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Dipartimento di Fisica, Università di Trento and INFN, Gruppo Collegato di Trento, 38123 Povo, Trento, Italy

M. Armano

European Space Agency (ESA), SRE-OD ESAC, 28692 Camino bajo del Castillo, Villanueva de la Cañada, Madrid
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LISA is the upcoming space-based gravitational-wave detector. LISA Pathfinder, to be launched in the

coming years, will be the in-flight test of the LISA arm, with a hardware (control scheme, sensors, and

actuators) identical in design to LISA. LISA Pathfinder will collect a picture of all noise disturbances

possibly affecting LISA, achieving the unprecedented pureness of geodesic motion of test masses

necessary for the detection of gravitational waves. The first steps of both missions will crucially depend

on a very precise calibration of the key system parameters. Moreover, robust parameters estimation has a

fundamental importance in the correct assessment of the residual acceleration noise between the test

masses, an essential part of the data preprocessing for LISA. In this paper, we present a maximum

likelihood parameter estimation technique in time domain employed for system identification, being

devised for this calibration, and show its proficiency on simulated data and validation through

Monte Carlo realizations of independent noise runs. We discuss its robustness to nonstandard scenarios

possibly arising during the real mission. Furthermore, we apply the same technique to data produced in

missionlike fashion during operational exercises with a realistic simulator provided by European Space

Agency. The result of the investigation is that parameter estimation is mandatory to avoid systematic

errors in the estimated differential acceleration noise.

DOI: 10.1103/PhysRevD.85.122004 PACS numbers: 04.80.Nn, 02.60.Pn, 07.05.Kf

I. INTRODUCTION

LISA [1,2] is the proposed space-based gravitational-
wave (GW) detector planned to fly by the next decade. It is
based on three spacecrafts (SCs)—each hosting and pro-
tecting two test masses (TMs) in nominal free fall—flying
in a ð5� 106Þ km sided triangular formation around the
Sun at 1 AU. A total of 6 TMs, whose displacements are
detected by a laser-interferometric technique, constitute 6
Doppler links, two per LISA arm, tracking the local
curvature variations around the Sun and being sensitive
to the small fluctuations induced by GW signals in the
0.1 100 mHz band.

One (any) arm of LISA is virtually shrunk [3] to 38 cm
and implemented in the LISA Pathfinder (LPF) mission
[4,5]. LPF is the in-flight test of the LISA hardware, whose
main goal is the measurement of the differential accelera-

tion noise to within 3� 10�14 m s�2 Hz�1=2 around

1 mHz—the minimum performance level for LISA to carry
on its science program in astrophysics.
The observational horizon of LISAwill include thousands

ofGWsources.Among all, the highest signal-to-noise sources
will be surely the supermassive black holes. However, there
are sources which are at the limit of the LISA sensitivity for
which an accurate assessment of the instrumental noise is
mandatory. The population of the extrememass ratio inspirals
(EMRIs) [6] is the most important example: they are a valu-
able instrument to test general relativity and curvature in the
strong gravity regime. To date, different EMRI search meth-
ods have been developed. After having subtracted the highest
signals (supermassive black holes and calibration binaries), in
order to extract the EMRI signatures, all methods strictly
have to deal with the instrumental noise level, for which
the LPF mission has a crucial role. In fact, a systematic error
in the reconstructed noise shapewould dramatically affect the
identification of such sources. The methods described in this
paper allow for a solution of this problem.
The main payload onboard LPF, the LISA Technology

Package (LTP) [7], will be used in an extensive character-
ization campaign by measuring all force disturbances and

*congedo@science.unitn.it
†Present address: APC, Univ. Paris Diderot, CNRS/IN2P3,

CEA/Ifru, Obs de Paris, Sorbonne Paris Cité, France.
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systematic errors. To the purpose, a precise calibration of
the key system parameters must be performed before any
assessment of the final level of differential acceleration
noise can be made. The full process is iterative: the quality
of free fall achieved at a given stage of the mission depends
on the results of the previous experiments. By proceeding
in the direction of increasing accuracy, the observed noise
will be fully explained.

In LPF as a physical system, the relationship between
the sensed relative motion and applied station-keeping
forces plays a crucial role. Hence, the effect of the
control forces must be taken into account and subtracted
from the data, in order to provide a successful estimate
of the residual acceleration noise. To this end, and to
invert the system dynamics, the calibration of all key
system parameters is required, a problem we address and
solve by adopting a maximum likelihood parameter es-
timation in time domain. A preliminary work was pre-
sented in Ref. [8]; we hereby extend the method, present
it in a more robust fashion, and apply it to simulated data
sets, as well as to more realistic simulation data released
by European Space Agency (ESA).

The paper is structured as follows. In Sec. II, we start by
describing the LPF experiment with its main subsystems:
sensors, controls, and actuators. In Sec. III, we introduce
the sensed degrees of freedom, the control scheme, and the
closed-loop equations of motion. Such an abstract formal-
ism allows for a solution of the system inversion and the
estimation of the acceleration noise out from the sensed
relative motion. Then, we discuss a model along the two
most relevant degrees of freedom—those sensing the rela-
tive motion of the TMs—which is used in our analysis and
will be employed during the mission. Section IV gives a
brief description of the most important contributions to the
differential acceleration noise. In Sec. V, we describe the
two experiments which are sufficient for the calibration of
the system. As system identification has a capital impor-
tance to the correct assessment of the acceleration noise,
we review the problem and solve it with a multi-input–
multioutput (MIMO) multiexperiment approach. In turn,
we describe the search algorithm and apply it to data
produced by the ESA LPF science simulator; we validate
the procedures by a Monte Carlo simulation; and finally, we
proficiently apply the same techniques to a couple of non-
standard scenarios: non-Gaussianities (glitches) in the read-
out and an underperforming system. The paper concludes
with Sec. VII where we discuss the overall impact of system
identification to the estimation of the residual acceleration
noise: we demonstrate that without a preliminary identifica-
tion of the modeled parameters, the reconstructed accelera-
tion may be affected by systematic errors.

All analysis contained in this paper were performed
under the framework of the LTP Data Analysis Toolbox
[9], an objected-oriented extension of MATLAB [10] which
will be extensively employed during the mission.

II. LISA PATHFINDER EXPERIMENT

LTP—the main scientific payload onboard LPF—
comprises the following key subsystems shown in Fig. 1:
two gravitational reference sensors (GRSs), the optical
metrology system (OMS) [interferometers (IFOs) and the
optical bench], star trackers (STs), an onboard computer,
the drag-free and attitude control system (DFACS), and the
field emission electric propulsion (FEEP) thrusters. The
experiment is also equipped with magnetometers, ther-
mometers, and a cosmic charge counter. The sensors with
the relative sensed motions are reported in Table I. The
noise requirements are reported in Table II.

A. Gravitational reference sensor

Each GRS comprises a gold-platinum cubic TM of size
46 mm and a surrounding electrostatic housing containing
capacitive sensors and actuators in all 6 degrees of freedom.
Each GRS senses the relative displacement and attitude of
the TM to its housing and provides actuation along the same
degrees of freedom. Gaps between the TM and its housing
are 3–4 mm, a compromise between noise minimization
and efficient sensing/actuation. The GRS vacuum chamber
allows for a residual gas pressure at the level of 10 �Pa. UV
light illumination is utilized to control the accumulated
charge with a discharging threshold of �107 e—the accu-
mulated charge in 1 d for an expected charging rate of
�102 e s�1. The sensing requirements of each GRS are

1:8 nmHz�12 in displacement and 200 nradHz�1=2 in atti-

tude. The actuation requirement is 20 fNHz�1=2 with a
maximum range of 2.5 nN.

B. Optical metrology system

The OMS [11] comprises: a Zerodur monolithic optical
bench, 4 Mach-Zehnder heterodyne 1:024 �m interfer-
ometers and redundant quadrant photodiodes. The first

FIG. 1 (color online). Scheme of the key subsystems of the
LPF mission. The SC contains two GRSs and an optical bench
with four interferometers. The relative displacements and atti-
tudes between the TMs and the optical bench are read out by the
interferometers and the capacitive sensors. The interferometric,
capacitive, and star-tracker readouts (solid lines) are fed into the
DFACS which computes the forces which shall be actuated by
the FEEP thrusters and the capacitive actuators (dashed lines). In
the main science mode, the reference TM is not actuated along
the optical axis.
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IFO, X1, senses the relative displacement and attitude of one
reference TM to the optical bench itself. The differential
IFO, X12, senses the relative displacement and attitude be-
tween the twoTMs. Relative displacements aremeasured by
averaging among the four quadrants, whereas relative angles
are measured by taking the difference between opposite
quadrants (differential wave-front sensing). The ‘‘refer-
ence’’ IFO is subtracted from the previous ones for compen-
sating spurious fiber optical path length variations before the
first beam splitter. The ‘‘frequency’’ IFO is utilized for laser
frequency stabilization. The sensing requirements are

9 pmHz�1=2 in displacement and 20 nradHz�1=2 in attitude
with a maximum range of 100 �m. A rotation around the
optical axis is not sensed, but can be provided by the GRS.

C. Star trackers

The STs are small telescopes reading out the inertial
attitude of the SC with respect to the star field. The sensing

requirement is 3200 Hz�1=2 (160 �radHz�1=2).

D. Drag-free and attitude control system

The outputs of all sensors, GRSs, OMS, and STs
are elaborated by the onboard computer and fed into
the DFACS [12]. The DFACS has the responsibility
of computing the control forces which shall be passed
to capacitive and thruster actuators in order to stabilize
the system and meet the acceleration requirement of

3� 10�14 m s�2 Hz�1=2.
There are different operational control modes for the

LPF mission. To avoid large transients in the data, the
transition between two modes is implemented with over-
lapping submodes. In the accelerometer mode, LPF acts as

a standard accelerometer in which the TMs are both elec-
trostatically actuated along the optical axis and controlled
to follow the SC motion. The resulting noise is much
higher than the requirement. In the main science mode,
the DFACS is responsible in maintaining a reference TM in
free fall along the optical axis and forcing both the second
TM and the SC to follow it by capacitive and thruster
actuation.
The need for the DFACS is explained not only by the

scientific requirements, but also by the fact that noise
sources can destabilize the system on a time scale of few
minutes, and the gaps between the TM and its housing are
just 3–4 mm. One of the proposed activities, the free-flight
experiment [13], is aimed at obtaining an improvement in
differential acceleration noise at low frequency by turning
off the capacitive actuation also on the second TMwhich is
left in ‘‘parabolic’’ free fall and impulsively kicked every
200 s.
In the main science mode, the DFACS is conceptually

divided into three control loops with the following priority:
(1) drag-free control loop, controlling the relative dis-

placement and attitude of the SC with respect to the
reference TM through thruster actuation;

(2) electrostatic suspension control loop, controlling
the relative displacement and attitude between the
TMs through capacitive actuation on the second
TM;

(3) attitude control loop, controlling the inertial
(absolute) attitude of the TMs through capacitive
actuation.

The drag-free requirements are 5–6 nmHz1=2 in displace-

ment and 0:4–0:5 �radHz1=2 in attitude.

TABLE II. LTP key subsystems and the main noise requirements around 1 mHz.

Subsystem Requirement Note

GRS 1:8 nmHz�1=2 displacement sensing

20 fNHz�1=2 actuation

OMS 9 pmHz�1=2 displacement sensing

20 nradHz�1=2 attitude sensing

ST 3200 Hz�1=2 � � �
DFACS 5–6 nmHz1=2 displacement control (main science mode)

0:4–0:5 �radHz1=2 attitude control (main science mode)

FEEP 0:1 �NHz�1=2 � � �

TABLE I. LTP sensors and the relative sensed motions.

Sensor Motion

GRS linear and angular motion of the TMs relative to their housings

OMS linear and angular motion of the reference TM relative to the optical bench

linear and angular motion of the second TM relative to the reference TM

ST absolute attitude of the SC
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E. Thrusters

The FEEP is attained by an ensemble of 3 clusters, of 4
thrusters each, attached to the SC. An electron flux keeps

the SC neutral. The force requirement is 0:1 �NHz�1=2

with a maximum range of 100 �N. The FEEP thruster
authority is the only means by which the reference TM
can be maintained in free fall along the optical axis, hence
mitigating the SC jitter at low frequency. The SC is also
equipped with colloid thrusters provided by NASA for
complementary experiments.

Recently, ESA has considered the possibility to employ
cold gas thrusters in place of the FEEP. The new design is
expected to perform to within the requirements as well.
However, the considerations and the results of this paper
are still valid and are not appreciably affected by the
possible change in design.

III. DYNAMICS

The formalism developed in this section is effective in
mapping a complex dynamics into a simple equation,
treating different aspects of the system at the same time
as a whole, and allowing for the reconstruction of the total
input differential acceleration from the interferometrically
sensed motion.

Like every physical dynamical system, LPF can be
described by three main conceptual parts:

(1) free dynamics;
(2) sensing;
(3) control and actuation.

The first one is the natural free evolution of the system. This
gives the dynamical evolution of the TMs as they were left
alone in their flight. However, small unwanted disturbances
can take each TM away from the ideal geodesic, the refer-
ence trajectory. On-ground measurements and models pre-
dict that to first order the TMs are electrostatically coupled
with the SC through negative force gradients described by
unstable oscillators. If the TMswere left to follow their free
evolution, the system would exponentially destabilize in a
very small timescale. Referring to Fig. 1, in the main
science mode, the sensed motion between the TM and the
interferometer and the sensed relative motion between the
TMs is fed into the DFACS controller to command actua-
tion on the SC and the second TM to both follow the
reference TM. In this way, onewould say that the controller
utilizes the sensed relative motion to suppress the distur-
bances by ‘‘pushing’’ a body toward the reference trajec-
tory, i.e., by actuating it along specific degrees of freedom.

In turn, Sec. III A lists the relevant coordinates in LPF,
the sensors, the control laws, and the actuators for each
degree of freedom; Sec. III B provides for a general de-
scription of the adopted control scheme; Sec. III C intro-
duces the generalized equation of motion for LPF; finally,
Sec. III D describes the model along the optical axis em-
ployed for the analysis of this paper.

A. Coordinate definitions

LPF is a 3-body dynamical system composed by a SC
containing two TMs, whose relative motion is sensed by an
interferometer and the capacitive sensors, as described in
the preceding section. As LPF characterizes the relative
motion between those bodies, the inertial acceleration of
the SC is not sensed. Therefore, the degrees of freedom of
the system are:
(1) the relative translations of the TM with respect to

the SC, 3þ 3;
(2) the relative attitudes of the TM with respect to the

SC, 3þ 3;
(3) additionally, the absolute (inertial) attitude of the SC

with respect to the celestial frame, 3.
The naming convention for the sensed coordinates in

LPF in science mode can be found in Fig. 2. There are 15
control laws implemented by the DFACS, 12 for the TM
relative motions, and 3 for the SC absolute attitude. A
coordinate guiding the drag-free loop, i.e., a thruster
actuation on the SC, is named drag-free coordinate.
Analogously, a coordinate guiding the electrostatic suspen-
sion loop, i.e., a capacitive actuation on the TMs, is named
electrostatic suspension coordinate. Finally, a coordinate
guiding the attitude loop, i.e., a capacitive actuation on the
TMs to maintain the inertial orientation, is named attitude
coordinate. The names of the control loops, the sensor
readouts used as inputs to the control laws, and the actua-
tors are reported in Table III for all controlled degrees of
freedom in the main science mode.
Basically, in the main science mode, all optical readings

are used whenever possible and:
(1) along x: guided by the optical x1, the SC is forced to

follow the reference TM through thruster actuation;
guided by the optical x12, the second TM is forced
to follow the reference TM through capacitive
actuation;

(2) along orthogonal degrees of freedom: guided by the
average linear motion of the TMs read out by the
capacitive sensors, the SC is forced to follow both

FIG. 2. Coordinate naming convention for the 3-body LPF
system. The x axis is the laser sensitive translational degree of
freedom, and the � and � angles are optically detected. The �
angle is not interferometrically detectable. Other coordinates can
be read out by capacitive sensors, especially along y and z.
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TMs through thruster actuation; guided by the star-
tracker inertial attitude, the TMs are oriented
through capacitive actuation;

(3) along rotational degrees of freedom: guided by the
differential linear motion of the TMs read out by the
capacitive sensors, the SC is forced to follow both
TMs through thruster actuation; guided by the opti-
cal TM attitudes, both TMs are oriented through
capacitive actuation.

B. Controller

The controller is a dynamical system (see Fig. 3), in
general multidimensional, taking the difference between
the measured and the reference trajectories as inputs and
producing forces to be applied to the bodies as outputs. If o
is the sensed motion, the error signals for all controlled
degrees of freedom are

e ¼ o� oi; (1)

where oi are named reference set-point signals or simply
guidance signals.

The DFACS is responsible of the minimization of the
error signals. In this way, it compensates for negative force
gradients and makes the system stable. It utilizes the
sensed relative motion along different degrees of freedom,
contained in the error signal, to compute actuation forces
fc. The discrete implementation of the nth value of the
commanded force fc;n, for a generic control law in LPF

controlling a single degree of freedom, is a linear combi-
nation of the past values of the force fc;n�1; fc;n�2; . . . and
the present and past values of the error signal (the innova-
tions) en; en�1; . . .

fc;n ¼
X
i

qifc;n�i þ
X
j

pjen�j; (2)

where i ¼ 1; . . . ; Nq and Nq is the order of the autoregres-

sive filter; j ¼ 0; . . . ; Np; andNp is the order of the moving

average filter. The z-transform of the above gives the
well-known autoregressive moving average model of the
discrete control law:

CðzÞ ¼
P
j
pjz

�j

1�P
i
qiz

�i : (3)

The control design assures: (i) the compensation of
negative force gradients; (ii) the asymptotic stability;
(iii) the mitigation of system resonances; and (iv) the
minimal-cost performance, i.e., the control computes the
minimum actuation forces which allow the TMs to reach
the reference signals to within the given accuracy of

TABLE III. List of all controlled degrees of freedom for the LPF mission in the main science
mode. The drag-free, electrostatic suspension, and attitude control loops, together with the
interferometer, capacitive, and star-tracker sensors and the thruster and capacitive actuators are
reported for each coordinate. Interferometric sensing is used in place of the capacitive whenever
possible. Notice that the interferometer measures the relative linear and angular motion between
the TMs, i.e., x12 ¼ x2 � x1, �12 ¼ �2 � �1, and �12 ¼ �2 ��1. The SC absolute position is
not sensed.

Coordinate Control Sensor Actuator

x1 Drag-free o1 ¼ IFO½x1� FEEP

y1 Drag-free oy1 ¼ GRS½y1� FEEP

z1 Drag-free oz1 ¼ GRS½z1� FEEP

�1 Drag-free o�1 ¼ GRS½�1� FEEP

�1 Electrostatic suspension o�1
¼ IFO½�1� GRS

�1 Electrostatic suspension o�1
¼ IFO½�1� GRS

x2 Electrostatic suspension o12 ¼ IFO½x12� GRS

y2 Drag-free oy2 ¼ GRS½y2� FEEP

z2 Drag-free oz2 ¼ GRS½z2� FEEP

�2 Electrostatic suspension o�2 ¼ GRS½�2� GRS

�2 Electrostatic suspension o�12
¼ IFO½�12� GRS

�2 Electrostatic suspension o�12
¼ IFO½�12� GRS

�SC Attitude o�SC ¼ ST½�SC� GRS

�SC Attitude o�SC
¼ ST½�SC� GRS

�SC Attitude o�SC
¼ ST½�SC� GRS

FIG. 3. Block diagram of the controller. It takes the differences
between the measured coordinates o and the reference coordi-
nates oi and calculates control forces fc to be applied to the SC
and the TMs.
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5 nmHz�1=2 around 1 mHz (for the relative displacement
control as reported in Table II), whose unsuppressed part
contributes to the residual noise budget. ASTRIUM [14]—
the main industry contractor of LPF—has provided the
continuous representation of the controller as a rational
function in the s domain (of maximum order 6), used for
system modeling, simulation, and analysis shown in this
paper.

C. Equation of motion

This section describes the formalism on the basis of
the modeling of the closed-loop LPF system. The most
important assumption concerns on the linearity of the
equations, i.e., that all physical quantities characterizing
the motion enter linearly into the equations. Here is a list of
the involved limitations:

(1) the force couplings between the TMs and the SC are
mainly caused by electrostatics and SC self-gravity:
those forces decay as the inverse of the distance at
most; they are treated to first order as springlike
forces;

(2) the interferometric sensing involves reflections and
transmissions through optical elements: even in geo-
metric optics, the equations must involve trigono-
metric expressions of the angles; it is assumed that
trigonometric functions confuse with angles, when-
ever applicable;

(3) the angular motion of a rigid body is described by
the Euler equations: they are nonlinear with respect
to the angular velocities; if the angular motion is
small, nonlinearities are a second-order effect.

Since the controller forces the motion around the reference
trajectories, it also assures that the motion is small enough
that all forces and nonlinear terms can be expanded to first
order with good approximation. In this way, the coupling
forces are modeled as negative springlike constants; the
nonlinearities due to optics and the angular motion can be
effectively ignored. In general, the linearized equations of
motion must contain terms to within the order of an im-
perfection multiplied by a noise contribution. In fact, other
combinations like a noise contribution multiplied by an-
other noise contribution are second-order effects and must
be neglected. The accuracy to which linearity is achieved
depends on: (i) the assumption that the controller does not
itself introduce nonlinearities in the system; and (ii) the
unsuppressed noisy motion in the error signals is to within
the requirement figure of the controller.

We now focus our attention on a model for LPF elabo-
rated in terms of the two main degrees of freedom, i.e.,

those along the optically sensed axis: the relative motion of
the reference TM to the optical bench and the differential
motion between the TMs. In this formulation, the relative
motion is sensed with the interferometer—the reference
measurement for scientific operations—while keeping in
mind that the capacitive sensors could even be used in
place of the interferometer as a backup option, even though
such a measurement would be 2 orders of magnitude
worse, especially at high frequency. However, along the
other orthogonal axes, the capacitive sensors are the only
means by which the TM relative motion can be measured.
Figure 4 shows a sketch of a LPF model, in the main
science mode, along the optical axis being discussed here
in details.
Referring to Figs. 2 and 4, x is the interferometric axis.

xSC is the absolute SC position, and x1, x2 are the relative
TM positions with respect to the SC; mSC ¼ 422:7 kg and
m1 ¼ m2 ¼ 1:96 kg are the respective masses; ~m1 ¼
~m2 ¼ 5� 10�3 are the masses normalized to mSC; and
f1, f2, and fSC are the total forces (per unit mass) contain-
ing noise in any form and applied biases.
In the linear approximation (small motion, small forces,

as already discussed), the 3-body dynamics is described by
a linear system of differential equations. In frequency
domain and assuming null initial conditions, the equations
of motion are

s2x1 þ s2xSC þ!2
1x1 þ �xðx2 � x1Þ ¼ f1; (4a)

s2x2 þ s2xSC þ!2
2x2 � �xðx2 � x1Þ ¼ f2 � CsusðsÞo12; (4b)

s2xSC � ~m1!
2
1x1 � ~m2!

2
2x2 ¼ fSC þ CdfðsÞo1 � ~m1f1 � ~m2f2 þ ~m2CsusðsÞo12; (4c)

FIG. 4 (color online). Scheme of the LPF model along the
optical axis in the main science mode. The first TM is in free fall
along x, and its displacement to the optical bench (o1) is sensed
by the IFO and fed into the controller (Cdf) to force the SC to
follow the TM through thruster actuation (drag-free loop).
Analogously, the sensed differential displacement between the
two TMs (o12) is fed into the controller (Csus) to force the TM to
follow the reference one through capacitive actuation (suspen-
sion loop). The critical system parameters are the TM springlike
couplings to the SC (!2

1 and !2
2), the sensing cross-talk (S21),

and the actuation gains (Adf and Asus). The system can be excited
by injecting signals as direct forces on the masses (fi;1, fi;2, and
fi;SC) or controller guidance signals (oi;1 and oi;12).
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where !2
1 ’ !2

2 ��1� 10�6 s�2 are spring constants
modeling oscillatorlike force couplings between the TMs
and the SC, named parasitic stiffness. As the dominating
part of such force gradients is due to electrostatics, the
oscillators are unstable: that is the reason why a controller
is employed. �x � 4� 10�9 s�2 is the gravity gradient
(per unit mass) between the TMs corresponding to a nomi-
nal separation of �38 cm. All terms containing normal-
ized masses are backreactions which can be neglected to
zeroth order.

In writing the dynamics, the control in the science mode
is implicitly assumed, where the SC is forced to follow a
reference TM in free fall along the optical axis, and the other
TM is forced to follow the reference TM along the same
axis. As declared by Table III, the interferometric readout
o1 (x1 coordinate) is a drag-free coordinate and is the input
to the drag-free control law CdfðsÞ assuring thruster actua-
tion. The interferometric readout o12 (x12 ¼ x2 � x1 coor-
dinate) is an electrostatic suspension coordinate and is the
input to the electrostatic suspension control law CsusðsÞ
assuring capacitive actuation on the second TM.

With these assumptions, LPF is viewed as a closed-loop
MIMO linear time-invariant dynamical system described
by vector equations with operators modeling dynamics,
sensing, and control. The linearized equations for LPF
are [15–17]

Dq ¼ g; (5a)

g ¼ fn þA½f i � Cðo� oiÞ�; (5b)

o ¼ Sqþ on: (5c)

The total forces (per unit mass) g produce the motion
through the acting of the dynamics operator D onto the
physical coordinates q. The natural physical coordinates
for LPF are given by the TM relative linear and angular
motion.D is a differential operator containing time deriva-
tives and the modeled coupling coefficients (the negative
spring constants due to the linearization) and the
dynamical cross-talk from other degrees of freedom to
the sensitive axis as well. In fact, the dynamics along the
measurement axis (the nominal dynamics) can be de-
coupled from the dynamics along other degrees of freedom
(the first-order perturbation) employing a generalization of
the above formalism. The external forces can be split into
pure noise sources fn—mostly from the SC jitter and
within the TM housings; applied biases f i—directly on
each TM and the SC; and applied biases through oi—the
controller guidance signals already discussed in the pre-
ceding subsection. C is the operator containing the control
laws. By changing the controller guidance signals, net
forces on each body are commanded to the actuators

f c ¼ �Cðo� oiÞ; (6)

where o is the closed-loop measurement. Therefore, the
application of biases in the controller guidance signals is
equivalent to the application of explicit forces on the

bodies. In this description, the application of the forces is
modeled by an actuation operator A. All force biases and
control forces are fed into such an operator, responsible of
the force dispatching on all bodies. In the main science
mode, along the measurement axis, this implies a thruster
actuation on the SC to follow the reference TM in free fall
and a capacitive actuation on the second TM to follow the
reference TM. Finally, the physical coordinates q are con-
verted into the system readouts o (from interferometric and
capacitive sensors) through the sensing operator S, mostly
diagonal, and corrupted by the readout noise on. S is
nominally an identity operator, but in reality, there is a
sensing cross-talk between different readout channels and
miscalibrations as well. Figure 5 shows the block diagram
of the closed-loop dynamics for LPF where all operators
act on their own inputs and produce their outputs for the
dynamical equations in Eqs. (5); deterministic and stochas-
tic inputs are also distinguished for clarity.
The full equation of motion in vector form and expressed

in terms of the sensed relative coordinates, o, can be
obtained by manipulating the three equations in Eqs. (5).
The idea is to substitute Eq. (5c) and Eq. (5b) in Eq. (5a)
and rearrange the equation so that the deterministic and
stochastic inputs are on the right-hand side. The result is
the equation of motion in the sensed coordinates

� o ¼ fn þDS�1on þAðf i þ CoiÞ; (7)

where four terms are clearly recognized: force noise, read-
out noise, force bias, and controller guidance bias, which
all constitute the noise budget of LPF in terms of total
equivalent acceleration. The second-order differential op-
erator on the right-hand side is defined as

� ¼ DS�1 þAC: (8)

The deep meaning of the operator is that it allows for the
reconstruction of the total equivalent input acceleration

FIG. 5. Block diagram for the three main conceptual steps of
LPF: dynamics, sensing, and control. There are two different
noise sources, fn and on, and biases to inject, f i and oi. The open
loops are defined by the transfers from forces to readouts. The
forces produce the motion in the q coordinates through the
inverse of D. The coordinates are converted into sensed coor-
dinates o through S. The controller closes the loop in order to
minimize the error signals, through C applied to the sensed
coordinates. The calculated forces are then converted into ac-
tuation forces through A.

TIME DOMAIN MAXIMUM LIKELIHOOD PARAMETER . . . PHYSICAL REVIEW D 85, 122004 (2012)

122004-7



from the sensed relative motion and at the same time iso-
lating and subtracting dynamics, sensing, control, and ac-
tuation. Indeed, by looking at Fig. 5,DS�1 is the open loop
from the sensed relative motion to input forces (inverting
the direction of an arrow, the corresponding operator must
be inverted); whereas AC is the control loop consisting of
all control laws commanding the force actuation.

In Eq. (7), two transfer operators can be naturally iden-
tified

To!f ¼ �; (9a)

Toi!o ¼ ��1AC: (9b)

The second one solves the equation of motion for determi-
nistic guidance signals and, substituted into Eq. (6), gives
the following transfer operator:

T oi!fc ¼ �CðToi!o � 1Þ; (10)

converting the bias injections oi into the calculated control
forces which the actuators must apply in order to stabilize
the motion toward the reference signal.

The first transfer operator To!f has fundamental rele-

vance as it shows that the differential operator allows for
the estimation of the total out-of-loop equivalent accelera-
tion noise [18] on noisy interferometric data, i.e., when all
explicit stimuli are set to zero, whose modeling in terms of
force noise and readout noise is provided by the equation of
motion (7). However, the evaluation requires the calibra-
tion of the dynamicsD, the sensing S, and the actuation A
operators overall depending on many system parameters.
This critical procedure, named system identification, which

the performances of the LPF mission depend on, will be
outlined in Sec. VI. It mainly consists of calibrating the
second transfer operator Toi!o and estimating all system

parameters in dedicated experiments.

D. Dynamical model along the optical axis

In order to get to a dynamical model in the form of
equations like Eqs. (5) which can be used for the analysis,
the first step is to rearrange Eqs. (4) to eliminate the
unmeasurable absolute position xSC and rewrite the equa-
tions in terms of the 2 degrees of freedom x1 and x12. In
fact, by taking the difference between Eqs. (4b) and (4a),
the SC acceleration vanishes. Then, the SC acceleration in
Eq. (4c) is substituted in Eq. (4a). The structure of the
equations suggests to define the differential forces f12 ¼
f2 � f1 and the differential parasitic stiffness!

2
12 ¼ !2

2 �
!2

1. The equations can be finally condensed into the
formalism of Eq. (5a), where the dynamics operator has
the following matrix representation:

D¼ s2þð1þ ~m1þ ~m2Þ!2
1þ ~m2!

2
12 �xþ ~m2ð!2

1þ!2
12Þ

!2
12 s2þ!2

1þ!2
12�2�x

 !
;

(11)

which, acting on the system coordinates

q ¼ x1
x12

� �
; (12)

produces the external forces

g ¼ ð1þ ~m1 þ ~m2Þf1 þ ~m2f12 � fSC � CdfðsÞo1 � ~m2CsusðsÞo12;
f12 � CsusðsÞo12

 !
: (13)

The preceding contains force noise sources and injected
biases. Neglecting all backreactions, it shows that the first
degree of freedom x1 is dominated by the thruster noise and
the drag-free actuation; the second degree of freedom x12 is
dominated by the differential force noise and the capacitive
actuation on the second TM. The identified control opera-
tor of Eq. (5b) is given by

C ¼ CdfðsÞ ~m2CsusðsÞ
0 CsusðsÞ

 !
; (14)

where the off-diagonal quantity is the backreaction from
the suspension to the drag-free loop.

The dynamical equations shown above assume a perfect
actuation. This implies that A is an identity. Otherwise,
actuation gains Adf , and Asus may be conveniently intro-
duced to model the efficiency to which commanded forces
are converted to actual applied forces by the corresponding
loops.

The expression in Eq. (5c) gives the sensing conversion
between the physical coordinates q and the interferometric
readouts,

o ¼ o1

o12

 !
; (15)

being fed up into the controller. The perfect conversion is
represented by an identity matrix. The imperfect conver-
sion is due to both miscalibrations (the diagonal terms)
or cross-talk contributions (the off-diagonal terms). The
on-ground characterization and the theoretical modeling
of the interferometer [19] suggest that the most relevant
is the cross-talk from o1 to o12 which mixes the two
nominally independent degrees of freedom in the follow-
ing way:

S ¼ 1 0

S21 1

 !
: (16)
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The cross-talk is explained by a tiny difference in the
incidence angles with which light reflects on the TM
surface for the two readings.

As described in Sec. IIID, the system can be modeled by
the operators D (dynamics), S (sensing), and A (actuation)
representing different nonidealities in the practical imple-
mentation of the closed-loop LISA arm. The operators con-
tain all system parameters describing the dynamics along the
optical axis. One last source of indetermination introduced
here is a delay in the application of the guidance signals

T ¼ e�s�t1 0

0 e�s�t2

 !
; (17)

whose possible causesmay be either due to the digitalization
of the continuous control laws or to bus delays, a possibility

not considered in a previous model [20]. With the introduc-
tion of the delays, the model (9b) becomes now

T oi!o ¼ ��1ACT; (18)

where the differential operator �, defined in Eq. (9a), con-
verts the sensed motion into total equivalent acceleration.
Figure 6 shows the transfer gains of the model Toi!o,

whereas the dynamical cross-talk from the differential
channel to the first one is definitely negligible with a
peak gain of about 4� 10�6 at 30 mHz. The diagonal
elements have, respectively, peak gains of almost 3 at
0.1 Hz and about 2 at 0.8 mHz. The dynamical cross-talk
from the first channel to the differential one has peak gain
of about 5� 10�2 at 0.5 mHz. The above transfer matrix is
used to both model the outputs of the system subjected to
bias injections and perform system identification.
Throughout this paper, bias injections at the level of

controller guidance signals oi [21] are considered, and
the transfer matrix in Eq. (18) models the response of the
system to those signals. As the modeled system parameters
appear in the operators, Toi!o is parameter-dependent. The

modeled system response is then parameter-dependent.
The parameters can be arranged in a vector which will be
abstractly referred to p

p ¼

!2
1

!2
12

S21

Adf

Asus

�t1

�t2

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
; (19)

where Table IV provides a description of the above system
parameter with initial plausible estimates coming from on-
ground measurements and theoretical modeling.

FIG. 6 (color online). Frequency dependence of the transfer
matrix Toi!o used for system identification. The transfer func-

tion T11
oi!o ¼ Toi;1!o1 has peak gain of almost 3 at 0.1 Hz. The

transfer function T22
oi!o ¼ Toi;12!o12 has peak gain of about 2 at

0.8 mHz, then it quickly decays. The dynamical cross-talk
T12
oi!o ¼ Toi;1!o12 has peak gain of about 5� 10�2 at 0.5 mHz.

The other dynamical cross-talk is negligible since it has peak
gain of about 4� 10�6 at 30 mHz.

TABLE IV. List of the modeled system parameters, introduced in Sec. III D, except for �t1 and �t2, with descriptions and initial
estimates. The parameters which are fitted to data are !2

1, !
2
12, S21, Adf , Asus, �t1, �t2.

Parameter Description Note Estimate

!2
1, !

2
12 parasitic stiffness constants modeling residual

oscillatorlike couplings between the SC and the

reference TM and between the two TMs

must be estimated from experiments �1� 10�6 s�2

S21 sensing cross-talk between o1 and o12 inter-

ferometric readouts

must be estimated from experiments �1� 10�4

Adf , Asus actuation gains for the application of forces by

the thrusters and the electrostatic suspensions

must be estimated from experiments �1

�t1, �t2 delays in the application of biases to the con-

troller computing the actuation

must be estimated from experiments & 1 s

�x gravity gradient between the two TMs could be estimated from experiments

with different actuation stiffness, but

difficult, considered fixed

�4� 10�9 s�2

m1, m2, mSC masses of TMs and SC considered fixed 1.96 kg, 422.7 kg
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The model described in this section, with some slight
improvements, has been extensively used for simulations
and analysis—and examples with references will be dis-
cussed in details in the next sections—to test the algo-
rithms aimed at estimating the TM couplings, the sensing
cross-talk, and other relevant parameters needed for system
calibration. Such calibration is also critical for the un-
biased estimation of the total equivalent acceleration noise.
The same model is planned to be employed during the
identification experiments of the LPF mission.

IV. NOISE CHARACTERIZATION

One of the objectives of the LPF mission is to provide a
full noise projection of the total equivalent differential
acceleration noise between the TMs. As this is well beyond
the scope of this paper, the following presents a hint of the
problem. Moreover, a theoretical projection of the ob-
served displacement noise is needed in advance in order
to identify the dominant effects in the noise and produce
the generating filters used for all simulations. The noise
projections shown in this section are given by plausible
noise shapes implemented in the simulator provided by
ESA (which will be specifically introduced in Sec. VID).

Figure 7 shows a projection of the power spectral density
(PSD) of the equivalent differential acceleration noise
affecting the x12 degree of freedom. A turning point around
6 mHz between two regimes is clearly evident. At high
frequency, the o1 sensing noise dominates the total noise
budget. At low frequency, 2=3 of the total noise budget (in

units of
ffiffiffiffiffiffiffiffiffiffi
PSD

p
) is due to force couplings between the SC

and the TMs. Other important noise sources, intervening at
low frequency, are the capacitive actuation noise on the
second TM, forces on the TMs coming from outside the
SC, and the o12 and o1 sensing noises.

The calibration of the system is needed in advance to
properly estimate such an acceleration noise shape. In fact,
since each single contribution is parameter-dependent, a
systematic in a recovered parameter introduces a system-
atic in the estimated noise, as in Sec. VII.
The above acceleration noise projections are the equiva-

lent acceleration inputs to LPF coming from reasonable
noise shapes, producing a characteristic output in the in-
terferometric readouts.
The noise shapes of the interferometric readouts (with

their cross-correlation) are also used for simulation pur-
poses. From those models, noise shaping filters are derived
and integrated into a multichannel cross-correlated noise
generator [22]. Figure 8 reports an example of a noise run
lasting 12 hours and obtained by coloring an input zero-
mean �-correlated (white) Gaussian noise with those fil-
ters. o12 shows a huge red component caused by the
increase of the PSD at low frequency, due to forces on
the TMs. While o1 is dominated by the thruster jitter, o12
becomes much less noisy at high frequency, being domi-
nated by readout noise only. The red noise shape of o12 is
an expected feature during the experiments of the LPF
mission.
In many experiments, and also for LPF, it is a common

practice assuming that the noise is stationary all along a
measurement. However, it is worth it to stress that in LPF,
the noise is parameter-dependent and a nonstationarity in
any of the system parameters, which implies a nonstatio-
narity in the noise. In fact, if o ¼ oðt; pðtÞÞ is a generic
interferometer readout depending, for simplicity, on just
one parameter fluctuating of �p around the nominal value
p0, then to first order, o ’ o0 þ o0�p, where o0 ¼ oðt; p0Þ
and o0 ¼ @oðt; pÞ=@ojp0

. For a zero-mean process, the total

variance is

FIG. 7 (color online). Theoretical noise projection of the re-
sidual equivalent acceleration noise of the relative motion be-
tween the TMs for the nominal dynamics along x. At high
frequency, the o12 sensing noise dominates the total noise budget
(dashed line). At low frequency, 2=3 of the total noise budget is
due to force couplings between the SC and the TMs. Other
important noise sources are the capacitive actuation noise on the
second TM, forces on the TMs coming from outside the SC and
the o12 and o1 sensing noises.

FIG. 8 (color online). A simulated noise run of about 12 hours.
o1 and o12 are the two interferometer readings. Notice the
behavior of o12 at low frequency—an expected feature during
the LPF mission—showing a huge red component caused by
force couplings between the TMs and the SC. At high frequency,
o12 becomes much less noisy than o1, the former being domi-
nated by only interferometer readout noise and the latter by
thruster noise.
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Var ½o� ’ Var½o0� þ Var0½o0��pþ Var½o0��p2; (20)

where the linear and quadratic terms come from the co-
variance between o0 and o

0 and the variance of o0 itself (see
Appendix A for details). Therefore, if any of the system
parameters fluctuates, noise is likely to become nonsta-
tionary. In LPF, all PSDs must be estimated [23] piecewise
along data segments approximately stationary on a time
scale given by the one of the fluctuating parameters. The
converse, i.e., a nonstationarity in the noise, implies a
nonstationarity in any of the parameters is not assured,
since other effects, independent from those parameters,
may still be relevant. For example, Sec. VI F describes
the possibility of existence of glitches, a nonstationary
behavior in the noise, and its impact to system identifica-
tion. More advanced methods, like the time-frequency
analysis, are currently under investigation.

V. IDENTIFICATION EXPERIMENTS

Among the series of experiments characterizing the LPF
mission, a few of capital importance will tackle system
identification. This paper considers two experiments which
are sufficient for a complete identification of the 7 most
important system parameters introduced in Sec. II. As said,
considering bias injections at the level of controller guid-
ance signals is completely equivalent to applying direct
force stimuli through the equivalence given by Eq. (6). In
the nominal x dynamics, two experiments are defined:

(1) an injection into the controller guidance of the o1
channel, namely, oi;1, producing forces on the SC

through thruster actuation;
(2) an injection into the controller guidance of the o12

channel, namely, oi;12, producing forces on the sec-

ond TM through capacitive actuation.
The o1 channel is dominated by the control for almost

the entire frequency band, in order to attenuate the SC
jitter. For this reason, injecting a signal into oi;1 (i.e.,

applying a thruster actuation on the SC) allows for the
identification, in turn, of the actuation gain, Adf; the first
TM coupling to the SC, !2

1; as well as a possible delay in
the application of the same bias, �t1.

Analogously, as the o12 channel is dominated by control
at low frequency and sensing at high frequency, injecting a
signal into oi;12 (i.e., applying a capacitive actuation on the
second TM) allows for the identification, in turn, of the
actuation gain, Asus; the differential coupling between
the TMs,!2

12; as well as a possible delay in the application
of the same bias, �t2. Given the cross-talk elucidated in
Fig. 6 at low frequency, the sensing cross-talk, S21, can also
be determined.

As the SC motion is common-mode and the first and
differential channel are correlated, the estimation of the
differential acceleration noise cannot be performed inde-
pendently of the first channel, which is the only means by

which the SC jitter can be measured and subtracted. The
details of such an estimation will be given in Sec. VII.
The next section is devoted to the estimation of the 7

system parameters by means of a MIMO approach which
maximizes the overall information. The identification ex-
periments defined at the beginning of this section are
simulated for a total duration of almost 3 hours each—a
suitable time scale for the mission—by injecting stimulat-
ing biases. The following facts are assumed:
(1) the noise on is generated as in Sec. IV, indepen-

dently from the noise-only run which is used for
noise characterization, and is Gaussian and
stationary;

(2) the signals os are simulated in time domain with a
MIMO approach by means of Eq. (9b), i.e., by anti-
Fourier transforming [26] with F�1 the determinis-
tic input signals

o sðt;ptrueÞ ¼ F�1½Toi!oð!;ptrueÞoið!Þ�ðtÞ; (21)

where ptrue is the set of assumed true system
parameter values to be estimated from the analysis
and on which the estimation of residual equivalent
acceleration noise depends;
the superposition principle of signals and noise
holds true in the hypothesis of small motion and in
the absence of nonlinearities in the system, so that
the ‘‘experimental’’ data are simulated by

o exp ¼ os þ on: (22)

The underlying idea in parameter estimation is to excite
the system with proper high signal-to-noise-ratio (SNR)
signals so that the modeled parameters can be measured. A
typical injected bias is a series of sine waves of logarithmi-
cally increasing frequency, with integer number of cycles,
divided by gaps of 150 s to allow for system relaxation.
The sine stretches last 1200 s each. The amplitudes are
conservatively selected not to exceed 1% of the operating
range of the interferometer, corresponding to a maximum
sensed displacement of 1 �m, and 10% of the maximum
allowed force authority, corresponding to 10 �N of
thruster actuation and 0.25 nN of capacitive actuation.
The biases are parametrized in Table V and referred to as
the standard input signals used for the rest of the analysis.
Data are simulated at 10 Hz and decimated to 1 Hz to

ease data processing. During the mission, data will be
collected at a sample rate between 1 and 10 Hz, depending
on the experiment and available down-link bandwidth. The
simulation of the first experiment, with injection of the oi;1
signal of Table V, is shown in Fig. 9. The response of the
system in o1 is approximately equal to oi;1, except at high
frequency where there is a modest gain due to the particu-
lar shape of the first diagonal element of the transfer
function at that frequency. A residual signal in o12 of
absolute peak �4� 10�8 m is also visible and due to

TIME DOMAIN MAXIMUM LIKELIHOOD PARAMETER . . . PHYSICAL REVIEW D 85, 122004 (2012)

122004-11



dynamical cross-talk. As said before, the gaps allow for
system relaxation, particularly at high frequency.

The simulation of the second experiment, with injection
of the oi;12 signal of Table V, is shown in Fig. 10. The

response of the system in o12 is evidently phase delayed to
oi;12. At high frequency, the very low gain of the transfer

function almost suppresses the signal. Since the transfer
from oi;12 to o1 is negligible, in this experiment, o1 has

signal contribution completely hidden by noise. For this
reason, during the mission, the o1 readout will serve as a
useful sanity check for a first understanding of the model.

VI. SYSTEM IDENTIFICATION

During the mission, noise runs will be used to character-
ize the noise itself and estimate the total equivalent input
acceleration. The estimation of the total equivalent accel-

eration is possible if LPF is properlymodeled. For this in the
various experiments, signals will be injected along different
degrees of freedom to study the response of the system.
Along the optical axis x, LPF will be characterized giving,
as a first approximation, the nominal dynamics. Instead,
along others degrees of freedom, LPF will be characterized
in terms of the many cross-talk contributions arising from the
dynamical couplings, the imperfections in the sensing con-
version, and the imperfections in the actuation.
This section handles the general problem of estimating

the LPF parameters modeled as a MIMO dynamical sys-
tem, where different inputs enter into the system and
produce a response in different outputs. For the sake of
simplicity, only the two experiments introduced above—
the characterization of the nominal dynamics along x—are
considered for the rest of the paper, bearing in mind that the
method is general enough to handle more sophisticated
experiments, like the cross-talk from other degrees of free-
dom to x. An example would be the identification of the xy
cross-talk, in which guidance or force bias signals are
injected, in turn, along y1, y2, �1, �2, and �SC to study
the response along the optical axis—the focus of future
investigations.
Finally, this section develops and validates the estima-

tion procedures on the two most important experiments
described in the previous section. It also shows the appli-
cation to a couple of nonstandard scenarios which may
happen during the real LPF mission.

A. Review of the problem

The experimental data (either simulated or from the
mission) can be modeled superimposing deterministic sig-
nals with noise

o exp ¼ os þ on; (23)

FIG. 9 (color online). Experiment 1 synthetic data. An injec-
tion of sine-wave signals lasting for almost 3 hours into the first
controller guidance oi;1 produces a different response in the two

interferometer readings. The response in o1 is approximately
equal to oi;1 (dashed line), except at high frequency where there

is a modest gain. A residual signal in o12 of absolute peak 4�
10�8 m is due to dynamical cross-talk (see inset at the left
bottom side). Gaps between two cycles of injection allow for
system relaxation (see inset at the right top side).

FIG. 10 (color online). Experiment 2 synthetic data. An injec-
tion of sine-wave signals lasting for almost 3 hours into the
second controller guidance oi;12 produces a different response in
the two interferometer readings. The response in o12 is evidently
phase delayed to oi;12. At high frequency, the very low gain of

the transfer function almost suppresses the signal (see inset). The
o1 data channel has negligible contribution hidden by the noise.

TABLE V. Controller guidance signals injected as biases for
system identification. The sine stretches last 1200 s each and are
separated by gaps of 150 s. The sine waves perform an integer
number of cycles, from 1 to 64. The amplitudes are selected to
not exceed 1% of the operating range of the interferometer and
10% of the maximum force authority.

oi;1 for Experiment 1 oi;12 for Experiment 2

f [mHz] a [�m] f [mHz] a [�m]

0.83 1.0 0.83 0.80

1.7 1.0 1.7 0.48

3.3 1.0 3.3 0.19

6.6 1.0 6.6 0.088

13 0.59 13 0.096

27 0.28 27 0.18

53 0.14 53 0.46
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where on is the output noise with cross PSD matrix Sn and

o sðt;pÞ ¼ F�1½Toi!oð!;pÞoið!Þ�ðtÞ (24)

are the so-called template signals obtained by injecting
bias guidance signals oi into the system modeled by the
transfer matrix Toi!o.

It is useful to think that the experimental data depends
on the true parameter values

o exp ¼ oexpðt;ptrueÞ; (25)

which need to be estimated from fitting procedures. In the
case of simulated experiments, the true values are exactly
those used in data generation. In the case of real mission
experiments, the true values are actually those giving the
best possible description of the data—the one that perfectly
subtracts the deterministic signals—hence recovering the
instrumental noise shapes.

In the same way, the observed noise (either simulated or
from the mission) depends on the parameter values

o n ¼ onðt;ptrueÞ (26)

but can be considered constant with respect to the parame-
ter values for the time scale of an identification experiment
where only high SNR signals will be injected.

The scope of parameter estimation is to recover the
best possible description of the experimental data. If the
residuals between the experimental data and the modeled
template signals are defined by

o r ¼ oexp � os; (27)

the best possible description of the experimental data is
given by

o rðt;pestÞ ’ onðt;ptrueÞ; (28)

implying that the residuals evaluated at the estimated
parameter values pest recover the true instrumental noise.

B. Estimation method

LPF is a MIMO dynamical system for which each
experiment has a unique set of meaningful parameters.
Hence, for two generic experiments, two sets of parameters
can be independently determined. Sometimes a subset may
be shared between the two; sometimes there could be
parameters which can be estimated by only a particular
experiment. Moreover, each experiment has multiple read-
outs sensitive to different parameters.

The first approach is to build an information-weighted
average [20] of different parameter estimates coming from
all readouts and experiments. If pij are the parameter

estimates of the ith experiment and jth readout, the corre-
sponding Fisher information matrix [28]

I ij ¼
Z

rpo
ðijÞ
r ð!;pestÞ�SðijÞ

n ð!Þ�1rpo
ðijÞ
r ð!;pestÞd!;

(29)

where SðijÞ
n is the noise PSD of ith experiment and jth

readout, oðijÞr is the corresponding vector of residuals, rp

is the gradient with respect to the parameters, and � is the
conjugate transpose. The final combined parameter esti-
mates are given by

p ¼ I�1
XNexp

i¼1

XNo

j¼1

I ijpij; (30)

where Nexp is the number of experiments and No the

number of readouts per experiment assumed the same
across the experiments. The combined Fisher information
matrix is

I ¼ XNexp

i¼1

XNo

j¼1

I ij: (31)

Notice that the estimates pij may have different dimension

depending of the ith experiment and jth interferometric
readout; the same happens for the corresponding informa-
tion matrices. The issue can be easily solved by inserting
zeroes where there is no information.
An example can readily show that the definition of

Eq. (30) is not robust. In fact, suppose that the estimation
of the system parameters is performed independently on
each readout and one of those parameters has a biased
value for an inaccuracy of the transfer matrix model.
Therefore, the information matrix for that estimate is
biased, and the combined one in Eq. (31) is as well. The
numerical inversion in Eq. (30) inexorably amplifies that
bias to the combined parameter estimates. To overcome the
problem, one could try removing the failing estimates
(which is possible only if one has good indication of
what the real values are, for example, from ground mea-
surements or previous independent experiments), but in
doing so, information and precision would definitely be
lost.
The only solution is to attack the problem by a complete

MIMO approach where the poor information coming from
the biased model of a readout is continuously compensated
by the others as the optimization goes on. One other
advantage is that a joint information can likely remove
or, at least, reduce the effect of parameter degeneracies.
The MIMO-multiexperiment joint log-likelihood of the

system is a generalization of the standard definition [28]
and is given by

�2ðpÞ ¼
Z

orð!;pÞ�Snð!Þ�1orð!;pÞd!; (32)

where

o rð!;pÞ ¼ oexpð!Þ � Toi!oð!;pÞoið!Þ (33)
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are the residuals between the experimental data oexp and

the modeled system response. oi are the controller biases,
Toi!o is the transfer matrix depending on all system

parameters p (stiffness constants, sensing cross-talk,
etc.), and Sn is the cross output noise PSD matrix assumed
constant to the system parameters. For two experiments
and two interferometric readouts each, oi is a 4-vector, null
in the second and third element, since the injection is in oi;1
(first experiment) and oi;12 (second experiment); Toi!o is a

block diagonal 4� 4 matrix replicating the same 2� 2
matrix; Sn is a 4� 4 matrix of cross PSDs between differ-
ent readouts and experiments; and oexp is a 4-vector of all

experimental readouts.
Assuming that all readouts are sampled at the same rate

and last for the same duration, the overall number � of
degrees of freedom for the problem is defined as

� ¼ Nexp � No � Ndata � Np; (34)

whereNexp is the number of experiments; No is the number

of readouts per experiment (assumed the same across the
experiments); Ndata is the number of data points per read-
out; Np is the dimension of the parameter space. For

example, �� 4� 104 for two experiments, two readouts
each, lasting for about 3 hours and sampled at 1 Hz. For the
rest, if not otherwise stated, the reduced log-likelihood
�2=� will be used in place of the standard definition, as
its expectation value is 1.
The MIMO-multiexperiment Fisher information

matrix for the parameter estimates pest is the local curva-
ture of the log-likelihood surface around the minimum and
is given by

I ¼
Z

oið!Þ�rpToi!oð!;pestÞ�Snð!Þ�1rpToi!oð!;pestÞoið!Þd!; (35)

where rp is the gradient with respect to all 7 system
parameters. As above, if Toi!o is a 4� 4 matrix,
then rpToi!o is a 7� 4� 4 tensor, and the information
is a 7� 7matrix as required. The very high SNR regime of
the signals in Figs. 9 and 10 assures that the linear approxi-
mation of Eq. (35) holds true and no corrective terms arise
as pointed out by Ref. [29] and more recently by Ref. [30].
As the inverse of the information matrix provides the
estimated covariance matrix, the validity of the linear
approximation is checked a posteriori in Sec. VI E by
inspecting the statistics of a Monte Carlo simulation.

C. Search algorithm

The joint log-likelihood (32) for two experiments, two
readouts each, is implemented in time domain by means of
the FFT/inverse FFT time series. The relevant iteration
steps of the process taking to the final estimates of the
system parameters, in loop of increasing accuracy, are

(1) the whitening filters are estimated on a long noise
run, as described in Appendix B;

(2) the interferometric readouts of each experiment are
whitened;

(3) the templates are generated according to Eq. (24) for
the current parameter values;

(4) the templates are whitened;
(5) the log-likelihood is evaluated, i.e., ‘‘models fit the

data’’, for the current parameter values;
(6) the parameter values are updated according to the

adopted optimization scheme.

From the optimization viewpoint, the log-likelihood is
named the merit function, i.e., the one being minimized
as the parameter values are updated. Figure 11 shows a
sketch of the whole process of system identification. The

data production provides for the noise run and the experi-
ments, with both interferometric readouts and injected
biases. Instead, the modeling provides for the proper trans-
fer matrix being used for simulating the template signals.
Finally, the data analysis concerns the estimation of the
whitening filters and the algorithm for the log-likelihood
minimization.
The algorithm performs a log-likelihood minimization

by taking advantage of the most recent developments in
numerical nonlinear optimization [27]. During this work,
an investigation of different optimization algorithms was
carried out. Nonstandard schemes like the simulated an-
nealing, genetic algorithms, and the pattern search, with or
without a multistart (an initial Monte-Carlo-like explora-
tion of the parameter space in which the initial most likely

FIG. 11. Sketch of the system identification process for the
two simulated experiments along the optical axis. Noise run and
experiments pertain to data production. The modeling provides
for the transfer matrix being used for simulation and analysis.
For system identification, data analysis comprises the estimation
of whitening filters and the log-likelihood optimization. The
estimated parameters are output together with their covariance
matrix.
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points are taken into account for further processing), were
considered for the purposes of system identification. They
were also compared to a mixed strategy employing more
standard and widely used optimization algorithms applied
in sequence:

(1) the preconditioned conjugate gradient search (alter-
natively, the quasi-Newton method) explores the
parameter space to large scales;

(2) the derivative-free simplex makes it possible to
reach the required numerical accuracy.

The key advantage of mixing different approaches is that
the global structure of the parameter space can be explored
while keeping the numerical accuracy. Such an investiga-
tion proved that for the LPF system identification, non-
standard schemes have comparable performances with
respect to the one proposed above which is assumed for
the rest. The optimization is numerically controlled and
stopped until either the function tolerance or the average
parameter tolerance meets the requirement of 1� 10�4.
The final parameter estimates are output from the fitting
tool, together with the estimated covariance matrix, ob-
tained by inverting the Fisher information matrix (35)
around the minimum.

D. ESA simulator

A very important test bench on both system modeling
and validation of the estimation techniques is the analysis
of realistic data, closer to the actual LPF mission than the
ones simulated and shown in this work. A real LPF offline
simulation environment, provided by ESA and written
by ASTRIUM has given the chance to promptly analyze
the data as they were realistically produced during the
mission. The simulator is a state-space representation of
a 3-dimensional LPF model written under the MATLAB and
SIMULINK [31] environments. It contains the most relevant

disturbances and noise sources, the same actuation algo-
rithms for drag-free, electrostatic suspension and attitude
controls embedded in LPF, all couplings within the
dynamics along the optical axis and between different

degrees of freedom. The simulator was written to mainly
check all procedures, the mission timeline, the experi-
ments, and to validate the noise budget.
Several extended data-analysis operational exercises

were performed in the past 2 years. Parameter estimation
had a central role, and data production was strictly sepa-
rated from data analysis. The operational exercises
culminated with the comparison of the three parameter-
estimation methods: a linear fit with singular value decom-
position, a Markov-chain Monte Carlo method, and the
one described in Ref. [8]. The final conclusion of the
activity on the same exercise is recently described in
Ref. [32]. The three methods are apparently in good agree-
ment with each other, particularly the first and third ap-
proaches, but an investigation of the fit residuals, like the
one in Fig. 18, shows a mismatch in the first experiment
between data and model at high frequency. The fact is
confirmed by a statistical comparison between the residual
PSDs to a noise-only measurement with a very general and
model-independent method based on the Kolmogorov-
Smirnov test [33].

E. Monte Carlo validation

The aim of this section is to statistically validate the
estimation method presented so far. A Monte Carlo simu-
lation of 1000 different noise realizations is used to check
for consistency of the method. The estimation is identically
repeated at each step, enabling fine tuning and the study of
the statistics for every system parameter.
Table VI reports on the comparison between the mean

best-fit values and the true values: the accordance is at the
level of, at most, 2 standard deviations and demonstrates
that the estimation method is statistically unbiased.
Secondarily, it shows the best-fit standard deviations, i.e.,
the parameter fluctuations due to noise, compared to the
mean expected standard deviations (the mean fit errors).
Figure 12 shows a more in-depth analysis of all parame-

ter statistics. The accordance between the sample statistics
of the Monte Carlo simulation and the scaled theoretical
Gaussian probability density function (PDF) (evaluated at

TABLE VI. Monte Carlo validation of 1000 independent noise realizations on which parameter estimation is repeated identically at
each step. The mean best-fit values are compatible with the true values within 2 standard deviations. The terms in brackets are the error
relative to the right-most digit. The mean expected standard deviations (estimated from the fit) and the best-fit standard deviations are
approximately the same order of magnitude. The mean log-likelihood is �2 ¼ 0:96 with � ¼ 79993.

Parameter True Mean best-fit Best-fit standard deviation Mean expected standard deviation

!2
1 [10�6 s�2] �1:303 �1:303006ð7Þ 2� 10�4 1� 10�3

!2
12 [10�6 s�2] �0:698 �0:697998ð6Þ 2� 10�4 5� 10�4

S21 [10�4] 0.9 0.90004(9) 3� 10�3 4� 10�3

Adf 1.003 1.00297(1) 4� 10�4 4� 10�4

Asus 0.9999 0.9999001(1) 4� 10�6 2� 10�5

�t1 [s] 0.06 0.059995(3) 9� 10�5 3� 10�4

�t12 [s] 0.05 0.05000(3) 8� 10�4 1� 10�3
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the sample mean and standard deviation) is self-evident
and demonstrates that: (i) the estimation is statistically
unbiased, and (ii) the parameters are Gaussian-distributed.

Analogously, Fig. 13 shows the statistics for the esti-
mated variances. Theory prescribes that the variance must
be �2-distributed, but for � ¼ 79993, the �2 distribution
tends to a Gaussian distribution with very good approxi-
mation, as is clear from the plots.

Appendix C also discusses some other interesting
features of the Monte Carlo statistics, like the parameter
correlation, related to the rotation of the log-likelihood
paraboloid principal axis around the minimum, and
the scatter of the estimation chains due to the noise
fluctuation.

The final, and most remarkable check, is the comparison
between the fit �2 log-likelihood and the one calculated on

pure noise data contained in Fig. 14. It is worth stressing
that both the fit and the noise �2 showed agreement be-
tween each other, but they were both positively skewed in a
preliminary Monte Carlo simulation. The following facts
explain why. Appendix B discusses the practical method to
implement the diagonalization of the noise covariance
matrix with its main limitation. This consists of the impos-
sibility of filtering out the lowest frequencies, due to the
finiteness of the data stretches from which whitening filters
are derived and which causes the skewness. Transparently,
the application of a high-pass filter to the data has solved
the issue. The comparison in the plot provides for an
important twofold test: on one side, the parameter varian-
ces are statistically distributed as the fit �2 log-likelihood,
as required; on the other, the fit �2 log-likelihood is in
agreement with the noise �2 log-likelihood, showing that

(a) (b) (c)

(d) (e) (f) (g)

FIG. 12 (color online). Monte Carlo validation of 1000 independent noise realizations on which parameter estimation is repeated
identically at each step. The plots show the statistics for all parameter estimates (a)–(g). The scaled Gaussian PDF is evaluated at the
sample mean (dashed vertical lines) and sample standard deviation (half horizontal bars), which are compared to the true values (solid
vertical lines).

(a) (b) (c)

(d) (e) (f) (g)

FIG. 13 (color online). Monte Carlo validation of 1000 independent noise realizations on which parameter estimation is repeated
identically at each step. The plots show the statistics for all parameter variances (a)–(g). The scaled Gaussian PDF is evaluated at the
sample mean and standard deviation.
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the estimation method has statistically suppressed the de-
terministic signals and recovered the noise statistic with no
extra bias.

F. Nonstandard scenario: non-Gaussianities

This section is devoted to showing the impact of noise
non-Gaussianities on parameter estimation. The main real-
istic behavior of experimental noise is the possible pres-
ence of outliers; consequently, the sampling distribution of
the data may show some prominent tails. An example of
such outliers is the manifestation of glitches, very short
noise transients due to anomalous response in the readout/
circuitry.

Given the non-Gaussian components in the noise, the
log-likelihood defined so far is no longer well-behaved.
Because of the intrinsical assumption of Gaussianity, it
usually overweighs the outliers, and a systematic error
may arise. A standard approach, named local L estimate
[27], requires the generalization of the definition of log-
likelihood. The idea is to properly take care of the outliers
by regularizing the usual square of whitened residuals
with other similar definitions by means of a weighting
function �,

�2 ¼ X
i

�ðrw;iÞ; (36)

where, as an example, three possible choices (the squared,
absolute, and logarithmic deviations) are considered:

�ðrw;iÞ ¼

8>><
>>:
r2w;i mean squared dev:

jrw;ij mean absolute dev:

logð1þ r2w;iÞ mean logarithmic dev:

; (37)

corresponding to the cases of data distributed according to
Gaussian, log-normal, and Lorentzian distribution, respec-
tively. The subscript i is a generalized index counting the
data available from all experiments and interferometric
readouts, and rw;i is the whitened time series of residuals.

Figure 15 compares the three weighing functions for re-
siduals out to 5 standard deviations. As is clear, the squared
deviation overweighs the outliers. The absolute deviation
gives a slightly better weight at high deviations, but per-

forms poorly at low deviations. The logarithmic deviation
has much more flexibility as it behaves like the squared
deviation at low deviations and performs better than the
absolute deviation.
The method can be successfully applied to data with

glitches. Noise glitches are unpredictable high-frequency
noise transients mostly due to failures in the circuitry. Such
outliers usually fall well beyond 3 standard deviations and
produce an excess at the tails of the statistic. Since the
output of the interferometer might be subject to similar
phenomena, this section presents the results of the inves-
tigation of a realistic experiment containing glitches. Such
transients are modeled as sine-Gaussian functions,

oglðtÞ ¼ a sin½2	f0ðt� t0Þ� exp
�
�ðt� t0Þ2


2

�
; (38)

where the glitch parameters span a wide (uniformly distrib-
uted) range of values. In particular, the glitch frequency, f0,
covers the whole bandwidth ð10�4 � 0:45Þ Hz; the injec-
tion time, t0, is distributed all along the time series; the
characteristic time, 
, giving the typical duration of
the pulse is (1–2) s; and the amplitude, a, falls outside the
Gaussian statistic by (3–20) noise standard deviations.
Moreover, the number of glitch injections is fixed as a

FIG. 15 (color online). Comparison of the three weighing
functions of Eq. (37) for the proper weighing of outliers in the
data. The logarithmic deviation is the most accurate as it behaves
like the squared deviation at low deviations and performs better
than the absolute deviation.

FIG. 14 (color online). Monte Carlo validation of 1000 independent noise realizations on which parameter estimation is repeated
identically at each step. The plots show the statistic for (a) the fit �2 log-likelihood and (b) the noise �2 log-likelihood. The agreement
between the two demonstrates that the deterministic signals are statistically suppressed out of the data.
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fractional part of the whole data series, conventionally
choosing fgl ¼ Ngl=Ndata ¼ 1%, since higher values are

very unlikely. Notice that this value represents only the
number of injections: the actual fraction of corrupted data
is the order of 3E½
�fgl ’ 5%.

Glitchy noise is readily produced by coloring a white,
zero-mean, unitary standard deviation input time series, as
in Sec. IV, corrupted by random injections of glitches.
Figure 16 shows how glitches appear in the interferometric
differential readout and in the estimated PSDs, compared to
the original noise stretches. The effect of glitches is that the
PSD of the simulated noise scales linearly with the fre-

quency, up to 4� 10�9 mHz�1=2 and 6� 10�11 mHz�1=2

around 0.2 Hz for the first and differential readout, respec-
tively. This excess noise sums up to the original one and is
shown as high-frequency components. Obviously, the noise
statistic contains an excess at the tails. For example, o1 has
an excess kurtosis of�19, compared to the original one of
�9� 10�3. No significant difference in skewness is de-
tected since the statistic does not loose symmetry with the
glitch injections.

Whitening filters are derived from the glitchy noise
stretches with the same procedure described in
Appendix B. However, since the whitening process works
assuming stationarity, glitches are not filtered out from the
data.

Table VII shows the results of three different parameter
estimations with the definitions of the weighting functions
in Eq, (37). The most conservative least square estimator

provides overestimated errors since they scale as � ffiffiffiffiffiffi
�2

p
.

The absolute and logarithmic deviations provide better
statistics and lower errors, but the first gives biased esti-
mates of Asus, �t1, and �t12, and the last one a slightly
biased estimate of S21. The analysis of residuals demon-
strates that the three methods recover the noise shapes and
are in agreement with each other, so the systematic errors
are only in the estimated parameters. These estimators are
also 30% and 9% faster than the Gaussian (mean squared
deviation), as the outliers have less influence on the esti-
mation chains.
By inspecting the results, it turns out that there is no

absolute rule which can be applied when dealing with
glitches. However, from the differences between the esti-
mates it is possible to infer the sensitivity of each single
parameter to glitches. For example, adopting the ratio
between the biases as the a posteriori criterion for com-
paring two methods, it tends to one if that parameter is
not sensitive to glitches; otherwise, it tends to a very
small or very large number. In view of this consideration,
the comparison between the mean squared deviation
and the mean logarithmic deviation gives that S21
is the most sensitive parameter, whereas �t12 is the least.

(a) (b)

FIG. 16 (color online). Robustness to a nonstandard scenario: non-Gaussianities. (a) simulated original and glitchy noise for o12;
(b) PSDs of the simulated original and glitchy noise for o1 and o12. The level of data corruption is evident and glitches appear as high-
frequency bumps around 0.2 Hz.

TABLE VII. Robustness to a nonstandard scenario: non-Gaussianities. The comparison between three parameter estimations with
the three definitions in Eq. (37). � ¼ 79193. The term in brackets is the error relative to the right-most digit. In curly brackets, the bias
(absolute deviation from the real value in units of standard deviation) for each estimate.

Parameter Real

Best-fit

(mean squared deviation)

Best-fit

(mean absolute deviation)

Best-fit

(mean logarithmic deviation) Guess

�2 ¼ 10 �2 ¼ 2:1 �2 ¼ 0:95

!2
1 [10�6 s�2] �1:32 �1:320ð1Þ f0:061g �1:3188ð6Þ f2:0g �1:3192ð4Þ f2:0g �1:3

!2
12 [10�6 s�2] �0:68 �0:6798ð7Þ f0:29g �0:68000ð3Þ f0:011g �0:6804ð2Þ f1:8g �0:7

S21 [10�4] 1.1 1.10(2) f0:074g 1.113(7) f1:8g 1.116(5) f3:4g 0

Adf 1.01 1.011(3) f0:29g 1.010(1) f0:23g 1.0109(8) f1:2g 1

Asus 0.99 0.99000(5) f0:035g 0.98959(2) f20g 0.99001(1) f0:99g 1

�t1 [s] 0.1 0.100(3) f0:045g 0.090(1) f8:3g 0.1007(8) f0:90g 0

�t12 [s] 0.1 0.098(5) f0:36g �0:0290ð2Þ f58g 0.098(2) f1:2g 0
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Starting from the fact that the three methods give the
same results for purely Gaussian noise, a proposed recipe is
the following:

(1) apply the conservative approach (the ordinary mean
squared deviation) directly to corrupted time series
and try with different estimators (mean absolute
deviation, mean logarithmic deviation, etc.);

(2) start removing some outliers, giving them negligible
weight;

(3) redo the analysis with all estimators;
(4) check for convergence and agreement between the

estimators.

The overall process can be actually viewed as a reweighing
analysis providing for robust uncertainties and, at the
same time, the removal of outliers in a step-by-step smooth
readjustment. Even though it would be possible, in
principle, to clean up the data just before the estimation,
in that case, the results would likely be dependent on
the statistical criterion used for such cleaning. Even though
it is beyond the scope of this paper to implement the
idea, it is worth observing that the two main advantages
of the preceding recipe are its robustness in definition
and the fact that data polishing is smooth and model-
independent.

G. Nonstandard scenario: underperforming actuators
and underestimated couplings

System identification has a key role in compensating the
SC jitter and the TM couplings. Even in the unlikely (but
possible) situation of underperforming actuators or under-
estimated force couplings, it is still possible to retrieve the
actual parameter values and allow for a precise estimation
of the total equivalent acceleration noise without loosing
sensibility and getting into systematic errors. The impact
on the estimation of the total equivalent acceleration noise
will be illustrated in Sec. VII.

To introduce the problem, suppose that the predicted
TM couplings are !2

1 ¼ �1:3� 10�6 s�2 and !2
12 ¼

�0:7� 10�6 s�2, and during the LPF mission:

(1) the actual TM couplings are about 2 times the
predicted ones, due to unexpected/unmodeled
stronger forces, like !2

1 ¼ �3� 10�6 s�2 and
!2

12 ¼ �2� 10�6 s�2;
(2) the thruster and capacitive actuators unfortunately

misfunction, due to both a breakdown of one or
more thruster clusters and a loss of efficiency in
the capacitive actuators on the second TM; this
situation can be described by gains sensitively lower
than one, like Adf ¼ 0:62 and Asus ¼ 0:6;

(3) the interferometer introduces an extra cross-talk,
S21 ¼ 1:5� 10�3, 10 times the expected one S21 �
1� 10�4.

In this very unfortunate situation, system identification
(see Table VIII) allows for the estimation of the true
values within 1 standard deviation from the true values,
so maintaining precision, even though the optimizations
starts from initial guesses which are typically �103

standard deviations away, so guaranteeing accuracy too.
Figure 17 elucidates much more the results, showing

the overall performances of the estimation. The �2 is
reduced from 1� 105 to �1—the required optimum—
within the given tolerances (set to 1� 10�4 in both
log-likelihood and parameter values), while keeping both
accuracy and precision. The figure reports two examples
of estimation chains (for !2

1 and !2
12), showing the

correlation with the big jumps in the �2 chain and how
the parameters saturate to the optimum values. The esti-
mation, as already said, is divided into two phases: a
gradient-based search, spanning the global structure of
the parameter space, and a simplex search, improving the
final accuracy.
The final and most important discussion is the analysis

of residuals summarized in Fig. 18 for both identification
experiments and interferometric readouts. The estimated
PSDs of both initial and best-fit residuals are compared
to the PSDs of an independent noise run. It is clear that
the deterministic signals are completely subtracted from the
data, hence recovering the noise shapes for all experiments
and readouts. The improvement is mostly evident at low

TABLE VIII. Robustness to a nonstandard scenario: underperforming actuators/underesti-
mated couplings. Initial estimates (guess) at �2 ¼ 1:3� 105, � ¼ 79193; best-fit values at �2 ¼
0:99. The term in brackets is the error relative to the right-most digit. In curly brackets, the bias
(absolute deviation from the real value in units of standard deviation) for each estimate.

Parameter True Best-fit Guess

!2
1 [10�6 s�2] �3 �2:9998ð2Þ f1:1g �1:3 f7:8� 103g

!2
12 [10�6 s�2] �2 �2:0000ð1Þ f0:32g �0:7 f1:0� 104g

S21 [10�3] �1:5 �1:4998ð1Þ f0:55g 0 f4:7� 103g
Adf 0.62 0.61994(8) f0:77g 1 f4:9� 103g
Asus 0.6 0.599990(8) f1:3g 1 f5:1� 104g
�t1 [s] 0.6 0.6013(7) f1:8g 0 f8:4� 102g
�t12 [s] 0.4 0.398(2) f0:95g 0 f2:3� 102g
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frequency: foro12 the residuals are suppressed by�4 orders
ofmagnitude around 1mHz. The same happens for o1 in the
first experiment where the improvement is of�2 orders of
magnitude. Only o1 in the second experiment shows no
improvement since the signal is negligible.

VII. ESTIMATION OF TOTAL EQUIVALENT
ACCELERATION NOISE

This section justifies the efforts in developing the tech-
niques introduced so far with all tests and validation runs,

(a)

(b) (c)

FIG. 17. Robustness to a nonstandard scenario: underperforming actuators/underestimated couplings. The estimation performances
relative to the log-likelihood minimization (a) from �1� 105 to the optimum �1 and two examples of estimation chains for (b) !2

1

and (c) !2
12 showing the correlation with the big jumps in the �2 chain. A preliminary global gradient search is followed by a local

simplex. The process lasts for 1636 iterations and stops when the required tolerance is met.

(a) (b)

(c) (d)

FIG. 18 (color online). Robustness to a nonstandard scenario: underperforming actuators/underestimated couplings. Analysis of
residuals for all simulated identification experiments and interferometric readouts. Initial and best-fit residuals are compared to the
expected noise shapes estimated from an independent run. For o12, the improvement in both experiments (b) and (d) is of�4 orders of
magnitude around 1 mHz; (a) for o1 in the first experiment is 3 orders of magnitude; (c) contains no signal.
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showing the impact of system identification on the estima-
tion of the total equivalent acceleration noise. As said
throughout this paper, the main objective of the LPF mis-
sion in view of a real GW astronomy with spaced-based
detectors is the characterization of the Doppler link of
LISA as the fundamental spacetime meter in terms of
equivalent differential acceleration. Even if LPF is differ-
ent in design with respect to LISA—no faraway optical
measurement between two SCs is actually implemented—
yet the principle and, most of all, the performances in
sensitivity can be extrapolated and gather more confidence
in the scientific scopes of any spaced-based GW detector.

Assessing the performance in sensitivity as equivalent
input acceleration noise is a very effective way to put
dynamics, sensing, and control on the same footing. This
can be achieved by means of the � operator of Sec. III C,
connecting interferometric displacement readouts to total
equivalent acceleration and, at the same time, compensat-
ing for TM couplings, SC jitter, and sensing cross-talk.

Suppose that Sn;oð!;ptrueÞ is the measured interferomet-

ric noise PSD. Then, the estimated total equivalent accel-
eration noise PSD is given by

Sn;fð!;pestÞ ¼ �ð!;pestÞSn;oð!;ptrueÞ�ð!;pestÞ�; (39)

where �ð!;pestÞ models the transfer from interferometric
displacement readouts to total equivalent acceleration and
pest are the parameter estimates as obtained by system
identification. It is worth noting that if Sn;o was assumed

constant to the parameter values in first approximation, the
transfer to total equivalent acceleration would anyhow
couple the output noise with the dynamics so that the
estimated total equivalent acceleration noise becomes ex-
plicitly dependent on the parameter values. This shows that
parameter estimation serves not only for system identifica-
tion, but also for the actual identification of the total
equivalent acceleration noise.

Furthermore, suppose that pest ’ ptrue þ �p, with �p
the parameter biases being much larger than the statistical
uncertainties on pest. It is easy to show that the parameter
biases propagate to the differential operator�est ’ �true þ
��, where �true ¼ �ð!;ptrueÞ and �est ¼ �ð!;pestÞ.
Systematic errors found in the parameter values produce
systematic errors in the recovered total equivalent accel-
eration noise

�Sn;f ’ ��Sn;o�
� þ Sn;o��

�; (42)

where the subscript ‘‘true’’ is dropped out for clearness. As
pointed out in Ref. [34], the statistical uncertainty on the
parameter values are masked by the statistical uncertainty
on the estimated spectrum. Despite this, systematic errors
in the estimated parameters can fall well outside the con-
fidence levels of the optimal spectrum and show them-
selves as not mere excess noise, but producing really
different noise shapes. Hence, it is expected that the esti-
mation of the total equivalent acceleration noise is biased

if the parameter values are not correctly assessed from
system identification.
To demonstrate the impact of system identification on

the estimation of the total equivalent acceleration noise, a
very long noise run, �6 days, is simulated with the same
procedures of Sec. IV, i.e., by coloring a sequence of white
Gaussian input time series with cross-correlating noise
shaping filters. The interferometric displacement noise
model is derived in a nonstandard configuration of LPF,
as in Sec. VIG, namely, in the case of stronger-than-
expected TM couplings, malfunctioning actuators, and a
higher sensing cross-talk. In this case, the estimation of the
total equivalent acceleration noise with naively guessed
parameter values will surely contain systematic errors.
The estimation of the total equivalent acceleration noise

is readily performed on the multichannel interferometric
run with a scheme described in details in Refs. [18,34] by
applying a time-domain version of the � operator of
Sec. III C. The issues connected to numerical derivatives
in LPF are extensively discussed and solved in Ref. [35].
As said, system identification effectively helps in the cali-
bration of the operator. In support of the statement, the
numerical estimation of the total equivalent acceleration
noise is performed assuming three different parameter sets
which can be found in Table VIII:
(1) the initial guess values, as it was without a prelimi-

nary system identification: !2
1 ¼ �1:3� 10�6 s�2,

!2
12 ¼ �0:7� 10�6 s�2, S21 ¼ 0, Adf ¼ 1, Asus ¼

1 (typically�104 standard deviations away from the
real values);

(2) the best-fit values, as it was with a preliminary
system identification, i.e., after having calibrated
the differential operator: !2

1 ¼ �2:9998ð2Þ �
10�6 s�2, !2

12 ¼ �2:0000ð1Þ � 10�6 s�2, S21 ¼
�1:4998ð1Þ � 10�3, Adf ¼ 0:61994ð8Þ, Asus ¼
0:599990ð8Þ;

(3) the true values, used for consistency checks: !2
1 ¼

�3� 10�6 s�2, !2
12 ¼ �2� 10�6 s�2, S21 ¼

�1:5� 10�3, Adf ¼ 0:62, Asus ¼ 0:6.

The result of the analysis is contained in Fig. 19, showing
the total equivalent differential acceleration noise, both
numerically estimated and modeled, for the three different
cases.
First, the agreement between modeled and estimated

total equivalent acceleration noise PSDs states that:
(i) the generation of the interferometric noise is accurate
to the assumed models at least to within the statistical
uncertainty of the spectra; and (ii) the numerical estimation
of the total equivalent acceleration in time domain is
accurately explained by the frequency-domain transfer
matrix from interferometric readouts to the total equivalent
acceleration.
Second, but more important, the total equivalent

acceleration noise estimated with a preliminary system
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identification completely overlaps the one of a hypothetical
estimation assuming the complete knowledge of the true
values. Therefore, it demonstrates that it is still possible to
meet the sensitivity requirements during underperforming
mission operations.

The observed systematic errors in the total equivalent
acceleration noise estimated without identification show
that system identification is strictly mandatory to avoid
such problems and guarantees the scientific objectives.
The systematic errors can be explained by the fact that
the naive initial guess values are sensitively different from
the true values. Since the operator is not calibrated on
fiducial parameter values, it is not effective in compensat-
ing, in turn, the SC jitter due to the thruster actuation noise,
the TM couplings, and the capacitive actuation noise. In
particular, around 50 mHz, the bump is the unsuppressed
thruster noise exceeding the interferometric o12 readout
noise: the effect is due to the uncalibrated drag-free
gain Adf . At low frequency and around 0.4 mHz, the
major contributions are the coupling forces between
the TMs and the SC (two contributions, accounting for
1:8� 10�13 m s�2, almost the whole noise budget) and the
capacitive actuation noise (7� 10�14 m s�2); the effect is
due to the uncalibrated stiffness constants !2

1 and !2
12 and

the suspension gain Asus.
The final improvement in the estimated total equivalent

acceleration noise with system identification is a factor 4
around 0.4 mHz and a factor 2 around 50 mHz in units offfiffiffiffiffiffiffiffiffiffi
PSD

p
. The conclusion is that without a preliminary system

identification—robust to nonstandard parameter values—
the performance of the mission and the characterization of

the total equivalent acceleration noise would seriously be
compromised.

VIII. CONCLUDING REMARKS

This work focused on the maximum likelihood estima-
tion in time domain of the key parameters modeling the
dynamics of TMs in the LPF mission. After introducing the
dynamical equations and a model for LPF, with its physical
parameters and their significance, we showed how to
handle the effect of the controller, measure all known
forces, including the control forces, and subtract them
from the data in order to provide an estimate of the residual
acceleration noise acting between the TMs—the scientific
objective of LPF.
We discussed our multiexperiment/multichannel ap-

proach as a method to reach the desired measurement
accuracy. We started the discussion with a Monte Carlo
simulation of different noise realizations, showing the
statistical consistency of the method at the level of parame-
ter statistics, variance statistics, and log-likelihood statis-
tics, all remarkably in accordance with the theoretical
expectations.
Considering the realistic possibility that our knowledge

of the system is not sufficient or the system is highly
underperforming, we tested the robustness against a couple
of nonstandard scenarios. In the first example, we explored
the situation in which the optical readouts are affected by a
non-negligible amount of non-Gaussianities: the manifes-
tation of glitches as failures in the electronic devices. The
result was that we are still able to estimate unbiased values

FIG. 19 (color online). Total equivalent differential acceleration noise numerically estimated on synthetic data and compared to
theoretical noise models obtained by a full projection of fundamental noise sources. The estimation of the total out-of-loop equivalent
acceleration can be performed either with a preliminary system identification or without it. The PSD estimated with a preliminary
system identification completely overlaps the one of a hypothetical estimation assuming the knowledge of the true parameter values.
The observed difference shows that a preliminary system identification is mandatory to avoid systematic errors in the reconstructed
total equivalent acceleration noise. The solid thinner lines indicate the reasons of such a discrepancy. Around 50 mHz, the bump is due
to unsuppressed thruster noise exceeding the interferometric o12 readout noise. At low frequency and around 0.4 mHz, the two major
contributions are the unsuppressed force couplings between the TMs and the SC and the capacitive actuation noise. Thanks to system
identification, an improvement in performance of a factor 4 at low frequency is evident.
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of the system parameters by identifying those most sensi-
tive to non-Gaussianities. We also proposed a method to
handle data corrupted by outliers in parameter estimation,
consisting of a step-by-step reweighing process. In the
second example, we examined a very unfortunate situation
in which the forces, coupling the TMs to the SC, are
stronger than expected, and the actuators (both the thrust-
ers and the capacitive suspensions) misfunction properly
due to hardware failures. Again, the result was that we are
able to estimate unbiased values of the system parameters
and recover the instrumental noise shapes with an evident
improvement in the fit residuals.

The same methodology was employed to analyze data
produced by a realistic LPF simulator in use at ESA during
operational exercises. The scope is to enter into a mission-
like routine, operating a system where many parameters
are unknown.

Finally, since the final goal of the LPF mission is the
characterization of the LISA arm in terms of differential
acceleration, we proved for the first time that the proposed
parameter estimation—and, in general, system identifica-
tion—is mandatory for the correct assessment of the dif-
ferential residual acceleration noise. Otherwise, systematic
errors may arise in the reconstructed acceleration noise,
having a profound impact on the GWastronomy in the low-
end LISA band.

APPENDIX A: DEMONSTRATION OF NOISE
NONSTATIONARITY

We demonstrate the validity of Eq. (20), i.e., that the
fluctuation of any of the system parameter produces non-
stationary noise. Expanding the noise around some nominal
parameter value p0, up to first order and computing the
variance of the interferometric noise, it reads

Var½o� ’ Var½o0� þ Var½o0�p� þ 2Cov½o0; o0�p�
¼ Var½o0� þ Var½o0��p2 þ 2Cov½o0; o0��p; (A1)

where Var½o0� and Cov½o0; o0� are the variance of the noise
first derivative and the covariance between the zeroth order
and the first derivative. So, for a zero-mean process with
finite second moment, it holds

Cov½o0; o0� ¼ E½o0o0� � E½o0�E½o0� ¼ E

�
1

2

@

@p
n2
�

¼ 1

2

@

@p
Var½n�: (A2)

Substituting this result back into Eq. (A1), Eq. (20) is finally
demonstrated.

APPENDIX B: WHITENING

The colored noise behavior of a typical LPF run makes it
mandatory to decorrelate the data used for system identi-
fication in order for a generic statistical estimator to be
unbiased. Consider, for example, a stationary noisy time
series oðtÞ with noise PSD Snð!Þ. The SNR of the signal
[28] can be recast as

�2 ¼
Z o�ð!Þoð!Þ

Snð!Þ d! ¼
Z

o�wð!Þowð!Þd!; (B1)

which can be viewed as the acting of the whitening filter

Wð!Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Snð!Þp

on oð!Þ to produce the whitened series
owð!Þ ¼ Wð!Þoð!Þ: (B2)

Here ‘‘whitened’’ is equivalent to saying that the noise
PSD of the filtered series is approximately frequency-
independent. The discrete time-domain version of the pre-
ceding involves the noise covariance matrix Cn

FIG. 20 (color online). Whitening of a simulated noise run. o1
and o12 are the two interferometer readings with PSD reported
on the basis of the scale on the left-hand side. o1;w and o12;w are

the whitened counterparts with PSD reported on the basis of the
scale at the right-hand side. They show how the whitening filters
can flatten the noise shapes. The convolution with a low-pass
filter of the data resampling from 10 to 1 Hz is the cause of the
drop around 0.5 Hz.

TABLE IX. Sample mean �, standard deviation � and higher moments, the sample skewness
�1 and the excess kurtosis �2, for the whitened data channels o1 and o12. Assuming Gaussian-

distributed data, the approximate standard deviations are �� ’ �=
ffiffiffiffi
N

p
, �� ’ �=

ffiffiffiffiffiffiffi
2N

p
, ��1

’ffiffiffiffiffiffiffiffiffi
6=N

p
, ��2

’ ffiffiffiffiffiffiffiffiffiffiffiffi
24=N

p
, with N the number of data samples.

Data � � �1 �2

o1;w 0:008� 0:003 0:970� 0:002 ð�5� 8Þ � 10�3 ð0� 2Þ � 10�2

o12;w �0:254� 0:003 1:002� 0:002 ð0� 8Þ � 10�3 ð3� 2Þ � 10�2
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�2 ¼ oTC�1
n o ¼ oTW�

�1
n oW; (B3)

which again can be viewed as the acting of the whiten-
ing filter W, an orthogonal matrix satisfying C�1

n ¼
WT��1

n W [36], on o to produce the whitened unit-variance
series

oW ¼ Wo: (B4)

As above, whitened means that the process diagonalizes
the covariance matrix, so that �n effectively becomes an
identity matrix.
For simulation and analysis purposes, whitening a time

series is formally the inverse process of noise generation.
Whitening filters are obtained by performing a fit in the z
domain to the inverse of the estimated PSD. Figure 20
reports an example of whitening [37] a typical 28-hour run
of interferometric noise. The effect of the whitening filters,

(a) (b)

FIG. 21 (color online). Monte Carlo validation of 1000 independent noise realizations on which parameter estimation is repeated
identically at each step. The statistics is shown for two parameter correlations. The scaled Gaussian PDF is evaluated at the sample
mean and standard deviation.

(a) (b)

(c) (d)

FIG. 22 (color online). �2 log-likelihood curvature around the best-fit values. The 7-dimensional surface are projected onto two
parameters at a time for some examples. Correlation is the reason why the surface can be rotated.

FIG. 23. Monte Carlo fit �2 chains. The processes typically
last for�1000 iterations and stop when either the function or the
variable tolerance is below 1� 10�4.
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as required, is to flatten the noise shapes, i.e., to decorrelate
the time series.

Despite the PSD shapes which seem reasonably good at
first sight, a residual red component still persists. Table IX
reports two higher-order moments (skewness and excess
kurtosis) of the empirical distribution together with their
uncertainties [27]. By inspecting the values, it turns out that
the sample mean of the differential channel o12 is not com-
patible with zero, as one would expect. Usually, a first- or
second-order polynomial fit is necessary to subtract that
residual component. The result is not surprising: the intrins-
ical difficulty is that the whitening process is performed on a
restricted frequency band (the one of the estimated PSD), and
low-frequency components may survive after the filtering.

APPENDIX C: MORE ON MONTE CARLO
VALIDATION

This section investigates a little further on the
Monte Carlo simulation of Sec. VI E, which demonstrated
that all parameters are unbiased and Gaussian-distributed,
as well as their variances.

Surprisingly, the correlations are also Gaussian-
distributed with good approximation. See Fig. 21 for two
examples.
The correlation between two parameters is somehow

related to the rotation of the �2 paraboloid principal axes
around the minimum. To support this statement, Fig. 22
shows few examples of projections of the 7-dimensional
surface onto two parameters at a time, around the best-
fit values. Weakly correlated parameters, like S21 and !2

1

(�20%) [panel (b)], typically have the principal axes of the
contour curves aligned with the x and y axis. Highly
correlated parameters, like Asus and !2

1 (�� 70%) [panel
(d)], have the principal axes which are significantly rotated.
Figure 23 shows a record history of all Monte Carlo

estimation chains. The scatter of the chains is due to
the noise fluctuation along the Monte Carlo iterations.
There are clearly some chains which are far away
from the accumulation zone; this behavior is quite unex-
pected as one would think the noise would have little
impact on the chain locations. Despite the big scatter,
the asymptotic distribution is Gaussian, as elucidated in
Fig. 14.
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