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We investigate the constraints that can be placed on the cosmic string tension by using the current pulsar

timing array (PTA) limits on the gravitational wave background. We have developed a code to compute

the spectrum of gravitational waves (GWs) based on the widely accepted one-scale model. In its simplest

form the one-scale model for cosmic strings allows one to vary: (i) the string tension, G�=c2; (ii) the size

of cosmic string loops relative to the horizon at birth, �; (iii) the spectral index of the emission spectrum,

q; (iv) the cutoff in the emission spectrum, n�; and (v) the intercommutation probability, p. The amplitude

and slope of the spectrum in the nHz frequency range is very sensitive to these unknown parameters. We

have also investigated the impact of more complicated scenarios with multiple initial loop sizes �, in

particular, the 2-� models proposed in the literature and a log-normal distribution for �. We have

computed the constraint on G�=c2 due to the limit on a stochastic background of GWs imposed by the

European Pulsar Timing Array. Taking into account all the possible uncertainties in the parameters we find

a conservative upper limit of G�=c2 < 5:3� 10�7 which typically occurs when the loop production scale

is close to the gravitational backreaction scale, � � �G�=c2. Stronger limits are possible for specific

values of the parameters which typically correspond to the extremal cases � � �G�=c2 and � �
�G�=c2. This limit is less stringent than the previously published limits which are based on cusp

emission, an approach which does not necessarily model all the possible uncertainties. We discuss the

prospects for lowering this limit by 2 orders of magnitude, or even a detection of the GW background, in

the very near future in the context of the Large European Array for Pulsars and the Square Kilometre

Array.
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I. INTRODUCTION

Cosmic strings are one-dimensional topological defects
[1] which may have formed in the early Universe during
various phase transitions expected in grand unified theories
(GUTs). Kibble [2] first proposed and investigated the
production of cosmological scale topological defects in
the framework of spontaneous symmetry breaking in gauge
theories. Subsequently, they attracted the interest of many
cosmologists, because cosmic strings born during a GUT
phase transition are a possible source for the density fluc-
tuations which eventually led to galaxy formation [3–6].
The initial enthusiasm diminished somewhat after the
analysis of the Cosmic Background Explorer (COBE)
satellite data. It was realized that the amplitude of the
measured cosmic microwave background (CMB) anisotro-
pies on large scales and the amplitude of density fluctua-
tions measured in the galaxy distribution on smaller scales
could not be reconciled in cosmic string models. This ruled
them out as the primary source for the large-scale structure
of the Universe (see, for example, [7,8]). These results
were confirmed by other experiments [9], but nonetheless,
cosmic strings may still contribute to the anisotropy seen in

the CMB temperature, but with less than 10% contribution
[10–12].
While appearing to be distinctly nonminimal in terms of

structure formation—two mechanisms giving rise to simi-
lar amplitude fluctuations—such ideas are natural within a
number of well-motivated inflationary models. It has been
shown that cosmic strings are present in most modern
inflationary scenarios, be they standard field theory strings,
such as in supersymmetric hybrid inflation [13,14], or
cosmic superstring models, as in the case of brane inflation
[15–17]. The term cosmic superstrings is used to describe
cosmic strings which are also fundamental strings but with
their tension, or mass per unit length, � is reduced from
�M2

pl where Mpl is the Planck mass, to a lower value,

capable of evading constraints on the string tension, by a
warp factor; see, for example, [18,19].
Cosmic strings have a wide range of astrophysical sig-

natures including: ultra high energy cosmic rays [20,21],
gamma ray bursts [22,23], radio bursts and synchrotron
radiation [24,25], Aharonov-Bohm radiation [26,27],
gravitational lensing (strong/micro) [28–30], CMB im-
prints (non-Gaussianity, small/large-scale anisotropies,
B-mode polarization) [31–38], and effects on matter power
spectra in 21 cm surveys [39,40]. So far no detection has
been possible, but an interesting opportunity lies in their
imprint on the stochastic gravitational wave background
(SGWB) [41–48]. The SGWB created by a cosmic string
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network has a very broad spectrum with frequencies rang-
ing from below the nHz scale to beyond the GHz scale,
making them a potential source for every present or future
GW detection experiment. Such broad GW spectra are
expected from only some primordial sources, such as
inflation [49,50], global phase transitions [51] and self-
ordering scalar fields [52].

A SGWB created by cosmic strings is a possible pri-
mordial source for detection by pulsar timing arrays
(PTAs) operating in the nHz frequency range. A PTA
[53,54] consists of an ensemble of millisecond pulsars
(MSPs) that are observed periodically over an extended
period of time, usually a number of years, which sets the
frequency probed with maximum sensitivity by the array.
The existence of a SGWB changes the Earth-MSP distance
and therefore it manifests itself as noise in the time of
arrival of pulses. These timing irregularities will have a
specific signature which allows us to distinguish them from
other types of noise [55]. The usage of MSPs is necessary
since this category of neutron stars combines a series of
characteristics which makes them very stable ‘‘clocks,’’
capable of providing high quality timing measurements. In
the case of a SGWB generated by cosmic strings, the
quantity we can constrain is their linear energy density
(or tension in the Nambu-Goto approximation), �, usually
expressed through the dimensionless quantity G�=c2,
where G is Newton’s constant and c the speed of light.
The value of �� �2 in natural units, where ℏ ¼ c ¼ 1, is
typically related to the energy scale of the phase transition,
�, at which they are formed.

The precise details of the SGWB due to cosmic strings
are very sensitive to the nature of the string evolution and
the spectrum of the radiation emitted by the string loops
that are created due to the intercommutation of the long
strings. In particular, the spectrum in the band probed by
PTAs depends on the distribution of loops formed and the
amount of radiation emitted into high frequency modes due
to loops formed in the matter era. This can be quantified in
terms of a spectral index and cutoff in the spectrum [1].
Since these details are not well understood; this has led to
some confusion in the literature with a number of incon-
sistent constraints being published, some of them based on
the same data [56–65]. This is due to the estimates of the
amplitude of the SWGB being based on different assump-
tions, some of which we believe are too strong for our
current level understanding of string evolution. In this
paper we will use the limit on the SGWB imposed by the
European Pulsar Timing Array (EPTA) [65] to compute
constraints on the cosmic string tension as a function of the
parameters which describe the details of the string evolu-
tion and radiation. Taking into account all possible uncer-
tainties, we define the most reliable, as opposed to the
tightest, constraint as that which corresponds to the set of
parameters with the highest upper bound. By parameteriz-
ing our ignorance of string evolution we should be able to

impose a constraint on G�=c2 which will never be
violated.
The structure of the paper is as follows. In Sec. II we

give a description of the one-scale model of cosmic strings
which we used to construct the GW spectra and we present
a model for the GW emission mechanism from cosmic
string loops. In Sec. III we present the results describing
the effect of the various cosmic string model parameters on
the GW power spectrum. The results of multiple scale
models will also be presented there, in which we extend
the applicability of the one-scale model to more realistic
possibilities. Finally, in Sec. IV we present robust limits on
the cosmic string tension using the recently published
European Pulsar Timing Array limit on the SGWB. We
conclude with a discussion of the results in Sec. V.

II. MODELLING THE SPECTRUM OF
GRAVITATIONALWAVE EMISSION FROM A

COSMIC STRING NETWORK

Our calculation of the SGWB expected from a cosmic
string network is based on the one-scale model [66–68].
Caldwell and Allen [47] (hereafter, CA92), and DePies and
Hogan [63] (hereafter, DH07) have previously considered
this model and our implementation is a combination of
both their approaches (see also, [69] for a recent inves-
tigation). Before going into the details of the one-scale
model we will give a very brief picture of a cosmic string
network.
The basic constituents of a cosmic string network are

loops and ‘‘infinite’’ (or long) strings; these loops are so
large that only a part of them lies within our horizon radius,
appearing as extremely long strings with no ends. These
infinite cosmic strings stretch along with the expansion of
the Universe and oscillate at relativistic speeds. A funda-
mental dynamical process which impacts the evolution of
the cosmic string network is intercommutation, whereby
strings (self-)intersect, exchange partners and form new
loops [70]. Cosmic string loops have significant tension,
equal to their linear energy density in the Nambu-Goto
approximation, so after their formation they start to oscil-
late relativistically and decay by emitting their energy into
the ‘‘preferred channel’’ which in the case of local strings
is thought to be GWs [41,43]. An alternative picture is
suggested by Abelian-Higgs simulations [71,72] (see also,
[73] for a recent discussion), where we have the creation of
microscopic loops from the string network which immedi-
ately decay via gauge boson emission. In that case, the
emission of GWs from the cosmic string network is sig-
nificantly suppressed and the dominant energy loss mecha-
nism is field quanta emission, implying that the constraints
derived here would be invalid. This point remains as a
caveat to our analysis.
This mechanism for loop creation and their subsequent

decay is important since otherwise the cosmic strings
would dominate the energy density of the Universe rather
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quickly. Instead the loop production allows the network to
achieve a scaling regime [66] with all the properties of the
network being related to the horizon radius / t, known as
the one-scale model.

The important features of the one-scale model are:
(i) The evolution of the cosmic string network is

considered to take place in a homogeneous, flat
Friedmann-Robertson-Walker universe and all the
lengthscales of the network are linear multiples of
the particle horizon radius. The particle horizon
radius in such a universe is

dHðtÞ ¼ aðtÞc
Z t

0

dt0

aðt0Þ ; (1)

where aðtÞ is the scale factor. The network evolution
is considered to take place in a comoving volume of
size VðtÞ ¼ a3ðtÞD3, where D is an arbitrary length
scale which will cancel out from our final equations.

(ii) The energy density of the infinite cosmic strings is

�1ðtÞ ¼ A�c2

d2HðtÞ
; (2)

where A quantifies the number of infinite strings
present in a horizon volume. The value of A was
determined in numerical simulations [74] which
suggest a value of A � 52 for the radiation-
dominated era and A � 31 for the matter-dominated
era (more recent simulations [75] give values within
10% of these). The �-dominated epoch is believed
to be only a very small fraction of the cosmic
history, so we used the same value for A as in the
matter-dominated era presuming that our results
will not be radically different in the case of the
SGWB calculation.

(iii) Every cosmic string loop is born with a size ‘bðtbÞ
which is a constant fraction of the horizon radius at
the birth time tb

‘bðtbÞ ¼ �dHðtbÞ: (3)

A correction has to be applied in Eq. (3) because
cosmic string loops are born with relativistic pecu-
liar velocities which are very quickly reduced due
to the expansion of the Universe, resulting in an
energy loss from the loops almost immediately
after their birth. By taking into account this red-
shifting of their initial velocity we can write the
initial length (energy) of a newborn cosmic string
loop as ‘bðtbÞ ¼ fr�dHðtbÞ, where fr incorporates
this energy reduction and is fr � 0:71 [76].

A. Number density nð‘; tÞ of cosmic string loops

In the one-scale model the infinite string network needs
to lose sufficient energy so as to maintain the scaling
regime which allows us to calculate nð‘; tÞd‘, the number
density of cosmic string loops with lengths between ‘ and

‘þ d‘ at time t after the creation of the cosmic string
network. This quantity gives us a full ‘‘map’’ of the number
and size of cosmic string loops present throughout the
cosmic history. In order to calculate the number density
of cosmic string loops we need information about their
birth rate. Allen and Caldwell [47,77] calculated in detail
the formation rate of cosmic string loops from the conser-
vation of the cosmic string stress-energy tensor. Briefly,
they did this by first calculating the equation of energy
conservation of the cosmic string network

d

dt
½a3ðtÞð�totðtÞ þ ptotðtÞÞ� ¼ _ptotðtÞa3ðtÞ; (4)

where �tot and ptot are, respectively, the energy density and
pressure of the whole system (infinite cosmic strings,
cosmic string loops and GWs emitted). Combining this
with the equation of state of infinite strings

p1ðtÞ ¼ 1
3�1ðtÞ½2h�2i=c2 � 1�; (5)

where h�2i is the mean squared velocity of infinite cosmic
strings, they derived the amount of energy lost by the
network to create new cosmic string loops per unit time,

dEloop;cr

dt
¼ �VðtÞ

�
_�1ðtÞ þ 2

_aðtÞ
aðtÞ�1ðtÞð1þ h�2i=c2Þ

�
:

(6)

The mean squared velocity of infinite strings is also deter-
mined by numerical simulations [74] and is h�2i=c2 ¼
0:43 for the radiation-dominated era and h�2i=c2 ¼ 0:37
for the matter-dominated era. The latter value will also be
used in our calculations for the�-dominated era. The most
recent evolution simulations [75] suggest similar values. In
the one-scale model, since we know the size of the new-
born loops, we can write

dEloop;cr

dt
¼ ��dHðtÞc2

dNloop

dt
; (7)

where Nloop is the total number of loops created since

the creation of the network within the volume VðtÞ and
dNloop=dt is the corresponding formation rate. Combining

Eqs. (6) and (7) we get

dNloop

dt
¼ � VðtÞ

��dHðtÞc2

�
�
_�1ðtÞ þ 2

_aðtÞ
aðtÞ�1ðtÞð1þ h�2i=c2Þ

�
; (8)

and by using Eq. (2) we can bring it to the simpler form

dNloop

dt
¼ 2VðtÞ�1ðtÞ

��dHðtÞc2
�

c

dHðtÞ �
_aðtÞh�2i
aðtÞc2

�
: (9)

Knowing the formation rate, we can calculate the number
of loops born at any instant in cosmic history. Note that this
rate was actually calculated from the energy lost by the
network in order to maintain scaling, which means that our
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results are automatically normalized. This is not always the
case in other methods.

Each cosmic string loop decays by GW emission with a
constant rate

dEloop;em

dt
¼ ��G�2c; (10)

where Eloop;em is the energy emitted by a cosmic string loop

in the form of GWs and � is a constant which describes
the efficiency of the emission mechanism. The value of
� depends on the shape of the cosmic string loops.
Throughout this work, a value of � � 50 will be used
which has been calculated as the average for representative
loops through numerical simulations [78]. Analytic calcu-
lations of � have also been performed [79,80] but only for
specific cases. Assuming that GWemission is the dominant
energy loss mechanism of cosmic string loops, the length
‘ðt; tbÞ of a cosmic string loop at time t, if this loop was
born at time tb, can be written as

‘ðt; tbÞ ¼ fr�dHðtbÞ � �G�

c
ðt� tbÞ: (11)

This relation for the variation length of a cosmic string loop
with the cosmic time and its birth time can be interpreted in
an inverse way; a cosmic string loop which has a length
equal to ‘ at time t has to have been born at a specific time
tb given by the solution of Eq. (11), and only at that time.

We will express the nð‘; tÞ function as a discrete two-
dimensional array, with cosmic time and cosmic string
loop length as the axes. Each element nð‘i; tjÞ of this array
we will be calculated in the following way. First, we
calculate the corresponding birth time, tb;j, of these loops

from Eq. (11). We define N ð‘; tÞd‘ to be the number of
loops with length between ‘ and ‘þ d‘ present in our
volume at time t. Of course,N ð‘i; tjÞ ¼ N ð‘b;j; tb;jÞ. For
the number of loops born at time tb;j in our simulation

volume we will have

N ð‘; tÞd‘jt¼tb;j;‘¼‘b;j ¼ dNloopjt¼tb;j : (12)

Since d‘ ¼ ðfr� _dHðtbÞ � �G�=cÞdt, by substituting in
Eq. (12) and dividing by our simulation volume VðtjÞ we
find that

nð‘i; tjÞ ¼ 1

VðtjÞ½fr� _dHðtb;jÞ þ �G�=c�
dNloop

dt

��������t¼tb;j

:

(13)

This allows us to calculate all the elements of the nð‘; tÞ
array and, by using multivariate interpolation, we can
construct the nð‘; tÞ function. Of course, we do not have
to calculate the elements for which ‘i > fr�dHðtjÞ which
are equal to zero. The veracity of our results was tested
against the analytic formulas for the loop number density
in the radiation and matter-dominated eras [76] for a range
of values of � and �G�. The more recent and detailed

analytic formulas found in [81] yield expressions which
have to be fitted to evolution simulation results and do not
have the flexibility of those by Bennett and Bouchet.

B. Gravitational wave emission from string loops

A cosmic string loop oscillates relativistically under its
tension and emits GWs in a series of harmonics with
frequencies which depend only on the length of the loop,
‘, and the harmonic mode n. The period of the loop is ‘=2c
and the particular frequencies are harmonics of ‘=2, that is

fn ¼ 2nc

‘
: (14)

Given a particular string trajectory, in the Nambu-Goto
approximation and ignoring the effects of radiation back-
reaction, one can compute the total radiated power from a
loop, P ¼ �G�2c, which is independent of ‘. The value of
� depends on the specific trajectory, but as already noted it
is � 50 for typical loop trajectories [78]. The power emit-
ted into each harmonic mode is given by

dEgw;loop

dt
¼ PnG�

2c; (15)

where

Pn ¼ �n�q

�X1
m¼1

m�q; (16)

is a coefficient for each modewhich determines the amount
of radiated energy that is emitted through the respective
mode and q is the spectral index. The value of q can be
computed for a specific trajectory: q ¼ 4=3 for the Kibble-
Turok loops and q ¼ 2 for a square loop with kinks [1]. It
can be argued that q � 4=3 for any string loop which has a
cusp, something which is expected for string trajectories
without a kink.
The effects of radiation backreaction are ignored in this

calculation. The decay of the loop length can be described
by the linear decay with time already discussed in the
previous section. However, the precise details of the spec-
trum can have significant impact on the amplitude and
slope of the SGWB in the nHz region that is relevant to
PTAs and this can also be affected by backreaction. It has
been shown in full field theory simulations that the spec-
trum of Goldstone boson radiation from global strings is
significantly softened by the effects of radiation backreac-
tion [82]. In particular, it was shown that an initial q ¼ 1
spectrum was dominated by the fundamental mode after a
small number of oscillations. The equivalent simulations
are not possible in the context of gravitational radiation,
but there are sufficient similarities between the radiative
mechanisms to suggest that something similar may also
take place in this case as well.
In order to model this effect we include an extra phe-

nomenological parameter, n�, as was done in [48]: Pn ¼ 0
for n > n� and the normalization factor is modified for
n 	 n� so that
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Pn ¼ �n�q

�Xn�
m¼1

m�q; (17)

and the total power emitted is unchanged. The value of n�
is unknown, but it must be less than the ratio of the loop
length to the string core width, �. For macroscopic strings,
‘=� is typically very large, but the rounding of the cusps
and kinks expected in a realistic network might mean that
n� � R=� where R is the local radius of curvature which
could be much less, say in the range log10n� ¼ 3 to 5. In
what follows we will allow n� and q to be free parameters
which we will vary.

C. Stochastic gravitational wave background

The standard quantity used to quantify the amplitude of
the SGWB is energy density in GWs per logarithmic
frequency interval measured relative to the critical density,
�crit, which is given by

�gwðfÞ ¼ 1

�crit

d�gw

d lnf
: (18)

This can be related to the dimensionless strain of the GW
by

hgwðfÞ ¼ 1:3� 10�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gwðfÞh2

q �
1 nHz

f

�
: (19)

Since �crit ¼ 3H2
0=8�G depends on the Hubble constant

H0 ¼ 100h km s�1 Mpc�1, it is conventional to plot the
dimensionless quantity �gwðfÞh2.

The starting point for our calculation is based on the
formula that gives the spectral density of the emitted GWs
derived in [1],

d�gw

df
ðtÞ¼ 2�

Z t

tf

dt0
�
aðt0Þ
aðtÞ

�
3

�
Z fr�dHðt0Þ

0
‘d‘nð‘;t0Þg

�
aðt0Þ
aðt0Þ

2�

c
f‘

�
; (20)

where f is the frequency of the GWs as we observe them
today, t0 � 13:4 Gyr is the present time, tf ¼ tplc

4=ðG�Þ2
is the time of formation of the cosmic string network [47]
with tpl the Planck time and gðzÞ a function which de-

scribes the spectrum of radiation emitted by a loop and is
normalized by

R1
0 gðzÞdz ¼ �G�2c. We note that in [1]

the integral is written in terms of angular frequency
! ¼ 2�f and gðzÞ is normalized by � with the factor of
G�2c included in the equivalent of Eq. (20).

We will model a discrete emission spectrum and there-
fore gðzÞ will be a sum of �-functions given by

gðzÞ ¼ G�2c
Xn�
j¼1

Pj�ðz� 4�jÞ: (21)

If we set z ¼ ðaðt0Þ=aðt0ÞÞð2�f‘=cÞ then

zdz ¼ 4�2

�
aðt0Þ
aðt0Þ

�
2 f2‘

c2
d‘; (22)

and hence substituting Eq. (22) and (21) into Eq. (20) we
find that

d�gw

df
¼ 2G�2c3

f2

Z t0

tf

dt0
�
aðt0Þ
aðt0Þ

�
5 Xn�
j¼1

jPjn

�
aðt0Þ
aðt0Þ

2jc

f
; t0
�
:

(23)

The integral of Eq. (23) requires the continuous calcu-
lation of the argument of nð‘; tÞ during its numerical
evaluation. We can decouple these two calculations, some-
thing which also gives a better physical intuition into what
Eq. (23) represents. A similar approach was also followed
in DH07, but note that some quantities are expressed
differently in our implementation. As we have already
mentioned, the sum in Eq. (23) gives the contribution to
the GW spectrum of each emission mode from each cosmic
string loop. The quantity aðt0Þcðaðt0ÞfÞ�1 in the number
density is actually the length of the cosmic string loops
which emit GWs at time t0 which are observed at the
present day with redshifted frequency f. This loop popu-
lation is the only one we are interested in when we have to
evaluate Eq. (23) in a specific frequency bin. It is reason-
able then to express the integral in terms of a new function,
say nðf; tÞ, which gives the number density of loops which
at time t emit GWs observed today with frequency f. In
this case, �gwðfÞ can be written as

�gwðfÞ ¼ 2G�2c3

�crita
5ðt0Þf2

Xn�
j¼1

jPj

Z t0

tf

a5ðt0Þnjðf; t0Þdt0:

(24)

Of course, the njðf; tÞ function has to be constructed for

every emission mode, j.
The njðf; tÞ function can be constructed in a straightfor-

ward way once we have obtained nð‘; tÞ. Using the same
array we constructed for nð‘; tÞ, we change the cosmic
string loop length axis with the corresponding frequency
axis by converting all lengths to frequencies using Eq. (14).
Multivariate interpolation with this new axis will give the
njðfin:; tÞ function which gives the number density of loops

which at time t emit GWs at frequency fin:. Wewill use this
njðfin; tÞ to construct njðf; tÞ. We can calculate the ele-

ments njðfm; tnÞ of the njðf; tÞ data array in the following

way. First, we calculate the frequency fm;in which the GW

had when they were emitted, fm;in ¼ ðaðt0Þ=aðtnÞÞfm.
Once we have this information, we use the previously
constructed nðfin:; tÞ function and calculate the respective
loop number density. In this way we populate the nðf; tÞ
data array and we create the corresponding interpolating
function.
A typical GW spectrum from cosmic strings is presented

in Fig. 1. It has two distinct features: a low frequency peak
and a flat spectrum at higher frequencies. The flat part of
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the spectrum is created from GWs emitted by cosmic string
loops which were created during the radiation era.
Roughly, it is flat from * 1 nHz to around the GHz fre-
quency range and then it drops rapidly in amplitude. The
low frequency peak, which dominates below �1 nHz, is
created from the more recent emission of cosmic string
loops formed during the matter era. Interestingly the cross-
over region between the two regimes is exactly that which
is probed by the PTAs. As we will see, the point at which
this crossover actually takes place is sensitive to the
parameters describing the string network and the radiation
spectrum.

D. Intercommutation probability

Whenever two field theory cosmic strings collide they
exchange partners with an intercommutation probability
p ¼ 1 [70]. This is not necessarily the case for cosmic
superstrings however, which intercommute with a reduced
intercommutation probability p < 1. This can be attributed
to the extra dimensions in which cosmic superstrings are
moving, with a successful intercommutation requiring
their collision in all dimensions and not just in the three
spatial dimensions visible to us. If p < 1 then the scaling
density of long strings is increased in order to increase the
number of intersections per unit time and hence allow the
network to lose the requisite amount of energy necessary to
maintain scaling. This will increase the number of loops
and hence will increase the amplitude of the SGWB by a
uniform scaling. There is, however, some controversy as to
the exact dependence on p. Jones, Stoica and Tye [19],
argued that the self-similar length scale, L, of the cosmic
string network should scale as L / pt, which would mean

that �1 / L�2 / p�2. In that case, even a small decrease
in p would lead to a dramatic increase in the amplitude of
the SGWB. However, in such a case the interstring distance
ds, due to the higher string density, is smaller than the
length scale of the network L, whereas in the one-scale
model L� ds, suggesting that this argument needs to be
modified.
Sakellariadou [83] has performed simulations of cosmic

superstring networks in Minkowski spacetime which sug-

gest that L / p1=2t, implying that �1 / p�1. It was sug-
gested the discrepancy with the results of Jones et al. [19]
stems from the small-scale structure of cosmic stings,
which ensures more intersection points when two strings
collide, and therefore there are more chances for successful
loop production.
There are two techniques used to model the dynamics of

strings in the Nambu-Goto approximation: one is the
Minkowski spacetime approach used in [83]; the other is
to model the expansion of the Universe. The results of such
simulations are reported by Avgoustidis and Shellard in
[84,85]. They find that when p 	 0:1 then �1 / p�0:6,
whereas for 0:1<p 	 1:0 they find �1 / p�1. They
also suggest that small-scale structure is responsible for
the difference from the �1 / p�2 scaling law and they
propose a simple two-scale model which describes quite
accurately their simulation results. The difference in the
scaling laws of [83,85] has to do with fitting model
parameters to results of fundamentally different simula-
tions, so the exact reasons for this discrepancy are not easy
to trace.
In this work wewill not make a judgement on the precise

dependence of the scaling density of infinite strings as a
function of p except that it can be modeled by a power law

AðpÞ ¼ Að1Þ
pk

; (25)

where k is the model parameter and Að1Þ ¼ 52 and Að1Þ ¼
31 in the radiation and matter eras, respectively. The results
of [83] suggest that k ¼ 1, whereas those of [84,85] sug-
gest k ¼ 0:6 for p 	 0:1 and k ¼ 1 for 0:1< p 	 1:0. The
consequence of this assumption is that the amplitude of the
SWGB will scale as �gwðfÞ / p�k independent of f.

III. CHARACTERISTICS OF COSMIC STRING
INDUCED SPECTRA

A. Low frequency cutoff due to newborn large loops

As we mentioned in Sec. II B, each cosmic string loop
emits GWs into an ensemble of harmonics defined by fn ¼
2nc=‘. This means that there is a low frequency cutoff on
the GWs that a cosmic string network emits, defined by the
first emission mode of the largest loops present. The largest
loops are those created at the present time t0 and have
length ‘0 ¼ fr�dHðt0Þ, with a corresponding low fre-
quency cutoff f0 / 1=�t0. The redshifted frequencies of
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FIG. 1 (color online). The GW energy density per logarithmic
frequency interval �gwðfÞh2 of a cosmic string network with

G�=c2 ¼ 10�7, � ¼ 10�3 and n� ¼ 1. The black (solid) line is
the full spectrum from the network due to loops formed in both
radiation and matter eras, whereas the red (dashed) line is that
from the radiation-dominated era and the blue (dot-dashed) line
is from the matter-dominated era. The grey shaded area shows
the frequency window probed with the highest sensitivity by
PTA experiments with duration between 5 and 10 years.
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the GWs emitted by loops previously born will always be
higher than f0 in both the radiation- and matter-dominated
eras. For example, in the radiation era the frequency of the
first emission mode of a loop formed at time t1 redshifted

to the present is f1 / t1=6eq =�ðt1=21 t2=30 Þ> f0, where teq �
25; 000 yrs is the time of radiation-matter equality. The

same calculation in the matter era gives f1 / 1=�ðt1=31 t2=30 Þ,
which is also greater than f0. To demonstrate the strength
of this inequality, in the matter era, the GWs of the first
emissionmode of a loopwith� ¼ 0:1 emitted at the time of
its birth, say t1 ¼ 1010 Gyrs, will be observed today at a
frequency � 2:7� 10�17 Hz, whereas the corresponding
GWs of a loop born at the present timewill have a frequency
� 1:8� 10�17 Hz. Similarly, the GWs of a similar loop
born in the radiation era at time, say t1 ¼ 104 yrs will have
at the present time a frequency� 4:3� 10�11 Hz.

This low frequency cutoff needs to be treated very care-
fully because of its strong dependence on �, which is
unknown. For small, but totally acceptable values of �
(such as, �� 10�12 � 10�16), the low frequency cutoff
can be as high as a few microhertz. Although, ground-
based observatories and the Laser Interferometer Space
Antenna are not seriously affected by this low frequency
limit since they are sensitive to frequencies �100 Hz
and �10�3 Hz, respectively, PTAs can easily be rendered
useless for detecting emission from such cosmic string
networks. As we will show in the following paragraphs,
PTAs can adequately probe the GW emission of cosmic
string networks with � & 10�9.

A PTA sensitivity curve roughly has the shape of an
inverted triangle, with its sensitivity peaking at wave-
lengths similar to the duration of the PTA experiment. In
Fig. 2 we plot the sensitivity curves for two completely
different PTA experiments, one with 5 and one with
10 years duration, which achieve maximum sensitivity at
frequencies �6:3 nHz and �3:2 nHz respectively. For
frequencies higher than these, the sensitivity decreases
with a slope given by Rf, where R is the root-mean-square
of the residuals in pulsar timing data [86] and f the
frequency of the GWs. For the sensitivity curves of
Fig. 2 we assumed that the maximum sensitivity of the
5-year experiment is at �gwh

2 ¼ 1:2� 10�8 and that the

10-year experiment has a slightly better sensitivity, equal
to �gwh

2 ¼ 8:9� 10�9. This assumption actually implies

that the RMS residuals in the 10-year PTA experiment are
larger than those in the 5-year experiment. The RMS
residuals of the time of arrival of pulses are expected to

improve as / N�1=2, where N is the number of the time of
arrivals (observations) used. Therefore, if the 10-year PTA
experiment was performed at the same telescope/instru-
mentation with the 5-year experiment we would expect a
much more improved sensitivity on �gwh

2, due to the

double amount of data. The value of the highest frequency
in the sensitivity curve depends on the mean time between
observations of the same MSP in the whole data span. As

an example, for the EPTA where each MSP is typically
observed once every two weeks, the maximum frequency
is� 830 nHz. The PPTA [87] and NANOGrav [88] follow
a similar observing schedule.
Now, let us consider the sensitivity of PTAs to emission

from string loops with size ��t emitting into the nth
harmonic. In Fig. 3 we present the regions in the �� n
parameter space which can, or cannot, be probed by
present and future PTA experiments. The dark gray area
includes all the �� n combinations which give a SGWB
with a low frequency cutoff lower than the frequency at
which a 10-year PTA experiment achieves its highest
sensitivity. A shorter, 5-year experiment is sensitive to all
these cosmic string networks plus the networks included in
the light gray slice. Although counter-intuitive, by increas-
ing the duration of a PTA experiment we reduce the
number of different cosmic string network configurations
which are observable at maximum sensitivity, even though
we increase its overall sensitivity by collecting more data.
We can easily demonstrate this in Fig. 2, where we

present the GW spectra for two cosmic string networks
with �1 ¼ 5:7� 10�10 (thick red curve) and �2 ¼ 2:8�
10�10 (dashed red curve), respectively. Both networks have
G�=c2 ¼ 10�7, n� ¼ 1 and q ¼ 4=3. The specific values
for �1, �2 were selected so that their low frequency cutoffs
coincide with the frequencies which a 5-year and a 10-year
PTA experiment achieves maximum sensitivity. In this
example, the 5-year experiment probes part of both spectra,
while the 10-year experiment probes the �1 network and
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FIG. 2 (color online). The GW sensitivity curves for a 10-year
(black thick line) and a 5-year (black dashed line) PTA experi-
ment, with the 10-year experiment achieving slightly better
maximum sensitivity. The frequencies where these experiments
achieve maximum sensitivity are 3.2 nHz and 6.3 nHz, respec-
tively. The red thick line is the GW spectrum of a cosmic string
network for �1 ¼ 5:7� 10�10 and the red dashed line is the
spectrum for �2 ¼ 2:8� 10�10 network. While the 10-yr ex-
periment has a greater overall sensitivity at its minimum fre-
quency, it has a lower sensitivity at the frequencies to which the
5-year experiment is sensitive to (see text for details).
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just misses the �2 network. It is clear, that any network
which has a low frequency cutoff between 3.2 nHz and
6.3 nHz will be probed with the reduced sensitivity slope
from the 10-year experiment, something that does not
happen with the 5-year experiment. It is interesting to
see, that in the specific example, the 10-year experiment
will not be able to detect the emission from the �2 network
at all. Although in reality a 10-year experiment is expected
to have much better RMS residuals of a 5-year one, such an
event might be true when comparing PTA experiments of
different observatories. The white area of Fig. 3 contains
all the �� n combinations which can be probed by both
experiments with reduced sensitivity, and therefore, higher
G�=c2 values are required to make a detection. The
hatched area corresponds to the �� n combinations inac-
cessible by PTAs due to their high emission frequencies.
From this plot we can see that networks which produce
very small loops with � 	 10�12 cannot be detected by
PTAs, regardless of their tension.

B. Effects of cosmic string model parameters on the
gravitational wave spectrum

Here, we present a detailed analysis of the effects of
each cosmic string model parameter on the GW spectrum
with the objective of building up a picture of how the

various uncertainties can affect the spectrum.Wewill often
make the distinction between whether loops at formation
are smaller, �< �G�=c2, or larger, �> �G�=c2, than
the gravitational backreaction scale; we will refer to these
as small and large loops, respectively. Since the time of
death of the loop, td, and its time of birth, tb, are related by
td � ½1þ ð�c2=�G�Þ�tb, this distinction corresponds to
the loops either dying within a Hubble time, or living for
much longer, respectively. The fiducial set of parameters is
G�=c2 ¼ 10�7, � ¼ 10�7, q ¼ 4=3, n� ¼ 1, p ¼ 1 and
in the subsequent discussion we will vary each of them
while keeping the others equal to their fiducial values. In
our computations we used a scale factor suitable for a
radiation matter � universe. For the numerical values of
the constants entering in the computation of the scale
factor we used the WMAP 7-year results [89] and, in
particular, the WMAPþ BAOþH0 parameter values
(BAO being baryon acoustic oscillations), h ¼ 0:704 and
�� ¼ 0:728. We also used �rh

2 ¼ 2:47� 10�5 and
�m ¼ 1��� ��r for a flat universe.

1. Varying G�=c2

One would expect heavier strings, with larger values of
G�=c2, to lead to larger SGWB amplitudes and indeed this
is typically the case. However, when varying G�=c2 there
are other more subtle effects which can have an impact on
the GW spectrum. We present plots of �gwh

2 in Fig. 4 for

different values ofG�=c2 keeping �, q, n� and p the same.
In the small loops regime (thin red lines), lowering the
string tension reduces the amplitude of the spectrum with
the shape remaining the same; one finds that �gwh

2 /
G�=c2. However, in the large loops regime (thick blue
lines), along with the expected decrease in amplitude, there
are also changes in the shape of the spectrum. The peak
frequency starts to shift towards higher frequencies, ini-

tially being / ðG�=c2Þ�1=4 and rather quickly it settles to
being / ðG�=c2Þ�1. The SGWB amplitude also decreases

/ ðG�=c2Þ1=2, slower than in the casewhere�< �G�=c2,
which can clearly be seen in the flat part of the spectrum.
The frequency of the peak of the spectrum can be

approximated analytically. The key question in making
such an approximation is which loop population is respon-
sible for the emission at the peak frequency. To answer this
question, we need to define the birth time of loops tbðtÞ as
being the time of birth of a loop which dies at time t. The
birth time of loops which die at the present time, assuming
that we are in the matter era, can be calculated from
Eq. (11) setting ‘ ¼ 0,

tbðt0Þ ¼
�
1þ 3fr�c

2

�G�

��1
t0: (26)

In CA92, they suggested that the peak emission is created
by the n ¼ 1 emission of the most recent, ‘‘dominant
population’’ of loops. Since the birth rate of loops is
continuously decreasing with time (/ t�2), they assumed

FIG. 3. Regions of the �-n parameter space which can be
probed by PTA experiments. The dark gray region includes all
the cosmic string network configurations which create a SGWB
probed at maximum sensitivity by a 10-year PTA experiment.
Additionally to this region, the light gray slice includes all the
extra configurations which can be probed at maximum sensitiv-
ity by a 5-year PTA experiment. The white area includes all
those configurations which are probed by the reduced sensitivity
slope (see, Fig. 2) for both 5- and 10-year experiments. The
hatched area includes the configurations which are inaccessible
to PTAs.
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that this dominant population was born at a time �2tbðt0Þ.
This leads to a simple approximation of the peak frequency
given by fpeak ¼ 2c2=�G�t0. This approximation is pre-

sented in Fig. 4 with a long dashed red line. It is obvious
that since this equation is independent of � it will not give
a correct description on the different behavior in the large
and small loops regimes and indeed this can be seen in
Fig. 4. Moreover, even in the large loop regime where it
seems to be in reasonable agreement, the more we decrease
the string tension the worse the approximation becomes.

We have managed to construct a better approximate
formula for fpeak, where we do not make any assumption

about the birth time of the loop population responsible for
the peak emission. Instead, we created a general, approxi-
mate formula and we determine when these loops were
formed by comparing the analytic results with those of our
computations.

The peak frequency must originate from the redshifted
emission in the n ¼ 1 mode of this population, the lowest
frequency it ever emitted. Using Eq. (26) for the birth time
of loops we introduce the concept of loop generations, g. We
will refer to loops which die right now, and therefore, were
born at time t1 ¼ tbðt0Þ, as generation g ¼ 1 loops. The
loops of generation g ¼ 2 are those which died when the
loops of g ¼ 1 were born and have a birth time t2 ¼ tbðt1Þ.
In the same way, the loops of generation g are those which
die when the loops of generation g� 1 were born. From
Eq. (26) we find the birth time tg of generation g loops to be

tg ¼
�
1þ 3fr�c

2

�G�

��g
t0: (27)

The lowest GW frequency (n ¼ 1) emitted by loops of
generation g in the matter era is

fg;em ¼ 2

3fr�tg
¼ 2

3fr�t0

�
1þ 3fr�c

2

�G�

�
g
; (28)

and when we redshift it to the present day, its observed
frequency is

fg ¼
aðtgÞ
aðt0Þ

2

3fr�tg
¼ 2

3fr�t0

�
1þ 3fr�c

2

�G�

�
g=3

: (29)

Equation (29) is the general approximation for the peak
frequency, without making any assumptions about which
generation’s loops created it. Using the results of our com-
putations, we found out that the best approximation to the
peak frequency is given by

fpeak ¼ 2

3fr�t0

�
2þ 3fr�c

2

�G�

�
10=9

; (30)

which is plotted with a short dashed green line in Fig. 4. This
means that the peak region is due to loops of generation
g� 10=3, i.e. of loops born just before the third generation
loops. We have changed the numerical factor in the paren-
thesis of Eqs. (29) and (30) from 1 to 2, so to achieve a
perfect fit. In any case, this is a minor correction (less than
3%) which only affects networks with �G�=c2 >�.

2. Varying �

The effects of varying � in the large/small loop regions
are the inverse of those seen when varyingG�=c2. In Fig. 5
we present the GW spectra for cosmic string networks with
the fiducial values ofG�=c2, n�, q and p for various values
of �.
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FIG. 4 (color online). Plots of normalized gravitational wave
energy density per logarithmic frequency interval,�gwh

2, due to

cosmic string networks with different tensions but the same
fiducial values of �, n�, q and p. The thick blue lines are for
networks in the large loop regime and the thin red lines are from
networks in small loop regime. The dashed black line signifies
the network for which � ¼ �G�=c2. The analytic approxima-
tions of the peak frequency are also shown: the approximation
found in CA92 (long dashed red curve) and our improved
approximation (short dashed green curve).
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FIG. 5 (color online). �gwh
2 for cosmic string networks with

different values of � and the fiducial values of G�=c2, n�, q and
p. With thick blue lines we plot the networks in the regime of
large loops and with thin red lines the networks in the regime of
small loops. With the dashed line we plot the network with
� ¼ �G�=c2 which signifies the critical point after which we
have no amplitude decrease.
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In the large loop regime (blue thick lines), as � de-
creases the most prominent feature is a decrease of the

amplitude of the overall spectrum. This decrease is / �1=2

when � � �G�=c2, but the dependence becomes weaker,

being / �1=4 when � gets close to the critical value,
� ¼ �G�=c2. The higher SGWB amplitude for large
values of � is expected: large � means the loops persist
for longer periods of time, and therefore have more time to
emit their energy as GWs. Our results in this regime agree
with those in DH07.

The situation is very different in the small loop regime
(thin red lines). There is no decrease in the overall ampli-
tude, nor a significant change in the amplitude difference
between the peak and the flat part of the spectrum once
�< �G�=c2. Instead of this we see a shifting of the
spectrum to higher frequencies, something which agrees
with the results presented in [62]. The overall amplitude
invariance to changes in � is a radiation era effect, where
the small loops decay in less than a Hubble time. The
independence of �gwh

2 from the value of � can be clearly

seen in the analytic approximations for �gwh
2 in the

radiation era (i.e., see equation 4 in [12]) if we assume
� � �G�. The shifting of the peak frequency is / ��1,
consistent with the minimum frequency emitted by a loop
being fmin � 2c=ð�tbÞ and Eq. (30).

3. Varying the emission spectrum parameters q and n�
The spectrum of gravitational radiation emitted by a

cosmic string loop is still an open question. In the previous
discussion we have introduced two parameters, q, the
spectral index and, n�, the cutoff in the radiation spectrum,
to model the possible effects. In this section we investigate
how these two parameters affect the observed spectrum.
Previous works have used a range of values for q and n�
which have sometimes led them in imposing very strong
constraints on the string tension. For example, DH07 typi-
cally used n� ¼ 1, that is, they only considered emission in
fundamental mode of the string loops. Although they in-
vestigated cases up to n� � 5, they found that this had only
a small effect on the power spectrum of GWs and does not
significantly effect the bounds on the string tension from
PTAs. In contrast, CA92 used n� ! 1, which was done by
replacing the summation in Eq. (24) with an integral in
order to make the calculation tractable. As we will see,
n� ¼ 1 and n� ¼ 1 give very different results. Damour
and Vilenkin [56,57] and Siemens et al. [60,62] followed a
similar approach to CA92 making the strong assumption
that q ¼ 4=3 and n� ¼ 1 based on their study of cusp
emission. A more conservative approach was taken in [48]
who showed that constraints from PTAs are very sensitive
to the choices of q and n� and, in particular, that the
predicted spectra for q ¼ 2 and n� ¼ 1 are very similar
to q ¼ 4=3 and n� ¼ 103–104 in the nHz frequency range.

As we will see, the values of n� and q have a significant
effect on the amplitude and the slope of the GW spectrum

in the region of radiation to matter era transition, between
the peak and the flat part of the spectrum. This is of critical
importance for PTAs, since the frequency windows probed
for the majority of G�=c2 � � combinations of interest
are in this region. The PTA frequency window lies outside
this region in three cases: (i) G�=c2 * 10�7 and � *
10�6, where it probes the flat part of the spectrum, (ii) in
the case of very small tension networks, G�=c2 	 10�11

independent of �, where it probes the region to the left
of the peak (see, i.e. Figs. 4 and 5), and (iii) in the case
� & 10�12 where the GW spectrum is always at higher
frequencies irrespectively of the string tension.
In Fig. 6 we present the GW spectra for two representa-

tive scenarios varying q and n�, a large loop case, � ¼ 0:1
and a small loop case, � ¼ 10�9, both with G�=c2 ¼
10�7. The first thing to note, as found in [48], is that the
spectrum is relatively independent of n� when q ¼ 2 both
in the case of � ¼ 0:1 and � ¼ 10�9. The modifications to
the spectrum seen there are similar for the two values of �,
but slightly more pronounced for � ¼ 10�9. Increasing n�
from 1 appears to move the peak in the spectrum to slightly
higher frequencies and its amplitude is also slightly re-
duced. For n > nsat � 100 the changes in the spectrum are
almost negligible, where we define nsat to be the saturation
point for n�, above which large increases of the value of n�
result in negligible effects on the GW spectrum.
The case of q ¼ 4=3 is somewhat different. The shape of

the spectra in the region of the peak is significantly affected
by varying n�. In the case of � ¼ 0:1 there is a smooth
broadening of the spectrum due to loops formed in the
matter era, with the actual peak position moving to higher
frequencies and the amplitude being reduced. The situation
is similar for � ¼ 10�9; however, the spectrum appears to
generate a hump as n� increases. There does not appear to
be a convergence of the spectrum for the values of n�
presented in Fig. 6. We have investigated the convergence
of the spectrum in the case of large and small loops in
Fig. 7, where we present spectra for G�=c2 ¼ 10�7,
� ¼ 0:1, 10�9 and q ¼ 4=3 with n� as high as 106. We
see that in the case of large loops there are only minimal
differences for n� > 104 suggesting that nsat � 104 for q ¼
4=3. In the case of small loops a similar trend is observed,
with the appearing hump moving along the radiation to
matter era radiation tail of the spectrum towards higher
frequencies until it reaches the flat part of the spectrum
where it disappears (something that can be seen in Fig. 6).
Whereas in general the spectrum has converged for
n� * 104, the area near the tail of the spectrum still evolves
until n� * 106.
In order to reenforce the results of Fig. 6, in Table I we

present the percentage differences in the peak frequency
and amplitude between models with the same values of
G�=c2 ¼ 10�7, � ¼ 0:1, 10�9 and q ¼ 4=3 but different
values of n� relative to that for n� ¼ 1. In Table II we
present similar information for a change in q, keeping all
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parameters fixed and changing q from 2 to 4=3. The results
vary numerically for other combinations of G�=c2 � �,
but exhibit exactly the same trend in both the large and the
small loop regimes.

When we discuss the constraints on G�=c2 due to
observations we will be interested in the amplitude of the
spectrum at the appropriate frequency and also the slope of
the spectrum. If we define d and d� such that hgwðfÞ / fd

and �gw / fd� then d� ¼ 2ðdþ 1Þ. It is often suggested

[58] that d ¼ �7=6 for cosmic strings, but from a cursory
examination of the spectra presented in Figs. 4–6 it is clear
that this is not the case ifG�=c2,�, q and n� are allowed to
vary. We measured d� in the region between 31 nHz and
32 nHz as a function of G�=c2 and � for q ¼ 4=3 and two
values for n�, n� ¼ 1 and n� ¼ 104. In general, realistic
PTA experiments are sensitive toGWswith frequencies of a
few nHz. However, later in this work we will calculate the
string tension constraints based on limits placed for a fre-
quency ð1 yrÞ�1 and therefore we have chosen this range.

In Fig. 8 we present a plot of d�ðG�=c2; �Þ at a fre-
quency f ¼ ð1 yrÞ�1 for cosmic string networks with n� ¼
1, 104 and q ¼ 4=3. The results for other values of n� and q
are of course numerically different, but they follow a very

similar trend. We see that describing the cosmic string GW
spectrum with a simple power law in the frequencies
probed by PTAs is far from reality. In the tension range
G�=c2 > 10�11 the slope is generally negative, and PTAs
probe the whole area of the spectrum which lies between
the matter era peak and the radiation era flat part of
the spectrum. However, when we go to small tensions,
G�=c2 < 10�11, the PTA frequency window falls to the
left of the matter era peak and the spectrum slope becomes
positive.

4. Varying p

In order to calculate the GW spectra of cosmic string net-
works with p < 1 we used the same one-scale model based
code, only changing the value ofA as in Eq. (25). In Fig. 9 we
present the results for different values of the intercommutation
probability (p ¼ 0:1, 10�2, 10�3) and for both scaling laws
(k ¼ 1 and k ¼ 0:6). In all computations we usedG�=c2 ¼
10�7, � ¼ 0:1, n� ¼ 1 and q ¼ 4=3.
The reduced intercommutation probability leads to an

increased number density of cosmic string loops, and
therefore, an increased number of GW sources which
give higher SGWB. The uniform scaling across the
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FIG. 6 (color online). �gwh
2 for cosmic string networks with the same fiducial string tension value, but with different n� and q

values in the cases of large (� ¼ 0:1) and small (� ¼ 10�9) loops. Different colors are used for different values of n�, with the specific
values denoted in each plot. In the q ¼ 2 case, the spectra for n� ¼ 103 are plotted with a dashed line instead of a different color to
better distinguish it from the n� ¼ 102 case since the results are almost identical for extended frequency ranges.
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frequency band make the effects of decreasing p similar to
those of increasing G�=c2 in the small loop regime; see
Fig. 4.

C. Improved modeling of loop production

It is extremely difficult to model the distribution of loops
produced by a cosmic string network. The calculations
presented so far are based on the assumption that loops

are produced with a single size relative to the horizon,�. In
the initial work on cosmic strings it was believed that large
loops are born, with � � 0:1 [66,90]. The work that fol-
lowed [74,91] argued against this, supporting the idea of a
smaller length scale close to the scale of the gravitational
backreaction � � �G�=c2. Subsequent work has led to a
somewhat confusing situation. Some appear to suggest
large loops [92–96] (� � 10�1 � 10�3) while others
[97–101] support the view that the loops are small (�<
�G�=c2). Some even suggest microscopic loops with lb �
� [11,71,102], where � is the string core width. For this
reasonwe have allowed� to vary as an unknown parameter.
There is, of course, nothing to prevent loops being born

over a range of different scales, both small and large.
Recent work [103,104] has presented arguments support-
ing the idea that loops are created at two different scales,
with 90% of the loops created at the gravitational back-
reaction scale (� � �G�=c2) and 10% at large scales
(� � 0:1). In this section we will discuss the effects of
relaxing the assumption of a single loop production scale.
We will consider two possibilities: the first is a two-scale
model for loop production motivated by [103,104], and the
second is for the initial loop distribution to have a log-
normal distribution with the mean being / tb.

1. 2-scale networks

The one-scale model can be easily adapted in order to
describe networks with more than one scale for the new-
born loops. A network that produces loops of two scales
will create the same shape of SGWB as the one created by
two distinct one-scale networks, but with the relative am-
plitude of the two carefully normalized. In order to impose
this normalization we need to enforce the condition that a
specific amount of energy has to be ‘‘lost’’ from the net-
work in the form of loops per unit time; a requirement
necessary for scaling. If we want to describe the loop
distribution with two separate networks of �1 and �2

respectively, the amount of energy transferred to loops
per unit time will be

dE2�scale

dt
¼ cE1

dE1

dt
þ cE2

dE2

dt
; (31)
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FIG. 7 (color online). Plots of �gwh
2 for a cosmic string

network with G�=c2 ¼ 10�7, � ¼ 0:1 (top panel), � ¼ 10�9

(bottom panel), and q ¼ 4=3 for n� ¼ 1 (black line), n� ¼ 104

(red line), n� ¼ 5� 104 (blue line), n� ¼ 105 (green line) and
n� ¼ 106 (orange line). In the upper right side of each plot a
magnification of the area of interest is presented.

TABLE I. The percentage increase in the peak frequency and decrease in the peak amplitude of �gwh
2 for a particular value of n�

relative to n� ¼ 1 and whether we are in the large (� ¼ 10�1) or small loop (� ¼ 10�9) regimes. The results are categorized according
to the value of the spectral index.

q ¼ 4=3 q ¼ 2

�> �G�=c2 �> �G�=c2 �< �G�=c2 �< �G�=c2

n�
Peak

frequency

Peak

amplitude

Peak

frequency

Peak

amplitude

Peak

frequency

Peak

amplitude

Peak

frequency

Peak

amplitude

10 115% �7% 122% �27% 62% �5% 60% �18%
102 311% �18% 129% �45% 75% �8% 60% �22%
103 357% �26% 130% �51% 75% �8% 60% �23%
104 358% �29% 130% �53% 75% �8% 60% �23%
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where dE1=dt, dE2=dt are the energies transferred to the
two different types of loops and cE1 , c

E
2 are the appropriate

weighting factors. The values of cE1 , c
E
2 are the relative

amounts of energy we want to be channeled in the loops of
each scale.

From Eq. (7) we can see that the energy channeled in
loops of a specific scale is proportional to the number of
loops created

dE1;2

dt
/ dN1;2

dt
; (32)

and therefore the normalizing constants cE1;2 can also be

used as normalizing constants for the loop number density

cE1;2 ¼ cN1;2: (33)

In this way we can calculate the SGWB for each network
individually, using the method described before, but this
time we will normalize the number density of loops with
cN1 and cN2 , respectively. Once we have calculated the
individual SGWBs, we add them and we get the SGWB
produced by the 2-scale network.

In Fig. 10 we present results for representative models
for which newborn loops are created with two distinct

different scales, �1 and �2 and all other parameters given
by their fiducial values. The solid blue and red lines are the
individual contributions due to loops with �1 and �2,
respectively, normalized to their relative contributions to
the total emission. For reference, the dashed lines are the
results we would expect if all the energy was channeled
into loops with either �1 or �2. In Fig. 10 panel (i) the
spectrum corresponds to a case with �1, �2 > �G�=c2. In
this case, even for a very small amount of energy (10%)
channeled into the creation of the largest scale loops
(�1 ¼ 0:1), the GWs emitted by them dominate the overall
result, with the smaller scale loops (�2 ¼ 10�4, 90%) only
dominating the overall spectrum at very low frequencies,
f < 10�12 Hz. This effect is even more obvious in Fig. 10
panel (iii), where there is a larger percentage of the
energy channeled into the creation of the large-scale loops

TABLE II. The percentage increase in the peak frequency and
decrease in the peak amplitude of �gwh

2 for networks with

q ¼ 4=3 relative to the values for q ¼ 2 as a function of n�.

�> �G�=c2 �< �G�=c2

n�
Peak

frequency

Peak

amplitude

Peak

frequency

Peak

amplitude

10 32% �2% 52% �8%
102 135% �11% 57% �27%
103 158% �19% 57% �36%
104 161% �22% 57% �36%

FIG. 8 (color online). The slope, d�, for cosmic string networks with n� ¼ 104 (left panel) and n� ¼ 1 (right right) as a function of
the string tension G�=c2 and the birth scale � of the loops. For both plots, q ¼ 4=3. The dashed line corresponds to the spectral index
d ¼ �7=6 proposed in [58]. We see that for a wide range of the parameter space d is very different from �7=6.
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FIG. 9 (color online). The effects of varying the intercommu-
tation probability p for G�=c2 ¼ 10�7 and � ¼ 0:1. The red,
green and blue lines are for p ¼ 0:1, 10�2, 10�3, respectively,
for k ¼ 0:6. With the same color scheme but with dashed lines
we show the equivalent results for k ¼ 1. The solid black line is
for p ¼ 1.
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(�1 ¼ 10�2, 40%). There we see that the contribution from
the large loops contributes most of the overall result. From
these results, and the other cases we have investigated but
not included in the figure, we conclude that the spectrum of
the 2-scale model has a similar shape to ones created in
cases when there is only one loop production size when �1,
�2 > �G�=c2.

The situation is very different if �1 > �G�=c2 >�2, as
illustrated in Fig. 10 panel (ii). In that case, we find that the
spectrum of the SGWB has two peaks, one due to each loop
population. This is consistent with the discussion of
Sec. III B 2, where we showed that the peak of the spectrum
for �< �G�=c2 is shifted towards higher frequencies.
This means that its peak will be higher than that due to
the emission from the loops with �> �G�=c2 in a fre-
quency higher than the fpeak of the �> �G�=c2 loops. In

Fig. 10 panel (ii), 90% of the energy goes to the creation of
small-scale loops (�2) and therefore the peak correspond-
ing to the �2 (higher frequency peak) will be more promi-
nent. In general, which of the two peaks dominates over the
other depends on the amount of energy that the network
allocates to the respective loop sizes. The same behavior is
exhibited in Fig. 10 panel (iv), where �1, �2 < �G�=c2.

We see the two peaks are even more clear in this case, with
the second being slightly higher since a larger amount of
energy goes into the creation of loops at that scale (�2).
Based on a more general investigation of the parameter
space, the basic feature of two peaks is something which
appears to be generic in the case when one, or both, of the
loop production scales is lower than the gravitational back-
reaction scale.
In Fig. 11 we present results for networks which spe-

cifically follow the predictions of [103,104], in which 10%
of the energy lost by the network goes into large loops of
scale �1 � 0:1 and the remaining 90% goes into loops at
the gravitational backreaction scale (�2 � �G�=c2). We
present results for various values of G�=c2. For G�=c2 >
10�10, we find a two-peak spectrum, as in Fig. 10 panel (ii),
but much less prominent. The position of the peak created
by the small loops is almost the same as the one created by
the large loops, creating a spectrum similar to that of a pure
one-scale network but with a sharper peak. However, the
peak amplitude continuously decreases as we decrease
G�=c2, and when G�=c2 & 10�10 the peak disappears
and the large-scale loops’ contribution totally dominates
the spectrum.
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FIG. 10 (color online). �gwh
2 for networks which produce two different sizes of loops corresponding to scales �1 and �2 relative to

the horizon. In all cases we used G�=c2 ¼ 10�7, q ¼ 4=3, n� ¼ 1 and p ¼ 1. The �1, �2 and the relative percentages used are shown
in the individual figures. The black lines are the total spectra for the overall 2-scale network. The solid blue and red lines are the
individual contributions to the total spectrum from loops with initial sizes relative to the horizon, �1 and �2, respectively. For reference
we have also included spectra for the networks with �1 and �2 (dashed blue and dashed red lines, respectively) assuming that all of the
energy was channeled into each of the individual loop sizes.
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2. Log-normal distribution for loop production

Another possibility to consider is that the loops are born
with size ‘ðtbÞ ¼ fr�dHðtbÞ but with � having a distribu-
tion, P ð�Þ, an idea qualitatively justified by some recent
simulations [75,93,95,104].

One can model any distribution using an adaptation of
the methods used in the earlier sections by splitting the
distribution into N populations with loop production size
relative to the horizon �i for i ¼ 1; . . . ; N and a fraction of
loops in each bin of size �� given by P ð�iÞ��, assuming
that

Z 1

0
d�P ð�Þ ¼ 1: (34)

If �ðiÞ
gwðfÞ is the spectrum computed from loops with

� ¼ �i then the overall spectrum is

�gwðfÞ ¼
XN
i¼1

ci�
ðiÞ
gwðfÞ; (35)

where the ci ¼ P ð�iÞ�� are computed in order to enforce
the overall energy loss required to maintain scaling.

We have chosen to use the log-normal distribution to
model the loop distribution

P ð�Þ ¼ 1

�
ffiffiffiffiffiffiffi
2�

p
�

exp

�
� 1

2�2

�
log10

�
�

�0

��
2
�
; (36)

which corresponds to a Gaussian distribution in log10�
with mean log10�0 and variance �. Typically, we will
discretise the distribution in the range log10�0 � 2:8� 	
log10a0 	 log10a0 þ 2:8� with 21 bins with �ðlog10�Þ ¼
0:267�. We also experimented with smaller bin sizes, but

we did not see any change in the final results, making our
choice the most computationally effective.
The results we present here use the fiducial set of

parameters, except that we consider the two cases n� ¼ 1
and n� ¼ 105, and we have varied �0 and �. To exhibit
the important effects, we chose to use three different
mean values, �0 ¼ 10�3 (�> �G�=c2), �0 ¼ 10�8

(�< �G�=c2) and �0 ¼ 5� 10�6 (� ¼ �G�=c2), and
two values of the variance � ¼ 0:4 and � ¼ 0:8 to dem-
onstrate the behavior of multiple scale networks in the case
of large loops, small loops and those produced at the
gravitational backreaction scale, respectively.
In Fig. 12 we present the results of our computations. In

the upper right of each panel is the mean value of � used.
The red lines are for the power spectra of a one-scale model
whose value of � equal to the mean used for the multiscale
networks. The green and blue lines are the spectra for the
multiscale networks with � ¼ 0:4 and � ¼ 0:8, respec-
tively. The spectra have different behavior in the case of
large and small loops. In the case of large loop creation
(�0 > �G�=c2), the multiscale networks give higher
SGWB amplitudes than the corresponding one-scale net-
works and, moreover, the increase is higher for larger
values of � since the spectrum is dominated by the few
very large loops. This amplitude increase is seen over the
whole frequency region for f > fpeak. This behavior re-

verses in the case of networks with small loops or loops
near the gravitational backreaction scale (�0 & �G�=c2).
The flat part of the spectrum, as expected, is not affected
when all the loops are born small (�< �G�=c2).
However, when �0 ¼ �G�=c2 a small increase in the
amplitude of the flat part is seen due to the loops at the
tail of the distribution, born with �> �G�=c2. Although
there are very few of them, they can have a noticeable
effect on the spectrum.
On the other hand, the peak region created from GW

emission during the matter era exhibits a richer behavior.
A common feature is the decrease of the peak amplitude
combined with a broadening of the whole peak region,
when compared to the corresponding results from the
one-scale model. This is even more prominent in the
case where �0 & �G�=c2, because of the shift in
the peak frequency from the loops born with different
values of �. Interestingly, we see that the low frequency
cutoff of the one-scale network is no longer present, with
the SGWB spectrum extending to lower frequencies.
This extra emission into these low frequencies is created
by the few large loops at the tail of the distribution
which, individually, have lower cutoffs. Finally, as seen
from Fig. 12, the number of emission modes does not
have any significant effect on the spectra of the multi-
scale networks but in general suppresses the effects of
amplitude decrease of the flat portion of the spectrum,
peak amplitude decrease and peak region broadening
already discussed.
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FIG. 11. �gwh
2 plots for 2-scale networks with 10% of the

energy lost into the production of large loops (�1 ¼ 0:1) and
90% to loops at the gravitational backreaction scale (�2 ¼
�G�=c2). GW spectra for various G�=c2 values are presented.
As we go to smaller tensions, the sharp peak created by the small
loops starts to weaken until we reach the value G�=c2 ¼ 10�10,
below which the total GW spectrum of the 2-scale network is
actually created only by the large loops.
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IV. PULSAR TIMING CONSTRAINTS ON THE
COSMIC STRING TENSION

In this section we will use the constraints on the SGWB
from pulsars to impose a constraint on the dimensionless
cosmic string tension parameter G�=c2 using the EPTA
SGWB limit [65] and discuss the possibilities of using the
future constraints from the Large European Array for
Pulsars (LEAP) [105] project which should be available
in the near future. There is a long literature on this subject
[12,47,48,58,60–62,64,65,106] based on many different
assumptions for the string network evolution, radiation

emission, and pulsar timing data. Often there are contra-
dictory constraints based on the same data since some
authors make very strong assumptions about the expected
SGWB spectrum whereas others are more conservative.
This is at best confusing to those uninitiated in the details
of string evolution, something which this paper is aimed at
clarifying. Therefore, we will take the view that none of the
parameters (�, q and n�) which we have described in the
earlier sections are known, extending the work done in
[48]. The headline constraints which we will quote will
be the highest upper bound possible for any parameter,
this being the absolute constraint on G�=c2—one that is
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FIG. 12 (color online). �gwh
2 plots for networks in which cosmic string loops are born with � given by a log-normal distribution.

All the computations were performed for a network with G�=c2 ¼ 10�7, q ¼ 4=3, n� ¼ 1 and p ¼ 1. In the left column are the plots
with n� ¼ 1 and in the right column are results with n� ¼ 105. The green and blue lines are created using the log-normal loop
production distribution with a mean value of �0 and with � ¼ 0:4 and � ¼ 0:8, respectively. The red lines are the results for a single
loop production size � ¼ �0.
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conservative and which we can never go back on. In
addition we will present constraints for various specific
models which have been discussed in the literature.

A. EPTA constraint on �gwh
2

The SGWB limit we will use is that which comes from
the EPTA who have computed a 95% exclusion curve for
the SGWB amplitude hgw as a function of the local slope,

d, at f ¼ ð1 yrÞ�1 � 32 nHz. Previous work on the subject
has typically quoted an upper limit on�gwh

2 at a particular

frequency. Over the last 30 years various data from PTA
experiments have set constraints, as presented in Table III.
The limits which wewill discuss in the subsequent sections
will use the full exclusion curve from [65]. However, we
shall follow a different approach in the limit predictions for
the LEAP project since such an exclusion curve is obvi-
ously not available yet. In order to have a conservative
projection for LEAP, we will use a spectral index d� ¼ 0
to make a projected bound. By making this choice we
guarantee that the constraints on �gwðfÞ will be the most

conservative applicable to cosmic strings for the majority
of G�=c2 � � combinations. Note that d� < 0 in the
radiation to matter transition epoch frequency range for
any cosmic string model. We will come again to the
applicability of this idea when we will calculate the pro-
jected LEAP constraints. Moreover, the LEAP constraints
are evaluated at a frequency of ð5 yrÞ�1, which is calcu-
lated from the duration of a typical PTA experiment.

In [65] the strain of the SGWB is described by a power
law of the form hgw ¼ Aðf=yr�1Þd and an upper bound

A ¼ 6� 10�15 was established in the case of supermassive
black holes (d ¼ �2=3) at f ¼ ð1 yrÞ�1. It is interesting to
estimate the corresponding constraint on�gwh

2 in order to

confirm that the EPTA SGWB limit is the strongest pos-
sible one with which to perform our analysis. The previ-

ously published limit in [61] (see Table III) was quoted for
d ¼ �2=3 at f ¼ ð8 yrÞ�1. For the same parameter values,
the projection of the EPTA limit gives

�gw;EPTAðfÞh2 & 5:6� 10�9; (37)

at 95% confidence level, a significant improvement in
comparison to the Jenet et al. limit [61].
We note that there is a constraint on G�=c2 presented

in [65]

G�=c2 < 4:0� 10�9; (38)

that claims to improve the previous one by Jenet et al. [61]
which was

G�=c2 < 1:5� 10�8:

However, both of these limits are based on the approach of
Damour and Vilenkin [58] who make strong assumptions
about the amplitude and slope of the SGWB from strings.
In particular, they describe the amplitude of the cosmic
string loop generated SGWB using a model based on the
emission from cusps on cosmic string loops with a slope

�gwh
2 / f�7=6. As we have already discussed, loop decay

solely through cusp emission is a rather strong assumption,
and the possible behavior of the cosmic string GW spec-
trum is much richer than this. In addition, the analytic
results of [58] are based on a simplified cosmic string
evolution model (i.e., the loop number density nð‘; tÞ
calculation). Damour and Vilenkin assume nðtÞ �
ð�G�t3=c2Þ�1 independent of �, whereas the analytic
model of [67,68] which is compatible with our computa-
tions yields nðtÞ � ð1þ �G���1c�2Þð�t3Þ�1. This agrees
with that of Damour and Vilenkin when� ¼ �G�=c2, that
is, the loop production is at the gravitational backreaction
scale.

B. Conservative constraint on G�=c2

In order to calculate the constraints on the cosmic string
tension, we have to find all the cosmic string network
parameter combinations which lead to a SGWB amplitude
which is in agreement with the EPTA SGWB limit at a
frequency of ð1 yrÞ�1. For this, we computed the SGWB
(�gwh

2ðfÞ) for more than 3000 parameter sets covering

almost all the range of the theoretically expected values
for G�=c2, �, n�, q and p. For each set of fixed n�, q
and p, we deduced from our computations the quantity
�gwðG�=c2; �; d�Þh2, which gives the amplitude of the

SGWBas a function ofG�=c2,� and the local sloped� at a
frequency of ð1 yrÞ�1. The EPTA limit is given in the form
of a 95%exclusion curve of the formhgw;EPTAðdÞ. From this,

we calculated the corresponding �gw;EPTAðd�Þh2 95%

exclusion curve which would be applied to our results.
The G�=c2 � � combinations which provide the con-
straint curve for each set of n�, q and p in the G�=c2 � �

TABLE III. The �gwðfÞh2 limits published in the literature so
far. The Jenet et al. [61] limit is derived for supermassive black
holes (d� ¼ 2=3) and cosmic strings (d� ¼ �1=3) as sources of
the SGWB. The van Haasteren et al. [65] limit quoted here is for
supermassive black holes at a frequency of 4.0 nHz, for direct
comparison with the Jenet et al. [61] limit. The Thorsett and
Dewey [106] limit was criticized by McHugh et al. [109]
because of the statistical approach used. The Lommen [110]
limit, although the most stringent so far, was also criticized for
similar reasons.

Authors �gwh
2 bound

Bertotti et al. [107] 1:0� 10�3@20 nHz
Kaspi et al. [108] 6:0� 10�8@4:5 nHz
Thorsett, Dewey [106] 1:0� 10�8@4:5 nHz
McHugh et al. [109] 9:3� 10�8@4:5 nHz
Lommen [110] 2:0� 10�9@1:9 nHz
Jenet et al. [61] (PPTA) 1:9� 10�8@4:0 nHz
van Haasteren et al. [65] 5:6� 10�9@4:0 nHz
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parameter space was calculated by requiring
�gwðG�=c2; �; d�Þh2 ¼ �gw;EPTAðd�Þh2.

In Fig. 13 we set p ¼ 1 and present constraints for
various values of q and n� which satisfy the EPTA limit.
Specifically, we have plotted the cosmic string network
families for n� ¼ 1 (blue line); n� ¼ 102 and q ¼ 4=3 (red
line), n� ¼ 103 and q ¼ 4=3 (green line); n� ¼ 104 and
q ¼ 4=3 (solid black line); n� ¼ 102 and q ¼ 2 (orange
line). The dashed black line is � ¼ �G�=c2 separating the
large and the small loop production regions. The con-
straints for high-n� models are stronger than those with
low-n� for most of the ��G�=c2 combinations except
for the case of very small G�=c2 or �, where the opposite
takes place. In the same figure we also present (dashed
purple line) the constraints of the analytic approximation
presented in [12] that is just from the radiation era con-
tribution. This is a good approximation to our results in the
case of large loops, however it is only a conservative upper
limit for lower values of �.

The most conservative and generic constraint on the
cosmic string tension can be set by the curves presented

in Fig. 13. This is provided by the cosmic string networks
with � � 10�5 and n� ¼ 1, and is

G�=c2 < 5:3� 10�7; (39)

which is a 95% upper bound for this specific set of
parameters.
For comparison, we have also used the bound on the

SGWB set by the Laser Interferometer Gravitational-Wave
Observatory (LIGO) to obtain a constraint on the string
tension. We expect this to be worse than the one set by
PTAs not only because the limit on�gwh

2 itself is smaller,

but also because the LIGO frequency band (� 1 kHz) is
probing the radiation era part of the spectrum which has a
smaller amplitude than the matter era equivalent. The
LIGO limit is [111]

�gw;LIGOh
2 < 3:6� 10�6; (40)

at 95% confidence level. In Fig. 13 with the dotted-dashed
brown line we show all the cosmic string configurations
compatible with this bound at 1 kHz. For p ¼ 1 the most
conservative constraint is

G�=c2 & 2:6� 10�4: (41)

Advanced LIGO is expected to make sufficient improve-
ment, although it is unlikely to compete with PTAs in the
short term. Conversely, one of its biggest advantages is that
at these frequencies the spectrum is independent of the
modeling of the string radiation spectrum, that is, q and n�.
The prospects of improving the PTA limit in the near

future are very promising. As part of the EPTA, the LEAP
[105] project, is a large collaboration of the major telescopes
of the EPTA members (Effelsberg Telescope, Lovell
Telescope, Nancay Telescope, Westerbork Synthesis Radio
Telescope, and Sardinia Radio Telescope) which will use
long-baseline array techniques to provide pulsar timing data
equivalent to that of a 200-meter telescope. It is estimated
that LEAP data will push the sensitivity in GWs down to
�gw;LEAPðfÞh2 < 10�10 [112] in a few years. In Fig. 13, with

dashed lines and the same color scheme as for the EPTA
limits, we present the constraints onemight expect from such
a limit on the SGWB. If we assume that LEAPdoes notmake
a detection, then we would expect to set a limit ofG�=c2 <
2:0� 10�9; an improvement of more than 2 orders of mag-
nitude. The careful reader will notice that for the LEAP
constraint the order of the lines is reversed for high-n� values
and the high-n� models are above the low-n� cases. This is
expected, since we are in the low ��G�=c2 region of the
parameter space and the PTA frequency window probes the
part of the spectrum which is on the left side of the peak,
where we can see from Fig. 6 that configurations with
high-n� give lower amplitudes.
We will conclude this section with some comments on

our choice of a spectral index d� ¼ 0 for the calculation of
the projected LEAP constraints. As we mentioned in
Sec. III B 3, the PTA window probes the area on the left
of the peak (positive slope) for cosmic string networks with
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FIG. 13 (color online). Exclusion limits for different cosmic
string network configurations with the same �gwh

2 value at a

frequency f ¼ ð1 yrÞ�1 in the G�=c2 � � parameter space. The
solid lines are for the EPTA ð1 yrÞ�1 limit with q ¼ 4=3 and
n� ¼ 1 (black line), n� ¼ 103 (red line), n� ¼ 104 (green line)
and for q ¼ 2, n� ¼ 102 (orange line). The dashed purple curve
is the analytic approximation of the flat part of the spectrum as
described in [12], again for the EPTA limit on �gwh

2. The

dotted-dashed brown line is the present LIGO limit. The con-
straint set by LIGO is almost independent of n� and q and is also
only very weakly dependent on �. The dashed lines are the
corresponding curves the planned LEAP sensitivity at a fre-
quency f ¼ ð5 yrÞ�1. The thick dashed black line shows
� ¼ �G�=c2.
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G�=c2 < 10�11. The constraint lines from the projected
LEAP limit correspond to models with G�=c2 > 10�11 in
the range � 2 ½10�9; 10�3�. For all these models, indeed
our assumption behaves well and moreover, it gives
slightly overestimated values for G�=c2 since the actual
slope in this region is negative. The projected tension
constraint is given by the cosmic string networks with
n� ¼ 1 (dashed blue line in Fig. 13) which lie in this
region, so our results are robust. On the other hand, in
the region � 2 ½10�3; 0:1� the cosmic string models have
G�=c2 < 10�11 and their slope is positive. For these net-
works, our assumption is invalid and the tensions are
slightly underestimated. This underestimation, however,
is not sufficient to overcome the much stronger constraints
provided by the n� ¼ 1 networks.

C. Conservative tension constraints for p � 1

We have used the EPTA hgw 95% exclusion curve to

calculate conservative constraints on G�=c2 for the cases
of p < 1 for both scaling laws, �1 / p�1 and �1 / p�0:6

and the results are presented in Fig. 14. In this plot, the
curves correspond to the highest tension values only, mean-

ing that a significant part of each curve is provided by
the n� ¼ 1 case (in approximately the mid-� range) and
the rest by n� ¼ 104 (in the low and high � ranges). The
constraints for the �1 / p�0:6 scaling law are plotted with
solid red, blue and green lines for the cases of p ¼ 0:1,
10�2 and 10�3, respectively. The dashed lines are the
corresponding results for the �1 / p�1 scaling law. The
conservative G�=c2 constraints are presented in Table IV.
The results are indicative of how sensitive the tension
constraints are, not only for the value of the intercommu-
tation probability, but also to the exact scaling law as well.

D. Constraints on specific scenarios

In addition to the previous, generic constraint on the
string tension, we have also computed constraints for some
specific cosmic string network scenarios popular in the
literature. These models are based either on evolution
specific simulations of cosmic string networks or theoreti-
cal arguments which estimate the birth scale of the loops,
�. Unfortunately, as we mentioned before no definite con-
clusion has been drawn yet. Depending on the value of �
we can separate these models into four categories
(i) Large loops.—It has been suggested that most of the

cosmic string loops are born with a size comparable
to the horizon radius, with � � 0:1 [95,96]. Such
simulations have been performed for both flat and
expanding spacetimes. The production of small
loops along with the large ones has also been
observed in these simulations but it was suggested
that they are a transient effect which disappears
when the dynamic range of the simulations is in-
creased. The most up-to-date simulations in this
category are those in [75] where a slightly different
value of � � 0:05 was suggested.

(ii) Intermediate loops.—In some simulations [92,93] it
has been argued against the creation of such large-
scale loops supporting the idea that the smaller
loops are not a transient phenomenon but instead
dominate the loop production. Both of these simu-
lations were performed for expanding spacetimes
and they concluded that � � 10�2 � 10�3 without
observing any significant production of large-scale
loops.

(iii) Loop production is governed by the gravitational
backreaction scale.—In this scenario cosmic string
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FIG. 14 (color online). The exclusion limits for cosmic string
networks with different intercommutation probabilities and dif-
ferent scaling predictions (�1 / p�1 and �1 / p�0:6). These
curves where created by combining the equivalent lines for
n� ¼ 1 (for most of the range of �) and n� ¼ 104 (for large/
small �). All of these network configurations give an amplitude
equal to�gw;EPTAh

2 at the frequency of ð1 yrÞ�1. The solid black

line is for networks with p ¼ 1 and the solid red, blue and green
lines are for networks with p ¼ 0:1, 10�2, 10�3 respectively for
�1 / p�0:6. The dashed lines are the networks with �1 / p�1

using the same color scheme. The thick dashed black line shows
� ¼ �G�=c2.

TABLE IV. Cosmic string tension constraints for models with
p < 1 and for the two scaling laws discussed in the literature.

p G�=c2 G�=c2

(�1 / p�0:6) (�1 / p�1)

0.1 1:2� 10�7 4:4� 10�8

0.01 2:0� 10�8 1:3� 10�9

0.001 2:8� 10�9 9:3� 10�12
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loops are created at the scale of gravitational back-
reaction � � �G�=c2 [74] as a direct result of the
small-scale structure on the cosmic string network.
In more recent simulations [98] it has been pro-
posed that the scale is even smaller and is � �
ð�G�=c2Þk with k ¼ 3=2 in the radiation era and
k ¼ 5=2 in the matter era.

(iv) Two-scale loops.—Some simulations [103,104]
suggest that cosmic string loops are born with two
different scales. Specifically, 10% of the string
energy converted to loops per unit time is channeled
into loops with � � 0:1 and the rest 90% into loops
with � � �G�=c2 scale loops.

There are also simulations which suggest that cosmic
string loops are born at a fixed size that does not scale
with cosmic time and it is equal to the string width, that is
� � 0. Such tiny loops are expected to decay mainly
through particle emission [72] and are of no interest for
this work. However, even if their GW emission is signifi-
cant, it will take place at frequencies much higher than
those probed by PTAs.

We have computed the GW spectra of cosmic string
models in each of these scenarios in the tension range
G�=c2 2 ½10�5; 10�16� and applied the EPTA 2�-limit
on the SGWB at the frequency of fEPTA ¼ ð1 yrÞ�1 to set
constraints on the string tension. The results for all cate-
gories are presented in Table V. Constraints for models
with � � ð�G�=c2Þk have not been computed since their
low frequency cutoff is at frequencies higher than those
probed by PTAs, rendering them unobservable. In the
categories (ii), (iii) and (iv), the most conservative con-
straint is given by n� ¼ 1, whereas in case (i) it is given by
n� ¼ 104 (see in Fig. 13, that these networks give higher
tensions near � ¼ 0:1).

In the case of large loop production which is favored by
the most recent simulations, a very stringent limit of
G�=c2 < 6:5� 10�11 is obtained. This limit is slightly
weaker than the corresponding one found by the authors
in [12], G�=c2 < 5:0� 10�11 which is based on the ana-
lytic approximation of the amplitude of the radiation era
part of the spectrum. In the regime � � �G�=c2, the
smallest loops that PTAs are sensitive to have � ’ 10�9.

From Fig. 13 we get a constraint of G�=c2 < 1:9� 10�8

for such loops.

V. CONCLUSIONS

The constraints on the cosmic string tension from PTAs
suffer from the many uncertainties concerning the parame-
ters describing the loop production size, number density
and GW emission properties. Particular treatments of the
emission mechanism presented in the literature has led to
different conflicting constraints [60,63,64] with the most
stringent of them [61,65] being based on rather strong
assumptions [56–58]. In this paper, we have expanded on
the work performed in [48], performing a detailed inves-
tigation of the constraints for a wide range of scenarios.
Using the recent limit on the SGWB at a frequency
f ¼ ð1 yrÞ�1 set by the EPTA [65], we have managed to
set an absolute, model independent upper limit on the
string tension without making any assumptions for the
emission properties. This limit is

G�=c2 < 5:3� 10�7;

at 95% confidence level. Such an approach is particularly
necessary in the case of PTAs, since the frequency range
they probe is potentially sensitive to all the network and
emission parameters. Additionally, we have calculated
constraints for cosmic string networks with p < 1 and for
networks with specific loop birth scales which have been
proposed in the literature.
In order to achieve this, we investigated the effects on

the SGWB for each of the cosmic string model parameters
in the range of values which are interesting for PTAs. This
allowed us to delineate the fundamentally different SGWB
behavior of cosmic string networks in the large and small
loop production regimes, defined by the gravitational back-
reaction scale �G�=c2. Of special interest to the PTAs is
the low frequency cutoff, which can render the GW sig-
natures of small loop size cosmic string networks unde-
tectable even for high tension values. Additionally, we
considered extensions to the standard one-scale model in
order to investigate the differences in the SGWB created by
more realistic cosmic string networks with a 2-scale and a
log-normal loop production function.
It is worth comparing our limits to those placed on

G�=c2 from other observational approaches.
(i) CMB observations.—Cosmic strings could be respon-

sible for a fraction of the CMB anisotropies due to the
Kaiser-Stebbins effect [31]. Data from various CMB
experiments have been used to place constraints on the
string tension, themost stringent of which are those set
by combining 7-year WMAP data and Atacama
Cosmology Telescope observations [113]

G�=c2 < 1:6� 10�7;

at 95% confidence level. This uses the methods de-
scribed in [12] designed to model the simulations of

TABLE V. Cosmic string tension limits for individual cosmic
string models with specific � values predicted by particular
simulations.

Loop scale (�) G�=c2 bound References

0.1 6:5� 10�11 [95,96]

0.05 8:8� 10�11 [75]

10�2 7:0� 10�10 [92,93]

�G�=c2 5:3� 10�7 [74]

10%� ¼ 0:1þ 90%� ¼ �G�=c2 4:1� 10�8 [103,104]

’ 10�9 1:9� 10�8
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[91]. Weaker constraints are claimed in the case of
Abelian-Higgs simulations [114], the most constrain-
ing of which is G�< 4:2� 10�7, derived using all
available CMB data. See [12] for a discussion of the
veracity of these different approaches.

(ii) Gravitational lensing.—Cosmic strings can create
gravitational lensing events due to the conical shape
that spacetime acquires globally around them
[1,28]. Such events have special features which
can distinguish them from ‘‘normal’’ lenses (that
is, no magnification, identical images, odd number
of images) and can be observed in searches for
gravitational lenses. The most recent constraint set
from such searches was in [115,116] where the
authors used archival data from the HST (GOODS
and COSMOS surveys, respectively) to search for
lensing events that could have been caused by
straight cosmic strings, managing to set a bound
slightly weaker than the CMB one

G�=c2 < 3:0� 10�7;

at 95% confidence level. We note that these con-
straints are also sensitive to some of the modeling
issues which are important in the CMB case.

So far, these constraints were considered more reliable
than those from PTAs, due to the many uncertainties con-
cerning the cosmic string loop distribution and the GW
emission assumptions of previous implementations. In this
paper we believe that we have overcome all these difficul-
ties and provide equally reliable, PTA constraints. In addi-
tion, the prospects for PTAs are much better than those of
other experimental approaches. In the very near future,
LEAP is expected to improve on the present upper limit
on G�=c2 by more than 2 orders of magnitude to
G�=c2 < 2:0� 10�9, if no detection of the SGWB takes
place. This is a stronger constraint than any other expected
from present or near future CMB experiments. The pro-

jected limit for Planck satellite [117] is G�=c2 < 6:5�
10�8 [118], approximately 1 order of magnitude better
than the present one. In [119,120], the authors come to
similar pessimistic conclusions about the prospects of
present and future planned CMB experiments to detect
CMB polarization.
Future PTA experiments could provide an unprece-

dented insight on the physics of cosmic strings. It is clear
that projects like LEAP and the growing International
Pulsar Timing Array [121] will likely make a detection
of the SGWB from supermassive black hole binaries on the
time scale of the next five years. However, the sensitivity
that will be achieved with the next generation radio tele-
scope, the Square Kilometre Array [122] will give us the
opportunity to study the GW spectrum in detail. As it has
been shown in this paper for cosmic strings and for super-
massive black holes in [123], measuring the shape of the
spectrum is essential to be able to both distinguish between
the source of the SGWB and also to extract more informa-
tion about the source. In the case of supermassive black
hole binaries, information about the supermassive black
hole population and the evolution of binary systems can be
extracted. In the case of cosmic strings, we could poten-
tially determine all the fundamental model parameters
(loop birth scale �, intercommutation probability p) and
get a definitive answer about the exact GW emission
mechanism and small-scale structure of cosmic string
loops (i.e. cusps or kinks).
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