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Galactic nuclei are densely populated by stellar mass compact objects such as black holes and neutron

stars. Bound, highly eccentric binaries form as a result of gravitational wave (GW) losses during close

flybys between these objects. We study the evolution of these systems using 2.5 and 3.5 order post-

Newtonian (PN) equations of motion. The GW signal consists of many thousand repeated bursts (RB) for

minutes to days (depending on the impact parameter and masses), followed by a powerful GW chirp and

an eccentric merger. We show that a significant signal-to-noise ratio accumulates already in the RB phase,

corresponding to a detection limit around 200–300 Mpc and 300–600 Mpc for advanced LIGO for an

average orientation black hole/neutron star or black hole/black hole binary, respectively. The theoretical

errors introduced by the inaccuracy of the PN templates are typically much less severe for the RB phase

than in the following eccentric merger. The GW signal in the RB phase is broadband; we show that

encounters involving intermediate mass black holes are detectable in multiple frequency bands coinci-

dentally using LIGO and LISA.
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I. INTRODUCTION

Close approaches between initially unbound compact
objects can form bound binary systems if the gravitational
wave (GW) emission, tidal dissipation, or interaction with
other objects taps enough of the initial kinetic energy
[1–3]. In particular, GW captures of black holes (BHs)
and neutron stars (NSs) occur many times per Hubble
time in dense stellar environments like galactic nuclei or
globular clusters. These pairs provide sources for direct
GW detection with Advaced LIGO or Virgo [1,2] and can
lead to short-hard gamma ray bursts [3–6].

The GW signals of these eccentric sources are very
different from standard quasicircular inspirals. According
to the leading order results [7], for a given semimajor axis
they are more luminous and are described by broadband
spectra, which makes them detectable to larger distances
and in a broader mass range. Kocsis, Gáspár, and Márka
(hereafter KGM) [1] investigated the detectability of the
GW burst emitted during a single passage, and found the
SNR to be substantial only for encounters with a very small
initial pericenter distance rp0 & 6M (where M is the total

mass in units G ¼ c ¼ 1), which occurs relatively rarely.
O’Leary, Kocsis, and Loeb (hereafter OKL) [2] included
the much stronger GW signal from subsequent passages
from bound systems following the first encounter, leading
to an eccentric inspiral. Remarkably, the expected detec-
tion rates of these sources for Advanced LIGO is compa-
rable to other types of waveforms, between 1 and 103 yr�1.
The large uncertainty is mostly due to the unknown num-
ber and mass distribution of BHs in galactic nuclei (see
Appendix C for further discussion).

As the binary evolves from the initial very eccentric
phase towards the less eccentric phase, the GW signal
initially consists of well-separated repeated bursts (RBs)
for minutes to days, and later transitions to a continuous
inspiral waveform, a short but powerful chirp (OKL). The
signal evolves from the RB to the chirp phase within the
frequency band of Advanced LIGO type instruments, mak-
ing these GW signals particularly rich in features and very
unique among other sources. These GW sources, if involv-
ing NSs, have electromagnetic counterparts, making them
interesting candidates for multimessenger astronomy [8,9].
Existing techniques are not well suited to dig these GW

signals out of the noise, in either the RB or the final chirp
phase. In the RB phase, individual GW bursts are relatively
weak compared to the instrumental noise, making burst
search algorithms insensitive to these sources. Neverthe-
less, since the time evolution of successive bursts can be
predicted theoretically, and there are hundreds to thou-
sands of well-separated bursts in the RB phase, it is in
principle possible to optimize detection algorithms to
coherently detect the full sequence of bursts. Regarding
the final chirp, existing matched filtering searches with
circular inspiral templates are also expected to be ineffec-
tive, as here the eccentricity is still considerable [10–12].
Post-Newtonian (PN) or effective one body body wave-
forms have not been developed to sufficient accuracy for
eccentric orbits of comparable-mass binaries with a small
pericenter distance [13,14]. Direct numerical experiments
are restricted to nonextreme eccentricities (e < 0:7) and
only a limited number of configurations have been tested
[15–18]. Without sufficiently accurate theoretical tem-
plates, matched filtering detection techniques will be prone
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to large theoretical errors [19]. These issues might be
expected to be less severe in the RB phase, where the
binary separation is relatively large, as long as the source
is not in the zoom-whirl regime [20–25].

In this paper, we focus on the detectability of the GWs
emitted in the RB phase. We examine the relativistic
corrections to the evolution of the GW capture binaries.
We numerically integrate the 2.5PN and 3.5PN equations
of motion of the binary, including the radiation-reaction
force. It is important to note that we do not include trajec-
tories that technically whirl (execute a full 2� or more
around periastron) since these orbits are by necessity in a
regime where the PN equations of motion are unreliable.
Numerical relativity is needed to examine additional
boosts to signal-to-noise ratio (SNR) due to whirls. We
calculate the GWs emitted and evaluate the numerical
fast fourier transform (FFT) to compare with the detection
threshold of GW instruments. We study how the SNR
accumulates in time during the evolution, and examine
whether these broadband waveforms can be detected co-
incidentally in separate frequency channels with different
GW instruments. (We find that they can.) We provide a
brief estimate of the event rates in the Appendix C.

We use units G ¼ c ¼ 1.

II. EVOLUTION OF ORBITS

We integrate the instananeous 2.5PN and 3.5PN equa-
tions of motion of Will and collaborators, including spin
corrections and dissipation due to gravitational radiation
emission [26–30]. Simultaneously to numerical integration
of the trajectories, we calculate the two GW polarizations.
Note that this is different from the approach used for
quasicircular orbits, where the orbit-averaged fluxes are
calculated to a much higher order: 3PN order beyond the
2.5PN leading order flux [13,31–33]. Direct integration of
the equations of motion allows greater flexibility when
working with very high eccentricities, where averaging
the GW flux over a Newtonian approximation to the orbital
geometry would be very inaccurate.1

We use the 2.5PN and 3.5PN approximations to inves-
tigate the relativistic corrections to the OKL study, and to
assess the calculational uncertainties. While the 3.5PN
approximation is more accurate than the 2.5PN approxi-
mation at large separations, the PN calculation breaks
down interior to rp & 10M in this calculation scheme, as

in this case when the 3.5PN correction dominates over the
2.5PN terms and leads to an artificial increase of the
eccentricity [36]. The PN approximation is not well be-
haved in this important regime. However, the binding
energy decreases monotonically until merger for the
2.5PN calculation. For the 3.5PN runs, we terminate the
simulation where the magnitude of the 3.5PN perturbation
terms first dominate over the lower-order terms. This is
usually in the final chirp phase. Predictions for the RB
phase are typically not affected by this truncation, as long
as the binary is not in the zoom-whirl regime.

A. Binary formation

There are three possible outcomes after the first close
encounter between two compact objects, depending on the
initial conditions: unbound quasihyperbolic trajectory,
capture into bound quasieccentric orbit, or direct collision.
Here we examine relativistic corrections to the capture
cross section.
The event rates of these waveforms are sensitive to the

critical impact parameter for capture into a bound orbit
bmax ¼ bmaxðm1; m2; wÞ. Here m1 and m2 are the compo-
nent masses, and w is the initial relative velocity at infinity.
To leading order, a bound (nonplunging) system forms if
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where M ¼ m1 þm2. Here the upper bound assumes
quadrupolar radiation emitted on a hyperbolic trajectory
[37,38], and the lower bound is valid in the test-particle
limit around a Schwarzschild BH (see KGM and OKL).
Figure 1 shows the boundaries for 2.5PN and 3.5PN

simulations for equal masses and for mass ratios m1=m2 ¼
0:1 and no spins. The green line shows that Eq. (1) used by
OKL for binary formation is in excellent agreement with
our numerical post-Newtonian calculation for these mass
ratios. This is also expected from analytical orbital-
averaged PN estimates for the typically nonrelativistic
initial velocities in galactic nuclei (w � 0:01).2 We are
unable to resolve orbits that cross interior to 10M, even if
they are not direct captures, as in this regime higher order
PN effects may be more significant [36]. In the following

1Our approach is also different from that used in Damour et al
[34] or Arun et al [35], which give the phasing of binaries to
3.5PN order by averaging the radiation reaction over an orbital
period and using this in a calculation of angular momentum flux.
Orbit-averaged fluxes are computed to higher orders than ex-
plicit equations of motion. As a result, variations in the signs of
radiation-reaction terms at different orders can be washed out
with orbital averaging. However, the limits of validity of the PN
expansion are still pressed at close radial separations, regardless
of the approach.

2The post-Newtonian correction to the right-hand side of Eq. (1)
was calculated by Junker and Schaefer [39]. Expanding their
Eq. (48) in a power series in w to first leading order gives
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�
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which yields deviations from the leading order term by less than
3% for equal masses � ¼ 1=4 and w � 0:01. The correction is
larger only for very unequal mass ratios, but such sources are not
expected to exist for terrestrial GW instruments, based on the
frequency limit of the instrument (implyingM & 100M�) and the
minimum mass of BHs and NSs (M * 1M�).
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we focus on orbits that are captured in bound eccentric
orbits.

Combining the above estimates for the impact parameter
with the expected number density of objects in the galactic
nucleus and their velocity distribution can be used to make
estimates on the likelihood of such encounters. This exer-
cise, summarized in Appendix C, yields that out of 104

compact objects in a single galactic nucleus, only a few
binaries form in a billion years. The corresponding instan-
taneous fraction of objects in the binary forming region
shown in Fig. 1 is extremely small on average. However, if
the detectable distance of these sources is sufficiently large,
the total rate from all observable galaxies may be quite high.

We conclude that relativistic corrections do not modify
the capture cross section over the 10% uncertainty in the
simple OKL estimate associated with the relative velocity

distribution. These relativistic corrections are negligible
compared to the theoretical uncertainties in the event rates
as discussed in Appendix C. The detection rates, however,
may be affected by relativistic corrections through varia-
tions in the detectable distance of the source, which we
investigate below.

B. Orbital evolution

Shortly after formation, the binary is very eccentric, the

orbits are nearly radial. Because of GW losses near peri-

center passage, the apastron ra decreases faster than the

pericenter distance, leading to a decrease in eccentricity.

The orbits exhibit large relativistic pericenter precession

(see Levin, McWilliams, and Contreras [36] for a gallery of

orbital trajectories).

FIG. 1 (color online). Possible outcomes of the encounters depending on the initial velocity and impact parameter: escape (gray),
capture into bound elliptic orbits (white), or direct collision (black). Lines show the analytical estimates based on Eq. (1). Top and
bottom panels are for mass ratio 1 and 0.1; left and right panels correspond to 2.5PN and 3.5PN calculations, respectively. The 3.5PN
calculations were terminated at radii where the derived perturbations are unphysical in the black region.
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We compare our PN simulations with the leading order
analytical formulas of Peters [37] in Figs. 2 and 3. In OKL,
it was demonstrated that for the latter, assuming an initially
parabolic orbit, eðrp=rp0Þ and eðt=t0Þ are universal func-

tions, independent of masses and the impact parameter.
These physical parameters affect only the time (here t is
measured from merger) and length scales ðt0; rp0Þ. The
evolution might be expected to be only slightly different
for initially hyperbolic orbits, as long as the velocity at
close approach is dominated by the gravitational binding
energy, not the initial kinetic energy. The value of the
relative velocity at infinity sets the maximum initial peri-
center distance for binary formation. We examine the
inaccuracies in the evolutionary curves due to relativistic
corrections.

Figures 2 and 3 plot the orbital evolution rpðt=t0Þ,
eðt=t0Þ, and eðrp=rp0Þ for 16 different initial ðb;wÞ drawn

from the white basin of Fig. 1 with w ¼ 10�3c. The lead-
ing order analytic results are shown as black curves, while
the different panels correspond to 2.5PN and 3.5PN calcu-
lations. The figures show that both the 2.5PN and 3.5PN
calculation asymptote to the leading order eccentricity
curve for large rp. For widely formed binaries, the devia-

tions become significantly interior to rp � 20M in the

2.5PN calculation, or interior to rp � 40M for the 3.5PN

calculation, while they are consistent to smaller separa-
tions if the initial rp0 is less. Part of the discrepancy

between the simulated and the black analytic curves in
Fig. 2 is that in the latter case time is measured from
merger, while in the former it is measured from the last
simulated orbit. This overall time shift is more prominent
closer to merger on a logarithmic scale. Interestingly, the
full 2.5PN calculation decreases the eccentricity steeper as
a function of pericenter distance than in the leading order
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FIG. 2 (color online). Evolution of rp and e as a function of time to merger, for mass ratio q ¼ 1, zero spin, using 2.5PN (left) and
3.5PN (right). The black lines are the analytic solutions of Peters [37]. Time is measured backwards from the innermost orbit of the
simulation. Circles denote the transition from the RB to the final chirp phase for m1 ¼ m2 ¼ 10M�.
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orbit-averaged approximation of OKL, while the 3.5PN
calculations is just the opposite, leading to a shallower
eccentricity decrease. This is consistent with the results
that radiation reaction is overestimated at 2.5PN order
and this overestimate is tempered at 3.5PN order [36].
These two approximations brackets were used in OKL.
For higher w, corresponding to the innermost regions of
galactic nuclei, the highest initial rp values in the figures

(dark blue curves) would not form binaries: rp0;max �
ð93; 50; 25Þ for w ¼ ð0:001; 0:003; 0:01Þc, respectively
[see Eq. (18) in OKL], but other curves with smaller rp0
remain similar for different w.

Circles in Figs. 2 and 3 mark the approximate boundary
between the RB phase and the final chirp, where the time
duration between individual GW bursts (i.e. the orbital
time) �t satisfies �t * 5=fmin, where fmin is the minimum
frequency for a given detector. For Advanced LIGO,
fmin � 10 Hz, so we require �t * 0:5 s in the RB phase.
Note, that from Kepler’s law, this amounts to an approxi-

mate constraint on the semimajor axis, a ¼ rp=ð1� eÞ *
87M�2=3

20 M, where M is the total binary mass, and M20 ¼
M=20M�.

Alternatively, we will also examine the signal to be in
the RB phase if the GW signal is comprised of short
duration bursts and longer silent periods, requiring that
the silent periods are at least a given factor (e.g. 2 or 4)
larger than the burst duration. This later definition is
equivalent to setting the eccentricity to be larger than
some emin in the RB phase (e.g. emin ¼ 0:45 or 0.6),
independent of the semimajor axis. In this case the end
of the RB phase is a horizontal line in Fig. 3.

Simulations with different mass ratios and spins
lead to similar curves as those in Fig. 3. The 2.5PN
and 3.5PN simulations with mass ratio q ¼ 0:1 track

the analytical leading order curves for rpðeÞ to some-

what smaller pericenter distances [down to rp ¼
ð6; 7; 10; 15ÞM for rp0 ¼ ð8; 10; 20; 40Þ, respectively].

The orbit evolves to much smaller eccentricites before
plunging. We have also run calculations with extremal
spins in aligned, antialigned, and perpendicular configu-
rations with respect to the orbital angular momentum.
The result is qualitatively very similar to the nonspin-
ning case. In the aligned configuration, the time evolu-
tion of the eccentricity tracks the Newtonian result
much more closely than in the nonspinning case, while
the spin-orbit precession adds a slow periodic modula-
tion to the evolution if the spins are initially perpendic-
ularly oriented.
The 3.5PN approximation leads to an apparent eccen-

tricity increase at rp � 10M if e & 0:15. This feature is

close to the point at which we truncate the simulation due
to the breakdown of the approximation, so we take it with
a grain of salt [36]. Essentially we are seeing the apastron
ra decrease more slowly than periastron rp leading to an

increase in e ¼ ðra � rpÞ=ðra þ rpÞ. For a dissipating

orbit, eccentricity is not a precisely defined quantity, but
the GW signal does show qualitative measures of this e,
such as a broadband character, noticeable for e * 0:1. In
the extreme mass ratio case, eccentricity increase is
known to occur only for marginally plunging orbits
with rp0 � 4 [23]. The 2.5PN and 3.5PN calculations

agree until the end of the RB phase marked by circles
in Figs. 2 and 3. The calculations are roughly consistent
for the highly eccentric orbits e * 0:6, except for small
rp0 & 15M, which represent zoom-whirl orbits. In gen-

eral, the true orbits are expected to whirl at small sepa-
rations and exhibit larger precession than in the PN
calculations.

10 100
0.01

0.1

1

r
p

 e

10 100
0.01

0.1

1

r
p

 e

FIG. 3 (color online). Evolution of eccentricity as a function of pericenter distance, for mass ratio q ¼ 1, zero spin, using 2.5PN
(left) and 3.5PN (right). The black lines are the analytic solutions of Peters [37].
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III. GRAVITATIONALWAVES
AND THEIR DETECTION

We obtain the emitted GWs during the orbital evolution
as a function of time. In practice, we calculate the instan-
taneous hþðtÞ and h�ðtÞ polarizations of the strain
amplitude in the direction of the orbital axis from the
instantaneous phase space elements (for details, see
[36]). For each mass ratio, we can use a single simulation
to describe sources with arbitrary total masses and source
distances, by scaling the amplitude and time proportionally
withMz=dL andMz, respectively, whereMz ¼ ð1þ zÞM is
the cosmological redshifted total mass and dL is the lumi-
nosity distance.

Given hþðtÞ and h�ðtÞ, the instrument measures a
combination

hðtÞ ¼ FþhþðtÞ þ F�h�ðtÞ; (3)

where Fþ and F� are the antenna beam pattern coeffi-
cients, which depend on the orientation of the detector with
respect to the binary (see Eq. (104) in Ref. [40]), and
satisfy 0 � jFþ;�j � 1, where Fþ ¼ 1 if F� ¼ 0 (and

vice versa), and on average hF2þ;�i ¼ 1=5. We discuss

how we make inferences for an average binary orientation
from a waveform corresponding to the optimal orientation
in Appendix A.

The simulations confirm the qualitative waveform
features presented in OKL. During the first part of the
evolution, when the eccentricity is very large, the binary
emits repeated GW bursts (RB) during successive close
approaches. The relative amplitude of the two polariza-
tions are modulated by gamma ray (GR) precession. The
time separation between successive bursts decreases rap-
idly on a logarithmic scale, as the eccentricity decreases.
The time duration of individual bursts changes much
more slowly. Eventually, as the eccentricity becomes
small, the RB phase evolves toward a continuous chirp
signal.

In order to assess the detectability of the waveforms, we
calculate the numerical FFT of the waveform for both

polarizations, ~hþ;�ðfÞ, and compare it to the sensitivity

level of GW instruments. This is more accurate than the
OKL estimate, as that relied on the stationary phase ap-
proximation to estimate the Fourier amplitude of each
harmonic.

The SNR is given by

�
S

N

�
2 ¼ 4

Z fmax

fmin

~h2ðfÞ
SnðfÞdf ¼

Z fmax

fmin

�
2f~hðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
�
2 df

f
; (4)

where SnðfÞ is the one sided spectral noise density and ~hðfÞ
is the sky position, binary orientation, and polarization
averaged GW signal spectral amplitude (see Appendix A).

Equation (4) shows that 2f~h and
ffiffiffiffiffiffiffiffi
fSn

p
correspond to the

angular-averaged spectral signal amplitude and rms noise
amplitude per logarithmic frequency bin, whose ratio gives

the SNR per logarithmic frequency bin. In the following
we compare these dimensionless quantities when discus-
sing the detectability of the signal.

A. Circular orbits

We first examine the convergence of 2.5PN and 3.5PN
calculations for circular initial conditions. Figure 4 shows
the GW spectra in this case, upper and lower curves
correspond to BH/BH and BH/NS binaries. The dotted
lines show the analytical spectra for 2.5PN orbital-
averaged flux calculation for circular orbits with the sta-
tionary phase approximation, see Eq. (A3) in Appendix A
below. Both the 2.5PN and 3.5PN calculations asymptote
the orbit-averaged flux spectra for large separations or
small frequencies, but at higher frequencies, they lead to
systematically lower and higher GW spectral amplitudes,
respectively. Interestingly, the orbit-averaged flux result is
well off our 2.5PN spectral amplitude at f & 50 Hz (i.e.
r & 20M for BH/NS binaries), but it is very close to our
3.5PN calculation. The very strong final peak and the final
upper harmonics are artifacts of the 3.5PN calculation, as
the orbital evolution slows down there around 10M, where

fcut ¼ 10�3=2��1M�1 ¼ 100 Hz� ðM=20M�Þ�1 and the
eccentricity increases in the calculation (see Fig. 3). A
similar spectral increase was identified by Buonanno
et al. [41] using a different approach, where the GW flux
was calculated to 1PN beyond leading order, correspond-
ing to 3.5PN in our calculation, but it is not present using
higher order corrections to the flux. Such higher order
orbital-averaged flux calculations are consistent with nu-
merical simulations for quasicircular inspirals [13,31–33].
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FIG. 4 (color online). Characteristic spectral amplitude for
circular orbit (zero spin) initial conditions r0 ¼ 80M, for
2.5PN (blue) and 3.5PN (green) and masses m1 ¼ m2 ¼ 10M�
(top curves) and m1 ¼ 0:1m2 ¼ 1:4M� (bottom curves). Dotted
lines show the analytical stationary phase approximation using
the 2.5PN orbit-averaged flux of Poisson and Will [57].
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In the following we present both the 2.5PN and 3.5PN
calculation results for eccentric orbits to gauge the error
of our calculations in the RB phase.

B. Time evolution of the GW spectra

Figures 5 and 6 show the angle-averaged GW spectral
amplitude, for different initial pericenter distances rp0 ¼
ð17; 33; 55ÞM, using (2.5, 3.5)PN orders and mass ratios
q ¼ ð1; 0:1Þ. The colored curves represent separate min-
ute and hour segments as marked, while the top green
curve shows the total root-sum-squared spectra of the full
waveform. The dotted line shows the spectral amplitude
for circular inspirals for reference [see Eq. (A3)]. The
signal is in the Advanced LIGO band and well above the
sensitivity level for minutes to hours. Initially, in the RB
phase, the waveforms are broadband within a short dura-
tion followed by long silent periods. Although the orbital
frequency forb is well outside the LIGO band here,3

the characteristic frequency of the bursts are the inverse

time scale of pericenter passage, fp ¼ forbð1þ eÞ1=2=
ð1� eÞ3=2 � forb. Remarkably, the signal transitions

from the RB phase to a chirp signal in the detector
band, as the eccentricity quickly decreases in time.
Next, we split the GW signals into approximately 1 s

segments (see Appendix B for details) and calculate the
angular-averaged SNR for Advanced LIGO in each seg-
ment. Figure 7 shows how the SNR accumulates when
measuring the signal from the first passage to a time
tmg before merger for binaries at 100 Mpc. Different

curves correspond to binaries with different pericenter
distances at first passage rp0 as labeled (same as in

Figs. 2 and 3). Different panels correspond to different
binary masses and PN order (see figure caption).
Initially, in the RB phase of the binary evolution, the
SNR accumulates in discrete bursts. Although hard to
see on the logarithmic scale, the strength of successive
bursts is nearly equal. Individual bursts are detectable
separately at high significance only if the first passage
is sufficiently close (rp0 < 15 for a sky-averaged S=N >

5 for m1 ¼ m2 ¼ 10M� at 100 Mpc). The trends and
order of magnitudes are broadly consistent with KGM.
The end point of the RB phase is marked with big
circles, where the GW signal becomes continuous, start-
ing the final chirp.
The figure shows that the total SNR of the RB phase can

be a substantial fraction of the total SNR. This prediction is
robust in both 2.5PN and 3.5PN calculations. Therefore we
conclude that a coherent search for the train of bursts has a
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FIG. 5 (color online). Characteristic spectral amplitude for GW capture orbits for 2.5PN (panels in row 1) and 3.5PN (row 2)
calculations, and masses m1 ¼ m2 ¼ 10M� for rp0 ¼ ð17; 33; 55ÞM (left, middle, right, respectively) for a binary at 100 Mpc with an

average orientation and zero spin. Top green curves correspond to the full waveform, others show the contribution of 1 min (left and
middle) and 1 h segments (right), respectively. Thick red line is the Advanced LIGO sensitivity.

3In fact, depending on mass, fp and forb can be in the LIGO
and LISA band coincidentally in the RB phase; see Sec. III E
below.
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potential for detection even if the SNR of individual bursts
is small..4

C. Total signal-to-noise ratio

Up to this point we restricted to a single choice of
masses for BH/BH and BH/NS mergers. Now we extend
the analysis to all possible total masses observable to LIGO
between 2M� to 1000M�.

The contours in Figs. 8 and 9 show the angular-averaged
SNR for Advanced LIGO in the RB phase for sources at
100 Mpc, as a function of rp0 and M, for mass ratio q ¼ 1

and 0.1 (top and bottom), for 2.5PN and 3.5PN calculations
(left and right). In Figs. 8 and 9, we select the segment of
the signal where e * 0:6 and e * 0:45, respectively, and
evaluate the corresponding numerical FFT and SNR for
Advanced LIGO. Note that the pericenter passage time
scales in these cases are at least 5 times and 3 times shorter
than the orbital time scale, so the GW signal consists of
well-separated RBs between silent periods.5 The SNR
results for the 2.5PN and 3.5PN calculations in the RB

phase are consistent to within 30%. The 3.5PN curves
cannot resolve the SNR when rp0 & 10 for reasons already

mentioned (namely, the poorly behaved approximation). We
expect the SNR to be significantly larger for zoom-whirl
orbits with rp0 & 10M relative to our calculations (KGL).

As shown by Fig. 4, the 2.5PN calculation systematically
underpredicts the SNR at all frequencies by a factor �1–2
for circular orbits at frequencies f & 0:3fISCO, while it may
be even more uncertain at higher frequencies closer to the
innermost stable circular orbit (ISCO).
Comparing Fig. 8 to Fig. 11 of OKL, we see that a

considerable fraction of the total SNR is in the RB phase,
for masses less than�20M� þ 20M� and initial pericenter
distances rp0 & 40, making the RB signals typically de-

tectable to several 100 Mpc with high significance. Our
highest SNR results in the RB phase are typically a factor
2–3 lower than OKL’s for the full waveforms. While OKL
claimed that intermediate mass BHs with m1 ¼ m2 ¼
400M� are detectable to 1 Gpc with SNR ¼ 5 with
Advanced LIGO for rp0 � 6M, our 2.5PN and 3.5PN cal-

culations cannot accurately model orbits in this range to
either confirm or rule out such claims.

D. Precession effects

Figures 5–7 assume orientation and polarization aver-
aged waveforms for zero spin. In reality, however, each
GW detector will be sensitive to a single linear combina-
tion of the þ and � polarizations. The measured GW
signals are strongly modulated by the 1PN GR precession
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FIG. 6 (color online). Same as Fig. 5 but for m1 ¼ 0:1m2 ¼ 1:4M� resembling BH/NS encounters.

4Note that this implies that the RB phase does not show up
clearly on time-frequency plots of the SNR, since the signal
power is small during each passage. Such time-frequency plots
are more useful for individual burst searches or for the final
chirp, when the total signal duration is not very large, and the
SNR per unit time is substantial.

5Note however, that the time duration between individual
bursts may be smaller than 0.5 s in this case, so the circles in
2, 3, and 7 do not coincide with e ¼ 0:6 or e ¼ 0:45, see Fig. 3.
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of the eccentric orbit within the orbital plane. Further, if the
objects are spinning with general nonaligned spin orienta-
tions, spin-orbit precession further modulates the signal
waveform at 1.5PN order [42]. In the leading order flux
averaged approximations, the precession periods are, re-
spectively,

t� ¼ 2�

3

r5=2p

M3=2

1þ e

ð1� eÞ3=2

¼ 1:0 s
M

20M�

�
rp
30M

�
5=2 1þ e

ð1� eÞ3=2 ;

t� ¼ �
r3p

M2

�
1þ e

1� e

�
3=2 ¼ 8:4 s

M

20M�

�
rp
30M

�
3
�
1þ e

1� e

�
3=2

:

(5)

In contrast, the total signal duration after the first flyby is
approximately [see Eqs. (13) and (27) in OKL]

tmg ¼ Mffiffiffiffiffiffiffi
4�

p
�

3

85�

�
3=2

�
2rp0
M

�
21=4

¼ 0:89 hrð4�Þ�3=2 M

20M�

�
rp0
30M

�
21=4

: (6)

The Earth spin also modulates the measured waveform,
which could be significant for waveforms lasting sev-

eral hours, i.e. if rp0 * 30M� ðM=20M�Þ�4=21ð4�Þ2=7.
Clearly, the evolution time in the RB phase is almost
always much larger than the precession time scales t�
and t� (see Fig. 7). Accounting for these effects is going
to be crucial for detection algorithms.
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FIG. 7 (color online). Angular-averaged cumulative SNR for Advanced LIGO from the first passage as a function of time to merger
for 2.5PN (left) and 3.5PN (right) calculations and binary masses m1 ¼ m2 ¼ 10M� (top) and m1 ¼ 0:1m2 ¼ 1:4M� (bottom).
Different curves correspond to different initial pericenter distances as labeled, same as in Figs. 2 and 3. Far from the merger, the binary
is in the RB phase, and the SNR accumulates during close approaches. Circles resemble the transition from the RB to a continuous
chirp signal, where the orbital time is 0.5 s. All panels assume a source at 100 Mpc, and average binary orientation.
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E. Coincident multiwavelength observations

An interesting unique characteristic of these GW signals
is that they are broadband, and can be detected with
multiple GW detectors coincidentally in different fre-
quency bands. Figure 10 shows the GW spectra for an
optimally oriented (i.e. face-on) binary for total masses
200M� & M & 720M� [(intermediate mass black holes
(IMBH)] and 7� 107M� & M & 3� 108M� [(supermas-
sive black holes (SMBH)] with different impact parameters
at 100 Mpc. For SMBHs, the maximum observation time is
limited to the final 10 years before coalescence. The figure
shows that the spectral range of the signal spans the fre-
quency range of multiple instruments for these masses for a
wide range of initial rp0. Ultimately, the frequency range of

the Einstein Telescope is most ideal to detect these coin-
cident LIGO/LISA sources with IMBHs. Going to even
higher masses and lower frequencies, we find that para-

bolic GW captures of SMBHs are detectable with future
pulsar timing arrays (PTAs) such as the Square Kilometer
Array (SKA) and LISA, coincidentally.
The event rates of such IMBH or SMBH encounters

within a few tens of Mpc is currently unknown.

Portegies-Zwart et al. [43] predict that the galactic centers

hosts 50 IMBHs, which could undergo GW capture events.

GWobservations of these events could prove the existence

of such a population. Regarding SMBHs, they are much

more luminous and easier to identify using electromagnetic

observation. There is an ongoing effort to search for SMBH

binaries using electromagnetic observations. 3C 66B, a

nearby radio galaxy at 80 Mpc, was interpreted as an

SMBH binary with a total mass 5:4� 1010M� [44].

However, Jenet et al. [45] have shown that the GWs would

be detectable with PTAs but are not observed, ruling out

the SMBH binary interpretation for this particular source.
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FIG. 8 (color online). SNR for Advanced LIGO in the RB phase when e * 0:6, as a function of the pericenter distance of the first
approach rp0 and binary mass for mass ratio q ¼ 1 (left) and 0.1 (right), in the 2.5PN (top) and 3.5PN calculation (bottom). The source

distance is 100 Mpc. For other distances the SNR is reduced proportionally.
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Based on our SNR estimates, we conclude that PTAs could

search for RB sources at similar distances.
The prospects for multiwavelength observations may be

somewhat better in reality than shown in Fig. 10. Our
calculations are artificially truncated at relatively small
frequencies f < 0:4fISCO due to the inaccuracy of the
simulations at small separations r & 10M. The complete
signal, including the final chirp and the following ring-
down, extends to higher frequencies than shown in Fig. 10,
and extending into the LIGO and LISA bands for IMBH
and SMBH binaries, respectively. As the inspiral and ring-
down phases are both detectable, these sources constitute a
new class of ‘‘golden binaries,’’ and may be useful to probe
strong field gravity [46]

IV. DISCUSSION

We have examined the evolution and GW spectra of
eccentric binaries formed by GW emission using the
2.5PN and 3.5PN equations of motion of Will and collab-

orators [26–30,36]. The capture cross section, evolutionary
tracks, and the GW spectra are in remarkable agreement
with the simple analytic estimates of OKL. The 2.5PN and
3.5PN results bracket those in OKL.
After the formation of the binary, the GW signal is

described by a long repeated burst phase lasting minutes
to days, followed by a continuous powerful chirp. The
signal evolves from the RB to the chirp phase within the
frequency band of Advanced LIGO type instruments.
The maximum distance of detection for waveforms in
the RB phase is around 300–600 Mpc for Advanced
LIGO for an average orientation BH/BH binary with
SNR� 5–10 for 10M & rp0 & 25M and 20M� & M &

100M� (see Figs. 8 and 9). We find that the total SNR is
substantial already in the RB phase when the eccentric-
ity and separation are relatively large. Numerical rela-
tivity may best resolve the prospects for detecting the
GW signal in the final powerful chirp phase, or signals
with smaller impact parameters leading to zoom-whirl
orbits.
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FIG. 9 (color online). Same as Fig. 8 but for e * 0:45, corresponding to fp=forb & 1=3.
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We found that relativistic corrections do not greatly
modify the event rate estimates of these waveforms.
OKL have shown that the Advanced LIGO detection rates
for these sources may be around 1–3000 yr�1, depending
on the number of stellar mass BHs with masses between
10 and 40M� in galactic nuclei. The event rates for IMBH
encounters and encounters involving a BH and NS may be
equally numerous. Discarding the final powerful chirp, and
assuming conservatively that sources are detectable in the
RB phase to 1=3 of the distance of the full signal, the event
rates for these sources may be reduced by a factor 27, to
give a total detection rate RRB � 0:03–100 yr�1. The
event rates in reality may be much higher than these
estimates that in OKL were based on an isotropic density
distribution of compact objects in galactic nuclei.
However, heavier objects segregate into very anisotropic
configurations efficiently through vector resonant relaxa-
tion [47]. Indeed, the observed distribution of massive
stars in the Galactic center is anisotropic, comprising
two disks with a thickness of 10	 [48]. This thickness is
consistent with the prediction of mass segregation for
objects with these masses in statistical equilibrium with
lighter 1M� stars. It is plausible to expect a similar aniso-
tropic distribution of BHs in galactic nuclei. Since the
event rates are proportional to the squared density of
compact objects, one might expect that the true event rates
are larger by up to a factor 100 than in OKL, making these
sources much more numerous than other LIGO-VIRGO
sources [49,50].

We have shown that encounters between IMBHs may be
detected with Advanced LIGO and LISA coincidentally if
the source is within 50 Mpc. Similarly for SMBHs, coin-

cident detections may be possible with LISA and future
pulsar timing arrays such as the SKA.
We have also estimated the SNR for detecting the GWs

from BH/NS encounters and found that a detection with
SNR ¼ 10 may be possible to 300 Mpc. These encounters
may lead to tidal disruption events and may exhibit lumi-
nous coincident electromagnetic variations [3]. Indeed,
shorthard gamma ray bursts are modeled as the merger of
two NSs or a NS into a stellar mass BH, following a
circular inspiral. It is plausible to expect that GW captures
leading to eccentric coalescences also result in similar
phenomena. An important difference for very eccentric
orbits is that the pericenter separation may be smaller
than the ISCO for circular orbits [5]. This may lead to tidal
stripping, partial disruption, or the shattering of the NS
crust during close approaches [4,6]. As the mass of the NS
is reduced, its radial size increases, so that tidal stripping
becomes more efficient for successive close approaches.
GRBs with observed precursors [51] might correspond to
these eccentric events. Thus, this process has a potential to
generate electromagnetic bursts tracking the GW signal.
The LIGO data near GRBs could be searched for these
particular GW signals. If such counterparts are success-
fully identified, such processes could be used as standard
sirens to constrain the cosmological model [52,53] and the
mass of the graviton in alternative theories of gravity [54].
Our 2.5PN and 3.5PN calculations demonstrate the slow

convergence of the PN expansion for these encounters in
the final inspiral phase. More accurate calculations would
be necessary to make more accurate predictions on the
detectabiltiy of these signals. Indeed, the waveform mod-
eling precision may be an important limiting factor for
concrete detection techniques and parameter measurement
accuracy. The theoretical errors due to the imperfect mod-
eling of these signals may be dramatic for sources with
small initial pericenter distances or during the later parts of
the signals approaching merger [19]. However, we have
shown that the initial RB phase of the GW signal carries a
considerable total SNR. While the theoretical modeling of
the GW signal in this phase may be more accurate, their
detections requires searching for a train of GW bursts over
long time scales that have individually a small amplitude.
The standard LIGO-Virgo detection pipeline is not sensi-
tive to these signals. A long duration transient search with a
network of instruments might be a more promising avenue
for detection [55]. However, as the expected waveforms are
well described in the RB phase, optimized data analysis
techniques could be developed for their targeted detection.
Future studies should investigate how accurately a net-

work of detectors can measure the physical parameters of
these sources. These are the component masses, binary
distance from the Earth, binary orientation, sky location,
time and phase at merger, initial pericenter distance (or
equivalently, the impact parameter), and the initial velocity
before the first encounter. The later two parameters ðrp0; wÞ
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FIG. 10 (color online). GW spectra for supermassive and
intermediate mass BH binaries. The signal is marginally in range
for coincident multiwavelength GW detections with LIGO,
LISA, and SKA. Different overlapping curves represent different
impact parameters corresponding to Figs. 3 and 2. The maximum
observation time is limited to 10 yr.
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affect the eccentricity evolution, which is non-negligible
when the signal is in the detector’s frequency band.
Measuring the eccentricity evolution yields rp0 and is

mostly insensitive to w. The later might be hard to detect
directly, unless the GW signals from the first few passages
can be resolved. However, since binary capture implies a
maximum rp0 for a fixed w, an estimate of rp0 puts an

upper bound on w. This may already be sufficient to
distinguish between sources in galactic nuclei where typi-
cally v * 1000 km=s from those in globular clusters
where v & 60 km=s (OKL). Regarding sky localization,
the modulation related to GR and spin precession or the
rotation of Earth can be a substantial help, as the GW
signal amplitude changes significantly due to these effects
during these long duration signals. We expect this to
greatly improve the measurement accuracy for these ec-
centric sources beyond the 10 deg2 accuracy of regular
circular inspirals [56].
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APPENDIX A: ANGULAR AVERAGEWAVEFORMS

We calculate the numerical waveforms in a direction
along the orbital axis of the binary and use it for a proxy for
general inclinations. In particular, in the circular orbit-
averaged case, the radiation is dominated by the ð‘;mÞ ¼
ð2; 2Þ spin-2 weighted spherical harmonic, so that hþðtÞ ¼
ð1þ cos2�ÞA sinð2�ftÞ and h�ðtÞ ¼ ð2 cos�ÞA cosð2�ftÞ
as a function of the inclination angle relative to the line
of sight. Here A gives the amplitude scale, which in the
optimal orientation cos� ¼ 1 satisfies 8A2 
 ðh2þ þ h2�Þopt.
Averaging over an isotropic distribution, 2hh2þi ¼
ð28=15ÞA2 and 2hh2�i ¼ ð4=3ÞA2, so that hh2þ þ h2�i ¼
ð2=5Þðh2þ þ h2�Þopt, the GW power in the optimal orienta-

tion is 2.5 times larger than the average GW power. We find
that these identities are satisfied to within 1% accuracy in
the Peters-Matthews leading order orbit-averaged flux cal-
culation for arbitrary eccentricity. We will use them to
change from the calculation evaluated at the optimal ori-
entation to estimate the GW signal in the ‘‘average’’ case.

The angular-average waveform amplitude is then

~h 2ðfÞ ¼ hF2þ ~h2þðfÞ þ F2� ~h2�ðfÞi ¼ 2
25½~h2þðfÞ þ ~h2�ðfÞ�opt;

(A1)

where we have used hF2þi ¼ hF2�i ¼ 1=5 for the beam
patterns and a factor 2=5 for the inclination-averaged

GW amplitude. While in general, hF2þ ~h2þi � hF2þihh2þi,,
the error introduced by this approximation is only 6% in
the circular case, so we shall use Eq. (A1) as an
approximation.
Note that the signal measured by a single detector in the

optimal orientation with Fþ ¼ 1 and F� ¼ 0 is larger than
~hðfÞ by

~hþ;optðfÞ ¼ 5

2

1ffiffiffi
2

p � ~hðfÞ ¼ 1:8~hðfÞ: (A2)

In the stationary phase approximation, the angular-
averaged spectral amplitude is

~hðfÞ ¼ 4

5

�
5

96

�
1=2

��2=3 M
5=6�1=2

D
f�7=6; (A3)

assuming circular orbits, leading PN order orbit-averaged
flux, and no spins [57]. Here, the 4=5 factor is the rms of
the polarization amplitude Ap ¼ ð1þ cos2�ÞFþ �
2i cos�F� for random orientations. A similar approximate
formula is available for eccentric orbits summing over the
contributions of orbital harmonics (OKL).

APPENDIX B: SUBTLETIES WITH
NUMERICAL FFT

There are some numerical subtleties we have to consider
when calculating the FFT of a very long data stream, of
length T, spanning several months in some cases with
several kHz sampling frequency. To save computation
time, we split the waveform into segments of size �T
side effects: (i) the spectrum becomes inaccessible at f <
2=�T, (ii) the frequency resolution will be discrete with a
fundamental frequency 1=�T, and (iii) it can introduce
artificial features and numerical errors if the signal and its
derivatives do not vanish at the boundaries. To minimize
these errors but optimize the computation time, we apply
the following procedure:
(1) Keep the segment size as large as possible. In prac-

tice �Ti � �T 
 2� 104 s ðM=20M�Þ typically
for the ith segment, except for Fig. 7, where �Ti �
�T 
 1 s.

(2) Choose split points measuring them from the end of
the time series (i.e. near merger), so that the last split
interval is at least size �T.

(3) Adjust the split points between intervals to the
nearest local minima of h2þðtÞ þ h2�ðtÞ.

(4) Apply a gradual fade in and fade out near the edge of
the waveform over a time scale tfade � 500M.
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(5) Resample the hþðtÞ and h�ðtÞ time series with uni-
form time steps. This is necessary since the simula-
tions use adaptive time steps.

(6) If the orbital time torb is larger than �T, then trun-
cate the data stream to the pericenter passage,
centering the split window of duration T there.

(7) Append the data stream with hþðtÞ ¼ h�ðtÞ ¼ 0, if
the total signal duration T is smaller than �T.

(8) Calculate the FFT of the resulting time series, cor-
responding to hþðtÞ and h�ðtÞ, for each time
segment.

APPENDIX C: EVENT RATES

Here we provide a simple estimate of the event rates of
these sources in galactic nuclei and highlight the main
sources of uncertainty. For a more detailed treatment see
O’Leary et al. [2].

The mean number density of objects with mass m� in a
dynamically relaxed galactic nucleus around a supermas-
sive black hole of mass M� is

hn�ðrÞi ¼ 3� ��
4�

2��M�
m�

r�3
i

�
r

ri

����
; (C1)

where the total mass of stars within the radius of influence,
ri, is 2M�, the total mass fraction in m� is ��, and

ri ¼ GM�
�2

¼ GM0

�2
0

�
M�
M0

�
1�ð2=kÞ

; (C2)

where we have used M� ¼ M0ð�=�0Þk according to
the M� � � relation, in which �0 ¼ 200 km=s, M0 ¼
1:3� 108M�, and k ¼ 4 [58,59]. We extrapolate this
density profile inwards until a radius that encloses only 1
BH,

r�min ¼ r�1 ¼ N�1=ð3���Þ� ri; (C3)

where N� ¼ 2��M�=m� is the number of BHs within ri.
The maximum impact parameter, bmax, for a GW cap-

ture for given relative velocity w is from Eq. (17) of
O’Leary et al. [2]

bmax ¼ G

c2

�
340�

3

�
1=7 �1=7

w9=7
m�tot; (C4)

where � is the symmetric mass ratio and m�tot is the total
binary mass. We will take equal mass binaries for which
� ¼ 1=4 andm�tot ¼ 2m�. In the following we assume for
simplicity that the relative velocity is the circular velocity

at radius r from the SMBH, w ¼ vðrÞ ¼ ðM�=rÞ1=2.
The scattering cross section is �cs ¼ �b2max. The binary

capture rate in a spherical shell of thickness dr=r is

d

d lnr
� ¼ ð4�r3Þn2��csv

¼ �0�
2�
�
M�
M0

�
31=ð7kÞ�1

�
r

ri

�ð53=14Þ�2��
:

(C5)

In the second equation we have plugged in Eqs. (C2)–(C4),
and

�0 ¼ 4

�
340��

3

�
2=7ð3� ��Þ2

�
�0

c

�
31=7 c3

GM0

�

¼ 6:13� 10�9 yr�1 � ð3� ��Þ2�;
(C6)

where � ¼ n2�ðriÞ=hn�ðriÞi2. From Eq. (C5) it is clear that
for fixed r=ri, the rates are independent ofm�, if their total
mass fraction in the cluster, ��, is fixed. This follows from
the fact that d�=d lnr / n2�b2max where hn�i2 / m�2� and
b2max / m2�, see Eqs. (C1) and (C4).
Integrate d�=dr between r�min � ri to get the total rate

in one galaxy, using Eq. (C3),

�1GN¼�0
0�

2�
�
M�
M0

�
31=ð7kÞ�1

��
r�min

ri

�ð53=14Þ�2�� �1

�

��00
0�

31=14ð3���Þ�
�
M�
M0

�ð31=7kÞ�1
�
2M�
m�

�
2���ð53=14Þ=3���

;

(C7)

where �0
0 ¼ ½2�� � 53=14��1�0 and

�00
0 ¼ 4

�
340��

3

�
2=7 ð3� ��Þ2

2�� � ð53=14Þ
�
�0

c

�
31=7 c3

GM0

�:

(C8)

Let us introduce normalized parameters with numbers
representative of a Milky Way sized galaxy, ��� ¼
�=0:025, M� ¼ M4e6 � 4� 106M�, m� ¼ m�1 � 10M�,
r�min ¼ ri=N�,

�1GN � 3:0� 10�9 yr�1�30 ��
31=14� m�3=14

�1 M9=28
4e6 ; (C9)

where � ¼ 30�30, and we assumed �� ¼ 2. The rate per
Milky Way galaxy ( ��� ¼ M4e6 ¼ m�1 ¼ 1) is around 3�
10�9�30 yr�1.
The total rate is the sum of the rates of individual

galaxies within a detectable distance, dmax,

� ¼ 4�

3
d3maxngal�1GN

¼ 4:5 yr�1�30 ��
31=14� m�3=14

�1 M9=28
4e6 ngal;5d

3
max;2;

(C10)

where dmax2 ¼ dmax;2 � 2 Gpc and ngal ¼ ngal;5 �
0:05 Mpc�3. This is comparable to the rates found in
Table 1 of O’Leary et al. [2].6

The takeaway from these calculations can be summa-
rized as follows.

(i) In O’Leary et al. [2], Fig. 11, shows that the maxi-
mum detection limit of the full signal (including the
RB phase and the final chirp) is between 1 and 3 Gpc

6To directly compare the rates in Table 1 of O’Leary et al. [2],
the values should be scaled up by a factor of �2 to account for
the slightly smaller normalization used in that paper.
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for 10M� & m� & 500M� for a broad range of im-
pact parameters for Advanced LIGO with S=N ¼ 5.
Equation (C9) shows that the rates are weakly sensi-
tive to m� as long as their total mass in the cluster is
fixed. The event rates involving a few IMBHsmay be
equally numerous as rates among many stellar mass
BHs with the same total mass.

(ii) O’Leary et al. [2] have shown that the event rates
are dominated by close first encounters, where the
signal enters the LIGO band in the RB phase. This is
to be expected as the event rates are dominated by
the innermost objects, where the velocity dispersion
is large, requiring a close approach for binary
formation.

(iii) Equation (C9) shows that the rates are weakly
sensitive to M�. This is in stark contrast to other
gravitational wave sources whose rates scale pro-
portionally to the mass of the galaxy. The net rates
are determined by the number density of lower
mass galaxies that greatly outnumber Milky Way
sized galaxies.

(iv) Observations show that many galaxies can signifi-
cantly deviate from theM� � relation, in terms of
nðriÞ. This implies that the average value of h�i 

hn2�i=hn�i2 � 1 in Eqs. (C6) and (C8). If the rms
scatter in the densities from theM� � relation is 5,
then � ¼ 25.

(v) The exact average value of �� and �� is uncertain,
due to uncertainties in the final initial mass func-
tion in these environments. While �� ¼ 2:5%
( �� ¼ 1) may be reasonable for the center of the
Milky Way, assuming 20 000 BHs of mass 10M�
(see references in [2]), other values may also be

possible in general. Indeed, the relaxation time
scale in M32, which is a dwarf elliptical galaxy
hosting a 2� 106M�, is short enough that black
holes can segregate from a larger volume of stars
than in the Milky Way. In O’Leary et al. [2], we
directly solved for �� and ��, using the average
density of stars at the radius of influence and the
chosen initial mass function of the stars. Recent
observation of the Galactic nucleus shows evi-
dence for an extremely top-heavy mass function
[60]. Equation (C10) shows that the rates are
strongly dominated by the fraction of galaxies
with relatively large values of ��. For example,
galactic nuclei with a �� ¼ 50% mass fraction of
compact objects (so that �� ¼ 20) contribute a

��31=14� ¼ 760 times larger event rate than the nomi-
nal Milky Way estimate with �� ¼ 1. This explains
the larger values of event rates in models E and F
in O’Leary et al. [2].

(vi) Other effects may further increase the event rates,
which were not included in O’Leary et al. [2].
Keshet, Hopman, and Alexander [61] found that
galactic nuclei dominated by light objects can
lead to a steeper density profile for the massive
objects with 2<�� < 3. Equation (C7) shows
that the rates are exponentially sensitive to ��;
these larger values lead to much higher rates for
the larger mass objects. Further, mass segregation
in vector resonant relaxation leads to an anisotropic
configuration of compact objects, which increases
the rates by the square of the linear flattening of the
distribution.

[1] B. Kocsis, M. E. Gáspár, and S. Márka, Astrophys. J. 648,
411 (2006).

[2] R.M. O’Leary, B. Kocsis, and A. Loeb, Mon. Not. R.
Astron. Soc. 395, 2127 (2009).

[3] W.H. Lee, E. Ramirez-Ruiz, and G. van de Ven,
Astrophys. J. 720, 953 (2010).

[4] M.B. Davies, A. J. Levan, and A. R. King, Mon. Not. R.
Astron. Soc. 356, 54 (2005).

[5] B. C. Stephens, W. E. East, and F. Pretorius, Astrophys. J.,
737 L5 (2011).

[6] D. Tsang, J. S. Read, T. Hinderer, A. L. Piro, and
R. Bondarescu, Phys. Rev. Lett. 108, 011102 (2012).

[7] P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
[8] S. Márka (LIGO Scientific and Virgo Collaborations),

Classical Quantum Gravity 28, 114013 (2011).
[9] S. T. McWilliams and J. Levin, Astrophys. J. 742, 90

(2011).
[10] K. Martel and E. Poisson, Phys. Rev. D 60, 124008 (1999).

[11] T. Cokelaer and D. Pathak, Classical Quantum Gravity 26,
045013 (2009).

[12] D. A. Brown and P. J. Zimmerman, Phys. Rev. D 81,
024007 (2010).

[13] I. Hinder, F. Herrmann, P. Laguna, and D. Shoemaker,
Phys. Rev. D 82, 024033 (2010).

[14] T. Damour, Phys. Rev. D 81, 024017 (2010).
[15] F. Pretorius and D. Khurana, Classical Quantum Gravity

24, S83 (2007).
[16] I. Hinder, B. Vaishnav, F. Herrmann, D.M. Shoemaker,

and P. Laguna, Phys. Rev. D 77, 081502 (2008).
[17] U. Sperhake, E. Berti, V. Cardoso, J. A. González, B.
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