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We construct explicitly the canonical transformation which controls the full dependence (local and

nonlocal) of the vertex functional of a Yang-Mills theory on a background field. After showing that the

canonical transformation found is nothing but a direct field-theoretic generalization of the Lie transform of

classical analytical mechanics, we comment on a number of possible applications, and, in particular, the

nonperturbative implementation of the background field method on the lattice, the background field

formulation of the two-particle irreducible formalism, and, finally, the formulation of the Schwinger-

Dyson series in the presence of topologically nontrivial configurations.
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I. INTRODUCTION

Quantization of non-Abelian gauge theories around
background field configurations is a subject of consider-
able interest. Since the pioneering work of ’t Hooft [1], the
path-integral around topologically nontrivial field configu-
rations has been used in many different applications, rang-
ing from chiral soliton models in effective approaches to
low-energy QCD [2] to the study of critical solitons in
supersymmetric models [3].

Quantum fluctuations around the classical background
can be treated perturbatively by fixing a gauge while
retaining explicit (background) gauge invariance. This is
the so-called background field method (BFM) [4], which
has been widely used to simplify, technically as well as
conceptually, calculations in gauge theories.

While within perturbation theory the BFM has been
extended to all orders both in the continuum [5] and on
the lattice [6], there is yet no clear-cut prescription on how
to handle the BFM quantization in nonperturbative ap-
proaches to non-Abelian gauge theories, like, e.g., their
nonperturbative formulation on the lattice [7] or their
treatment in the two-particle irreducible (2-PI) formalism
of Cornwall, Jackiw, and Toumbulis [8]. One of the open
issues in realizing this program is the existence of Gribov
copies [9] which prevents a direct generalization of the
perturbative treatment.

Clearly, if one were able to implement the BFM for both
nonperturbative lattice gauge theory and the 2-PI formal-
ism, one could make significant progress in the computa-
tion of nonperturbative lattice quantities, as well as in
understanding the matching with their continuum counter-
parts. For instance, the one-loop correspondence [10] be-
tween the pinch technique [11] and the BFM Green’s
functions has been shown to hold true to all orders for
the background-dependent amplitudes [12,13]. Then, the
simulation of the background gluon two-point function on
a lattice gauge fixed in the BFM (Feynman) gauge would

allow one to construct a renormalization group invariant
propagator (which is independent of the renormalization
point � chosen, or, conversely, of the lattice space chosen)
by simply multiplying the unrenormalized propagator by
the square of the unrenormalized charge, as in QED.
Moreover, the ability to extend the BFM to the aforemen-
tioned contexts would open up a wide range of gauge-
invariant simulations and variational estimates. This would
translate into very useful phenomenology for addressing
the properties of the infrared sector of Yang-Mills theories
and, in particular, phenomena like confinement, chiral
symmetry breaking, and/or dynamical gluon mass
generation.
Surprisingly enough, it turns out that one can give a very

simple characterization of the dependence of the effective
action on the background which holds in a very general
setting. Specifically, as we will show in this paper, it turns
out that, whenever the extended Slavnov Taylor (ST) iden-
tity in the presence of the background is fulfilled, the
background dependence of the effective action is governed
by a canonical transformation with respect to (w.r.t.) the
fundamental Batalin-Vilkovisky (BV) bracket of the
underlying gauge theory. Consequently, one can draw a
fruitful analogy with the theory of Lie transforms in clas-
sical analytical mechanics and obtain simple and powerful
formulas for the finite canonical transformation which fix
(uniquely) the background-dependent amplitudes in terms
of those at zero background.
In a purely nonperturbative setting, the definition of the

ST identity is a delicate issue requiring a careful analysis,
which exceeds the purpose and scope of this paper.
Nevertheless, we would like to point out that the approach
proposed in the present paper does not require the presence
of dynamical ghosts. This represents an advantage w.r.t. the
conventional techniques for implementing the BFM on the
lattice, since, as we will explicitly see, it allows in principle
to evade the Neuberger’s 0=0 problem [14].
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II. BACKGROUND FIELDS AND CANONICAL
TRANSFORMATIONS

Within the BV framework, the complete vertex func-
tional � of a SU(N) Yang-Mills theory, quantized in a
linear background gauge, can be written in terms of the
fields � ¼ ðAa

�; c
a; �ca; baÞ, the antifields �� ¼ ðA�a

� ; c�aÞ,
the background field Âa

�, and its associated source �a
�

[15]. The antifields ð �c�a; b�aÞ are not needed, since the
fields ba and �ca form a Becchi-Rouet-Stora-Tyutin
(BRST) doublet [16,17], i.e., a set of variables u, v trans-
forming under the BRST differential s according to
su ¼ v, sv ¼ 0. This, together with the fact that the b
dependence is confined at tree level, allows one to elimi-
nate the doublet ð �ca; baÞ by means of a canonical trans-
formation yielding the so-called reduced functional.

For example, if one considers the background Lorentz-

covariant gauge-fixing function F̂ a ¼ ½D̂�ðA� ÂÞ��a
with D̂ab

� ¼ �ab@� þ facbÂc
� the background covariant

derivative, the complete tree-level vertex functional reads

�ð0Þ ¼
Z

d4x

�
� 1

4
Fa
��F

a�� � �caðD̂�D�cÞa

� ðD� �cÞa�a
� � �

2
ðbaÞ2 þ ba½D̂�ðA� ÂÞ��a

þ A�a
� ðD�cÞa þ 1

2
fabcc�acbcc

�
: (1)

The reduced functional is then obtained by first defining

~� ¼ ��
Z

d4xba½D̂�ðA� ÂÞ��a þ �

2

Z
d4xðbaÞ2

and then eliminating �ca through the antifield redefinition
~A�a
� ¼ A�a

� þ ðD̂� �cÞa, which, due to the antighost equation
��
� �ca ¼ �D̂ab

�
��
�A�b

�
þ ðD���Þa, represents the only combi-

nation through which the vertex functional could possibly
depend on �ca. In what follows, we will always use the
reduced vertex functional and thus drop the tilde symbols
on all quantities.

As shown in Ref. [18], the extended ST identity in the
presence of a background field can be written as

Z
d4x�a

�ðxÞ ��

�Âa
�ðxÞ

¼ � 1

2
f�;�g; (2)

where fX; Yg represents the BV bracket defined as (only
left derivative assumed in what follows) [19]

fX; Yg ¼
Z

d4x
X
�

�
ð�1Þ��ð�Xþ1Þ �X

��

�Y

���

� ð�1Þ��� ð�Xþ1Þ �X
���

�Y

��

�
: (3)

The sum runs over the fields � ¼ ðAa
�; c

aÞ and the corre-

sponding antifields �� ¼ ðA�a
� ; c�aÞ, with ��, ��� and �X

representing the statistics of the field �, the antifield ��
and the functional X, respectively. For the graded proper-
ties of the BV bracket, the reader is referred to Ref. [19].
If one now takes the derivative of Eq. (2) w.r.t. �a

� and

sets the latter source equal to zero afterward, the resulting
equation [18]

��

�Âa
�ðxÞ

���������¼0
¼ �

�
��

��a
�ðxÞ ;�

����������¼0
(4)

shows that the derivative of the vertex functional w.r.t. the
background field equals the effect of an infinitesimal ca-
nonical transformation (w.r.t. the BV bracket) on the vertex
functional itself. Then, since the BV bracket does not

depend on either Âa
� or �a

�, if one were able to write the

finite canonical transformation generated by the fermion

�a
�ðxÞ ¼ ��

��a
�ðxÞ , one would control the full dependence of

� on the background fields; and this would happen not only
at the level of the counterterms of �, but rather for the full
1-PI Green’s functions, thus giving control even over the
nonlocal dependence on the background.
The problem can be thus stated as follows: given the

field and antifield variables �, ��, which are canonical
w.r.t. the BV bracket (3), i.e.,

f�iðxÞ; �jðyÞg ¼ f��
i ðxÞ; ��

j ðyÞg ¼ 0

f�iðxÞ; ��
j ðyÞg ¼ �ij�

4ðy� xÞ;
and the background field Âa

�, find the canonical mapping

ð�ðxÞ; ��ðxÞ; Âa
�ðxÞÞ � ð�ðxÞ;��ðxÞÞ;

to the new field and antifield variables � and �� such
that the ST identity (4) written in these new variables is
automatically satisfied. This last condition translates in a
relatively straightforward fashion, in determining the ca-
nonical variables� and�� which are also solutions of the
two equations:

��ðyÞ
�Âa

�ðxÞ
¼ ��a

�ðxÞ
���ðyÞ ¼ f�ðyÞ;�a

�ðxÞg;

���ðyÞ
�Âa

�ðxÞ
¼ ���a

�ðxÞ
��ðyÞ ¼ f��ðyÞ;�a

�ðxÞg:
(5)

Before proceeding to construct explicitly the canonical
mapping, let us notice that a (recursive) solution of the
finite canonical transformation has been already derived by
means of homotopy techniques in Ref. [18], where it was
found that this solution fails to respect the (naively ex-
pected) exponentiation pattern, due to the dependence of

the generating functional �a
� on the background field Âa

�.

In order to find the explicit canonical transformation, let
us then introduce the operator

��a
�ðxÞ ¼ f�;�a

�ðxÞg þ �

�Âa
�ðxÞ

:
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The first term above represents a (graded) generalization
(to the BV bracket and a fermionic generator) of the
classical Lie derivative w.r.t a (bosonic) generator (in
which case the bracket would be the usual Poisson
bracket); the second term takes into account the above
observation on the exponentiation failure.

Using then the properties of the BV bracket, it is not
particularly difficult to establish the following relations:

��a
�ðxÞð�X þ �YÞ ¼ ���a

�ðxÞX þ ���a
�ðxÞY;

��a
�ðxÞðXYÞ ¼ X��a

�ðxÞY þ ð�1Þ�X�YY��a
�ðxÞX;

��a
�ðxÞfX; Yg ¼ f��a

�ðxÞX; Yg þ fX;��a
�ðxÞYg:

The first two equations above establish that ��a
�ðxÞ gives

rise to a graded derivation with the usual statistics, while
the last formula allows us to determine the important result

Z
1
. . .

Z
n
Â1 . . . Ân��n

. . . ��1
fX; Yg

¼ X
0�m�n

�
n
m

�
f��1

. . . ��m
X;��mþ1

. . . ��n
Yg; (6)

where we have introduced the shorthand notation
R
i ¼R

d4yi, Âi ¼ Âai
�i
ðyiÞ and �i ¼ �ai

�iðyiÞ.
From the operator ��, one can then define a mapping

E� given in terms of a formal power series in the back-

ground field Â as follows:

�ðxÞ ¼ E�ð�ðxÞÞ

� X
n�0

1

n!

Z
1
. . .

Z
n
Â1 . . . Ân½��n

. . . ��1
�ðxÞ�Â¼0;

(7)

with an identical expansion holding for the antifields var-
iables. Then Eq. (7) constitutes the sought-for canonical
mapping between the old and the new variables.

Indeed, on the one hand, the canonicity property is a
direct consequence of Eq. (6) above, since the latter di-
rectly implies the identity E�fX; Yg ¼ fE�X; E�Yg. On
the other hand, to see that the new variables are indeed
solutions of Eqs. (5), let us concentrate on the case of a
bosonic field � and expand both the latter and the fermi-
onic generator �a

� in power series w.r.t. the background

field Â. Schematically, one has

� ¼ �þ X
n�0

1

n!

Z
1
. . .

Z
n
Â1 . . . Ân�1...n;

�0 ¼ c 0 þ
X
n�0

1

n!

Z
1
. . .

Z
n
Â1 . . . Ân�01...n;

and finds up to third order in Â

��1
�jÂ¼0 ¼ f�; c 1g;

��2
��1

�jÂ¼0 ¼ ff�; c 1g; c 2g þ f�;�12g;
��3

��2
��1

�jÂ¼0 ¼ fff�; c 1g; c 2g; c 3g þ f�;�123g
þ ff�;�12g; c 3g þ ff�;�23g; c 1g
þ ff�;�31g; c 2g;

where in the last equation, we have symmetrized all indices
and used the (graded) Jacobi identity together with the

result
R
1

R
2 Â1Â2

�
�Â3

f�1;�2g ¼ 0. It can then be checked

that the above terms are indeed the solutions (up to third

order in Â) of the first of Eqs. (5). The fermionic case, e.g.,
a fermionic antifield��, can be treated in exactly the same
way.

III. DISCUSSION

There are several comments which can be madew.r.t. the
canonical transformation (7).
To begin with, it should be noticed that such transfor-

mation, together with the method used for constructing it,
is nothing but a direct generalization of the procedure
developed long ago by Deprit [20] to construct canonical
mappings in the form of (formal) power series in a small
parameter �, in cases where the generating function itself
explicitly depends on �. In this case, the problem one tries
to address is the following: given a function V which
depends on the (canonical) variables q, p and a parameter
�, find a canonical mapping ðq; p; �Þ � ðQ;PÞ, such that
the new variables Q and P satisfy the equations

dQ

d�
¼ @

@P
Vðp; q; �Þ; dP

d�
¼ � @

@Q
Vðp; q; �Þ:

The solution to this problem is found [20] by enlarging
the concept of a Lie series through the introduction of the
operator�V ¼ f�; Vg þ @

@� (the bracket being now the usual

Poisson bracket) and next defining, for any given function
f of the variables p, q and �, the formal power series (Lie
transform generated by V)

EVðfÞ ¼
X
n

1

n!
�n�n

Vðq;p;�Þfðq; p; �Þj�¼0:

Then, the new canonical variables are given by the Lie
transforms Q ¼ EVðqÞ and P ¼ EVðpÞ. We thus see that
the canonical transformation found has a sound geometric
interpretation, being a direct field-theoretic generalization
of the Lie transform in classical analytical mechanics.
Given this connection, one might conversely wonder
what advantages could bring the use of the homotopy
techniques of Ref. [18] in a completely classical context.
Second, the mapping (7) provides a new set of field

variables such that when the conventional Green’s func-
tions are written in terms of these new variables, they
would coincide with those calculated in the BFM, thus
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explaining the aforementioned correspondence between
them. It would be then very interesting to supplement the
current formulation of the canonical transformation with
Nielsen identities [21] and study the flow of Eq. (7) as �
moves towards the critical value � ¼ 1, where it is known
that the BFMGreen’s functions acquire additional physical
properties [22].

Third, it should be noticed that at no point in this
analysis, we have relied on the Ward identity usually
associated with background linear gauge fixings such as
the one used for illustrative purposes in Eq. (1). Indeed, the
only requirement we have on the gauge-fixing fermion is
that it is possible to construct the canonical mapping which
eliminates the BRST doublet ð �ca; baÞ, thus allowing for the
writing of the reduced vertex functional and ultimately of
the extended ST identity (2) (which happens in the vast
majority of cases). This shows that it is the (extended) ST
identity and not the Ward identity which forces the stron-
gest constraints on the theory, in agreement with the find-
ings of Ref. [23], where it was shown that the background
Ward identity alone is not able to guarantee physical
unitarity (i.e., the cancellation of the intermediate ghost
states in physical amplitudes) in the absence of the ST
identity.

As for applications, we can think of at least three. The
first one is in relation to the nonperturbative formulation of
the BFM on the lattice. At first sight, this claim looks
surprising, since such a formulation would require a
BRST-invariant integration over link variables, and it is
well known that the so-called Neuberger 0=0 problem [14]
forbids a direct nonperturbative generalization of the
BRST symmetry. Thus, the extended ST identity, which
clearly constitutes the central pillar of our construction,
would not be present either. However, notice that the
canonical transformation (7) can also be written in a
(gauge-invariant) model where the ghosts are replaced by
external classical anticommuting sources, i.e., the BV
bracket spans the gauge field Aa

� and its antifield A�a
�

and, for a gauge fixing obtained by minimizing some func-
tional F½g� over the gauge group, the parameters of the
group element g and their antifields. Thus, the fact that
dynamical ghosts need not be present in the formulation
overcomes the absence at the nonperturbative level of the
BRST symmetry. Assume then that one is able to fix a
background gauge, e.g., through the minimization of a
suitable functional F½g� (recall that our derivation does
not rely on the particular gauge fixing chosen); assume also

that at a fixed background Â, such functional depends on

the gauge field only through the combination Ag
� � Â�

(leading to the most economical generalization of the
ordinary Landau gauge functional) with Ag

� ¼ gyA�g�
i@�g

yg and g a gauge group element. The simplest gen-

eralization of the ordinary Landau gauge functional is

F½g� ¼ �
Z

d4xTrðAg
� � Â�Þ2: (8)

When minimized, it gives the background Landau gauge

condition D̂�ðAg
� � Â�Þ ¼ 0.1 Then, on the minimum of

the functional (8), the mapping

A ! AgðA; ÂÞ � Â (9)

defines the action of the canonical transformation on the
gauge field, thus generalizing nonperturbatively the back-
ground quantum splitting. In the presence of Gribov cop-
ies, multiple minima exist which are parametrized by

different functions giðA; ÂÞ; however, the canonical map-
ping (9) allows for reconstructing the full dependence on
the background also in such case, provided that we restrict
ourselves to the region of validity of each gi.
At this point, the strategy would then be to reconstruct

the dependence on the background of the various quantities
calculated through this canonical transformation (with a
suitable extension to the gauge antifield). Notice that this
canonical mapping provides highly nontrivial constraints,
relating quantum and background Green’s functions,
which can therefore be tested, at least in principle, on the
lattice.
A second application is the BFM formulation of the 2-PI

formalism [8]. To get an idea of how this can be accom-
plished, observe that the extended ST identity (2) can be
rewritten in terms of the generator of the connected
Green’s functions W½J� ¼ �½�� þ R

J� as

Z
d4x�a

�ðxÞ �W

�Âa
�ðxÞ

¼ �
Z

d4xJðxÞ �W

���ðxÞ : (10)

Starting from the connected diagrams, which are assumed
to satisfy Eq. (10), one can perform a double Legendre
transform

W½J; K� ¼ �½�; G� þ
Z

J�þ 1=2
ZZ

�K�

þ 1=2ℏ
ZZ

GK

and derive the corresponding extended ST identity for the
2-PI effective action �½�; G�. This, however, implies the
introduction of the BRST doublet s	 ¼ �K and sK ¼ 0
(the� sign corresponding to bosonic/fermionic fields) and
the addition to the tree-level action of the composite op-
erator term

s
1

2

ZZ
�	� ¼ 1

2

ZZ
�K�þ

ZZ
	

��

��� �:

Because of the nilpotency of the BRST operator, this term
does not violate the ST identity; then, one can study the

1Notice that the background Landau gauge condition for the
quantum field Q� can be obtained by finding the extrema of the
functional

R
d4xTrQ�Â

g
�, where Âg

� is the gauge-transformed
background field, i.e., one gauge-rotates the background field by
keeping Q� fixed. We remark, however, that this procedure does
not select in general a unique representative along the gauge
orbit of Q�.
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extra terms which are bound to appear in Eq. (10) and at the
same time keep under control the renormalization of the
operators added.

The third application is the study of the conditions under
which the (nonperturbative) Schwinger-Dyson (SD) equa-
tions can be reliably trusted when expanding around non-
trivial vacua. As shown in Ref. [24] for some toy models, a
naive SD expansion is poor when the potential admits more
than one minimum; on the other hand, a modified SD
formulation is required in order to improve on the saddle
point approximation in such cases. The formalism devel-
oped here and in Ref. [18] can indeed help in formulating
the SD expansion in the presence of topologically non-
trivial vacuum configurations (instantons, center vortices,
monopoles, etc.); indeed, the framework of Ref. [25] and
its related truncation scheme, which in the Landau gauge

compares favorably with large-volume lattice simulations,
could be generalized to study the effects due to the pres-
ence of such solitons in the theory vacuum.
Concluding, in this paper, we have explicitly constructed

the canonical transformation which controls the full de-
pendence of the vertex functional � on the background

field Âa
�. Though, being an interesting result in its own

right, especially given its connection with classical ana-
lytical mechanics, its strongest appeal resides in the many
interesting directions it opens up.
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