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We investigate the cosmic evolution of the linear bias in the framework of a flat Friedmann-Lemaı̂tre-

Robertson-Walker spacetime. We consider metric perturbations in the Newtonian gauge, including Hubble

scale effects. Making the following assumptions, (i) scale-independent current epoch bias b0, (ii) equal

accelerations between tracers and matter, (iii) unimportant halo merging effects (which is quite accurate

for z < 3), we analytically derive the scale-dependent bias evolution. The identified scale dependence is

only due to Hubble scale evolution general relativity effects, while other scale dependence contributions

are ignored. We find that up to galaxy cluster scales the fluctuations of the metric do not introduce a

significant scale dependence in the linear bias. Our bias evolution model is then used to derive a

connection between the matter growth index � and the observable value of the tracer power spectrum

normalization �8ðzÞ. We show how this connection can be used as an observational test of general

relativity on extragalactic scales.
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I. INTRODUCTION

The distribution of matter on large scales, based on
different extragalactic objects, can provide important con-
straints on models of cosmic structure formation. However,
a serious problem that hampers such a straightforward
approach is our limited knowledge of how luminous matter
traces the underlying mass distribution. In particular, the
concept of the so-called biasing between different classes
of extragalactic objects and the background matter distri-
bution was put forward by Kaiser [1] and Bardeen et al. [2]
in order to explain the higher amplitude of the two-point
correlation function of clusters of galaxies with respect to
that of galaxies themselves.

Such a biasing is statistical in nature; with galaxies and
clusters being identified as high peaks of an underlying,
initially Gaussian, random density field, while it is

assumed to be linear and scale independent.1 Formally,
the linear bias factor, b, is defined as the ratio of the
extragalactic mass-tracer fluctuations, �tr, to those of the
underlying mass, �m:

�tr ¼ b�m: (1.1)

Since the two-point correlation function in a continuous
density field is defined as �ðrÞ ¼ h�ðxÞ�ðxþ rÞi, one can
write the bias factor as the square root of the ratio of the
two-point correlation function of the tracers to the under-
lying mass:

b ¼
�
�tr

�m

�
1=2

; (1.2)

in which case one considers the large-scale correlation
function, i.e., scales corresponding roughly to the so-called
halo-halo term of the dark matter (hereafter DM) halo
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1However, in the nonlinear scales of clustering, i.e., mostly
below 5h�1 Mpc, a scale dependence of the bias has been
observed (see for example [3]).
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correlation function (see for example [4]). Furthermore,
since the variance of a density field, smoothed at some
scale R, is the correlation function at zero lag (�2

R ¼
�Rð0Þ ¼ h�2

RðxÞi) one can also write the linear bias factor
as the ratio of the variances of the tracer and underlying
mass density fields, smoothed at some linear scale, tradi-
tionally taken to be 8h�1 Mpc (at which scale the variance
is of order unity):

b ¼ �8;tr

�8;m

: (1.3)

We refer the reader to a thorough discussion of the methods
to estimate the tracer correlation function and also of the
corresponding determination of the tracer bias values, at
different redshifts, that appears in Papageorgiou et al. (see
[5] and references therein).

The bias factor may have many dependencies; even
assuming that it is scale independent, it necessarily de-
pends on the type of the mass tracer as well as on the epoch
z, since the fluctuations evolve with time as gravity draws
together galaxies and mass. It is evident, therefore, that the
bias factor should also depend on the different dark energy
models (hereafter DE), including those of modified gravity
[6]. It is the redshift evolution of bias, bðzÞ, which is very
important in order to relate observations with models of
structure formation and it has been shown to be a mono-
tonically increasing function of redshift [7–20].

In the literature there are two basic families of analytic
bias evolution models. The first, called the galaxy merging
bias model, is based on the Press-Schechter [7] formalism,
on the peak-background split [2] and on the spherical
collapse model [8], and reproduces relatively well the
results of numerical simulations, although differences
have been found especially at the high and low DM halo
mass range. These differences have lead to modifications
of the original model to include the effects of ellipsoidal
collapse [9]; to new values of the bias model parameters
[10]; to new forms of the bias model fitting function [11] or
even to a non-Markovian extension of the excursion set
theory [12].

The second family of bias evolution models assumes a
continuous mass-tracer fluctuation field, proportional to
that of the underlying mass, and the tracers act as ‘‘test
particles’’. In this context, the hydrodynamic equations of
motion and linear perturbation theory are used. An original
suggestion, named galaxy conserving bias model used the
continuity equation and the assumption that tracers and
underlying mass share the same velocity field [13–16],
while the bias evolution is provided by the solution of a
first order differential equation as: bðzÞ ¼ 1þ ðb0 � 1Þ=
DðzÞ, with b0 the bias factor at the present time and DðzÞ
the growing mode of density perturbations. However, this
bias model suffers from two fundamental problems: the
unbiased problem i.e., the fact that an unbiased set of
tracers at the current epoch remains always unbiased in

the past, and the low redshift problem i.e., the fact that this
model represents correctly the bias evolution only at rela-
tively low redshifts z & 0:5 [17]. Note that [18] has ex-
tended this model to also include an evolving mass tracer
population in a �CDM cosmology.
An attempt to derive a bias evolution model free of the

above mentioned problems, utilized all three hydrodynam-
ical equations of motion, linear perturbation theory and the
fact that mass tracers and underlying mass share the same
gravity field, but not necessarily the same velocity field and
that the linear bias is scale independent. This resulted in a
second order differential equation in b, the solution of
which provided the evolution of the linear and scale-
independent bias (see [19–21]). We would like to stress
here that the provided solutions apply to cosmological
models, within the framework of general relativity (GR).
In the context of a scale-independent bias factor, an

extension of the previous model, valid for all DE and
modified gravity cosmologies, was recently proposed by
Basilakos, Plionis and Pouri [6]. This extension provides a
tool, using the evolution of bias, to put constraints on those
DE models which adhere to general relativity, as well as to
investigate whether the DE reflects on the nature of gravity
(‘‘geometrical dark energy’’).
Overall, the scope of the present article is (a) to extend

the original Basilakos et al. [6] bias solution, by taking
into account possible contributions from the metric fluctu-
ations, and (b) to propose new tools that can be used in
order to test the validity of general relativity on cosmo-
logical scales.
The structure of our paper is as follows. The basic

theoretical elements of the problem are presented in
Sec. II, where we introduce [for a spatially flat
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) geome-
try] the basic cosmological equations. The issue related
with the linear bias is discussed in Sec. III. In this section
we also present the general bias solution in the framework,
by taking into account metric perturbations for the
Newtonian gauge. Finally, the main conclusions are sum-
marized in Sec. V.

II. SCALE-DEPENDENT MATTER
AND TRACER DENSITY PERTURBATIONS

Let us derive the basic equations that govern the evolu-
tion of the mass density contrast as well as of the extra-
galactic tracers, modeled here as a pressureless fluid
(pm ¼ ptr ¼ 0). Note that the perturbed FLRW spacetime
in the Newtonian gauge is given by

ds2 ¼ �ð1þ 2�Þdt2 þ ð1� 2�Þa2ðtÞdx2; (2.1)

where� is the Newtonian potential, aðtÞ is the scale factor
(normalized to unity at the present time) and dx2 is the flat
spatial metric. In the current paper we assume a slowly
varying gravitational potential�. Note that considering the
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unperturbed spacetime one can easily derive the back-
ground equations

H2 ¼ 8�G

3
ð�m þ �deÞ; (2.2)

_�þ 3Hð�þ pdeÞ ¼ 0: (2.3)

In the above set of differential equations, an overdot de-
notes derivative with respect to time, �m and �de, are the
matter and dark energy densities with � ¼ �m þ �de, H ¼
_a=a is the Hubble parameter, whereas pde ¼ wde�de, cor-
responds to the pressure assuming nonclustering dark
energy. Note that for wdeðzÞ ¼ �1 we recover the con-
cordance �CDM model.

A. Matter density perturbations

In this section, we discuss the basic equation which
governs the evolution of the matter perturbations up to
horizon scales and within the framework of any DE model.
Following the notations of Dent et al. [22] the perturbed
(anisotropic stress-free) equations in the Newtonian gauge
take the form

€� ¼ �4H _�þ 8�G�dewde� (2.4)

_�m ¼ 3 _�þ k2

a2
vf;m (2.5)

_v f;m ¼ ��; (2.6)

with constraint equations

3HðH�þ _�Þ þ k2

a2
� ¼ �4�G�m�m (2.7)

ðH�þ _�Þ ¼ �4�G�mvf;m; (2.8)

where vf;m � �vma (vm is the velocity potential for mat-

ter). In this context, the combination of the relativistic
equations (2.4), (2.5), (2.6), (2.7), and (2.8) obtains the
basic differential equation

€�m þ 2H _�m þ k2

a2
� ¼ 0: (2.9)

A solution of the above equation provides the evolution of
the matter fluctuations in the linear regime.

On the other hand, the linear matter overdensity �m �
��m=�m is written as a function of the gravitational po-
tential � and the background variables as follows [23]:

� 4�G�m�m ¼ k2

a2
�þ 3H2�þ 3H _�; (2.10)

where G denoting Newton’s gravitational constant. In

the sub-Hubble (small-scale) approximation ( k
2

a2
� H2)

Eq. (2.10) takes the form

� 4�G�m�m ¼ k2

a2
�; (2.11)

which is the usual Poisson equation. In this context, insert-
ing the Poisson equation (2.11) into Eq. (2.9) we derive the
well known scale-independent equation

€�m þ 2H _�m � 4�G�m�m ¼ 0: (2.12)

Now, for any type of dark energy an efficient parametriza-
tion of the matter perturbations is based on the growth rate
of clustering [24]

f0ðaÞ ¼ d ln�mðaÞ
d lna

¼ ��
mðaÞ; (2.13)

where � is the so-called growth index (see Refs. [25–29])
and �mðaÞ ¼ �ma

�3=E2ðaÞ.2 Integrating Eq. (2.13) we
obtain an approximate solution of Eq. (2.12) which is valid
for any type of dark energy3:

�mðaÞ ¼ a exp

�Z a

ai

dx

x
ð��

mðxÞ � 1Þ
�
; (2.14)

where ai is the scale factor of the universe at which
the matter component dominates the cosmic fluid (here
we use ai ’ 10�2). Following standard lines we have
�mðaÞ / DðaÞ, where DðaÞ is the linear growing mode,
usually scaled to unity at the present epoch DðaÞ ¼
�mðaÞ=�mð1Þ. It is interesting to mention that measuring
the growth index could provide an efficient way to dis-
criminate between modified gravity models and DE mod-
els which adhere to general relativity. Indeed it was
theoretically shown that for DE models inside general
relativity the growth index � is well fit by �GR � 6=11
(see [28,29]).
For the benefit of the reader we point here that for the

traditional � cosmology it has been found, by some of us
[22,30], that the linear matter fluctuation field starts to
become scale dependent, due to metric perturbations
in Newtonian gauge, on scales larger than about
�50–100h�1 Mpc (k < 0:01–0:02h Mpc�1). Therefore,
for large scales we have to use the generalized Poisson
equation (2.10) which is valid up to horizon scales. Notice
that on dimensional grounds we may approximate the

quantity 3H _� in Eq. (2.10) as 3H _� ’ 3H2� (see also
[22]). This is justified on the basis of Eq. (2.4) since [given
also that 4�G�de ¼ OðH2Þ] the only time scale that deter-
mines the evolution of � is the Hubble scale H. It is

therefore a good approximation to assume that _� ’ H�.
Using the latter condition and inserting Eq. (2.10) into
Eq. (2.9) one can easily find that

€�m þ 2H _�m � 4�Geff�m�m ¼ 0; (2.15)

2�m is the density parameter at the present time and EðaÞ ¼
HðaÞ=H0 is the normalized Hubble function. For the usual �
cosmology we have EðaÞ ¼ ð�ma

�3 þ 1��mÞ1=2.
3Since the pure matter universe (Einstein de-Sitter) has the

solution of �ES;m ¼ a, we normalize our DE models to get �m ’
a at large redshifts, which should hold due to the dominance of
the nonrelativistic matter component.
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where

Geffða; kÞ ¼ G

1þ �kða; kÞ (2.16)

and

�kða; kÞ ¼ 3a2H2ðaÞ
c2k2

: (2.17)

For many DE models, it is convenient to study the
growth evolution in terms of the expansion scale a rather
than t. If we change the variables from t to a ( d

dt ¼ aH d
da )

then the time evolution of the mass density contrast [see
Eq. (2.15)] takes the following form

d2�m

da2
þ AðaÞ d�m

da
� Bða; kÞ�m ¼ 0; (2.18)

where

AðaÞ ¼ d lnE

da
þ 3

a
(2.19)

and

Bða; kÞ ¼ 3�m

2a5E2ðaÞ ½ð1þ �kða; kÞ��1: (2.20)

We would like to end this section with a discussion on
the evolution of the scale-dependent growth rate of cluster-
ing. Obviously, it becomes important to construct a scale-
dependent parametrization that is analogous to Eq. (2.13)
and solves (approximately) Eq. (2.18) for all scales k. In
order to construct such a parametrization we focus on the
matter dominated era when most of the growth occurs and
express �kða; kÞ as [22]

�kða; kÞ ¼ 3H2
0�m

ac2k2
: (2.21)

In this context, Dent et al.[22] proposed that the scale-
dependent growth rate fða; kÞmay be expressed in terms of
the scale-independent growth rate f0ðaÞ in the form:

fða; kÞ ¼ d ln�mða; kÞ
d lna

¼ f0ðaÞ
1þ �kða; kÞ ¼

��
mðaÞ

1þ �kða; kÞ :
(2.22)

Thus from Eq. (2.22) we simply get

�mða; kÞ ¼ a exp

�Z a

ai

dx

x

�
��

mðxÞ � 1

1þ �kðx; kÞ
��

: (2.23)

Because of �mða; kÞ / Dða; kÞ the normalized growth fac-
tor becomes

Dða; kÞ ¼ �mða; kÞ
�mð1; kÞ ¼

�mðz; kÞ
�mð0; kÞ ; (2.24)

where a ¼ ð1þ zÞ�1.

B. Tracer density perturbations

Now we use the same formalism as before but for the
tracers. We would like to spell out what are the basic
assumptions here (see also [31]). First of all we consider
that the mass tracer population is conserved with time i.e.,
that the effects of hydrodynamics (merging, feedback
mechanisms, etc.) do not significantly alter the population
mean. However, the effects of merging have been phenom-
enologically modeled and it has been found (using N-body
simulations) that they are important only for z * 2:5–3
[20] as far as the bias factor is concerned. In what follows
we also treat tracers with ptr ¼ 0 which implies that gal-
axies (or clusters of galaxies) are collisionless. Thus the
tracer density evolves as

_� tr þ 3H�tr ¼ 0: (2.25)

Because of the same gravity field the corresponding
Eqs. (2.4) and (2.7) are also valid here. On the other
hand, we have

_� tr ¼ 3 _�þ k2

a2
vf;tr (2.26)

_v f;tr ¼ �� (2.27)

ðH�þ _�Þ ¼ �4�G�trvf;tr; (2.28)

where vf;tr � �vtra and vtr is the velocity potential of the

tracers (in general different with that of matter vtr � vm),
�tr is the tracer density, �m is the mass density and� is the
gravitational potential.
Since the tracers and the underlying matter share the

same gravitational field, this implies that the generalized
Poisson equation (2.10) remains practically the same. In
other words we could have different velocity fields (vtr �
vm) but the corresponding accelerations ( _vtr ¼ _v) are the

same. Again, by taking the approximation 3H _� ’ 3H2�
and using Eqs. (2.25), (2.4), (2.7), (2.26), (2.27), and (2.28),
we can obtain after some algebra the time evolution equa-
tion for the tracer fluctuation field

€� tr þ 2H _�tr � 4�Geff�m�m ¼ 0 (2.29)

or

d2�tr

da2
þ AðaÞ d�tr

da
� Bða; kÞ�m ¼ 0: (2.30)

C. Gauge dependence

The Newtonian gauge used in the above calculations is
physically interesting because it corresponds to a time
slicing of isotropic expansion. However, the matter density
perturbation �mðt; kÞ is a gauge dependent quantity and
therefore it is important to clarify how our results change
in alternative gauges, and what their connection is with
observable gauge-invariant quantities.
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Scalar metric perturbations around a spatially flat back-
ground can be written in the following general form [32]:

ds2 ¼ a2fð1þ 2�Þd�2 � 2Bjidxid�

� ½�ij � 2ð��ij � EjijÞ�dxidxjg; (2.31)

where a and � are the conformal cosmic expansion scale
factor and the conformal cosmic time; ‘‘j’’ denotes the
background three-dimensional covariant derivative. The
corresponding perturbed energy-momentum tensor T�

	

has the form

T0
0 ¼ �mð1þ �mÞ; T0

i ¼ �mUji;

T0
i ¼ ��mðU� BÞji; Ti

j ¼ ��m�jij; (2.32)

where �m is the unperturbed pressureless matter density;U
and � determine velocity perturbation and anisotropic
shear perturbation.

Gauge choices simplify the above expressions by setting
various quantities to 0. For example we have � ¼ � ¼
B ¼ 0 in the synchronous gauge (SG), B ¼ E ¼ 0 in the
Newtonian gauge (NG) and U ¼ B ¼ 0 in the comoving
time-orthogonal gauge (CTG).

In the special case of the synchronous gauge, which
corresponds to a time slicing obtained by the matter local
rest frame everywhere in space (the free-falling observer
frame), the line element of the perturbed spacetime is given
by

ds2 ¼ a2ð�Þ½�d�2 þ ð�ij þ hijÞdxidxj�: (2.33)

It is straightforward to derive the growth equation for �m �
��m=�m in a matter dominated universe in the synchro-
nous gauge to obtain [23,30]

€� SG
m þ 2H _�SG

m � 4�G�m�
SG
m ¼ 0: (2.34)

This growth equation is exact in the synchronous gauge in
the case of matter domination and involves no scale de-
pendence as in the case of Eq. (2.15) of the Newtonian
gauge. This scale independence is an artifact of the par-
ticular time slicing of the synchronous gauge which is a
good approximation on small scales but is unable to cap-
ture the horizon scale effects modifying the growth func-
tion on large scales.

Nevertheless, Eqs. (2.15) and (2.34) clearly agree on
small scales where �k ! 0. Therefore, for larger scales
(k < 0:01h Mpc�1) the question that arises is the follow-
ing: What is the proper gauge to use when comparing with
observations?

This question has been addressed in Ref. [33] where a
gauge-invariant observable replacement was obtained for
�m. This observable �obs

m ðt; kÞ involves the matter density
perturbation �mðt; kÞ corrected for redshift distortions due
to peculiar velocities and gravitational potential. It also
includes volume and position corrections. The final
expression however is complicated and makes the theoreti-
cal predictions based on it not easy to implement and

manipulate. However, in Ref. [34] it was pointed out that
the Newtonian gauge matter perturbation �NG

m is a good
approximation to the observable gauge-invariant perturba-
tion �obs

m ðt; kÞ even on very large scales (comparable to the
Hubble scale). This result will also be justified in the
remaining part of this section.
The cosmological perturbations evolution is well de-

scribed by the gauge-invariant approach, pioneered by
Bardeen [35]. This approach may be used to identify
physical observables as gauge-invariant quantities (e.g.,
Refs. [32,36]). A gauge-invariant matter density perturba-
tion may be constructed as [35,36]

�SGI
m � �m þ 3

_a

a
ðU� BÞ; (2.35)

�SGI
m coincides with the density perturbation �SG

m in the
synchronous gauge for the pressureless matter system.
Thus �SGI

m corresponds to the density perturbation relative
to the observers everywhere comoving with the matter.
These free falling observers do not experience the isotropic
expanding background of the universe because the peculiar
velocity of matter is distinct from the Hubble flow. Thus
�SGI
m has physical significance only for perturbations on

scales small compared to the Hubble scale.
In addition to �SGI

m , it is straightforward to construct
alternative gauge-invariant quantities related to the matter
overdensity as evaluated in different gauges. Such a gauge-
invariant variable closely related to the matter overdensity
in the Newtonian gauge is of the form [32,35,36],

�NGI
m � �m þ _�

�
ðB� _EÞ ¼ �m � 3

_a

a
ðB� _EÞ: (2.36)

and has important advantages over �SGI
m discussed in what

follows. �NGI
m coincides with the density perturbation �NG

m

in the Newtonian gauge, in which B ¼ E ¼ 0.
It is also straightforward to construct two gauge-

invariant scalar potentials 
 and c , which reduce to the
gravitational potential in the Newtonian limit: [32]:


��� _a

a
ðB� _EÞ; c ��þ1

a

d

d�
½ðB� _EÞa�: (2.37)

The gauge-invariant gravitational potential 
 obeys the
Poisson equation [35,36] sourced by �SGI

m with no appear-
ance of the Hubble scale:

r2
 ¼ �k2
 ¼ 4�G�a2�SGI
m : (2.38)

where k is the (comoving) wave number of the Fourier
mode. The Poisson equation is valid only for scales small
compared to the Hubble radius 1=H while on scales larger
than the Hubble scale the growth of matter density pertur-
bations is frozen. Hence, �SGI

m can not be regarded as the
observable matter density perturbation on scales compa-
rable to the Hubble scale. Therefore, the observable density
perturbation on both the small-scale and the large-scale
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modes can not be described directly by �SGI
m even though it

is a gauge-invariant quantity.
The other gauge-invariant perturbation �NGI

m has some
important attractive features with respect to observability,
not shared by �SGI

m . These are summarized as follows:
(i) It reduces to the Newtonian gauge perturbation �NG

m ,
i.e., it corresponds to a frame which respects the
isotropic expansion of the universe and is therefore
more appropriate for description of large-scale per-
turbations. This reduction also simplifies the calcu-
lation of this perturbation.

(ii) It drives a scale-dependent modification of the
Poisson equation for the gauge-invariant potential

. Indeed, the time-time part of the linearized
Einstein equation gives [23,32]

r2
� 3
_a

a

�
_a

a
c þ _


�
¼ 4�G�a2�NGI

m : (2.39)

Thus, the anticipated scale dependence on scales
comparable to the Hubble scale is picked up by
the perturbation �NGI

m .
(iii) It is gauge invariant as anticipated for any observ-

able quantity.
Thus, the gauge invariant �NGI

m and the Newtonian gauge
variable �NG

m to which it reduces, constitute an attractive
choice for making theoretical calculations to obtain the
gravitational potential and the matter density perturbation
that can be directly compared with observations on large
scales. However, these theoretically obtained quantities
need to also be corrected for bias, redshift distortions
(due to gravitational potential and peculiar velocities),
lensing magnification and volume distortion [33].

III. THE EVOLUTION OF BIAS

Clearly, due to the metric perturbations, Eqs. (2.15) and
(2.29) involve a scale k dependence of bias in contrast to
the small scale approximate equation (2.12) which is scale
invariant. Therefore, due to Eq. (1.1) one would expect that
the bias factor must inherit a similar dependence to that of
the density fluctuations namely b ¼ bðz; kÞ. Within this
framework, we can distinguish three possible bias evolu-
tion cases:

Case 1: Tracers and mass share same velocity field:
Here we use the assumption of Tegmark and Peebles [15]
(see also [14]), that the tracers and the underlying mass
distribution share the same velocity field. Using the latter
and Eqs. (2.5) and (2.26) we have

_� tr � _�m ¼ 0: (3.1)

Now since we assume linear biasing, i.e. Eq. (1.1), we
obtain:

�m

db

dt
þ ðb� 1Þ d�m

dt
¼ 0 ) dðy�mÞ

dt
¼ 0; (3.2)

where y ¼ b� 1 and �m / D. An integration of Eq. (3.2)
provides:

bðz; kÞ ¼ 1þ yðz; kÞ ¼ 1þ b0 � 1

Dðz; kÞ ; (3.3)

where b0 is the bias factor at the present time.
This model is known to suffer from the so-called

unbiased and the low redshift problems, by which the
bias of mass tracers which either obey b0 < 1 or are
located at relative large redshifts, z > 0:5, cannot be
modeled by Eq. (3.3).
Case 2: Tracers and mass share same acceleration field:

Now we consider that both the tracers and the underlying
mass distribution share the same gravitational field but
different velocity fields [21]. Inserting Eq. (1.1) into
Eq. (2.15) and using simultaneously Eq. (2.29), we obtain
a second order differential equation which describes the
evolution of the linear bias factor, b, between the back-
ground matter and the mass-tracer fluctuation field:

€y�m þ 2ð _�m þH�mÞ _yþ 4�Geff�m�my ¼ 0; (3.4)

where y ¼ b� 1.4 Transforming Eq. (3.4) from t to a, we
simply derive the evolution equation of the function yða; kÞ
[where yða; kÞ ¼ bða; kÞ � 1] which has some similarity
with the form of Eq. (2.18) as expected. Indeed, we have:

d2y

da2
þ

�
AðaÞ þ 2fða; kÞ

a

�
dy

da
þ Bða; kÞy ¼ 0: (3.5)

In Basilakos and Plionis [19,21], we have provided an
approximate solution of Eq. (3.4), using fðz; kÞ ¼ f0ðzÞ �
1 (which is valid at relatively large redshifts), for cosmo-
logical models in the framework of general relativity,
which contain quintessence (or phantom) dark energy.
Here our aim is to provide an exact bias solution taking
into account metric perturbations, namely bðz; kÞ, for all
possible dark energy cosmologies (for the case with no
metric perturbations see [6]).
Inserting now yða; kÞ ¼ gðaÞ=Dða; kÞ into Eq. (3.5) and

using simultaneously Eq. (2.18) and the first equality of
Eq. (2.22), we obtain:

d2g

da2
þ AðaÞ dg

da
¼ 0; (3.6)

a general solution of which is

gðaÞ ¼ C1 þ C2

Z da

a3EðaÞ (3.7)

where C1 and C2 are the integration constants. Utilizing
now a ¼ ð1þ zÞ�1, b ¼ yþ 1 ¼ ðg=DÞ þ 1 and Eq. (3.7),
we finally obtain the functional form which provides our
general solution for all possible types of DE models, as

4The current theoretical approach does not treat the possibility
of having interactions in the dark sector. Also discussions
beyond the linear biasing regime can be found in [37] and
references therein.
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bðz; kÞ ¼ 1þ b0 � 1

Dðz; kÞ þ C2

JðzÞ
Dðz; kÞ ; (3.8)

where

JðzÞ ¼
Z z

0

ð1þ xÞdx
EðxÞ : (3.9)

An extension of the above model to include the effects of
halo merging processes, which introduces one further com-
ponent in Eq. (3.8), has been phenomenologically modeled
in [6,20] and it was found, using cosmological N-body
simulations, that such effects are important only for z *
2:5–3. Therefore, in the light of currently available ‘‘growth
of structure’’ data (which reach z� 1; WiggleZ [38]), the
merging term in the bias evolution model has been
neglected.

Notice that the dependence of our bias evolution model
on the different cosmologies enters through the different
behavior of Dðz; kÞ, which is affected by � [see Eqs. (2.23)
and (2.24)], and of EðzÞ ¼ HðzÞ=H0. Since different halo
masses result in different values of b0, one should expect
that the constants of integration C1 ¼ b0 � 1 and C2

should be functions of the mass of dark matter halos (see
[20]), assuming that the extragalactic mass tracers are
hosted by a DM halo of a given mass. It is interesting to
mention here that our bias model, similarly to most others
proposed in the literature, relate a mass tracer, being a
galaxy, an active galactic nucleus or a cluster of galaxies,
with a host dark matter halo within which the mass tracer
forms and evolves. The models themselves follow the
linear evolution of the host halo and not the internal
evolution of the astrophysical processes of the tracer.
Thus the assumption is that the effects of nonlinear gravity
and hydrodynamics (merging, feedback mechanisms, etc.)
can be ignored in the linear regime (see [14,15]).

Comparing our solution of Eq. (3.8) with that of Case 1,
bðz; kÞ ¼ 1þ ðb0 � 1Þ=Dðz; kÞ, it becomes evident that the
latter misses one of the two components of the full solution
simply because the assumption of equal velocities leads to
a first order homogeneous differential equation for the bias
(3.2). While the assumption of equal accelerations (with
vtr � vm) involves the full linear perturbation analysis and
thus it produces a second order homogeneous differential
equation (3.5), independent solutions of which are
1=Dðz; kÞ and JðzÞ=Dðz; kÞ.

The further component in the bias solution, provided by
the above model, solves the known unbiased and the low
redshift problems, by which the Tegmark and Peebles [15]
(Case 1) model suffers.

Case 3: Tracers and mass do not share same velocity
field: Here we obtain a similar to Case 2 bias model but
using the nomenclature of Tegmark and Peebles [15]. We
now drop the main assumption used in Case 1, that the
mass tracers and the underlying mass distribution share the
same velocity fields, by allowing some sort of relation
between the two (matter and mass tracers) velocity fields.

We obtain again the corresponding Eq. (3.2), starting only
from the continuity equations (2.5) and (2.26) and intro-
ducing an additional time-dependent term, vf;trðaÞ �
vf;mðaÞ, which we associate with the effects of the different
velocity fields. We also use the same notation, as in our
original formulation, that the tracers and the underlying
mass distribution share the same gravity (accelerations)
field. Then we obtain:

_� tr � _�m ¼ k2

a2
½vf;trðaÞ � vf;mðaÞ� (3.10)

or

dðy�mÞ
dt

¼ k2

a2
½vf;trðaÞ � vf;mðaÞ�; (3.11)

a general solution of which is

yða; kÞ�mða; kÞ ¼ C1 þ
Z k2da

a3HðaÞ ½vf;trðaÞ � vf;mðaÞ�:
(3.12)

Thus the evolution of bias becomes

bðz; kÞ ¼ 1þ b0 � 1

Dðz; kÞ þ
Iðz; kÞ
Dðz; kÞ ; (3.13)

where

Iðz; kÞ ¼
Z z

0

ð1þ xÞ
EðxÞ

k2

�mð0; kÞH0

½vf;trðxÞ � vf;mðxÞ�dx
(3.14)

and b0 � 1 ¼ C1=�mð0; kÞ. Obviously, if vf;tr ¼ vf;m then

Eq. (3.13) boils down to Eq. (3.3) as it should. Although we
do not have a fundamental theory to model the time-
dependent vf;trðaÞ � vf;mðaÞ function, it appears to depend
on the Hubble constantH0 as well as on the scale due to the
fact that the quantity Iðz; kÞ of Eq. (3.14) has to be unit-less.
With the above in mind, we thus observe that from
Eqs. (3.8), (3.9), (3.13), and (3.14) we obtain:

vf;trðaÞ � vf;mðaÞ ¼ C2H0�mða ¼ 1; kÞ
k2

; (3.15)

implying the following scaling of the velocity potentials
with the scale factor:

vtrðaÞ � vmðaÞ ¼ �C2H0�mða ¼ 1; kÞ
ak2

: (3.16)

In general the above difference between the velocity
potentials could have had a different form with respect to
the scale factor, but it must always be / H0=k

2 in order for
the Iðz; kÞ integral to be unit-less.
Finally, in Fig. 1 (upper panel) we compare the scale-

dependent (symbols) and scale-independent (solid curve)
bias evolution bðz; kÞ at galaxy cluster scales, k ’
0:05h Mpc�1 (r ’ 20h�1 Mpc with M’5�1014h�1M�).
As it is expected, the biasing is a monotonically increasing
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function of redshift. In the lower panel we show the frac-
tional difference between the two bias evolution results and
it becomes quite evident that the fluctuations of the FLRW
metric do not affect the bias evolution.

IV. TESTING GRAVITYAT
COSMOLOGICAL SCALES

Nowadays, the issue of testing the validity of general
relativity at cosmological scales is considered one of the
most fundamental and challenging problems on the inter-
face uniting astronomy, cosmology and particle physics
and indeed in the last decade there have been theoretical
debates among cosmologists regarding the methods that
researchers have to develop in order to make this achieve-
ment. Briefly, it is interesting to mention that measuring the
growth index could provide an efficient way to discrimi-
nate between modified gravity models and DE models
which adhere to general relativity. Indeed it was theoreti-
cally shown that for DEmodels inside general relativity the
growth index � is well fitted by �GR � 6=11 (see [28,29]).
Notice, that in the case of the braneworld model of Dvali,
Gabadadze and Porrati [39] we have � � 11=16 (see also
[28]), while for the fðRÞ gravity models we have �ðzÞ �
0:41� 0:21z for �m ¼ 0:273 [40].

Recently, it has been proposed (see for example [41])
that an efficient avenue to constrain the � parameter is by
determining observationally the redshift-dependent linear
growth of perturbations. Other methods have also been
proposed in the literature, such as redshift space distortions
in the galaxy power spectrum, weak lensing and the growth
rate of massive galaxy clusters (see for example [42] and
references therein). Indeed, it has been shown [43] that a
good test to discriminate among ‘‘classical’’ DE models
and modified gravity models is to compare the expected

combination parameter of the growth rate of structure,
fðzÞ, and the redshift-dependent rms fluctuations of the
linear density field, �8ðzÞ, with that measured observatio-
nally (from large redshift surveys, like the WiggleZ; see
[38,44] and references therein).
Armed, with our bias evolution model it is straightfor-

ward to obtain theoretically a model-independent way of
expressing the parameter combination fðzÞ�8;trðzÞ. Since
the metric fluctuations do not significantly affect the evo-
lution of bias and thus the formation of large-scale struc-
tures at the scales of interest, we utilize: �kðz; kÞ � 0.
Therefore, using the solution of the bias evolution equa-
tions (1.3) and (2.22) we find that the growth history of the
Universe is given by

fðzÞ�8;trðzÞðMh; zÞ ¼ ��
mðzÞbðMh; zÞ�8;mðzÞ; (4.1)

where �8;mðzÞ ¼ �8;mð0ÞDðzÞ and bðMh; zÞ is given by

Eq. (3.8). Our proposed gravity test consists in comparing
the above expectation with observationally determined val-
ues of fðzÞ�8;trðzÞ, estimated by using existing or future

redshift catalogs of extragalactic mass tracers (large red
galaxies, optical or X-ray quasi stellar objects, clusters of
galaxies, etc.).Note, that suchdata are already available in the
literature for the case of bright emission-line galaxies [38].
Evidently, the essential cosmological parameters that

enter in the theoretical expectation of Eq. (4.1) are: �m,
wdeðzÞ, �8;mð0Þ and �. Note however that:
(i) there is only a weak dependence of � on wðzÞ, as has

been found in Linder and Cahn [28], which implies
that one can separate the background expansion his-
tory,EðzÞ ¼ HðzÞ=H0, constrained by a large body of
cosmological data (supernovae type Ia, baryon acous-
tic oscillation, cosmic microwave background), from
the fluctuation growth history, given by �, and

(ii) the value of �8;mð0Þ remains relatively constant

(�8;mð0Þ 2 ½0:77; 0:81�) for a range of dark energy

equations of state (�CDM, quintessence, Chevallier-
Polarski-Linder), as shown by a recent analysis of the
Sloan Digital Sky Survey luminous red galaxies [45].

In particular, the aim of our proposed method is to con-
strain, for a given expansion history, the value of �, and test
whether there are deviations from the GR expectations. In
order to visualize the redshift and � dependence of the
f�8;tr, we compare in Fig. 2 for different masses of dark

matter halos, three flat cosmological models, in which we
impose �m ¼ 0:273 and �8;mð0Þ ¼ 0:81. In particular, we

consider the following cases:
(a) the fðRÞ model with �ðzÞ ¼ 0:41� 0:21z (dashed

line),
(b) the concordance �CDM (� ¼ 0:55, solid line), and
(c) the Dvali-Gabadadze-Porratti (DGP) model with

� ¼ 0:68 (dot-dashed line).
The inset panels of Fig. 2 show the relative difference of

the fðRÞ or DGP model f�8 parameter combination with

FIG. 1 (color online). The scale-dependent bias z-evolution
(upper panel) at galaxy cluster scales, k ’ 0:05h Mpc�1 (open
symbols), while the scale-independent prediction is shown as the
solid line. In the lower panel we present the fractional difference
with respect to the scale-independent bias model. Note that we
use �m ¼ 0:273, wdeðzÞ ¼ �1, �8;mð0Þ ¼ 0:81 and � ¼ 0:55.
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respect to that of the �CDM. Interestingly, the fðRÞ mod-
els show the largest deviations ( 	 10%) at the lower
redshift end (z 
 0:5), while the DGP model shows large
deviations also at the higher redshift end. It should be
mentioned that qualitatively and quantitatively the relative
differences among the models are quite similar, indepen-
dently of the DM halo mass used, a fact which indicates
that any extragalactic mass tracer can be used with the
same efficiency to perform this cosmological test.

We will elaborate on the details of our proposed
method in a forthcoming paper, but it is important to
realize that the parameters (C2, b0) of our bias model
depend: (a) on the characteristic DM halo mass, within
which the mass tracer is embedded (see Appendix A), and
(b) on the values of �m and �8;mð0Þ (see for example,

[5]). In any case we expect that the variation of the bias
model (b0, C2) parameters, within a physically acceptable
range of �m, �8;mð0Þ values, should be quite small. For

example, the fact that b0½/ 1=�8;mð0Þ� with �8;mð0Þ 2
½0:77; 0:81� (as indicated in [45]) implies that b0 remains
mostly unaffected as far as its dependence on �8;mð0Þ is
concerned.

V. CONCLUSIONS

In the current work we provide a general bias evolution
model, based on linear perturbation theory, which takes
into account also metric fluctuations. We find that the
metric fluctuations do not affect the evolution of bias and
thus the formation of large-scale structures. We argue that
the evolution of the mass-tracer fluctuations, quantified by
their variance on some smoothed scale, can be used to test
the validity of general relativity on cosmological scales.
We would like to remind the reader that in Basilakos et al.
[6] paper we have derived the evolution of bias within the
context of scale-independent bias. The combination of the
latter and current works provides a complete investigation
of the linear bias evolution issue in cosmological studies.
We show in our current work that the use of the combina-
tion parameter of the growth rate of structure and the rms
fluctuations of the linear density field could provide an
efficient avenue to discriminate among ’’geometrical’’
(modified gravity) dark energy models and those that
adhere to general relativity.
It is however important to spell out clearly which are the

basic assumptions of our model, which are common also to
many other bias models in the literature: (a) Hubble scale
GR effects taken into account in the fluctuation growth
(b) the Newtonian gauge approach is employed (c) the
mass tracers and the underlying mass share the same
gravity field but different velocity fields, in contrast to
the bias model proposed by Tegmark and Peebles [15] in
which they proposed the they share the same velocity field.
(d) the biasing is linear on the scales of interest, and (e) that
each DM halo is populated by one extragalactic mass
tracer, which is an assumption that enters, at the present
development of our model, only in the comparison of our
model with observational bias data and not in the deriva-
tion of its functional form. Finally, we assume unimportant
halo merging effects which is quite accurate for z < 3.
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APPENDIX A: PARAMETRIZING THE BIAS
EVOLUTION MODEL USING N-BODY

SIMULATIONS

Our analytical solution Eq. (3.8) gives a family of dark
matter (DM) halo bias curves with two unknown parame-
ters (b0, C2), which depend on the halo mass as well as on
the cosmological background (see [19] and the Appendix
in [5]). One can determine the behavior of the linear bias
factor as a function redshift and halo mass, evaluating these
constants using, for example, N-body simulations. To this
end we use the results of the high resolution, collisionless,
WMAP7 �CDM simulation of [5]. Here we only present
the basic information regarding this N-body simulation.

The simulation is a random realization of the concord-
ance �CDM model [46] with a volume of a 500h�1 Mpc
cube and 5123 particles. The adopted cosmological pa-
rameters are: �m ¼ 0:273, �� ¼ 1��m, h ¼ 0:704
and �8 ¼ 0:81, while the particle mass is 7:07�
1010h�1M� comparable to the mass of a single galaxy.
The simulation was performed with an updated version of
the parallel TREE-SPH code GADGET2 [47].

Furthermore, the details of the method used to identify
the DM halos and estimate their bias, as a function of
redshift, with respect to the underlying mass distribution
have been presented elsewhere (e.g., [48] and references
therein). We only mention here that the DM halos are
defined using a Friends of Friends algorithm with a linking

length l ¼ 0:17hni�1=3, where hni is the mean particle
density and that the DM halo bias is estimated by measur-
ing the ratio of the variance of the DM halo fluctuations to
that of the underlying DM in spheres of 8h�1 Mpc radius,
while its uncertainty is based on the bootstrap resampling
technique.

For our present analysis we use 10 different redshift
snapshots of the N-body simulation, spanning the range:
0 
 z 
 5, while the DM halo catalogs are determined for
five different halo mass intervals (as in [48]).
In order therefore the estimate the constants b0 and C2

within the context of the specific cosmological model used,
we fit the DM halo bias results of the N-body simulation to
the corresponding theoretical bias formula (3.8) and find
accurate fitting formulas for both parameters. These are

b0ðMhÞ ¼ C�

�
1þ

�
Mh

1014h�1M�

�
�
�
; (A1)

with C� ¼ 0:857� 0:021 and � ¼ 0:55� 0:06. and

C2ðMhÞ ¼ C�

�
Mh

1014h�1M�

�
�
; (A2)

with C� ¼ 1:105� 0:018 and � ¼ 0:255� 0:005. In

Fig. 3 we show the simulation based values of the b0 and
C2 parameters as a function of DM halo mass together with
the best fitted functions, provided in Eqs. (A1) and (A2).
The cosmological dependence of these parameters is the

subject of work in progress.
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