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We reexamine the scale dependence of the Efremov-Teryaev-Qiu-Sterman twist-3 matrix element that

has been studied already by the four different groups with conflicting results [Z.-B. Kang and J.-W. Qiu,

Phys. Rev. D 79, 016003 (2009); J. Zhou, F. Yuan, and Z.-T. Liang, Phys. Rev. D 79, 114022 (2009);

W. Vogelsang and F. Yuan, Phys. Rev. D 79, 094010 (2009); and V.M. Braun, A.N. Manashov, and

B. Pirnay, Phys. Rev. D 80, 114002 (2009)]. We find that we can in fact reproduce the results of V.M.

Braun, A. N. Manashov, and B. Pirnay, Phys. Rev. D 80, 114002 (2009) with the methods of J. Zhou,

F. Yuan, and Z.-T. Liang, Phys. Rev. D 79, 114022 (2009) when we treat some subtleties with greater care,

thus easing the mentioned conflict.
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The Efremov-Teryaev-Qiu-Sterman (ETQS) matrix ele-
ment plays an important role in the theoretical description
of transverse single spin asymmetries in the framework of
collinear factorization. The control of Q evolution is not
only necessary to describe QCD dynamics correctly and to
reduce the dependence of theory predictions on the facto-
rization scale adopted but also such evolution equations
give insight into the functional form of higher-twist distri-
bution functions. The idea there is to start evolution at a
low scale and use the fact that the resulting form at a high
scale is only little dependent on the low-scale input [1].
The latter is especially important in view of the limited
experimental input one has to determine these functions.

The corresponding calculation was done in Refs. [2–5].
However, the result obtained in Ref. [5] differs from that
derived in Refs. [2–4] by two extra terms. It was settled
rather easily that one of these terms is due to a Feynman
diagram that was missed in Refs. [2–4]. The second addi-
tional term in [5] that is proportional to �ð1� zÞ could not
be reproduced by the other calculations so far. We show in
this short contribution, how this term arises within the
formalism of Ref. [3] due to a rather subtle fact related
to the noncommutativity of a certain limit and a certain
integration. We now hope to be able to perform this cal-
culation consistently in the light cone gauge.

The ETQS function TF is defined through the following
matrix element:

Z dy�

2�

dy�1
2�

eixP
þy�hPSj �c �ð0ÞgFþ�ðy�1 Þc �ðy�ÞjPSi

¼ M

2
TFðx; xÞ���? S?� 6p: (1)

In Ref [3], the light cone gauge (Aþ ¼ 0) with the retarded
boundary condition, i.e., A?ð�1�Þ ¼ 0 was chosen such
that TFðx; xÞ can be rewritten as

TFðxÞ ¼
Z dy�

8�2M
eixP

þy�

� hPSj �c ð0Þ6n���? S?�i@?�c �ðy�ÞjPSi: (2)

To calculate the splitting function, one has to take into
account the contributions from the operators ð �c @?c Þ and
ð �cA?c Þ, because they are of the same twist. We plot the
Feynman diagrams contributions for the real gluon radia-
tion in Fig. 1, where ðaÞ is the contribution from the partial
derivative acting on the quark field, and ðb� dÞ are those
from A? contributions. Virtual corrections only contribute
to the contribution proportional to ð �c @?c Þ. Their contri-
bution is the same as for the quark self-energy correction.
Following the procedure presented in Ref. [3], we per-

form a collinear expansion for the hard scattering part to
calculate the contribution from Fig. 1(a). The linear k?
expansion term combining with the quark field will lead to
the quark-gluon correlation function TFðx; xÞ. In the

FIG. 1. Real gluon radiation contribution to the evolution
equation for the ETQS function TFðx; xÞ. Crosses in (a) and
horizontal bar in (b) indicate k? flow and special propagator,
respectively.
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collinear expansion in terms of k?, we can fix the trans-
verse momentum of the probing quark ðlqÞ or the radiated
gluon ðlgÞ, because of momentum conservation and we are

integrating over them to obtain TFðx; xÞ. We have also
checked that they will generate the same result.

Following Ref. [3], we fix lg in the collinear expansion to

simplify the calculation.
For the A? contribution, we notice that Fþ� ¼ @þA�

? in

the light cone gauge. Therefore, one can relate the corre-
sponding soft matrix to the correlation function TFðx; x1Þ in
the following way:

i

x� x1 þ i�

Z dy�dy�1
4�

eix1P
þy�eiðx�x1ÞPþy�

1 hPSj �c �ð0�Þ6n���? S?�gF
þ
�ðy�1 Þc �ðy�ÞjPSi

¼
Z dy�dy�1

4�
Pþeix1Pþy�eiðx�x1ÞPþy�1 hPSj �c �ð0�Þ6n���? S?�gA?�ðy�1 Þc �ðy�ÞjPSi: (3)

In above formula, the soft gluon pole appearing in the first
line is generated by partial integration. The pole prescrip-
tion has been determined by our choice of a retarded
boundary condition. For the same reason, we have to
regulate the light cone propagator in a consistent manner.
The gluon propagator appearing in Fig. 1(c) in the light
cone gauge with the retarded boundary condition is
given by

D��ðlÞ ¼ �i

l2 þ i�

�
g�� � l�n� þ n�l�

l � nþ i�

�
; (4)

where l is the gluon propagator momentum flowing out
from the quark-gluon vertex in Fig. 1(c).

We now deviate from the original calculation [3] in two
ways:

(a) in [3] the integral
R
x0g dxg

x0g�ðx0gÞ
x2g

was simply

neglected;
(b) one of the two absorptive parts of the free propaga-

tor was not taken into account.
We will discuss next these two points in more details,

arguing that the neglected contributions have to be taken
into account. When computing the hard pole contribution
from Fig. 1(c), for the left cut diagram, one has

Tð1Þ
F jhp-leftFig: 1ðcÞðxBÞ ¼

�s
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where x0g ¼ l � n=pþ with x0g ¼ xB � xþ xg. By noticing

that
R
x0g dxg

x0g�ðx0gÞ
x2g

¼ �ðxB � xÞ, rather than zero, and sum-

ming left and right cut diagrams, one obtains
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TFðxB; xÞ

� �ð1� zÞTFðxB; xBÞ
�
; (6)

where z ¼ xB=x. The second term is missing in Ref. [3].
Next we discuss the second contribution that was over-

looked in Ref. [3]. Since we work in the light cone gauge
with a retarded boundary condition, the free propagator
possesses two absorptive parts [6],

discD��ðlgÞ ¼ 2��ðl0gÞ�ðl2gÞ
�
�g�� þ 2l�g ðl�g n� þ n�l�g Þ

l2g?

�
� 2��ðl0gÞ�ðlþg Þ

ðl�g n� þ n�l�g Þ
l2g?

: (7)

In [3] only the first absorptive part was taken into account. In order to carry out the calculation in a consistent manner, one
must include the contribution from the second part. However, if one still picks up the same imaginary part as we did above,
this contribution will cancel between the different cut diagrams as it happens when both gluon lines go on shell. On the
other side, the additional imaginary part may come from the artificial pole that appears in Eq. (3). Such pole-absorptive part
combination gives the contribution
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F jLC-leftFig: 1ðcÞðxBÞ ¼

�s

4�

Z dl2g?
l2g?

Z
xB

dx
Z 1

0
dl�g

Z
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dxg�ðxg � x0gÞ�ðxgÞCA
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�
2ð2xB � x0gÞðxg þ x0gÞ
2ð2l�g xB þ l2g?Þx0g

� 2xBl
2
g?

ð2l�g xB þ l2g?Þ2
�
TFðx� xg; xÞ: (8)

Integrating over xg, l
�
g ¼ lg � p and summing the two cut diagrams, we obtain
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Taking into account the contribution from the second part of the absorptive part, Eq. (20) in Ref. [3] should be modified as
follows:
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Ĥ0ðxP; lg?Þ

�
� ð�l

�
g?Þ ¼ � �s

2�

CA

2

Z
xB

dx

x
TFðx; xÞd2lg?Ĥ0ðxP; lg?Þ
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Collecting all pieces, we eventually arrive at the following scale evolution equation for TFðx; xÞ:

@TFðxB; xB;�2Þ
@ ln�2

¼ �s

2�

Z
xB

dx

x

�
CF

�
1þ z2

ð1� zÞþ þ 3

2
�ð1� zÞ
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1� z
TFðxz; xÞ

� 1þ z2

1� z
TFðx; xÞ � 2�ð1� zÞTFðx; xÞ þ ~TFðxz; xÞ

��
; (11)

which coincides with the result given in Ref. [5].
Following a similar procedure, one can also recover an

extra term �Nc�ð1� zÞTð	Þ
F ðx; xÞ at the scale evolution

equation for Tð	Þ
F ðx; xÞ [3]. It would be interesting to inves-

tigate if such an extra term also shows up in the spin
dependent cross section, and to check if the observed
matching between the TMD factorization and collinear
factorization at intermediate transverse momentum will
be affected or not by this extra term. We leave this part
for future study.
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Note added.—When finishing this paper, we learned that

the extra boundary term also can be recovered in both
Kang-Qiu’s approach [7] and Vogelsang-Yuan’s approach
[8] and also in [9] from a different approach.
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