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In this work we revisit Wald’s cosmic no-hair theorem [R.M. Wald, Phys. Rev. D 28, 2118 (1983).] in

the context of accelerating Bianchi cosmologies for a generic cosmic fluid with nonvanishing anisotropic

stress tensor and when the fluid energy-momentum tensor is of the form of a cosmological constant term

plus a piece which does not respect strong or dominant energy conditions. Such a fluid is the one

appearing in inflationary models. We show that for such a system anisotropy may grow, in contrast to the

cosmic no-hair conjecture. In particular, for a generic inflationary model we show that there is an upper

bound on the growth of anisotropy. For slow-roll inflationary models, our analysis can be refined further

and the upper bound is found to be of the order of slow-roll parameters. We examine our general

discussions and our extension of Wald’s theorem for three classes of slow-roll inflationary models, generic

multiscalar field driven models, anisotropic models involving U(1) gauge fields and the gauge-flation

scenario.
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I. INTRODUCTION

The Universe at cosmological scales and as we see it
today looks homogenous and isotropic. To understand this
almost perfectly homogenous and isotropic Universe,
given that the cosmic evolution may start from a generic
initial condition over which we have no control, it is
natural to seek a ‘‘dynamical’’ explanation: isotropic and
homogenous Universe is an attractor of the cosmic evolu-
tion. According to the standard model of cosmology
cosmic evolution is governed by the Einstein gravity
coupled to the cosmic fluid, this latter idea if true, should
be an outcome of Einstein equations. The first such attempt
was made in [1,2] arguing that the late-time behavior of
any accelerating Universe is an isotropic Universe. This
statement was dubbed as ‘‘cosmic no-hair conjecture.’’ The
first attempt to prove this conjecture was presented in
Wald’s seminal paper [3]. Wald’s cosmic no-hair theorem
states that Bianchi-type models (except Bianchi IX) with
the total energy-momentum tensor of the form T�� ¼
��0g�� þ ~T��, and with a constant positive �0 and a
~T�� satisfying strong and dominant energy conditions,

respectively, SEC and DEC, will approach de Sitter space

exponentially fast, within a few Hubble times H�1 ¼ffiffiffiffiffiffiffiffiffiffiffi
3=�0

p
. For a more thorough historical review and other

related works on cosmic no-hair conjecture/theorem, see
[4] and references therein.

Cosmological observations, especially the CMB data
[5], indicate that the early Universe has in fact gone
through such an accelerated expansion inflationary period.
As a result, if the cosmic no-hair conjecture/theorem holds,
all traces of initial anisotropy and inhomogeneity should be

washed away [6]. On the other hand, inflation has ended
and we are not in a de Sitter Universe with Hubble pa-
rameter equal the one at the end of inflation, as Wald’s
theorem suggests. This is simply because inflationary set-
ups are constructed to be so and do not strictly respect SEC
or DEC assumptions of Wald’s theorem. (For a more
rigorous discussion of the latter fact see appendix B).
Cosmic no-hair theorem should hence be revisited for
inflationary models. Such studies has of course been car-
ried out extensively, e.g. see [7] and references in [4] for an
incomplete list. It may still seem plausible to expect that
the result of Wald’s theorem, namely, an isotropic
Universe, to hold for inflationary models. This is due to
the fact that inflation is expected to have lasted around 60
e-folds, i.e. 60 Hubble times, while the time scale for
anisotropy damping, if Wald’s theorem holds, is a few
Hubble times.1

The above expectation, and applicability of cosmic no-
hair conjecture for inflationary models, may be challenged
in two different ways: by changing the setup upon which
Wald’s theorem is based. That is, modifying gravity theory
used for inflationary model building; or alternatively, to
search for particular inflationary models which drastically
violate SEC or DEC assumptions. Both of these ways have
been studied, e.g. see [8] for the former and [9,10] for the
latter. All of our analysis in this work will be within
Einstein gravity and hence applicable to the latter class
of models.
As pointed out and will be discussed briefly in Sec. III

and in more details in Appendix B, during inflation
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1As we will discuss in Secs. III and IV, this argument may be
used for cases where the energy-momentum of the system
driving inflation does not contribute to anisotropic stress, like
scalar-driven model.
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assumptions of Wald’s theorem are violated. However, this
violation should be such that the model allows for a long
enough inflationary period and has viable observational
signatures. It has been shown that it is indeed possible to
construct such stable anisotopic inflationary models, e.g.
see [10–12]. There is hence a need to revisit the fate of
Wald’s theorem in more general inflationary setups and, in
particular, slow-roll models. This is the question we tackle
in this work.

In this work, in Sec. II, we study evolution of Bianchi
cosmological models within Einstein gravity sourced by
cosmic fluid with anisotropic stress. As in Wald’s work [3],
we decompose the energy-momentum tensor as
��ðtÞg�� þT ��, with �> 0 and T �� satisfying SEC

and WEC, but now allow for � to have time dependence.
As proved in Appendix A, generic inflationary models
conform to this decomposition. In Sec. III, we push our
analysis further by concentrating on inflationary frame-
works, and, in particular, slow-roll, quasi-de Sitter expan-
sion. This allows us to refine our results, obtain an upper
bound and study the time evolution of the anisotropy. In
Sec. IV, we apply our general arguments of Secs. II and III
to two classes of models: scalar-driven inflationary models
and inflationary models with background gauge fields. In
the last section, we summarize our results into the ‘‘infla-
tionary extended cosmic no-hair theorem’’ and briefly
discuss the observational consequences of our results.

II. EXTENDED COSMIC NO-HAIR,
THE GENERAL SETUP

The Bianchi family are cosmological models with spa-
tially homogeneous surfaces which are invariant under the
action of a three dimensional Lie group, called the
symmetry group. A Bianchi model can always be written
as (e.g. see [13])

ds2 ¼ �dt2 þ hije
i � ej; (2.1)

where i, j ¼ 1, 2, 3, label the coordinates in homogeneous
spacelike hypersurfaces �t and hij ¼ hijðtÞ is the spatial

metric which can be decomposed as

hij ¼ e2�e2�ij : (2.2)

Here, e� is the isotropic scale factor and �ij is a traceless

matrix which describes the anisotropies. Furthermore, ei

are characterizing one-forms with the following property:

dei ¼ � 1

2
cijke

j ^ ek; (2.3)

where cijk are the structure constants of the corresponding

Bianchi-type.
Let n� be the unit tangent vector field of the congruence

of timelike geodesics orthogonal to the homogeneous
spacelike hypersurfaces �t. Then, we obtain the following
covariant form for the spatial metric h�� (2.1):

h�� ¼ g�� þ n�n�; (2.4)

where g�� is the metric of the space-time. The extrinsic

curvature of �t is defined as

K�� � 1

2
Lnh�� ¼ 1

2
_h��; (2.5)

where the dot represents derivative with respect to the
proper time t. One can decompose K�� into trace and

trace-free parts

K�� ¼ 1

3
Kh�� þ ���; (2.6)

where

KðtÞ ¼ K��h
�� ¼ 3HðtÞ: (2.7)

Here, HðtÞ ¼ _� is the Hubble parameter corresponding to
the homogenous scale factor e�. The shear of the timelike
geodesic congruences ��� is related to the time derivative

of �ij and is a symmetric, traceless and purely spatial

tensor:

h���
�� ¼ n��

�� ¼ 0: (2.8)

We now analyze Einstein’s equation for Bianchi models

G�� ¼ T�� ¼ ��ðtÞg�� þT ��; (2.9)

where �ðtÞ is a positive but time-dependent cosmological
term and in our conventions we set 8�G ¼ 1. We assume
that T �� satisfies the strong and weak energy conditions.

It is shown in Appendix A that it is always possible to
decompose energy-momentum tensor of any inflationary
system in this way. The strong energy condition (SEC)
states

�
T �� � 1

2
T g��

�
t�t� � 0; for all time-like t�: (2.10)

The dominant energy condition (DEC) stipulates that

T ��t
�t0� � 0

for all future-directed causal vectors t�; t0�:
(2.11)

We note that the above for t0� ¼ t� leads to weak energy
condition (WEC) T ��t

�t� � 0.

One can then decompose Einstein Eqs. (2.9) into four
constraint equations

T ��n
�n� ¼ 1

2
ð3ÞR� 1

2
����

�� þ 1

3
K2 ��ðtÞ; (2.12)

T ��h
�
in

� ¼ K�
�c

�
�i þ K�

ic
�
��; (2.13)

and six dynamical equations
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�
T �� � 1

2
h��T

�
h�ih

�
j

¼ Ln�ij þ 1

3
ð _Khij þ K2hij þ K�ijÞ

� 2�i��
�
j ��ðtÞhij þ ð3ÞRij: (2.14)

Here, ð3ÞRij is the spatial Ricci tensor and can be written in

terms of the structure-constant tensor cijk (2.3) as

ð3ÞRij ¼
1

4
ciklcj

kl � ckklcðijÞ
l � cklic

ðklÞ
j; (2.15)

where indices raised and lowered with metric hij,

and ð3ÞR ¼ ð3ÞRijh
ij is the spatial curvature of �t. Note

that all but one of Bianchi models have negative spatial
curvature

ð3ÞR � 0; (2.16)

Bianchi-type IX has a positive curvature ð3ÞR � 0 [3,13].
Combining trace of (2.14) with (2.12), we obtain

Raychaudhuri equation�
T �� � 1

2
g��T

�
n�n� ¼ � _K þ�ðtÞ � 1

3
K2 � ����

��;

(2.17)

where _K � LnK. Contracting (2.14) with h
ij and removing

the trace part, we have the following equation for the shear
tensor:

_� i
j þ K�i

j þ ð3ÞSij ¼ T klh
kihlj �

1

3
T klh

klhij: (2.18)

where ð3ÞSij is the anisotropic part of the spatial 3-curvature

ð3ÞSij ¼ ð3ÞRi
j �

1

3
ð3ÞRhij: (2.19)

Integrating Eq. (2.18), we obtain the following integral
equation for �i

jðtÞ

�i
jðtÞ ¼ e�3�ðtÞ Z t

t0

dðe3�ðt0ÞÞ
Kðt0Þ

�
T klh

kihlj

� 1

3
T klh

klhij � ð3ÞSij
�
þ Ci

je
�3�ðtÞ; (2.20)

with integration constants Ci
j. In order to determine �i

jðtÞ
we need more information about the energy-momentum
tensor T ��.

III. EXTENDED COSMIC NO-HAIR THEOREM
FOR INFLATIONARY BACKGROUNDS

Equations of previous the section was written for quite
general �ðtÞ and T ��, and although we restricted our

discussions to �ðtÞ � 0 and to T �� satisfying SEC and

DEC, these conditions were not used. In this section we
focus on our main interest, inflationary systems, and

crucially use these conditions and investigate the dynamics
of shear tensor and the evolution of anisotropies during
inflation.2

Inflation is defined as an epoch in the history of the
Universe in which the scale factor has an accelerating
expansion

ðe�€Þ
e�

¼ _H þH2 ¼ H2ð1� �Þ � 0; (3.1)

where �ðtÞ � � _H
H2 is a positive and growing quantity and

inflation eventually ends when � � 1. Although condition
(3.1) concerns the dynamics of isotropic part of the geome-
try, we argue here that inflation strongly restricts dynamics
of anisotropic part of metric and puts an upper bound on
the growth of anisotropies. Note that in spite of some
similarities between our setup and [3], the behavior of
these two systems are totally different. The increasing
�ðtÞ which is a generic property of inflationary models, is
in contrast with the dynamics described by the Wald’s
theorem [3], in which �ðtÞ is a positive quantify that
asymptotically approaches zero. More technical details
about the differences between these two setups might be
found in Appendix B.
Without loss of generality, T �� may be decomposed as

T ��ðtÞ ¼ ~	ðtÞn�n� þ ~PðtÞh�� þ ���ðtÞ; (3.2)

where ��� is the anisotropic stress tensor which is sym-

metric, traceless, and purely spatial:

���h
�� ¼ 0 and ���n

� ¼ 0:

We also define �0 � 3H2
0 , where subscript 0 denotes the

initial value (at the beginning of inflation) and

�ðtÞ ¼ �0 þ 
�ðtÞ: (3.3)

From the combination of (2.12) and (2.17), after inserting
(3.2) and (3.3), we obtain

~	ðtÞ � ~PðtÞ
2

þ 
�ðtÞ ¼ 1

3
ð3ÞRþ _H ��0 þ 3H2; (3.4)

~	ðtÞ þ ~PðtÞ
2

¼ 1

6
ð3ÞR� _H� 1

2
����

��: (3.5)

Since H is a decreasing quantity during inflation, from

(3.4) we learn that ~	ðtÞ� ~PðtÞ
2 þ 
�ðtÞ is a negative quantity

in inflationary models of all Bianchi-types, except type IX.

Nonetheless, the spatial curvature ð3ÞR has a time depen-
dence proportional to e�2� and this term is damped quickly

in inflationary systems. That is, ð3ÞR is damped after a few
e-folds and becomes negligible. Therefore, for all Bianchi

2In the cosmology literature, it is more common to work with
the Hubble parameter HðtÞ instead of KðtÞ (which is more
common in GR literature). For the rest of this work, we will
use HðtÞ which from (2.7) is equal to 1

3K.
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models, including Bianchi-type IX, even if ~	ðtÞ� ~PðtÞ
2 þ


�ðtÞ is not negative to start with, it becomes negative

very quickly. After a few e-folds, ð3ÞR is negligible and we
approximately have

� 
�ðtÞ
3H2ðtÞ �

~	ðtÞ � ~PðtÞ
6H2ðtÞ ’ � _HðtÞ

3H2ðtÞ þ
�0

3H2ðtÞ � 1

¼ �ðtÞ
3

þ H2
0

H2ðtÞ � 1; (3.6)

~	ðtÞ þ ~PðtÞ
2H2ðtÞ þ ����

��

2H2ðtÞ ’ � _HðtÞ
H2ðtÞ ¼ �ðtÞ: (3.7)

On the other hand, T �� satisfies SEC, which choosing

t� ¼ n� þ s� where s� is a normalized arbitrary spacelike

4-vector normal to n�, implies

~	ðtÞ þ ~PðtÞ þ �ijðtÞsisj � 0; i; j ¼ 1; 2; 3; (3.8)

where si ¼ s�h
i�. Recalling the fact that �ij is traceless

and the above inequality should be hold for all si, one
obtains3

j�i
jðtÞj

H2ðtÞ � �4
_HðtÞ

H2ðtÞ ¼ 4�ðtÞ 8 i; j: (3.9)

From the combination of (3.6) and (3.7) and noting that
(3.8) implies ~	ðtÞ þ ~PðtÞ � 0 we obtain

����
�� � 2H2ðtÞ�ðtÞ;


�ðtÞ � �
�
~	ðtÞ þ ����

��

2

�
� 0:

(3.10)

The above already implies a weak upper bound on anisot-
ropy

j�i
jj � HðtÞ ffiffiffiffiffiffi

2�
p

: (3.11)

As we will see in the next section, assuming slow-roll leads
to a stronger bound.

During inflation (on the average) � is an increasing
quantity and this result among other things shows the
possibility of growth for the anisotropic part of stress
tensor. This is in contrast with behavior of systems de-
scribed by the Wald’s theorem, in which all elements of
T ��, e.g. �

i
jðtÞ’s, are damped exponentially with a time

scale H�1
0 [3].

Inserting (3.2) into (2.20), we have the following form

for the Hubble-normalized shear tensor,
�i

jðtÞ
HðtÞ

�i
jðtÞ

HðtÞ ¼ e�3�ðtÞ

3HðtÞ
Z t

t0

de3�ðt0Þ
�i

jðt0Þ � ð3ÞSijðt0Þ
Hðt0Þ þ Ci

je
�3�ðtÞ;

(3.12)

where Ci
j is a constant at most of the order

ffiffiffi
�

p
(3.11) and

ð3ÞSijðtÞ / Oð� _HÞe�2�ðtÞ. Therefore, the second and the

third terms in (3.12) have a damping behavior and soon
become negligible. Then, after a few e-folds, we have the
following relation for the Hubble-normalized elements of
shear tensor

�i
jðtÞ

HðtÞ ’ 1

3HðtÞe3�ðtÞ
Z t

~t0

dðHðt0Þe3�ðt0ÞÞ
ð1þ _Hðt0Þ

3H2ðt0ÞÞ
�i

jðt0Þ
H2ðt0Þ ; (3.13)

where ~t0 is a few e-folds after the beginning of inflation. As

we see,
�i

jðtÞ
H2ðtÞ acts as a source term and its five degrees of

freedom may be determined for specific models of infla-
tion. Some examples will be reviewed in Sec. IV.
For models with perfect fluid T��, in which �i

jðtÞ is
identically zero, shear tensor �i

jðtÞ is damped exponen-

tially fast. Thus, in this kind of systems inflation washes
away any initial anisotropies and isotropizes the system, in
accord with the cosmic no-hair conjuncture. This is not
necessarily the case in a general inflationary model with
nonzero anisotropic stress tensor �i

jðtÞ.
To summarize, we have so far studied the dynamics of

anisotropies during inflation in a model independent way.
We showed that in presence of anisotropic stress tensor �i

j

elements of shear tensor �i
jðtÞ are allowed to grow by

inflationary dynamics, which is against the cosmic no-hair
conjuncture. Although �i

jðtÞ can increase, as one expects

from (3.9), inflation enforces an upper bound value on their
enlargements.

A. Quasi-de Sitter expansion

Thus far we have considered a general model of infla-
tion. In the following, we focus on the slow-roll models.
We investigate the dynamics of system assuming that
�i

jðtÞ=H2ðtÞ always saturates its maximum value, and

determine the possible upper bound value of anisotropies
during slow-roll inflation.
We start with defining the so-called slow-roll parame-

ters4

� ¼ � _H

H2
; � ¼ � €H

2 _HH
; (3.14)

which during the slow-roll are both very small and almost
constant.

From (3.5) and (3.9), we find thatT ��,����
�� and ð3ÞR

are at most of the order �H2. Hence, recalling (B3) and
using (2.12) we obtain

HðtÞ ’ H0ð1� �0H0tÞ; (3.15)

3Although we have not used it here, we remind that WEC on
T �� implies ~	 � 0.

4Note that our definition of slow-roll parameters � and � and
those usually used for the single scalar FLRW inflationary theory
with L ¼ 1

2 _’2 � Vð’Þ, �� ¼ 1
2
V 02
V2 and �� ¼ V 00

V , are related as
�� ¼ � and �� ¼ �þ �.
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where ’ means to the first order in slow-roll parameters,

subscript 0 denotes the initial value and H0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�0=3

p
.

Inserting the above relation in (3.6) and (3.7), we obtain5


�ðtÞ
H2

þ ~	ðtÞ � ~PðtÞ
2H2ðtÞ ’ ��0ð1þ 6H0tÞ; (3.16)

~	ðtÞ þ ~PðtÞ
2H2ðtÞ þ ����

��

2H2ðtÞ ’ �0ð1þ 2ð�0 � �0ÞH0tÞ: (3.17)

As we see in (3.17), ������ is not directly related to the

slow-roll dynamics, but the combination of ~	ðtÞþ ~PðtÞ
2H2ðtÞ þ

����
��

2H2ðtÞ should be slow varying during inflation. As a result,

��� is not fully determined by the slow-roll dynamics,

while (3.16) implies that the isotropic part of the system is
governed by the slow-roll. Thus, assuming slow-roll infla-
tion, anisotropies can still evolve quickly in time.

Applying slow-roll approximation in (3.13), we obtain
the following form for the late-time behavior of the

Hubble-normalized shear tensor
�i

jðtÞ
HðtÞ

�i
jðtÞ

HðtÞ ’ H0ð1þ �0H0tÞe�3H0t

�
Z t

t0

dt0e3H0t
0 ð1� 2�0H0t

0Þ�
i
jðt0Þ

H2ðt0Þ : (3.18)

In order to determine
�i

jðtÞ
HðtÞ , we need �

i
jðtÞ’s five degrees of

freedom which should be provided by independent equa-
tions. However, regardless of the particular inflationary
model which we consider, recalling (3.9), slow-roll enfor-
ces an upper bound on the enlargement of anisotropies.
Rewriting (3.9) in terms of slow-roll parameters, we obtain

j�i
jðtÞj

H2ðtÞ � 4�ðtÞ ’ 4�0ð1þ 2ð�0 � �0ÞH0tÞÞ: (3.19)

As mentioned before, from the combination of (3.7) and
(3.13), we realize that during the slow-roll inflation,
�i

jðtÞ=H2ðtÞ can saturate its upper bound and grow in

time. Then, assuming that �i
jðtÞ=H2ðtÞ always saturates

its upper bound during the slow-roll, we can find an upper
bound value on the enlargement of�i

jðtÞ=HðtÞ enforced by
the slow-roll dynamics.

Inserting (3.19) into (3.18), we obtain the upper bound
value on the enlargement of anisotropies at the end of slow-
roll inflation

j�i
jj

H

��������tsl

� 8

3
ð�0 � �0Þ; (3.20)

where tsl is the end of slow-roll inflation and approximately

is H0�0tsl ’ 1. Thus, a general model of slow-roll inflation
by the end of slow-roll inflation, leaves the cosmos almost
isotropic, with a shear of the order �0. Note that consider-
ing slow-roll has improved the bound (3.11) to (3.20).

IV. ANISOTROPY DYNAMICS IN TWO
CLASSES OF INFLATIONARY MODELS

The discussions of previous sections was made for ge-
neric inflationary models. In this section, we consider some
examples and discuss the possibility of saturation of the
anisotropy upper bound found by specific classes of slow-
roll models. In particular, we study scalar-driven models
and models involving vector gauge fields in the inflationary
background.

A. Scalar-driven inflationary models

In this part within the context of Bianchi cosmology, we
investigate the late-time behavior of anisotropy in three
scalar models of inflation: ordinary multiscalar field
model, K-inflation and DBI inflation.
(i) Ordinary multiscalar field models with the action [6]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
� 1

2
@�’I@

�’I � Vð�IÞ
�
;

(4.1)

where I runs from 1 toN and’I’s areN scalar fields,
(ii) K-inflation with the action [6]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
þ Pð’;r’Þ

�
; (4.2)

where ’ is a scalar field and X :¼ 1
2 ðr’Þ2,

(iii) DBI inflation with the action [14]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
� 1

f
ð

ffiffiffiffiffi
D

p
� 1� Vð’IÞÞ

�
;

(4.3)

where D :¼ detð
�
� þ fGIJ@

�’I@�’
JÞ, I runs

from 1 to N, ’I’s are scalar fields and GIJ is an
internal metric which determine the interaction
between ’I’s.

The characteristic of all the above scalar-driven models is
that their energy-momentum tensor T�� is of the form of a

perfect fluid and hence the shear stress �ðtÞij is identically
zero in these systems. Equation (3.12) then implies that in
all of the above multiscalar driven inflationary models the
anisotropy ��� damps out exponentially fast in a couple of

Hubble times, leaving an isotropic background. These
models respect the inflationary no-hair conjuncture.
Note that due to the correspondence between fðRÞ grav-

ity models and general relativity with a scalar field matter,
we expect these systems to show similar behavior in an-
isotropy damping (regardless of the details of fðRÞ) and
hence to respect the inflationary no-hair conjecture.

5Note that we are considering simple slow-roll models where
�ðtÞ is an always increasing function during inflation, _� > 0.
From the definition of � (3.14) we learn that _�

H� ¼ 2ð�� �Þ.
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B. Models of inflation involving vector gauge fields

In this part we consider two classes of models with a
vector gauge field turned on in the background level. As far
as anisotropies are concerned, these models are more
interesting than scalar-driven cases. In both of the models,
as we will see, the energy-momentum tensor has an aniso-
tropic stress �i

j which can source anisotropies. Despite

this fact, the dynamics of the two models is such that
anisotropy does not grow in one class of models.

To illustrate a detailed analysis for these models we
restrict ourselves to Bianchi-type I model, while the results
seem to be generic to all Bianchi models. Bianchi-type-I
axially symmetric metric can be described by the line
element

ds2 ¼ �dt2 þ aðtÞ2ðe�4�ðtÞdx2 þ e2�ðtÞðdy2 þ dz2ÞÞ;
(4.4)

where aðtÞ is the isotropic scale factor and e�ðtÞ represents
the anisotropy. Because of the vectorial nature in these
models, energy-momentum tensor has a nonzero aniso-
tropic stress �ðtÞ

T�
� ¼ diag

�
�	ðtÞ; PðtÞ � �ðtÞ; PðtÞ

þ 1

2
�ðtÞ; PðtÞ þ 1

2
�ðtÞ

�
; (4.5)

which its dynamics (whether it increases or decreases
during inflation) determines the fate of anisotropies during
inflation. Note that from (4.4), the shear tensor ��� and _�

are related as

����
�� ¼ 6 _�2; (4.6)

hence here instead of working with ���, we use _�.

1. Inflationary universe with anisotropic hair

In [10,15], M. Watanabe, S. Kanno and J. Soda intro-
duced and studied an inflationary model with anisotropic
hair, as a counterexample to the cosmic no-hair conjecture.
Motivated from supergravity, their model includes scaler
field(s) as inflaton field(s) coupled to a massless U(1)
gauge field. The action of the model is given as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
� 1

2
@�’@

�’� Vð’Þ

� 1

4
f2ð’ÞF��F

��

�
; (4.7)

where fð�Þ is the coupling function of the inflaton field to
the vector one and the field strength of the vector field is
given as F�� ¼ @�A� � @�A�. Below we review the

analysis of [10,15].
Choosing the temporal gauge, A0 ¼ 0, homogeneous

fields are taken to be of the form A� ¼ ð0; AxðtÞ; 0; 0Þ and
’ ¼ ’ðtÞ. With this ansatz, one can solve equation of
motion for the vector field as

_A x ¼ f�2ð’Þe�4� PA

aðtÞ ; (4.8)

where PA is an integration constant. Substituting the ansatz
and (4.8) into the action, we obtain the energy density 	ðtÞ,
pressure density PðtÞ and anisotropic stress �ðtÞ

	ðtÞ ¼ 1

2
_’2 þ Vð’Þ þ 1

2
f�2ð’Þ P

2
A

aðtÞ4 e
�4�;

PðtÞ ¼ 1

2
_’2 � Vð’Þ þ 1

6
f�2ð’Þ P

2
A

aðtÞ4 e
�4�;

�ðtÞ ¼ 1

6
f�2ð’Þ P

2
A

aðtÞ4 e
�4�:

Note that for this specific model the anisotropic stress �ðtÞ
is equal to 1

3	A, where 	A is the contribution of the vector

field in the energy density.
Let us consider the chaotic inflation with the following

potential:

Vð’Þ ¼ 1

2
m2’2; (4.9)

and choose the coupling function to be fð’Þ ¼ ec’
2=2.

After inserting Vð’Þ and fð’Þ into (4.9), one can solve
Einstein equations. Being interested in cases in which the
energy density of the (gauge) vector field grows during
inflation, c > 1, we realize that the Hubble-normalized

anisotropic stress ( �ðtÞ
H2 ¼ 	A

	 ) increases in time. As a result,

(3.12) enforces the Hubble-normalized shear _�
H to grow

during inflation.
In [10], the evolution of the Hubble-normalized shear

_�=H for cases with c > 1 has been calculated numerically.
They found two slow-roll phases and as expected, the
Hubble-normalized shear grows during inflation. In the
left panel of Fig. 1, we present their results for _�=H which
is plotted for various values of parameter c under the initial
condition

ffiffiffi
c

p
’i ¼ 17. As we see, in the first slow-roll

phase, the solutions show a rapid growth. During the
second phase it still grows but with a slower growth rate.
In the second slow-roll phase, in which €� � H _�, we
approximately have

_�ðtÞ
H

’ 2

3

�ðtÞ
H2

; (4.10)

i.e. the Hubble-normalized shear grows as a result of the
growth of Hubble-normalized anisotropic stress during the
inflation. As has been discussed in [11], it is possible to
choose the initial conditions and parameters such that the
model has only one phase during about 60 e-folds of
inflation. This, as shown in the right panel of Fig. 1,
happens for ’i ¼ 11MPl and c ¼ 2. As we see, the
Hubble-normalized anisotropy grows during inflation and
gradually saturates its upper bound value and becomes of
the order �.
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These models exhibit an anisotropic attractor with
nonzero, nevertheless small _�=H. As depicted in Fig. 1,
at the end of inflation _�=H � �, saturating our bound
(3.20). We comment that although the two-phase model
of [10] does not strictly satisfy our slow-roll conditions for
the two phases, since the second phase lasts long enough
(cf. Figure 1), this model obeys our general arguments and
the upper bound.

The above analysis has been extended for more general
Bianchi models in [12] and for cases with more scalar
fields and non-Abelian gauge fields [15,16]. In all these
cases, the anisotropy dynamics is in accord with our

general analysis of Sec. III, and can saturate the anisotropy
bound (3.20) toward the end of inflation.

2. Non-Abelian gauge field inflation, gauge-flation

In [17], we introduced a novel inflationary scenario,
non-Abelian gauge field inflation or gauge-flation for short.
In this model, inflation is driven by non-Abelian gauge
field minimally coupled to Einstein gravity. It was shown
that non-Abelian gauge field theory can provide the setting
for constructing an isotropic and homogeneous inflationary
background. This was achieved noting that gauge fields
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FIG. 1 (color online). In the left panel, we have the evolutions of Hubble-normalized shear �
H
:¼ _�

H for various c values when
ffiffiffi
c

p
’i ¼

17. As we see, growing during inflation and becoming of the order �, �H saturates the upper bound value. This figure is taken from [10].

Then, in the right panel and for a different initial values and parameters, we have the evolution of Hubble-normalized shear h
H
:¼ _�

H

during inflation when c ¼ 2 and ¼ ’i ¼ 11MPl. Again, anisotropies grow during inflation and eventually saturate their upper bound
value. This figure is taken from [11].
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H

FIG. 2 (color online). Hubble-normalized anisotropic stress tensor, �ðtÞ
H2 , and Hubble-normalized shear, �ðtÞ

H2
:¼ _�ðtÞ

H2 for a system with

 ¼ 3:77� 1015, g ¼ 10�1, c 0 ¼ 0:6� 10�3, _c 0 ¼ 10�10, �0 ¼ 10, _�0 ¼ �3:6. As we see �ðtÞ
H2 increases (exponentially) for a very

short time in the early stage of inflation (in small H0t), saturating our upper bound (3.20). Then, it is damped exponentially fast to its
isotropic fixed point.

REVISITING COSMIC NO-HAIR THEOREM FOR . . . PHYSICAL REVIEW D 85, 123508 (2012)

123508-7



are defined up to gauge transformations and that any
non-Abelian gauge group has an SU(2) subgroup. The
global part of this SU(2) subgroup can be consistently
identified with the rotation group. In particular, this means
that among the gauge field components Aa

� (� being the

space-time and a the gauge index) we have turned on a
specific combination which behaves as a scalar under
rotation. This scalar combination is coupled to all the other
components of the gauge field through gauge interactions
and hence one may excite these other components either
classically or quantum mechanically, violating the isotropy
and rotational symmetry of the background FLRW
trajectory.

As discussed in detail in [17], one particularly conve-
nient choice of the gauge-flation action is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
� 1

4
Fa

��Fa
��

þ 

384
ð�����Fa

��F
a
��Þ2

�
; (4.11)

where ����� is the totally antisymmetric tensor and the
gauge field strength tensor Fa

�� is given by

Fa
�� ¼ @�A

a
� � @�A

a
� � g�abcA

b
�A

c
�; (4.12)

here�; �; . . . labeled the space-time indices and run from 0
to 3, while a; b; . . . labeled the indices of the SU(2) gauge
symmetry algebra and run from 1 to 3. Our action consists
of a Yang-Mills term (which due to scaling invariance can
not lead to an inflating system) as well as a specific F4

term, TrðF ^ FÞ2, which its contribution to the energy-
momentum tensor has the equation of state 	F4 ¼ �PF4 ,
perfectly suited for driving an almost de Sitter expansion.6

Stability of the FLRW inflationary trajectory in gauge-
flation against small fluctuations around the isotropic
FLRW background was already studied and established
in [17]. Then, in [19] which will be briefly reviewed
here, starting from Bianchi-type-I cosmology and through
analytical and numerical studies, it was shown that the
isotropic FLRW inflation is an attractor of the dynamics
and the anisotropies are damped within a few e-folds, in
accord with the cosmic no-hair conjecture. To do so, let us
start with fixing the temporal gauge Aa

0 ¼ 0, with the

ansatz

A ¼ Aa
iT

adxi ¼ e�2�ðtÞ aðtÞc ðtÞ
�2ðtÞ T1dx

þ e�ðtÞ�ðtÞaðtÞc ðtÞðT2dyþ T3dzÞ; (4.13)

where Ta are the SU(2) gauge group generators, ½Ta; Tb	 ¼
i�cabTc. Note that �2ðtÞ ¼ 1, �ðtÞ ¼ 0 corresponds to the

isotropic background of [17].
It turns out that the equations take a simpler form once

written in terms of �

�ðtÞ ¼ aðtÞc ðtÞ: (4.14)

Substituting the ansatz and the axi-symmetric Bianchi
metric into T�� for the gauge fields, we obtain 	ðtÞ, PðtÞ
and �ðtÞ as

	 ¼ 	 þ 	YM; P ¼ �	 þ 1

3
	YM;

�ðtÞ ¼ 2

3
ð1� �6Þ

�
1

�4

� _�

a
� 2

�
_�þ

_�

�

�
�

a

�
2 � 1

�2

g2�4

a4

�

� 3�2

� _�

�
þ _�

��
2

_�

a
�

�
_�þ

_�

�

�
�

a

�
�

a
; (4.15)

where 	 and 	YM are, respectively, contributions of F4

and Yang-Mills terms

	 ¼ 3

2

g2�4

a4

_�2

a2
; (4.16)

	YM ¼ 3

2

�
1

3�4

� _�

a
� 2

�
_�þ

_�

�

�
�

a

�
2

þ 2�2

3

� _�

a
þ

�
_��

_�

�

�
�

a

�
2 þ ð2þ �6Þ

3�2

g2�4

a4

�
;

(4.17)

and

_� ¼ � ð��4ð�6 � 1Þ�2 _Þ
2a2ð3þ ��4ð2þ �6Þ �2

a2
Þ
:

Note that 	 is only a function of �ðtÞ and not �ðtÞ. As we
see, in the isotropic case �2 ¼ 1 ( _� ¼ 0 and _� ¼ 0), �ðtÞ
vanishes.
Assuming that the system undergoes a quasi-de Sitter

slow-roll inflation, the dynamics of � and � was examined
and shown, both analytically and numerically, that this

system has two attractor solutions� � ðc 2

c 1
Þ1=3 ¼ 
1which

regardless of the initial values of �, all the solutions con-
verge to themwithin a few e-folds [19]. These two attractor
branches, which are physically identical due to parity and
charge conjugation invariance of our gauge-flation action
(4.11), correspond to the isotropic quasi-de Sitter solutions.
Thus, gauge-flation is globally stable with respect to the
initial anisotropies and respects cosmic no-hair conjecture.
The slow-roll isotropic inflation is the attractor solution

in our system, nonetheless, due to the vectorial nature in
gauge-flation, for very large and small initial values of �
there is the possibility for _�

H to saturate its upper bound

value (3.20) for a very short lapse of time in early stages of
inflation (cf. Fig. 2). Both our numerical and analytical

6As discussed in [17] and in more detail in [18], from a particle
physics model building viewpoint, a TrðF ^ FÞ2 type term can be
argued for, considering axions in a non-Abelian gauge theory
and recalling the axion-gauge field interaction term Laxion �
’
� TrðF ^ FÞ2. Then, integrating out the massive axion field ’
leads to an action of the form we have considered.
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calculations reveals that in the extreme limits of �6 � 1
and �6 � 1, there is a region where anisotropy grows
exponentially for a very short period, before getting ex-
ponentially damped to its isotropic fixed point. Although in
these cases gauge-flation does not follow the strict dynam-
ics indicated by the cosmic no-hair theorem [3] for the very
short period of time, the anisotropies are indeed damped
within few Hubble times, in accord with the cosmic no-hair
conjecture.

Although the analysis of [19] was carried out for
Bianchi-type-I model, a similar behavior for all Bianchi
models is expected, once we assume having a quasi-de
Sitter slow-roll expansion phase. This is due to the fact that
this inflationary phase is driven by 	 which dominates the
	YM and that the anisotropic stress �ðtÞ only receives
contributions from the Yang-Mills term (4.15), (4.16), and
(4.17).

V. CONCLUDING REMARKS

In this work we extended Wald’s cosmic no-hair theo-
rem for general inflation setups and, in particular, for slow-
roll models. We proved an ‘‘inflationary extended cosmic
no-hair theorem’’ which states that despite the fact that
anisotropies can grow in time during inflation, their am-
plitude remains small and there is an upper bound on their
amplitude.

For Bianchi cosmological models and in the context of
general relativity, we investigated the dynamics of anisot-
ropies during inflation. Considering a general imperfect
fluid form for the energy-momentum tensor T�� we

showed that the late-time (after a few couple of e-folds)
behavior of anisotropic tensor ��� is governed by the

anisotropic stress tensor ���; if �i
jðtÞ is vanishing or

damped in time, as (3.12) shows, the shear follows the
same behavior as �i

j. Choosing the orthonormal frame in

which T�� is diagonal, ��� may have off-diagonal ele-

ments in general. However, since these elements have no
source term they are quickly damped, with time scale H0.

Here we proved that inflation enforces an upper bound
on Hubble-normalized anisotropic stress�i

jðtÞ=H2ðtÞ, pro-
portional to the slow-roll parameter �ðtÞ, which can in
principle grow in time during (slow-roll) inflation. As a
result, inflationary dynamics allows the dimensionless an-
isotropies �i

iðtÞ=HðtÞ to grow during the inflation, in con-
trast to the cosmic no-hair conjuncture. Furthermore,
assuming slow-roll inflation, the dynamics of anisotropy
does not necessarily follow the slow-roll dynamics and
they can generally evolve quickly. This effect was first
noted in [10] in the context of a special inflationary model
with Bianchi-type I metric in general relativity. Although
inflation allows for the growth of the diagonal elements of
dimensionless anisotropy, as we showed here it puts an
upper bound j�i

jj=H � 8
3 ð�0 � �0Þ (3.20) at the end of

slow-roll inflation.

Our work was motivated in part by possible observatio-
nal prospects and traces that a small but nonzero primordial
anisotropy may have on the CMB, which may show up
as statistical anisotropy in the CMB power spectrum.
Currently, there are only bounds on the statistical anisot-
ropy, for some studies in this direction see e.g. [15,16,20].
These bounds will hopefully be improved by the upcoming
cosmological observations and may be used as a tool to pin
down on the model of inflation.
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APPENDIX A: USEFUL DECOMPOSITION FOR
ENERGY-MOMENTUM TENSOR OF

INFLATIONARY SYSTEMS

Here, we prove that it is always possible to describe the
energy-momentum tensor T�� of any inflationary system

(which satisfies DEC, but violates SEC) as

T�� ¼ ��ðtÞg�� þT ��; (A1)

where �ðtÞ � 0, and T �� which satisfies both SEC and

WEC.
Assuming inflationary dynamics in a system, we have

_H þH2 � 0;

which using (2.17) gives the following inequality for the
total energy-momentum tensor T���

T�� � 1

2
g��T

�
n�n� þ ����

�� ¼ �3ð _H þH2Þ � 0:

(A2)

As a necessary condition for the above inequality to be
satisfied, T�� should violate SEC.

7 However, decomposing

T�� as (A1), one can choose �ðtÞ in such a way that

�ðtÞ � 3ð _H þH2Þ þ ����
��; (A3)

and obtain �
T �� � 1

2
g��T

�
n�n� � 0: (A4)

That is, choosing�ðtÞ as (A3) one can obtain aT �� which

respects SEC.
On the other hand, for T �� to satisfy WEC, we need

T ��n
�n� � 0, which from (2.12) requires

7We comment that having inflation in generic anisotropic mod-
els demands a condition stronger than violation of SEC, it requires
ðT�� � 1

2g��TÞn�n� � �����
��, as indicated in (A2).
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�ðtÞ � 3H2 þ 1

2
ð3ÞR� 1

2
����

��: (A5)

Then, demandingT �� to satisfy both SEC andWEC, (A3)

and (A5) imply that�ðtÞ should be in the following region:

3ð _HþH2Þþ����
�� ��ðtÞ � 3H2 þ 1

2
ð3ÞR� 1

2
����

��:

(A6)

In order to prove the validity of such a choice, one should
show that the upper bound value for �ðtÞ is less than its
lower bound value. In the following by showing that the
difference of the upper and lower bound values is a positive
quantity, we prove the validity of (A6).

The total energy-momentum tensor T�� satisfies DEC

which implies that T��n
�n� þ 1

3T��h
�� � 0. We hence

have

T ��n
�n� þ 1

3
T ��h

�� � 0;

which recalling (2.12) and (2.17) yields

� 3 _H � 3

2
������ þ 1

2
ð3ÞR � 0: (A7)

The above is exactly the difference of the upper and lower
values in (A6). We have thus proved the validity of the
statement made in the beginning of this appendix.

We note that as is implicit in the above, SEC and WEC
conditions does not uniquely specify �ðtÞ. One may hence
assume extra conditions on T ��. One such choice is to

take T �� to be stiff matter, that is a matter with 	 ¼ P

(with possibly nonzero anisotropic stress ���). This free-

dom and various choices of�ðtÞ does not lead to a stronger
bound on the anisotropy.

APPENDIX B: WALD’S THEOREM ASSUMPTIONS
AND INFLATIONARY MODELS

Consider inflationary models in which we have expo-
nential expansion in a finite period of time and inflation
eventually ends. These systems do not respect conditions
of Wald’s theorem [3]. Systems which are described by
Wald’s theorem evolve toward the de Sitter solution and
inflation will never stops in them. Here we review in more
technical detail exactly how models of inflation fail ful-
filling assumptions of Wald’s cosmic no-hair theorem.

To this end, we employ Wald’s notations [3] where total
energy-momentum T�� (2.9) was decomposed in terms of

a positive cosmological constant �0, and an extra term
~T��

T�� ¼ ��0g�� þ ~T��; (B1)

with ~T satisfying DEC and SEC. This latter is not respected
in inflationary models. In terms of our notations,

~T �� ¼ �ð�ðtÞ ��0Þg�� þT ��: (B2)

As we find from the above equation for any given T��,

there is an ambiguity in defining ~T��, unless the value of

�0 is also specified. In order to resolve this ambiguity, we
choose �0 to be

�0 ¼ 3H2j�0
; (B3)

which using (2.12), determines initial value of n�n� ~T��

n�n� ~T��j�0
¼ 1

2
ð3ÞR

���������0

� 1

2
����

��

���������0

; (B4)

where �0 represents spatial hypersurface of initial time at
the beginning of inflation. Recalling that for all Bianchi

models except type IX, ð3ÞR � 0, Eq. (B4) implies that
~T��j�0

does not respect the dominant energy condition in

these models.
Noting that H2 is a decreasing quantity in inflationary

systems, and using (2.12), (B2), and (B4), one finds out that
(i) for all Bianchi cosmological models expect type IX,

we have n�n� ~T�� � 0 during the inflation, which

implies that ~T�� violates DEC.

(ii) In addition, in case of having inflation in Bianchi-

type IX in which ð3ÞR � 0, the spatial curvature is
rapidly damped and after a few e-folds, we have
n�n� ~T�� � 0, which again implies ~T�� violates

DEC.
(iii) Since during inflation H2 is a decreasing quantity,

one can show that it is not possible to find a�0 > 0
in such a way that the resulting ~T�� satisfies SEC

and DEC for the whole period of inflation.
Note that although ~T�� eventually violates DEC in

inflationary systems, the total energy-momentum tensor
T��, always satisfies DEC and the energy density of the

system, T��n
�n�, is a positive definite quantity. To sum-

marize, we showed that during inflation, if ~T�� satisfies

SEC it will necessarily violate DEC, which is against the
requirements of Wald’s cosmic no-hair theorem.
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