane is studied, resulting in an inhomogeneous and anisotropic four-

dimensional cosmology where the origin of space is also special. We then focus on the spatial geometry

around the origin and show that the induced geometry, which is initially inhomogeneous and anisotropic,

converges to an isotropic and homogeneous Friedmann-Lemaitre 4d space-time. For instance, when a

3-brane is embedded in a 5d matter-dominated model, the 4d dynamics around the origin converge to a

Friedmann-Lemaitre Universe in a radiation-dominated epoch. We analyze this isotropization process and

show that it is a late-time attractor.
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I. INTRODUCTION

The possible existence of extra dimensions is an exciting
prospect. Ever since the first unification attempt by Kaluza
[1] and Klein [2], and then the advent of string theory, the
role of these extra dimensions in shaping four-dimensional
physics has been emphasized [3–5]. It could range from the
presence of towers of excitations in the particle spectrum to
the appearance of scalar fields in the form of compactifi-
cation moduli. In the last 15 years and, in particular, after
the discovery of fundamental branes and the building of
phenomenological brane-world models [6] such as the one
constructed by Randall and Sundrum [7,8], the emerging
possibility of extra-dimensional cosmology has been con-
sidered thoroughly. In brane cosmology, a brane configu-
ration comprising one or several branes are embedded
in a fixed extra-dimensional background. This extra-
dimensional background is commonly assumed to be either
a Minkowski space-time or an anti-de Sitter Universe (for
another type of background see [9] for instance). These two
cases receive strong motivation from either supergravity or
string theory in more than four dimensions. When the
brane is not taken as a probe brane, the extra-dimensional
geometry can be influenced by the matter fields on the
brane and a backreaction must be taken into account. In
five dimensions, these effects are taken into account by
imposing the appropriate Israel boundary condition [6]. On
the other hand, for branes with a low enough tension,
and/or no matter on their world surface, the branes whose
dynamics are governed by their Dirac-Born-Infeld action
evolve in the extra-dimensional background leading to a
mirage cosmology on the brane [10,11]. In particular, the

cosmology on the brane defined by the induced metric can
be nontrivial, e.g., inflation can result for instance.
Recently, the discovery of the acceleration of the

Universe [12] has led to a reappraisal of the underlying
assumptions of cosmology. In particular, the cosmological
principle, which states that the Universe is homogeneous
and isotropic on large scales, has been under scrutiny [13].
As a result, Tolman-Bondi models of the Universe where
the earth would lie close to the center of an inhomogeneous
Universe have been considered [14–16]. Along these lines,
it seems to be timely to question the usual hypothesis that
extra dimensions should be a symmetric space. In 5d,
homogeneous and anisotropic brane models have been
extensively studied [17–20], in particular, with the aim of
extending Wald’s theorem which states that a space-time
with a positive cosmological constant and a matter density
satisfying the strong energy condition always isotropizes
[21]. Other approaches such as in [22] tackle the issue of
isotropization of three large dimensions in the brane gas
cosmology framework by allowing an arbitrary amount of
initial anisotropy. There it was found that the anisotropy
reaches a maximum early in the evolution and then
approaches zero at later times.
Here and in the following, we will consider that the

Universe is a 3-brane embedded in an extra-dimensional
space with no homogeneity at all. We study the dynamics
of the brane as it responds to the extra-dimensional
cosmology. To simplify matters, we assume that the
(dþ 4)-dimensional space-time is a matter-dominated,
inhomogeneous and isotropic Tolman-Bondi Universe
with a special role played by the origin of space. On the
brane, the induced metric is both inhomogeneous and
anisotropic. In principle, we should also introduce matter
fields on the brane and study the backreaction problem. As
a first step, we will assume that the brane is a probe and as a
result we only investigate the mirage cosmology on the
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brane. It turns out that the dynamics are governed by non-
linear partial differential equations whose long-time be-
havior can be analyzed in the vicinity of the origin. We find
that the asymptotic behavior of the induced metric around
the origin becomes isotropic and homogeneous. This iso-
tropization on the brane is in fact an attractor behavior.

Of course our model does not directly apply to our 4d
Universe. Strong constraints on isotropy during big bang
nucleosynthesis should be taken into account [23,24].
Moreover, the dynamics would be certainly changed by
the presence of matter on the brane. Nevertheless, the fact
that an isotropic and homogeneous space-time emerging
from an initially inhomogeneous and anisotropic Universe
around the origin of space is certainly appealing.

The outline of the paper is as follows. In a first part, we
describe branes in a Tolman-Bondi space-time. In Sec. III,
we study the mirage cosmology of a neutral brane in a
Tolman-Bondi Universe. In Sec. IV, we simplify the
dynamics and focus on the vicinity of the origin of space.
In this case, the resulting inhomogeneous and anisotropic
cosmology converges to a 4d Friedmann-Lemaitre
Universe. Our results are confirmed numerically.

II. BRANES IN TOLMAN-BONDI

A. Brane dynamics

We consider the dynamics of a single uncharged 3-brane
described by its world-volume action

Sb ¼ �T3

Z
d4x

ffiffiffiffiffiffiffi�~g
p

; (1)

where T3 is the brane tension and ~g�� is the induced metric

on the brane related to the extra-dimensional metric
GAB by

~g �� ¼ GAB

@XA

@x�
@XB

@x�
; (2)

where x� are the brane coordinates and XAðx�Þ the brane
embedding. Previous studies have mainly concentrated on
the embedding of 3-branes in Minkowski or anti-de Sitter
space-times. Here we concentrate on the possibility that
matter may exist in the extra dimensions and may lead to a
dynamical time evolution of the extra-dimensional geome-
try. In the extra dimensions (the bulk), the action is simply

S4þd ¼ 1

2�2
dþ4

Z
ddþ4X

ffiffiffiffiffiffiffiffi�G
p

Rdþ4 þ Smatter
dþ4 : (3)

Notice the dimension of �2
dþ4 is �ðdþ 2Þ. The matter

action may comprise ordinary matter like a pressureless
fluid. We will also assume that the distribution of matter in
the bulk could be inhomogeneous, i.e., the cosmological
principle could be violated in the bulk. If this is the case,
then the brane geometry will be both anisotropic and
inhomogeneous. Even if the cosmological principle is
satisfied in the bulk, we will find that the brane geometry
is generically anisotropic.

In order to retrieve gravity in the 4d sense at least in the
low-energy–long-distance regime in a way akin to the
Dvali-Gabadadze-Porrati model [25], one may include an
Einstein-Hilbert term on the brane and couple 4d gravity to
matter on the brane

S4 ¼ 1

2�2
4

Z
d4x

ffiffiffiffiffiffiffi�~g
p

~R4 þ Smatter
4 ; (4)

where ~R4 is the Ricci scalar of the induced metric on the
brane and �4 the 4d gravitational constant. Here Smatter

4 is
the contribution from the matter species living on the
brane.
In the following we will treat the simpler case where the

effects of brane gravity and matter are neglected. In this
mirage cosmology setting where the dynamics on the
3-brane are simply due to its probe nature and its motion
in the bulk, we will be able to analyze interesting phe-
nomena such as the isotropization of the 4d geometry. Of
course, the fact that we do not take into account S4 means
that our model cannot describe the physics of the Universe
since big bang nucleosynthesis. To do so, a full analysis of
the model involving the total action

ST ¼ Sdþ4 þ Sb þ S4 (5)

must be tackled. This interesting possibility is left for
future work. In the following, we only consider the dy-
namics driven by the brane action Sb.

B. Tolman-Bondi space-times

Tolman-Bondi space-times in extra dimensions have
been extensively studied [26–32]. Here we review some
of their salient properties. We consider a (dþ 4)-
dimensional universe filled with a pressureless fluid and a
spatially dependent energy density �ðr; tÞ whose metric is
given by the extension of the Tolman-Bondi solution to
(dþ 4) dimensions

ds2 ¼ �dt2 þ e�ðr;tÞdr2 þ R2ðr; tÞd�2
dþ2; (6)

where d�2
dþ2 is the metric on the (dþ 2)-sphere, i.e., there

are n ¼ dþ 2 angular coordinates. The Einstein equations
yield

e� ¼ R02

1þ fðrÞ ; (7)

where 0 ¼ d=dr. The time dependence of the metric is
specified by the Friedmann equation

_R 2 ¼ MðrÞ
Rn�1

þ fðrÞ; (8)

where _¼ d=dt and where fðrÞ is an arbitrary dimension-
less function of the radius r. When fðrÞ ¼ 0, the Tolman-
Bondi Universe reduces to a Friedmann-Lemaitre model
with no inhomogeneity if we assume a cosmically simul-
taneous big bang time, i.e., t0 ¼ t0ðrÞ ¼ constant indepen-
dently of r. The big bang time appears as an integration
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function t0 ¼ t0ðrÞ so that each shell has its own big bang
time, a feature which differs from what happens in the
Friedmann-Lemaitre limit unless t0 is explicitly chosen to
be r-independent. In this case we have Rðr; tÞ ¼ raðtÞ
where aðtÞ is the scale factor of the Friedmann-Lemaitre
Universe.

The mass function MðrÞ is defined by

� ¼ nM0

2�2
4þdR

nR0 ; (9)

or equivalently

MðrÞ ¼ 2�2
4þd

n

Z r

0
dr�RnR0; (10)

where �ðr; tÞ has dimension (dþ 4). In the flat Friedmann-

Lemaitre case, we have �ðr; tÞ ¼ �ðtÞ / a�ðnþ1Þ and
MðrÞ / rnþ1. We can integrate the Friedmann equation to
obtain

Rðt; rÞ ¼ r

�
1þ nþ 1

2

ffiffiffiffiffiffiffiffiffiffi
M

rnþ1

s
ðt� t0Þ

�
2=ðnþ1Þ

; (11)

such that at t ¼ t0, Rðt0Þ ¼ r. Choosing the time origin to

be t0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rnþ1=M

p
=ðnþ 1Þ, we can write

Rðt; rÞ ¼ r

�
t

t0

�
2=ðnþ1Þ ¼

�
nþ 1

2

�
2=ðnþ1Þ

M1=ðnþ1Þt2=ðnþ1Þ:

(12)

We then obtain

e� ¼
�
t

t0

�
4=ðnþ1Þ

; (13)

which specifies the homogeneous Friedmann-Lemaitre
models.

When fðrÞ � 0, we can follow the approach of Debnath
and Chakraborty [33] where the inverse of the Friedmann
Eq. (8) is used to obtain t ¼ tðR; rÞ

t� t0 ¼ 2

nþ 1
M�1=2rðnþ1Þ=2

2F1

�
1

2
;
1þ n

2ðn� 1Þ ;
3n� 1

2ðn� 1Þ ;

� Rn�1f

M

�
� 2

nþ 1
M�1=2Rðnþ1Þ=2

2F1

�
�
1

2
;
1þ n

2ðn� 1Þ ;
3n� 1

2ðn� 1Þ ;�
Rn�1f

M

�
; (14)

where at t ¼ t0, Rðt0Þ ¼ r. We can now simply use R0 ¼
ð@t=@rÞ=ð@t=@RÞ to obtain the spatial derivative of R

R0ðt; rÞ ¼ �ð1þ nÞR
�
f0

f
�M0

M

�
� 2F1

�
�
1;

n

n� 1
;
3n� 1

2ðn� 1Þ ;�
Rn�1f

M

�
Rn

M

�
�
fþ M

Rn � 1

��
ð1þ nÞ f

0

f
� 2

M0

M

�
: (15)

from which we can obtain �. When n ¼ 3 and therefore
d ¼ 1, (14) simplifies considerably and we obtain

R2 ¼ ðt� t0Þ2f� 2ðt� t0Þ
ffiffiffiffiffi
M

p
; (16)

which gives an explicit description of the five-dimensional

geometry. When f ¼ 0, we find that R2ðr; tÞ ¼ 2ðt� t0Þ�ffiffiffiffiffi
M

p
corresponding to a scale factor growing in ðt� t0Þ1=2.

In the following, we will consider models where fðrÞ
vanishes at the origin of space r ¼ 0 in such a way that
fðrÞ � MðrÞ=Rn�1 close to the origin. As MðrÞ / rnþ1

there, this implies that fðrÞ must go to zero faster than r2

locally. This guarantees that the curvature vanishes locally
in a neighborhood of the origin and the extra-dimensional
geometry is locally the one of a flat Friedmann-Lemaitre
model. In particular, this choice specifies that the origin, on
top of being the center of the distribution of matter, is a
special point of space where the geometry is nearly homo-
geneous and isotropic. The geometry at large far away
from the origin remains isotropic but deviates from homo-
geneity as soon as fðrÞ becomes relevant in the Friedmann
equation.

III. MIRAGE COSMOLOGY

In this section we will construct the mirage cosmology
setup, first describing the higher-dimensional embedding
of our 3-brane and second, by deriving the dynamical
equations that rule the induced four-dimensional metric.

A. Brane embedding

We consider a D3 brane embedded in the Tolman-Bondi
background in (dþ 4) dimensions that we have presented
in the last section. The extra-dimensional matter distribu-
tion is comoving with the energy-momentum tensor

TAB ¼ �ðr; tÞuAuB; (17)

where matter particles are comoving in the bulk and
spherically distributed with uA ¼ �A

0 . In order to preserve

spherical symmetry of the induced matter distribution on
the brane with the induced energy-momentum tensor

T�� ¼ TAB

@XA

@x�
@XB

@x�
; (18)

where XAðx�Þ is the embedding of the brane with coordi-
nates x� in the Tolman-Bondi Universe with coordinates
XA, we choose to embed the brane as

x0 ¼ t; x1 ¼ r; (19)

where x0 and x1 are the brane coordinates. Matter is then
spherically symmetric on the brane with

T�� ¼ �ðx0; x1Þu�u�; (20)

where
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u� ¼ uA
@XA

@x�
; (21)

is explicitly u� ¼ ��0
� as uA ¼ ��0

A and @X
0=@x� ¼ �0

�.

This choice of embedding implies that the 3-brane cor-
responds to a two-dimensional cross section of the (dþ 2)-
sphere. Using the (dþ 2)-rotational invariance, we can
always rotate the cross section to align it with a planar
section of the (dþ 2)-sphere parametrized by the angles �1

and �2. Figure 1 illustrates this embedding. Our 3-brane
consists of the cone defined by the angles �3; . . . ; �n ¼
constant and the free angles �1 and �2.

Denoting by � and 	 the angles of the 2-sphere on the
world-volume of the brane at constant x1, we find that the
embedding is characterized by the two fields

�1 ¼ �1ðt; r; 	; �Þ; �2 ¼ �2ðt; r; 	; �Þ; (22)

The other coordinates on the (dþ 2)-sphere are in the
normal space to the brane and such that

�i ¼ �i0; i � 3; (23)

where �i0 are constant angles.
We are interested in the geometry seen by a comoving

observer on the brane characterized by the velocity vector
v� ¼ ��

0 which differs from the velocity vector of matter

particles as seen from the brane u� ¼ ~gtt��
0 when �1;2 are

not time-independent. The spatial geometry seen by such a
comoving observer is defined by the metric

h�� ¼ ~g�� þ v�v�; (24)

satisfying h��v
� ¼ 0. On the space orthogonal to v� it

reduces to ~gij where xi;j ¼ ðr; �;	Þ. This metric is both
inhomogeneous and anisotropic. Moreover proper time for
a comoving observer at rest on the brane

d
2 ¼ �~gttdt
2; (25)

is also defined inhomogeneously in space. This is due to
the ðt; rÞ dependence of �1;2.
In the following, we will concentrate on the vicinity of

the origin of space where we have assumed that the curva-
ture effects in the bulk can be neglected. In the neighbor-
hood of this point, the bulk Tolman-Bondi metric reduces
to a Friedmann-Lemaitre space-time. On the other hand, on
the brane, the local geometry defined by the induced metric
is neither homogeneous nor isotropic there. An observer
analyzing the geometry of its local patch would see the
Universe as both inhomogeneous and anisotropic. This is
the case despite the fact that matter as seen on the brane is
spherically symmetrically distributed according to �ðr; tÞ.
We will study the long term dynamics of the geometry
around the origin and see when the local geometry iso-
tropizes and becomes homogeneous up to points where the
curvature effects in the bulk measured by fðrÞ cannot be
neglected anymore.
The dynamics of the brane, solely governed by its world-

volume action and depending on the tension T3, depends
on the induced metric. With the chosen embedding, we
have for the induced metric1

ds2 ¼ ~gttdt
2 þ ~grrdr

2 þ 2~gtrdtdrþ ~g		d	
2 þ ~g��d�

2

þ 2~g	�d	d�; (26)

which can be related to the (4þ d)-dimensional metric
GAB using (2). This gives explicitly

~grr ¼ e� þ R2gab
@�a

@r

@�b

@r

¼ e� þ R2

�
@�1

@r

�
2 þ R2sin2�1

�
@�2

@r

�
2
; (27)

where gab is the metric on the (dþ 2)-sphere and the �a’s
are spherical coordinates. Here we have the diagonal met-
ric with g11 ¼ 1, g12 ¼ 0 and g22 ¼ sin2�1. Similarly we
have

~g tt ¼ �1þ R2gab
@�a

@t

@�b

@t

¼ �1þ R2

�
@�1

@t

�
2 þ R2sin2�1

�
@�2

@t

�
2
; (28)

~g tr ¼ R2gab
@�a

@t

@�b

@r

¼ R2 @�
1

@t

@�1

@r
þ R2sin2�1

@�2

@t

@�2

@r
; (29)

and

r

Our 3−brane

FIG. 1. Schematic description of our higher-dimensional em-
bedding. Our 3-brane is represented by the cone defined by the
fixed angles �3; . . . ; �n and the freely rotating �1 and �2.

1For simplicity of computation we are implicitly assuming that
the terms ~gt	, ~gr	, ~gt� and ~gr� are negligible. We indeed find
that they vanish when the dynamics follows the attractor solution
found in Sec. IVA.
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~g		 ¼ R2gab
@�a

@	

@�b

@	
;¼ R2

�
@�1

@	

�
2 þ R2sin2�1

�
@�2

@	

�
2
;

(30)

~g �� ¼ R2gab
@�a

@�

@�b

@�
¼ R2

�
@�1

@�

�
2 þ R2sin2�1

�
@�2

@�

�
2
;

(31)

~g 	� ¼ R2gab
@�A

@	

@�B

@�

¼ R2 @�
1

@	

@�1

@�
þ R2sin2�1

@�2

@	

@�2

@�
: (32)

With these expressions, we can express the volume ele-
ment of the brane in terms of the fields �1;2. The dynamics
of the brane is simply obtained by looking at extremal
world-volumes.

B. Mirage dynamics

We are now ready to write down the 3-brane world-
volume action (1), find the corresponding Lagrangian in
terms of the higher-dimensional angular coordinates and
compute their equations of motion. The action of the brane
is given by the integral of the volume elementffiffiffiffiffiffiffi�~g

p ¼ ½�ð~gtt~grr � ~g2trÞð~g		~g�� � ~g2	�Þ�1=2; (33)

leading to a Lagrangian

L ¼ �T3½�ð~gtt~grr � ~g2trÞð~g		~g�� � ~g2	�Þ�1=2: (34)

We expand this Lagrangian to second order in the time and
radial derivatives as we are interested in low-energy
modes. Hence we get the Lagrangian

L ¼�T3R
2e�=2j sin�1j

�
1þ 1

2
R2e��

�
@�1

@r

�
2

þ 1

2
R2e��sin2�1

�
@�2

@r

�
2 � 1

2
R2

�
@�1

@t

�
2

� 1

2
R2sin2�1

�
@�2

@t

�
2
��
@�1

@	

@�2

@�
�@�1

@�

@�2

@	

�
; (35)

which can be conveniently cast in the form

L ¼ �JKL; (36)

where J captures the angular properties of the embedding

J �
�
@�1

@	

@�2

@�
� @�1

@�

@�2

@	

�
; (37)

while K=T3 is the volume element of an isotropic and
homogeneous Friedmann-Lemaitre Universe in four di-
mensions

K � T3R
2e�=2s sin�1; (38)

where s ¼ j sin�1j= sin�1 ¼ �1, and finally we have a
reduced Lagrangian L up to second order in the time and
radial derivatives which encompasses the dynamical prop-
erties of the 3-brane

L � 1þ 1

2
R2e��

�
@�1

@r

�
2 þ 1

2
R2e��sin2�1

�
@�2

@r

�
2

� 1

2
R2

�
@�1

@t

�
2 � 1

2
R2sin2�1

�
@�2

@t

�
2
: (39)

The dynamics of the brane are governed by the Euler-
Lagrange equation for �1 and �2. Noticing that the
Lagrangian does not depend on �2, we find a conservation
equation

@�A
� ¼ 0; (40)

where

A� ¼ @L
@ð@��2Þ

; (41)

is the conjugate vector to �2. We will see that this vector is
not automatically a constant, it has an explicit space-time
dependence generically. Moreover, different choices for
A� would lead to different solutions to the brane dynamics.
In the following, we will see that the dynamical equations
can be solved for a subclass of vectors A�. The general
case is certainly interesting although challenging techni-
cally. Our analysis is general in this section. Explicitly, we
have

At ¼ JKR2sin2�1
@�2

@t
; (42)

Ar ¼ �JKR2e��sin2�1
@�2

@r
; (43)

A	 ¼ KL
@�1

@�
; (44)

A� ¼ �KL
@�1

@	
: (45)

Equation (37) can now be written more compactly using
(44) and (45),

J ¼ � 1

KL
ðA��2;� þ A	�2;	Þ: (46)

and then (42) and (43) can be recast as

_� 2 ¼ � LAt

R2sin2�1ðA��2;� þ A	�2;	Þ
; (47)

�2;r ¼ LAr

R2e��sin2�1ðA��2;� þ A	�2;	Þ
; (48)

BRANE ISOTROPIZATION IN AN EXTRA-DIMENSIONAL . . . PHYSICAL REVIEW D 85, 123516 (2012)

123516-5



which upon substitution into Eq. (39) give a quadratic
equation for L whose solutions are

L ¼ ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4AC

p Þ=2A; (49)

where we have conveniently defined

A ¼ e�ðArÞ2 � ðAtÞ2
2R2sin2�1ðA��2;� þ A	�2;	Þ2

; (50)

C ¼ 1þ 1

2
R2½e��ð�1;rÞ2 � ð _�1Þ2�: (51)

In the following, we will retain the þ solution and impose
that jACj � 1 is such a way that L	 1=A. The Euler-
Lagrange equation for �1 is a very complex partial deriva-
tive equation which does not seem to be tractable in full
generality, however, by performing suitable simplifications
wewill find an elegant expression capable of being studied.

C. Simplified dynamics

We will reduce the dynamics of the brane in a Tolman-
Bondi bulk by using simplifying assumptions. The first
step consists in choosing a subclass of vectors A� for
which the dynamics can be solved in a nontrivial way. So
we will set

Ar ¼ A� ¼ 0; (52)

which immediately implies that

�2;r ¼ �1;	 ¼ 0; (53)

respectively and

A ¼ �ðAtÞ2=2R2sin2�1ðA	Þ2ð�2;	Þ2: (54)

In addition, we will assume that e��=2�1;r � _�1. In effect,

we consider that the dynamics is very close to being
homogeneous. These choices will allow us to simplify
the equation of motion for �1, which can now take the form

€� 1 þ
�
4

_R

R
þ 1

2
_�þ 2

_�1;�

�1;�
þ

_�2;	

�2;	

�
_�1 þ cos�1

sin�1
ð _�1Þ2

¼ _�2sin2�1
�2;	

�1;�

@

@t

�
�2;�

�2;	

�
: (55)

Notice that the radial partial derivatives are not present.
When jACj � 1 we find that �1;� can be approximated by

�1;� 
 � ðAtÞ2
2T3A

	e�=2R4ssin3�1ð�2;	Þ2
: (56)

In the following we will assume that At is constant in time.
Differentiating �1;� with respect to time we find that

_� 1
;� ¼ ��1;�

�
4

_R

R
þ

_�

2
þ 3

cos�1

sin�1
_�1 þ 2

_�2;	

�2;	
þ

_A	

A	

�
; (57)

which upon substitution in (55) gives

€�1 �
�
4

_R

R
þ 1

2
_�þ 3

_�2;	

�2;	
þ 2

_A	

A	

�
_�1 � 5

cos�1

sin�1
ð _�1Þ2

¼ _�2sin2�1
�2;	

�1;�

@

@t

�
�2;�

�2;	

�
: (58)

This is the partial differential equation which governs the
brane dynamics.
We have seen in Eq. (47) that _�2 ¼ �LAt=

A	�2;	R
2sin2�1, which under our approximations gives

_� 2 
 2
A	

At �
2
;	: (59)

As we have required �1;	 ¼ 0we find using Eq. (56) that �2

must be linear in 	, i.e., �2;	 ¼ c0 where c0 is a constant

and

�2 ¼ c0	þ 2c0
Z t

t0

A	

At dt: (60)

Notice that �2;r ¼ 0 implies that A	=At must be

r-independent.
We have now obtained the equations of motion for

�1 ¼ �1ðt; �Þ and the general form of the solutions for
�2 ¼ �2ðt; 	; �Þ. One must therefore solve

€� 1�
�
4
_R

R
þ1

2
_�þ2

_A	

A	

�
_�1�5

cos�1

sin�1
ð _�1Þ2 ¼ sin2�1

_�2 _�2;�

�1;�
:

(61)

The source term depends on A	 and At. We have therefore
reduced the brane dynamics to a single differential
equation.

IV. THE BRANE GEOMETRY CLOSE TO
THE ORIGIN

In this section we will solve (61) by decomposing �1 and
A	 in their respective time- and �-dependent parts. Wewill
see that the solution has a late- time attractor.

A. Local attractor

Even the simplified dynamics are difficult to analyze.
We concentrate on the interesting case of a 3-brane embed-
ding in a Tolman-Bondi Universe where the curvature
effects measured by fðrÞ can be neglected in the neighbor-
hood of the origin. In this case, the extra-dimensional
dynamics in a local patch becomes

Rðt; rÞ ¼ r

�
t

t0

�
2=ðnþ1Þ

; e� ¼
�
t

t0

�
4=ðnþ1Þ

; (62)

and we focus on the induced metric on the brane which
takes the simplified form

~g tt ¼ �1þ R2ð _�1Þ2 þ R2sin2�1ð _�2Þ2; (63)
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~g rr ¼ e�; (64)

~g		 ¼ R2sin2�1ð�2;	Þ2; (65)

~g �� ¼ R2ð�1;�Þ2 þ R2sin2�1ð�2;�Þ2; (66)

~g 	� ¼ R2sin2�1�2;��
2
;	: (67)

We will analyze the geometry on the brane when we have
the explicit solutions of the equations of motion.

We are interested in embeddings where the lapse func-
tion does not deviate too much from 1. We consider then

€� 1 �
�
4

_R

R
þ 1

2
_�þ 2

_A	

A	

�
_�1 � 5

cos�1

sin�1
ð _�1Þ2 ¼ I; (68)

where the forcing term is

I ¼ sin2�1
_�2 _�2;�

�1;�
: (69)

We look for a solution for �1 locally such that �1 
 �0 and
we write

�1 ¼ �0 � ðAtÞ2
2T3ssin

3�0M
6
0c

2
0r

4ge�=2R4

Z 1

f
d�þ �ðtÞ;

(70)

where �0 is a fixed angle arising as an integrating constant,
�ðtÞ an unknown function yet to be determined and we
have introduced

A	ðr; t; �Þ ¼ M6
0r

4fð�ÞgðtÞ; (71)

in order to separate the time- and �-dependent contribu-
tions that make up A	. Here, M0 is an unspecified energy
scale. Notice that the r dependence cancels if and only if At

varies in r4 as required by �2;r ¼ 0. We now consider that �
measures the small deviations from �0 and approximate
f ¼ 1þ f1�,

�1 ¼ �0 � ðAtÞ2
2T3M

6
0c

2
0ssin

3�0r
4ge�=2R4

�þ �ðtÞ: (72)

We identify the constant of motion At as

ðAtÞ2 ¼ 2T3M
6
0c

2
0ssin

3�0r
8g0; (73)

and write the solution for �1 as

�1 ¼ �0 � g0
g
e��=2

�
r

R

�
4
�þ �ðtÞ; (74)

which is r-independent, hence satisfying our assumption
on the small r variations of �1. At t ¼ t0 we have that

�1 ¼ �0 � �; (75)

�2 ¼ c0	; (76)

where we have chosen �ðt0Þ ¼ 0. Thus initially, the spatial
part of the induced metric is

~g rr ¼ 1; (77)

~g 		 ¼ r2sin2�1; (78)

~g �� ¼ r2; (79)

~g 	� ¼ 0; (80)

which corresponds to flat space. As time passes, the metric
is deformed and deviates from flat space. On the other hand
the lapse function ~gtt can not be uniformly equal to �1
even initially, implying that time flows differently at differ-
ent points of space.
The analysis of the equation of motion for �1 is greatly

simplified if one studies the evolution of small deviations
from �0 ¼ �=2, i.e., we consider an expansion in small �
around �1 ¼ �=2. The general case around a general �0
follows easily as we will see soon. Substituting the pre-
vious ansatz for �1 in the equation of motion and separat-
ing the terms in � from the ones of order zero in �, we
obtain two second-order differential equations for � and g

€��
�
4

_R

R
þ 1

2
_�þ 2

_g

g

�
_� ¼ I�; (81)

where I� ¼ �ð2f1g0M6
0=T3Þe�=2ðg=g0Þ3ðR=rÞ4 and

€g

g
�

�
_g

g

�
2 þ 4

€R

R
� 4

� _R

R

�
2 þ 1

2
€��

�
_g

g
þ 4

_R

R
þ 1

2
_�

�
2

�
�
2
_g

g
þ 4

_R

R
þ 1

2
_�

��
_g

g
þ 4

_R

R
þ 1

2
_�

�
¼ Ig; (82)

where Ig ¼ �ð4f21g0M6
0=T3Þe�ðg=g0Þ4ðR=rÞ8. The solu-

tions to these equations can be easily obtained.
First of all it follows from the �-equation that the

homogeneous solution when the forcing term vanishes is

�ðtÞ ¼ _�0

Z t

t0

dt0e�=2
�
R

r

�
4
�
g

g0

�
2
: (83)

The g-equation, Eq. (82), is equivalent to a Riccati equa-
tion

_V ¼ 3R�4e��=2V2 þ R4e�=2Ig; (84)

and we have defined

V ¼ R4e�=2
�
_g

g
þ 4

_R

R
þ

_�

2

�
: (85)

Putting b ¼ 3R�4e��=2 and c ¼ R4e�=2Ig, the Riccati

equation becomes a Sturm-Liouville equation

€X þ
�
bc� b1=2

d2

dt2

�
1

b1=2

��
X ¼ 0; (86)

where the following correspondence
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V ¼ � _!

bw
; X ¼ b�1=2! (87)

applies. The homogeneous solution (c ¼ 0) is

X ¼ b�1=2

�
c1 þ c2

Z t

t0

dt0bðt0Þ
�
; (88)

where c1 and c2 are integration constants. As a result, we
find that the solution of the homogeneous g-equation is

g ¼ g0

�
t0
t

�
10=ðnþ1Þ��������1þ c3

��
t0
t

�ð9�nÞ=ðnþ1Þ � 1

����������1=3

;

(89)

where c3 is a constant. We find that as long as the term
within the power�1=3 does not vanish, a statement which
only depends on the initial conditions, the asymptotic
behavior of the homogeneous solution is

g 
 gt
�10=ðnþ1Þ; (90)

where g is a constant. Using this result and substituting in

(83) one finds that the asymptotic behavior of � is

� 
 �t
ðn�9Þ=ðnþ1Þ þ �1; (91)

where � and �1 are constants, i.e., for n < 9, � con-

verges to a constant at infinity. As Ig ¼ Oðt�20=ðnþ1ÞÞ falls
off faster than t�2 and I� ¼ Oðt�20=ðnþ1ÞÞ faster than €� ¼
Oðt�ðnþ11Þ=ðnþ1ÞÞ for n < 9, we find that the homogeneous
solutions (90) and (91) are late-time attractors where the
influence of the forcing term Ig and I� becomes negligible.

The same results hold for any �0 as we can neglect the
quadratic term in _�1 in Eq. (61) as the solution of the

homogeneous equation behaves as �1 ¼ Oð�1 þ
�2t

ðn�9Þ=ðnþ1ÞÞ while I ¼ Oðt�20=ðnþ1ÞÞ. Hence, in the
neighborhood of each point �0, we find that �1 and
�2 become time-independent. As a result the metric con-
verges to

ds21 ¼ �dt2 þ e�dr2 þ R2½sin2�1c20d	2 þ ðð�1;�Þ2t!1

þ sin2�1ð�2;�Þ2t!1Þd�2 þ c0sin
2�1ð�2;�Þt!1d	d��;

(92)

and on the attractor �2;� evolves as

�2;� ¼ nþ 1

n� 9
f1M

3
0t0

�
2g0
T3

�
1=2

��
t0
t

�ð9�nÞ=ðnþ1Þ � 1

�
; (93)

which indeed tends asymptotically to a constant value
ð�2;�Þt!1. Also �1;� ¼ �1 on the attractor. As a result the

mapping between ð�;	Þ and ð�1; �2Þ becomes in the late-
time regime

�1t!1 ¼ �0 � �þ �1; �2t!1 ¼ c0	þ ð�2;�Þt!1�:
(94)

This is a linear transformation with constant coefficients.
The transformation of the metric gab on the 2-sphere

gij ¼ gab
@�at!1
@xi

@�bt!1
@xj

; (95)

where xi ¼ ð	;�Þ is a linear transformation defined glob-
ally for any time. The asymptotic metric is then

ds21 ¼ �dt2 þ e�dr2 þ R2gijdx
idxj; (96)

which is equivalent to

ds21 ¼ �dt2 þ e�dr2 þ R2gabd�
a
t!1d�bt!1: (97)

Hence we find that the asymptotic metric is isotropic, the
induced space-time on the brane isotropizes and converges
to a Friedmann-Lemaitre space-time close to the origin, of
the radiation-dominated type for n ¼ 3.
We will see in the next section that the solution obtained

here locally around each point specified by �0 in a small �
expansion is in fact a global solution of the equations of
motion. The analysis of this section shows that the global
solution we will find in the next subsection is an attractor.

B. Global attractor

We have seen that the fields �1 and �2 become locally
time-independent in any neighborhood of �0 and that this
solution is an attractor, i.e., all solutions around �0 con-
verge towards a unique long-time solution determined
essentially by the asymptotic behavior of the function

gðtÞ 	 t�10=ðnþ1Þ. Here we will find a global solution which
corresponds to this attractor, i.e., we will find a solution for
very large time which matches the local behavior of the

solution determined by gðtÞ 	 t�10=ðnþ1Þ. In particular, we
will find that the induced metric on this attractor is the one
of a radiation-dominated Friedmann-Lemaitre Universe
when n ¼ 3.
The homogeneous solution of (61) when the term in

ð _�1Þ2 is neglected is simply

�1ðt; r; �Þ ¼ Eð�Þ
Z t

t0

dt0R4e�=2ðA	Þ2 þ Fð�Þ: (98)

The first term is time-dependent while the second one is
only a function of �. This general solution must be com-
patible with the differential equation, Eq. (56), which can
be obtained putting Eð�Þ ¼ 0. In this case, the behavior of

�1ð�Þ, necessitates that ðAtÞ2=A	e�=2R4ð�2;	Þ2 be time- and

r-independent. This is achieved by choosing �2;	 ¼ c0
constant and At time-independent. Moreover we choose
At / r4 and A	 / r4 implying that �1� is r-independent.
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Similarly A	 must be such that A	e�=2R4 is time-
independent. This implies that

A	 / t�10=ðnþ1Þ: (99)

Notice that the behaviours of A	 and At as a function of r
and tmatch the asymptotic behavior of the local solution as
they are both proportional to r4 and that A	 has the same
time dependence as the asymptotic behavior of gðtÞ around
any background value �0. We can now integrate exactly
(56) and get the global mapping between � and �1

Z
d�1j sin�1j3 ¼ � ðAtÞ2

2T3c
2
0A

	e�=2R4
�; (100)

where the right-hand side is independent of r and t.
Expanding the left-hand side around a given �0 to linear
order gives the local solution of the previous section.

For this solution, the nonlinear term in ð _�1Þ2 of (55)
vanishes identically while the forcing term converges to

zero I ¼ Oðt�20=ðnþ1ÞÞ. Hence this global solution is valid
at infinity and around each �0 it is identical to the one
obtained in the previous subsection from (89) with c3 ¼ 0.
Hence, we have found a global solution of the equation of
motion valid in the late-time regime and we have shown
that this solution is an attractor as the solution (89) con-
verges to (90).

In conclusion, we have found that locally around the
origin of space-time on the brane, the geometry isotropizes
in the long-time regime. This implies that a local observer,
comoving on the brane would eventually see a flat
Friedmann-Lemaitre space-time in its local patch. This
result is special to the origin where we have assumed that
the bulk effects of the curvature of space-time can be
neglected. In a sense, we have shown that for a brane on
which the matter density induced from the bulk is spheri-
cally symmetric and where the effects of the bulk curvature
are negligible, the brane geometry eventually becomes
homogeneous and isotropic locally. Of course, this is not
the case away from the origin implying that interesting
inhomogeneous effects on the propagation of light on the
brane for instance may be induced. The study of the brane
geometry at large away from the origin is left for future
work.

C. Numerical results

In this section we will illustrate the previous results and
show numerically that the attractor mechanism is at play
for a wide range of initially anisotropic and inhomogene-
ous space-times. First, we must demand that the late-time
solution is such that ~gtt 
 �1, i.e., that R2ð _�1Þ2 � 1 and
R2ð _�2Þ2 � 1. As we have seen, A	 ¼ M6r4gðtÞfð�Þ and
ðAtÞ2 
 2T3M

6c20r
8g0 then we have from (59) that

R2ð _�2Þ2 ¼ 8f2M6
0

T3

g0r
2

�
t0
t

�
16=ðnþ1Þ � 1: (101)

Second, we must also require 4jACj � 1 so that we can
use the approximation L 
 1=A and therefore, we have the
additional constraint

4jACj 
 4T3c
2
0

M6
0f

2

1

r2g0

�
t

t0

�
16=ðnþ1Þ � 1: (102)

When numerically solving the equations of motion we
have started the evolution at t0 ¼ 10�4tBBN where the time
of big bang nucleosythesis is tBBN 
 1026 GeV�1. We will
compute solutions for the scale of the Hubble horizon at
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10
−50

10
−45

10
−40

FIG. 3 (color online). Evolution of gðtÞ for the same parame-
ters of Fig. 2. We confirm that gðtÞ decays as a power law given
by Eq. (90).
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FIG. 2 (color online). Evolution of �ðtÞ with time for
T3 ¼ 1 GeV, M0 ¼ 1 GeV, n ¼ 3, f1 ¼ 10�15, � ¼ 0, g0 ¼
gðt ¼ 0Þ ¼ 1:2� 10�41, _gðt ¼ 0Þ ¼ �9:5g0=ðnþ 1Þ, c0 ¼
4:4� 10�8, �ðt ¼ 0Þ ¼ 0, _�ðt¼0Þ¼10�4 and r ¼ 10�4tBBN.
One observes that � approaches a constant value at late times as
we expected from Eq. (91).
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that time, i.e., r ¼ t0. We set T3 ¼ 1 GeV, M0 ¼ 1 GeV,
n ¼ 3, f1 ¼ 10�15, � ¼ 0 and in order to satisfy condi-
tions (101) and (102) we have used g0 ¼ 1:2� 10�41 and
c0 ¼ 4:4� 10�8. The small size of f1 is chosen to prevent
the source terms I� and Ig to be of any importance. As

initial conditions we have used �ðt ¼ 0Þ ¼ 0, _�ðt ¼ 0Þ ¼
10�4, gðt ¼ 0Þ ¼ g0. If the evolution was already on the
attractor we would have _g ¼ �10g0=ðnþ 1Þ. Instead we
start slightly away from the attractor solution using
_gðt ¼ 0Þ ¼ �9:5g0=ðnþ 1Þ. The result of the numerical
solutions is shown in Figs. 2–8. In Fig. 2 we can observe

the time dependence of �ðtÞ and confirm that it quickly
approaches a constant value �1 as we expect from
Eq. (91). On the other hand, it can be seen in Fig. 3 that

gðtÞ approaches the power law solution gðtÞ 	 t�5=2 as we
have seen in (90) for n ¼ 3.
Figure 4 shows that �1 never deviates substantially from

�0 ¼ �=2 which ensures that our approximations, i.e.,
neglecting the ð _�1Þ2 term in Eq. (61) and making sin3�1 

sin3�0, are valid and under control.
We also demanded that 4jACj � 1 so that L 
 1=A

which allows us to have a simple expression for �1;� and

be able to write Eq. (56). As we can see in Fig. 5 this is
satisfied for our choice of parameters.

10
−4

10
−3

10
−2

10
−1

10
0

−2

−1

0

1

2

3

FIG. 6 (color online). Evolution of the metric component ~gtt.
To recover a Friedmann-Lemaitre metric this quantity must be
�1 which indeed happens for our solution at late times.
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FIG. 5 (color online). The time evolution of 4jACj which we
require to be smaller than unity for our simplification L 
 1=A
to be valid. This is indeed the case for the time interval we are
covering and for our choice of parameter values.
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FIG. 7 (color online). The time evolution of ~g��=~g		. This
ratio approaches a constant at late times as expected from
Eq. (92).
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FIG. 4 (color online). Evolution of � ¼ 100ð�1 �
�=2Þ=ð�=2Þ for � ¼ 0 which is the deviation of �1 from �0 ¼
�=2 in percentage. This example clearly shows that the deviation
is very small which ensures that our approximation sin�1 

sin�0 is valid during the whole time interval analyzed.
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Figs. 6–8 show that indeed the metric on our 3-brane
quickly isotropizes at late times as ~gtt ! �1, ~g��=~g		 !
constant, ~g	�=~g		 ! constant and ~g	�=~g		 too. This is

what allows us to redefine the angular variables asymptoti-
cally and find that the spatial metric is the one of flat space.

V. CONCLUSION

We have studied the dynamics of a 3-brane embedded in
an inhomogeneous extra-dimensional Universe. The
mirage cosmology on the brane reveals that the late-time
behavior metric on the brane becomes isotropic and
homogeneous in the vicinity of the origin, where the effects

of curvature in the bulk can be neglected, even though the
initial condition were not so. This isotropization process is
extremely interesting in view of the possible existence of
extra dimensions and the strongly motivated possibility
that matter, even cosmological matter, could exist not
only in 4d but also in the extra dimensions. In this case,
the dynamical interplay between the brane degrees of free-
dom and the extra dimensions becomes more complex than
in the usual case of an extra-dimensional symmetric space,
e.g., anti-de Sitter or Minkowski. Indeed, one may envis-
age situations where both matter would exist on the brane
and in the extra dimensions, with possible exchanges be-
tween them. In this paper we have only analyzed the
mirage case where matter on the brane is subdominant
and the dynamics are governed by the embedding of the
brane in the time-dependent extra-dimensional back-
ground. The coupling between matter on the brane and
outside the brane in an inhomogeneous context is left for
future work. The presence of inhomogeneities in the extra
dimensions may even shed some light on thorny issues
such as the acceleration of expansion of the 4d Universe or
the role of dark matter. These tantalizing possibilities are
beyond the present work.
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