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In this letter we describe an infinite family of new N ¼ 1 AdS5=CFT4 dual pairs which arise from

M5-branes wrapping Riemann surfaces in Calabi-Yau threefolds. We use the relevant brane constructions

to compute the central charges of the infrared fixed points from the M5-brane anomaly polynomial. We

then present AdS5 �M6 solutions of 11-dimensional supergravity which are dual to these conformal field

theories (CFTs) at large N. Finally, we provide a purely four-dimensional field theory construction which

flows to a special class of these fixed points. These theories are further elaborated upon in a companion

paper [I. Bah, C. Beem, N. Bobev, and B. Wecht, arXiv:1203.0303.].
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Despite many years of study, the M5-brane remains a
deeply mysterious object. When wrapped on a complex
curve Cg of genus g > 1 inside a Calabi-Yau manifold,

M5-branes support a low-energy four-dimensional world-
volume theory that is strongly coupled and generically has
no known Lagrangian description. In certain cases, explicit
solutions of 11-dimensional supergravity are known which
provide a holographic description of such theories at large
N, and even at finite N some aspects of these theories can
be understood. Still, the set of such solutions is small, and
the number of known field theory duals even smaller.

The first example of such 11-dimensional solutions was
discovered by Maldacena and Nuñez (MN) [1]. These
solutions preserve either four or eight supercharges, and
the near-horizon geometry has an AdS5 factor. The dual
field theories are therefore four-dimensional N ¼ 1 or
N ¼ 2 SCFTs. Although for many years these theories
remained mysterious, the recent discovery [2] of a new
class of N ¼ 2 SCFTs provided the missing link. These
new theories, which are called TN , have SUðNÞ3 global
symmetry and are strongly coupled. In [3], the authors
showed that the N ¼ 2 MN solutions are dual to TN

theories coupled together by pairing all non-Abelian
global symmetries and gauging the diagonal subgroups.
Furthermore, in [4], it was shown that the N ¼ 1 MN
solutions are dual to Gaiotto’s theories after perturbing by
a mass term for all the adjoint chiral superfields inN ¼ 2
vector multiplets and flowing to the infrared.

It is useful to organize these constructions in terms of the
ambient Calabi-Yau geometry in which the curve Cg is

embedded (in this note, we consider only the case where
Cg is closed). In theories preserving eight supercharges,

this ambient space is a Calabi-Yau twofold, and locally the
geometry is the cotangent bundle T ?Cg. This is the ar-

rangement which leads to the N ¼ 2 MN solutions.
Alternatively, when four supercharges are preserved, the
ambient space is a Calabi-Yau threefold. The N ¼ 1 MN

solutions then result from the situation in which the local

geometry is of the form K1=2 � K1=2 ! Cg with K the

canonical bundle of the curve.
In this work, we establish an infinite family of new

11-dimensional solutions and their field theory duals which
arise on M5-branes wrapping complex curves Cg in Calabi-
Yau threefolds. In contrast to the situations described
above, we allow the local geometry of the threefold to be
any decomposable C2-bundle over Cg. The bundle then

splits as a sum of line bundlesL1 �L2 ! Cg. The Calabi-
Yau condition requires L1 �L2 ¼ K. Taking p ¼ degL1

and q ¼ degL2, this implies that pþ q ¼ 2g� 2. Any
such choice of p and q leads to an allowed twist of the M5-
brane theory on Cg preserving at least four supercharges.

For q ¼ 0 or p ¼ 0, there is an enhancement to eight
supercharges and the construction reduces to that of [2].
For p ¼ q we recover the N ¼ 1 theories studied in [4].
New fixed points from six dimensions.—While very little

can be computed directly from the six-dimensional theory
of M5-branes, it is possible to extract the superconformal
R-symmetry and central charges of the putative four-
dimensional IR fixed points by an anomaly computation
similar to the one performed in [4]. This will provide a
stringent check on our interpretation of the gravity and
field theory constructions which follow.
The anomaly eightform for N M5-branes is [5]

I½N� ¼ ðN � 1ÞI½1� þ ðN3 � NÞp2ðN Þ
24

; (1)

where I½1� is the anomaly for a single M5-brane,

I½1� ¼ 1

48
½p2ðN Þ � p2ðT Þ þ 1

4
ðp1ðT Þ � p1ðN ÞÞ2�:

(2)

The characteristic classes p1;2 appearing in these expres-

sions are the first and second Pontryagin classes of the
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normal bundle N and tangent bundle T to the
six-dimensional M5-brane worldvolume. The choice of
normal geometry implies that the Chern roots ‘1, ‘2 of
the normal bundle are related to the Chern class t of the
tangent bundle to the Riemann surface by

‘1 ¼ � 1þ z

2
t; ‘2 ¼ � 1� z

2
t: (3)

The parameter z is related to the degrees of the line bundles
L1;2 by z ¼ ðp� qÞ=ð2g� 2Þ.

The central charges of the resulting four-dimensional
theory can be obtained by turning on a background flux for
the superconformal R-symmetry and then integrating the
anomaly eightform over Cg to produce an anomaly

sixform. However, the decomposable nature of the C2

bundle over Cg implies that the field theory has a Uð1Þ2
symmetry coming from independent rotations of the line
bundles L1;2, so the superconformal R-symmetry is not

a priori identifiable.
It is useful to define subgroups of this Uð1Þ2 symmetry

as follows: Uð1ÞR0
, which rotates the two normal line

bundles with equal phases, and Uð1ÞF , which rotates

them with opposite phases and under which the preserved
supercharges of the twisted M5-brane theory are invariant.
We can then parameterize our ignorance of the infrared
superconformal R-symmetry in terms of a trial
R-symmetry R� ¼ R0 þ �F . Coupling R� to a Uð1Þ
bundle F induces a shift in the Chern roots,

‘1 ! ‘1 þ ð1þ �Þc1ðFÞ; ‘2 ! ‘2 þ ð1� �Þc1ðFÞ:
(4)

The anomaly sixform then takes the form

I6 ¼ 1

6
TrR3

�c1ðFÞ3 � 1

24
TrR�c1ðFÞp1ðT 4Þ; (5)

in terms of the linear and cubic ’t Hooft anomalies of the
trial R-symmetry. The central charges a and c are linear
combinations of these anomalies when R� is the super-
conformal R-symmetry, with the value of � fixed by the
requirement that a be maximized [6].

Explicit expressions for the maximizing value of � and
the central charges are unwieldy and appear in [7].
However, the answers simplify at large N, where we find
that for the superconformal R-symmetry,

� ¼ �� � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3z2

p
3z

; (6)

and the central charges are given by

aðzÞ ¼ cðzÞ ¼ ðg� 1ÞN3

48z2
ðð1þ 3z2Þ3=2 þ 9z2 � 1Þ: (7)

The organization of the fixed points for a given Cg
reflects the structure of the normal geometry to the M5-
branes (see Fig. 1). In particular, there are g� 2 distinct

fixed points with central charges that fall between those of
the N ¼ 1 and N ¼ 2 MN twists, corresponding to line
bundles with p and q both positive. There are then infi-
nitely many fixed points with central charge greater than
that of the N ¼ 2 MN twists, with the central charges
growing linearly for large z.
Dual supergravity backgrounds.—At large N, the exis-

tence of the fixed points described above can be established
holographically. The dual supergravity solutions can be
found by imposing constraints on the 11-dimensional
spinors to match the conserved supersymmetries on the
M5-branes. The supergravity solutions thus correspond to
‘‘wrapped-brane spacetimes’’ in the language of [8]. The
resulting backgrounds admit a truncated description in
terms of a Uð1Þ2 seven-dimensional gauged supergravity,
as was the case for the special twists studied in [1]. In fact,
Bogomol’nyi-Prasad-Sommerfield flows from an asymp-
totically locally AdS7 geometry to the AdS5 fixed points
can be found numerically, demonstrating that the renor-
malization group flows from the twisted six-dimensional
field theories actually hit the four-dimensional fixed points
in question [7].
We find a two-parameter family of 11-dimensionalAdS5

solutions indexed by g and z that can be obtained from the
seven-dimensional solutions by the uplift formulas of [9].
(Similar solutions in seven dimensions have been studied
in [10], although the results do not match precisely. The
calculation of central charges from four- and six-
dimensional points of view provides a strong check on
the solutions described in this letter.) The metric takes
the form

ds211 ¼ �1=3ds27 þ
1

4
��2=3ds24;

ds27 ¼ e2f0
�dt2 þ d~z2 þ dr2

r2
þ e2g0

dx2 þ dy2

y2
;

ds24 ¼ X�1
0 d�2

0 þ
X2
i¼1

X�1
i ðd�2

i þ�2
i ðd�i þ AðiÞÞ2Þ; (8)
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FIG. 1 (color online). The central charge a as a function of the
twist parameter z for genus g ¼ 7 andN ¼ 4, 5, 6 (bottom to top).
TheMN theories aremarkedwith large points at z ¼ 0 and jzj ¼ 1.
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where we have defined

� ¼ X2
�¼0

X��
2
�;

X2
a¼0

�2
a ¼ 1;

AðiÞ ¼ ai
dx

y
� Aflat;

with a1 � ð1þ zÞ=2, a2 � ð1� zÞ=2, and Aflat the connec-
tion for a flat S1 bundle over Cg½x; y�. The constants take

values depending on z,

X5
1 ¼

1þ7zþ7z2þ33z3�ð1þ4zþ19z2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3z2

p
4zð1� zÞ2 ;

X1X
�1
2 ¼ 1þ z

2zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3z2

p ; X0 ¼ ðX1X2Þ�2; ef0 ¼X�1
0 ;

e2g0 ¼X1X2

8
ðð1� zÞX1þð1þ zÞX2Þ: (9)

The fourform flux is given by

�11Fð4Þ ¼ 4
X2
�¼0

ðX2
��

2
� � �X�Þ�ð7Þ þ 2�X0�ð7Þ þ 1

16

�X2
i¼1

X�2
i dð�2

i Þ ^ ðd�i þ AðiÞÞ ^ �7FðiÞ; (10)

where FðiÞ ¼ dAðiÞ, �ð7Þ is the volume form for ds27, and �7
and �11 denote the Hodge star operator with respect to ds27
and ds211, respectively.

The internal manifold in the metric (8) is an S4 fibration
over Cg, which is realized as an appropriate quotient ofH2.

Compatibility of the S4 fibration with this quotient then
requires that z take discrete values as in the previous
section. This structure exactly parallels the geometry of
the M5-brane construction. One can identify the Killing
vector generating Uð1ÞF with @�1

� @�2
and the one cor-

responding to Uð1ÞR0
with @�1

þ @�2
. It is also apparent

that there are exactly marginal deformations of these back-
grounds given by variations of the complex structure of the
curve Cg (realized by modifying the quotient action onH2)

along with variations of the flat connection Aflat. The
conformal manifold of the dual field theories is then of
complex dimension ð3g� 3Þ þ g.

It is straightforward to compute the central charges for
these backgrounds using holography, and the result is in
precise agreement with (7). Furthermore, there are BPS
operators OM2 in these theories which are dual to M2-
branes wrapping the curve Cg. The dimension of such an

operator is also computable from the gravity solution [3],
and is given by

�½OM2� ¼ Nðg� 1Þ
�
1þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3z2

p �
: (11)

A canonical system of coordinates for supersymmetric
AdS5 solutions of 11-dimensional supergravity was
introduced in [11]. A prominent role in this construction
is played by a particular Killing vector—constructed from
a constant-norm Killing spinor—which generates the
superconformal R-symmetry of the dual field theory. The
solutions in (8) can be adapted to these coordinates, in
which case the relation of the superconformal Killing
vector to the two Killing vectors in (8) is given by

@c ¼ 4
3X

2
1X

2
2ðX1@�1

þ X2@�2
Þ: (12)

This geometric identification of the superconformal R-
symmetry matches the result of a-maximization in the
previous section.
Field theory construction.—We now turn to the field

theories dual to the above constructions. The basic building
blocks will be the TN theories discovered by Gaiotto in [2].
These are isolated N ¼ 2 superconformal field theories
(SCFTs) with SUðNÞ3 global symmetry coming from N
M5-branes wrapping a thrice-punctured sphere C0;3.
Although there is no known weakly coupled description
of these objects for N > 2, we do know some of the gauge-
invariant operators and their dimensions. In particular,
each TN comes with three dimension-two operators �a,
a ¼ 1, 2, 3, each transforming in the adjoint of one of the

SUðNÞ groups. There are also operatorsQ, ~Q of dimension
N � 1, transforming in the ðN;N;NÞ and ð �N; �N; �NÞ repre-
sentations, respectively.
Diagrammatically, we represent a TN by a triangle

(trinion) with three prongs coming off the vertices, corre-
sponding to the three SUðNÞ global symmetries. One can
now construct a large family of new N ¼ 2 field theories
by gauging the diagonal subgroup of two of these SUðNÞ’s,
generically from different TN blocks. To be consistent with
N ¼ 2 supersymmetry, we need to include the superpo-
tential term W ¼ Trð��Þ, where � is the adjoint chiral
superfield in the vector multiplet. These theories have p or
q equal to zero and are dual to the N ¼ 2 MN solutions.
Similarly, one could connect the TN blocks with all
N ¼ 1 vector multiplets, as discussed in [12]. The result-
ing theories then have p ¼ q and are dual to the N ¼ 1
MN solutions.
Coupling TN blocks with vector multiplets has a geomet-

ric interpretation in terms of gluing together local Calabi-Yau
threefold geometries of the formC�T �C0;3. In theN ¼ 2
case, the line bundles are connected so that the resulting
geometry is still the sum of a trivial bundle and a cotangent
bundle. Alternatively, we interpret coupling by an N ¼ 1
vector as gluing the local geometries so that the cotangent
bundle over one sphere is connected to the trivial bundle over
the other and vice versa. For any one of our local geometries
with p and q both non-negative, we can introduce a decom-
position into a collection of 2g� 2 punctured spheres, over
each of which is fibered one curved and one trivial line
bundle. Furthermore, each punctured sphere is endowed
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with a number ki ¼ 1, 2 indicating that the curved part of the
normal geometry lies in the line bundle Lki .

To each decomposition of this kind, we associate a
generalized N ¼ 1 quiver theory where the i’th TN block
in the quiver comes with a sign �i ¼ ð�1Þkiþ1, and the
connecting gauge fields come inN ¼ 2 orN ¼ 1 vector
multiplets according to whether they connect two TN

blocks with �i�j ¼ þ1 or �1, respectively. There will

be p blocks with �i ¼ þ1 and q with �i ¼ �1. Any such
arrangement is naturally encoded in a generalized quiver
diagram with shading (see Fig. 2). In such a construction
theN ¼ 1 gauge interactions are asymptotically free, and
in the UV the theory is a collection ofN ¼ 2 generalized
quiver theories along with some decoupled N ¼ 1 vector
multiplets.

Our main tool to analyze these field theories will be
global symmetries. When viewed as an N ¼ 1 object,
each TN has two global Uð1Þ symmetries, RN¼1;i and Ji,
which are in the Cartan subalgebra of the SUð2Þ �Uð1Þ
N ¼ 2 R-symmetry. The charges of these symmetries are
as described in [4]. Each N ¼ 2 vector multiplet addi-
tionally comes with an adjoint chiral superfield charged
under a global symmetry Fiajb . The indices ia and jb, with

a, b ¼ 1, 2, 3, refer to the possible SUðNÞ flavor groups of
the two TN’s attached to the vector multiplet.

When all the TN theories are connected with either
N ¼ 1 orN ¼ 2 vector multiplets, there is one anomaly-
free R-symmetry R0 and one anomaly-free non-
R-symmetry F . Given any choice of f�ig, R0 and F are

R0 ¼ Rþ 1

6

X
i

Ji;F ¼ 1

2

X
i

�iJi

þ 1

2

Xð�i þ �jÞFiajb :

The last sum is over all locations of N ¼ 2 vector multip-
lets, i.e., between TN blocks i and j with �i�j ¼ 1. R is the

superconformal R-symmetry of the UV fixed point, and acts
as RN¼1;i on the i-th TN . The symmetries R0 and F then

admit a natural interpretation as the symmetric and anti-
symmetric combinations of the Uð1Þ actions on the line
bundles L1 and L2.
Since R0 and F can potentially mix, there is a one-

parameter family of R-symmetries given by R� ¼ R0 þ
�F . The superconformal R-symmetry can then be fixed by
maximizing a� ¼ ð3=32Þð3TrR3

� � TrR�Þ 	 . The answer is
in precise agreement with the calculation using the pre-
vious methods.
At large N the central charge a� is maximized at � ¼ ��

(6) (the more unwieldy value of � also matches the anom-
aly analysis for finite N; see [7]). The superconformal
R-charges of some of the chiral primary operators are then

R½�i� ¼ 1� �i��; R½�ij� ¼ 1þ 1
2ð�i þ �jÞ��;

R½Qi� ¼ R½ ~Qi� ¼ 1
2ðN � 1Þð1� �i��Þ: (13)

The dimension-three chiral operators at such a fixed point
are easily enumerated. For eachN ¼ 2 node of the quiver,
there are operators Trð�ia�iajbÞ and Trð�jb�iajbÞ, while for
eachN ¼ 1 node there is a single operator Trð�ia�jbÞ. To
compute the dimension of the conformal manifold, we can
use the methods of Leigh and Strassler [13]. In a theory
with m2 N ¼ 2 vector multiplets and m1 N ¼ 1 vector
multiplets, there are 2m2 þm1 marginal operators. Adding
this to 3g� 3 gauge couplings, we obtain ð3g� 3Þ þ
2m2 þm1 marginal parameters. However, ð2g� 3Þ þm2

of these are removed by anomaly constraints and field
redefinitions, leaving ð3g� 3Þ þ g exactly marginal pa-
rameters. This matches the gravity calculation of the com-
plex dimension of the conformal manifold. Finally, we note
that an M2-brane wrapping the Riemann surface is dual to
OM2 ¼ Q

iQi, with dimension 3
2 ðg� 1ÞðN � 1Þð1� ��zÞ,

in agreement with (11).
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FIG. 2. An example of anN ¼ 1 quiver construction at genus
g ¼ 3 with ðp; qÞ ¼ ð1; 3Þ. Shaded trinions have � ¼ þ1 while
unshaded have � ¼ �1. Shaded versus unshaded nodes repre-
sent N ¼ 1 and N ¼ 2 gluings, respectively.
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