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The effects of Lorentz-violating operators of nonrenormalizable dimension in optical resonate

cavities are studied. Optical-frequency experiments are shown to provide sensitivity to nondispersive

nonbirefringent violations that is many orders of magnitude beyond current constraints from micro-

wave cavities. Existing experiments based on Fabry-Pérot and ring resonators are considered as

illustrations.
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I. INTRODUCTION

Lorentz invariance is a cornerstone of modern physics.
However, the possibility that Planck-scale physics may
give rise to minute defects in this fundamental principle
[1] has motivated numerous experimental tests of Lorentz
symmetry. Searches for Lorentz violation have been per-
formed in many different systems, including those involv-
ing photons [2]. Among these are modern versions of the
classic Michelson-Morley experiment [3]. The contempo-
rary experiments are based on electromagnetic resonant
cavities and provide extreme sensitivity to potential
Lorentz violation [4–10].

A theoretical framework known as the standard-model
extension (SME) provides a general field-theoretic de-
scription of Lorentz and CPT violation at attainable
energies [11]. The SME aids in the identification of
experimental signatures and in the comparison of differ-
ent measurements. Many tests of Lorentz and CPT
invariance have focused on the minimal standard-model
extension (mSME), which restricts attention to Lorentz-
violating operators of renormalizable dimension in flat
spacetime. However, recent studies have extended the
SME formalism to Lorentz violation involving curved
spacetime [12,13] and nonrenormalizable operators
[10,14–18]. This work examines the effects of higher-
order nonrenormalizable electromagnetic operators in
optical resonant-cavity experiments. The study of
higher-order terms is motivated in part by the different
physical effects they introduce, as well as the possibility
that the dominate Lorentz violation may involve non-
renormalizable operators only. A more detailed discus-
sion of the experimental and theoretical implications can
be found in Ref. [15].

The Lorentz-violating terms in the photon sector of
the SME can be classified according to various prop-
erties, such as the dimension d of the operator. The
renormalizable operators of the mSME have dimen-
sions d ¼ 3, 4, while operators of higher dimension,
d � 5, are nonrenormalizable. The odd-dimensional
operators break CPT, in addition to breaking
Lorentz invariance.

It is also useful to split the set of Lorentz-violating
operators into those that affect the vacuum propagation
of light and those that do not, at leading order. For
example, some operators result in vacuum birefringence,
which causes polarization to change as light propagates
through empty space [14,15,19,20]. Lorentz violation
can also lead to dispersion, giving rise to energy-
dependent propagation speeds [14–16]. Both these ef-
fects can be tested to very high precision using light
from astrophysical sources, where the tiny effects of
Lorentz violation are enhanced by the cosmological
distances involved, but not all forms of Lorentz violation
result in leading-order birefringence or dispersion. The
nonbirefringent nondispersive operators are compara-
tively difficult to detect, since they have little effect on
light propagating in vacuo. They do, however, affect
electromagnetic resonances in cavities. Cavity-based ex-
periments thus provide a class of Lorentz-invariance
tests that complement astrophysical tests.
The nonbirefringent nondispersive violations are con-

trolled by the set of camouflage coefficients [15] and are
the main focus of this work. Camouflage coefficients exist
for even dimensions d � 4 and are invariant under CPT.
Here, we examine the prospect of measuring higher-
dimensional (d � 6) camouflage coefficients using optical
cavities. At present, the only bounds on these coefficients
are from a microwave-cavity experiment, which placed
constraints on combinations of d ¼ 6 and d ¼ 8 coeffi-
cients [10].
The sensitivity to the various camouflage coefficients is

largely determined by the frequency and geometry of the
modes excited in a cavity experiment. For example, many
experiments utilize cavities that are symmetric under a
parity transformation. These have been found to provide
direct access to parity-even anisotropic coefficients in the
SME through direction-dependent resonant frequencies. In
contrast, the effects from parity-odd and isotropic coeffi-
cients only contribute through boost violations. As a result,
they enter in conjunction with the boost velocity � for
parity-odd violations and the velocity-squared �2 for iso-
tropic violations. The relevant boost speeds are normally
those from the rotational and orbital motion of the Earth,
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� & 10�4, leading to suppressed sensitivities to parity-odd
and isotropic violations. This suppression may be
overcome by use of parity-breaking interferometers and
resonators [9,21–23]. Other techniques for testing these
violations include those involving static fields [24],
accelerators [25], and Čerenkov radiation [26], among
others [27].

There are several major advantages to optical experi-
ments. First, to a good approximation, the resonances can
be taken as plane waves. As demonstrated below, this
yields analytic expressions for the frequency shifts, where
microwave cavities typically require numerical calcula-
tions. Second, parity-violating cavities, such as ring reso-
nators, are comparatively easy to construct at optical
frequencies. Finally, in general, the sensitivity to higher-
order coefficients grows with frequency as !d�4. This
implies the potential for improved sensitivities by approxi-

mately a factor 104ðd�4Þ over microwave experiments. We
therefore expect improvements in sensitivity of roughly 8
orders of magnitude for d ¼ 6 and 16 orders of magnitude
for d ¼ 8.

This paper is organized as follows. In Sec. II, we discuss
some basic theory that is common to all optical-cavity
experiments. The sections that follow provide analyses of
several recent experiments [7–9], as illustrations. In
Sec. III, we derive the sensitivity of crossed Fabry-Pérot
cavities to parity-even Lorentz violations. A parity-odd
experiment based on a ring resonator is considered in
Sec. IV.

II. BASIC THEORY

In this section, we establish the basic theory behind most
cavity-based experiments. A more detailed explanation of
the nonrenormalizable terms considered here can by found
in Ref. [15]. Here we summarize the parts that are relevant
to optical experiments.

The basic idea behind a typical resonator experiment is
to look for a shift in resonant frequency due to Lorentz
violation [19]. In general, this shift will be frame depen-
dent, leading to variations in frequency with changes in
cavity orientation or speed. This work focuses on changes
in orientation due to active rotations of the cavity in the
laboratory and to the rotation of the Earth throughout
the day.

We begin by focusing on nonbirefringent Lorentz vio-

lations, which are characterized by coefficients ðcðdÞF Þð0EÞnjm in

the SME. These coefficients are associated with even-
dimensional operators, d ¼ even � 4. The n index con-
trols the frequency/wavelength dependence and is limited
by 0 � n � d� 2. Rotational properties are determined
by the usual angular-momentum indices j and m, where
j ¼ n, n� 2; . . . ;� 0 and jmj � j. The shift in resonant
frequency due to nonbirefringent terms in the SME takes
the form

��

�
¼ X

dnjmm0
MðdÞlab

ðcFÞnjme
im�þim0!�T�dðjÞ

mm0 ð��ÞðcðdÞF Þð0EÞ
njm0 :

(1)

TheMðdÞlab
ðcFÞnjm are experiment-dependent factors that deter-

mine the sensitivity of the resonator to Lorentz violation.
It is important to specify the frame in which various

quantities are defined. By convention we define the coef-

ficients for Lorentz violation ðcðdÞF Þð0EÞnjm in the Sun-centered

frame defined in Ref. [2]. This frame is inertial to a very
good approximation, so the coefficients in this frame are

constant. We could, in principle, calculate the MðdÞ
ðcFÞnjm

matrices in this same frame, but they would then vary in
time. This is because they take the orientation of the cavity
into account, and the orientation relative to the Sun frame

changes with time, giving rise to a varying MðdÞ
ðcFÞnjm

matrix.
Alternatively, we can account for the change in orienta-

tion by adopting a rotating laboratory frame within which

the cavity is stationary. In this frame, the MðdÞlab
ðcFÞnjm are

constants. The changes in orientation are then incorporated
through the rotation that relates the two frames. This

rotation takes the form of the eim�þim0!�T�dðjÞ
mm0 ð��Þ factor

in the frequency shift. The dðjÞ
mm0 are little Wigner matrices,

and � is the colatitude of the laboratory. By convention, the
laboratory-frame z axis is vertical. The angle� is the angle
between the laboratory-frame x axis and south. The angle
!�T� is the right ascension of the local zenith, where
!� ’ 2�=ð23 hr 56 minÞ is the Earth’s sidereal rotation
rate. Many experiments place the cavities on turntables. In
this case, we may write � ¼ !ttTtt, where !tt is the
turntable rotation rate.

The MðdÞlab
ðcFÞnjm constants can be found perturbatively

using the conventional electric field E for the resonate
mode being studied. To avoid divergences in the calcula-
tion that stem from discontinuities at the boundary of the
cavity, we must also define a smoothed field E, which
matches E inside the resonator, but extends smoothly to
the outside region. Switching to momentum space, the

fields contribute to MðdÞlab
ðcFÞnjm through the spin-weighted

Stokes combinations

s 0 ¼ ðEþÞ�Eþ þ ðE�Þ�E�; sð�2Þ ¼ 2ðE�Þ�E�; (2)

where E�¼E�ð�̂�i’̂Þ= ffiffiffi
2

p
and E� ¼ E � ð�̂ � i’̂Þ= ffiffiffi

2
p

.

Here, �̂ and ’̂ are the usual unit vectors associated with the
polar angle � and azimuthal angle ’. In momentum space,
� is the angle between the momentum p and the z axis,
while ’ is the angle between p and the x-z plane.

For optical resonators, theMðdÞ
ðcFÞnjm matrix elements are

given by [15]
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MðdÞ
ðcFÞnjm ¼ !d�4�n

4hUi
Z

d3ppn�2

�
1

4
ð!2 � p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 2Þ!
ðj� 2Þ!

s
ðþ2Yjmðp̂Þsðþ2ÞðpÞ þ �2Yjmðp̂Þsð�2ÞðpÞÞ

þ
��
n� jðjþ 1Þ

2

�
ð!2 � p2Þ � ðd� 2� nÞðd� 3� 3nÞp2 � nðn� 1Þp2

�
0Yjmðp̂Þs0ðpÞ

�
; (3)

where sYjm are spin-weighted spherical harmonics and
hUi ¼ 1

4

R
d3pðE� �DþB� �HÞ is the time-averaged en-

ergy in the cavity. In general, there are additional terms in
MðdÞ

ðcFÞnjm that arise from longitudinal polarization. These,
however, do not contribute in optical resonators where the
fields can be approximated as transverse-polarized plane
waves. We illustrate how to use Eq. (3) to get the
laboratory-frame MðdÞlab

ðcFÞnjm constants in the following
sections.

In practice, experiments search for the frequency shift
by comparing the resonances of two different cavities or
modes. The beat frequency between the two modes is then
analyzed for variations at the sidereal and turntable rota-

tion rates. The beats will depend on �MðdÞlab
ðcFÞnjm, the dif-

ference between theMðdÞlab
ðcFÞnjm constants for the two modes.

It is convenient to write the beat frequency as

�beat

�
¼ X

mm0
Amm0eim�þim0!�T� ; (4)

where

Amm0 ¼ X
dnj

�MðdÞlab
ðcFÞnjmd

ðjÞ
mm0 ð��ÞðcðdÞF Þð0EÞ

njm0 : (5)

The Amm0 factors are linear combinations of coefficients for
Lorentz violation, which satisfy A�

mm0 ¼ Að�mÞð�m0Þ. They
represent the complex combinations of coefficients a given
experimental configuration can access.

Two basic strategies can be used to extract constraints on
coefficients for Lorentz violation. The first is to search
directly for variations at rates !mm0 ¼ m!tt þm0!�.
However, since !� is typically much smaller than !tt,
the frequencies !mm0 are closely spaced around the har-
monics of the turntable rotation frequency, making it diffi-
cult to discriminate many of the variations in the beat
frequency.

The second strategy for analysis relies on the fact that
the sidereal variations (m0!�) can be viewed as slow
modulations of the amplitudes of the harmonics of the
turntable frequency. That is, we write [10]

�beat

�
¼ X

m�0

½CmðT�Þ cosðm�Þ þ SmðT�Þ sinðm�Þ	; (6)

where

CmðTÞ ¼
X
m0�0

½CC
mm0 cosðm0!�TÞ þ CS

mm0 sinðm0!�TÞ	;

SmðTÞ ¼
X
m0�0

½SC
mm0 cosðm0!�TÞ þ SS

mm0 sinðm0!�TÞ	:

(7)

The sidereal amplitudes are given by

CC
mm0 ¼ 2�m�m0 Re½Amm0 þ Amð�m0Þ	;

CS
mm0 ¼ �2�m Im½Amm0 � Amð�m0Þ	;

SCmm0 ¼ �2�m0 Im½Amm0 þ Amð�m0Þ	;
SS
mm0 ¼ �2Re½Amm0 � Amð�m0Þ	;

(8)

where �0 ¼ 1=2, and �m ¼ 1 when m � 0. Equation (8)
gives real linear combinations of coefficients for Lorentz
violation that the experiment can measure. The theoretical
analysis is then reduced to finding these combinations in

terms of the ðcðdÞF Þð0EÞnjm coefficients.

The above gives the sensitivity of a cavity experiment to
the nonbirefringent Lorentz-violating operators of the

SME. However, many of the ðcðdÞF Þð0EÞnjm coefficients lead to

vacuum dispersion. To get the sensitivity to the camouflage
coefficients, we now restrict attention to the subset of the

ðcðdÞF Þð0EÞnjm coefficients that are nondispersive. These are

denoted by ðc:ðdÞF Þð0EÞnjm . Setting all other coefficients to zero,

the camouflage coefficients are related to ðcðdÞF Þð0EÞnjm through

ðcðdÞF Þð0EÞnjm ¼ ðc:ðdÞF Þð0EÞnjm � ðc:ðdÞF Þð0EÞðn�2Þjm: (9)

They are nonzero for index values in the ranges d ¼
even � 4, 0 � n � d� 4, and j ¼ n, n� 2; . . . ;� 0.
We can find the sensitivity to the camouflage coefficients

by simply replacing ðcðdÞF Þð0EÞnjm with ðc:ðdÞF Þð0EÞnjm and MðdÞ
ðcFÞnjm

with

M ðdÞ
ðc:FÞnjm

¼ MðdÞ
ðcFÞnjm �MðdÞ

ðcFÞðnþ2Þjm (10)

in the beat frequency.
The dimension-four operators for Lorentz violation pro-

vide one more class of coefficients that are nondispersive.
This special case exists because none of the d ¼ 4 opera-
tors lead to energy-dependant velocities. Consequently, the

portion of ðcðdÞF Þð0EÞnjm that is dispersive for d > 4 is not

dispersive for d ¼ 4.
There exists an alternative equivalent representation of

these d ¼ 4 coefficients, which naturally arises in the
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analysis of plane waves. Denoted by cðdÞðIÞjm, they are related
to the ðcð4ÞF Þð0EÞnjm coefficients through

ðcð4ÞF Þð0EÞ200 ¼ 1

3
ðcð4ÞF Þð0EÞ000 ¼ 1

4
cð4ÞðIÞ00;

ðcð4ÞF Þð0EÞ11m ¼ �2cð4ÞðIÞ1m; ðcð4ÞF Þð0EÞ22m ¼ cð4ÞðIÞ2m:
(11)

Sensitivity to this set of coefficients can be found by

replacing ðcðdÞF Þð0EÞnjm with cðdÞðIÞjm and MðdÞ
ðcFÞnjm with MðdÞ

ðIÞjm
in the beat frequency. The relation between the Mð4Þ

ðcFÞnjm
and Mð4Þ

ðIÞjm matrix elements is

M ð4Þ
ðIÞ00 ¼

3

4
Mð4Þ

ðcFÞ000 þ
1

4
Mð4Þ

ðcFÞ200;

Mð4Þ
ðIÞ1m ¼ �2Mð4Þ

ðcFÞ11m; Mð4Þ
ðIÞ2m ¼ Mð4Þ

ðcFÞ22m:
(12)

This completes our discussion of the basic theory. We
consider two optical-cavity experiments in the following
sections, as illustrations.

III. FABRY-PÉROT CAVITY

To find the effects of the camouflage coefficients for
Lorentz violation in Fabry-Pérot cavities, we model the

field inside the cavity as a linearly polarized standing wave.
We start by defining a reference frame with its z axis along
the cavity axis and the polarization in the y direction. The
nonzero field components can then be taken as EyðxÞ ¼
E	ðxÞ sinkz, where we define a profile function with 	 ¼ 1
inside the beam and 	 ¼ 0 outside the beam. For the
smoothed field, we simply extend the standing wave to
infinity, giving EyðxÞ ¼ E sinkz everywhere.
The next step in the calculation is to find the p-space

versions of the fields,EðpÞ andEðpÞ. The fact that EyðxÞ is
a standing plane wave implies EyðpÞ contains contributions
from p ¼ �kẑ only. This makes the determination of

MðdÞ
ðcFÞnjm matrix elements in the cavity frame relatively

straightforward. For example, a short calculation gives
spin-weighted Stokes parameters

s 0ðpÞ ¼ hUi



½�ðp� kẑÞ þ �ðpþ kẑÞ	; (13)

s ð�2ÞðpÞ ¼ � hUi



½�ðp� kẑÞe�2i’ þ �ðpþ kẑÞe�2i’	;
(14)

in term of the energy hUi and the relative permittivity 
 of
the material filling the cavity, if present. This leads to

MðdÞcav
ðcFÞnjm ¼ !d�4Nn�2

4


�
1

4
ðN2 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 2Þ!
ðj� 2Þ!

s
ðþ2YjmðẑÞe2i’ þ �2YjmðẑÞe�2i’Þ �

��
n� jðjþ 1Þ

2

�
ðN2 � 1Þ

þ ðd� 2� nÞðd� 3� 3nÞN2 þ nðn� 1ÞN2

�
0YjmðẑÞ

�
þ ðẑ ! �ẑ; ’ ! �’Þ; (15)

where we let N ¼ k=! be the index of refraction of the
media inside the cavity.

The advantage of the cavity frame is that the spin-
weighted spherical harmonics take a simple form for
propagation in the �ẑ direction. The only nonzero har-
monics are those with m ¼ �s for propagation in the �ẑ
direction. They are given by

sYjð�sÞðẑÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

4�

s
ð�1Þse�is’; (16)

sYjsð�ẑÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

4�

s
ð�1Þsþjeis’; (17)

provided j � jsj, as usual. Using these identities, we can
write the cavity-frame matrices as

M ðdÞcav
ðcFÞnjm ¼ UðdÞ

nj �m;0 þV ðdÞ
nj �jmj;2; (18)

for even values of j. They are zero for odd values of j. The
coefficients in the above expression are

U ðdÞ
nj ¼ �!d�4Nn�2

2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

4�

s ��
n� jðjþ 1Þ

2

�
ðN2 � 1Þ

þ ðd� 2� nÞðd� 3� 3nÞN2 þ nðn� 1ÞN2

�
;

(19)

V ðdÞ
nj ¼ !d�4Nn�2ðN2 � 1Þ

8


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þðjþ 2Þ!

4�ðj� 2Þ!

s
: (20)

These same numerical factors will appear again in the ring-
resonator case discussed in the next section and generically
determine the sensitivities of optical experiments to
Lorentz violation.
Notice that the above results simplify dramatically in an

empty cavity where N ¼ 1. In particular, the m ¼ �2
matrix elements vanish and the only contribution is from
the m ¼ 0 terms. This implies invariance under rotations
about the cavity axis, which means the result is indepen-
dent of polarization. This stems from the fact that we are
considering effects of nonbirefringent coefficients, which
have a uniform effect on all polarizations. In matter, when
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N � 1, nonbirefringent coefficients can lead to birefrin-
gence [15]. Consequently, the introduction of media can
lead to polarization dependence even when no polarization
dependence results in the vacuum. In the present context,
this is reflected in the possibility of azimuthal dependence

from nonzero MðdÞcav
ðcFÞnjm matrix components for m ¼ �2.

Before we can apply the above result, we must transform

the cavity-frame MðdÞcav
ðcFÞnjm matrix to the standard labora-

tory framewhere z is vertical and the x axis is at an angle�
from south. In the spherical-harmonic basis, rotations take

the form of Wigner matrices DðjÞ
mm0 through the relation

M ðdÞlab
ðcFÞnjm ¼ X

m0
MðdÞcav

ðcFÞnjm0D
ðjÞ
m0mð��;��;��Þ

¼ X
m0
MðdÞcav

ðcFÞnjm0eim
0�eim�dðjÞ

m0mð��Þ; (21)

where �, �, and � are the Euler angles relating the cavity
and laboratory frames. The cavity frame is found by start-
ing with the two frames aligned, then rotating the cavity
frame by � about the z axis followed by a rotation of �
about the new y axis and a rotation of � about the new z
axis.

Most experiments involve cavities that lie in the hori-
zontal plane. This is achieved by taking � ¼ 90
. Then �
gives the angle between the cavity axis and the laboratory x
axis and � gives the angle of the polarization out of the
horizontal plane. The result is then

M ðdÞlab
ðcFÞnjm ¼ X

m0
MðdÞcav

ðcFÞnjm0eim
0�eim�dðjÞ

m0m

�
��

2

�

¼ UðdÞ
nj e

im�dðjÞ0m

�
��

2

�

þV ðdÞ
nj e

im�ei2�dðjÞ2m

�
��

2

�

þV ðdÞ
nj e

im�e�i2�dðjÞð�2Þm

�
��

2

�
: (22)

Again, only even values of j contribute in Fabry-Pérot
cavities.

The above expression can now be used to find the
modulation amplitudes in the beat frequency. Consider,
for example, the two recent experiments in Refs. [7,8].
Both experiments involve orthogonal Fabry-Pérot cavities.
The cavities are empty, so there will be no polarization-

dependent contribution from V ðdÞ
nj . Taking one cavity

along the laboratory x axis (� ¼ 0) and the other along
the y axis (� ¼ �=2), variations in the beat frequency are
controlled by

�MðdÞlab
ðcFÞnjm ¼ UðdÞ

nj d
ðjÞ
0m

�
��

2

�
ð1� imÞ: (23)

Notice that this vanishes when m is a multiple of 4. This is
because a 90
 rotation about the vertical axis corresponds

to interchanging the two cavities. Therefore, the beat fre-
quency must change sign under a 90
 rotation and is
invariant under a 180
 rotation. This implies that only
harmonics with m equal to an even value not divisible by
four can appear.
Both the experiments under consideration use Nd:YAG

lasers as the radiation source (! ¼ 1:17 eV) and lie at
similar colatitudes, � ’ 38
. Consequently, both experi-
ments are sensitive to nearly identical combinations of
coefficients for Lorentz violation. These combinations
are the modulation amplitudes from Eq. (8). They are given
up to d ¼ 8 in Table I. The table shows that we only expect
variations at twice the turntable rate. While symmetry
considerations prohibit turntable harmonics for odd values
of m and multiples of four, higher-order variations with
m � 6 can arise in general. Variations at 6 times the
turntable frequency do arise from operators of dimension
d ¼ 10 and higher, for example. However, the absence of
odd harmonics and those at multiples of 4 times the turn-
table rate is a generic feature of any experiment based on
two identical crossed cavities lying in the horizontal plane.
Choosing a relative angle other than 90
 or orienting one
cavity out of the horizontal plane may provide additional
sensitivity to Lorentz violation.
Comparing Table I to the microwave experiment in

Ref. [10], we confirm the enhanced potential sensitivities
arising from the !d�4 dependence in the frequency shift.
The table shows that the camouflage coefficients enter with
a factor on the order of 10�18 GeV2 for d ¼ 6 and
10�36 GeV4 for d ¼ 8. Assuming dimensionless sensitiv-
ities to variations in the beat frequency on the order of
10�17, we expect measurements of camouflage coefficients
at the level of 10 GeV�2 for d ¼ 6 and 1019 GeV�4 for
d ¼ 8. These sensitivities are many orders of magnitude
beyond the current microwave bounds.

IV. RING RESONATOR

Ring resonators provide another example of an optical
experiment sensitive to Lorentz violation. One advantage
of a ring resonator is that it is not symmetric under parity.
As a result, it can provide unsuppressed sensitivity to
parity-odd coefficients for Lorentz violation. Here we
will consider the resonator of Ref. [9] specifically, but
other configurations are possible. The basic setup is shown
in Fig. 1. Plane waves polarized in the plane of the oscil-
lator propagate around the resonator. Resonant frequencies
for the clockwise and counterclockwise modes are then
compared and analyzed for signatures of Lorentz violation.
Much of the analysis of the ring resonator mirrors that of

the Fabry-Pérot cavity. We begin by defining a beam frame
where the wave propagates along the z axis and is polarized
in the y direction. The beam is then given by the nonzero
component EyðxÞ ¼ E	ðxÞ expikz, where 	 is the beam

profile function. The smooth field is taken by extending
the plane wave to infinity, EyðxÞ ¼ E expikz. Following the
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same steps as before, we find that the MðdÞ
ðcFÞnjm matrix

elements associated with radiation propagating in one
direction in a given arm of the resonator is

M ðdÞarm
ðcFÞnjm ¼ UðdÞ

nj �m;0 þV ðdÞ
nj �jmj;2; (24)

where, in this case, j takes on any value satisfying j � jmj.
The symmetries that prevented odd j values in the Fabry-
Pérot case no longer apply, so all values of j can contribute,

in principle. The UðdÞ
nj and V ðdÞ

nj factors are given in

Eqs. (19) and (20).
The above calculation gives the contribution from a

single arm. The total MðdÞ
ðcFÞnjm matrix for a given mode

is the energy-weighted average of all the arms. To find the

average, we must first rotate the single arm resultMðdÞarm
ðcFÞnjm

to get the proper orientation in the laboratory frame.

Consider the counterclockwise mode propagating
around the ring in Fig. 1. For arms A, B, and D we take

N ¼ 1, which gives zero V ðdÞ
nj . The MðdÞ

ðcFÞnjm matrix for

arm A is then obtained by a � ¼ 90
 rotation about the y
axis, giving a beam propagating in the laboratory-frame x
direction. For B, the � ¼ 90
 rotation is preceded by a
� ¼ 180
 �  rotation about the z axis. Similarly, the
matrix forC is given by rotation angles� ¼ 180
 and� ¼
90
, and arm D is found using � ¼ 180
 þ  and � ¼
90
. The resulting laboratory-frame matrix elements can
be written as

M ðdÞA
ðcFÞnjm ¼ UðdÞA

nj dðjÞ0m

�
��

2

�
; (25)

M ðdÞB
ðcFÞnjm ¼ UðdÞB

nj ð�1Þme�imdðjÞ0m

�
��

2

�
; (26)

MðdÞC
ðcFÞnjm ¼ UðdÞC

nj ð�1ÞmdðjÞ0m

�
��

2

�
þV ðdÞC

nj ð�1Þm

�
�
dðjÞ2m

�
��

2

�
þ dðjÞð�2Þm

�
��

2

��
; (27)

M ðdÞD
ðcFÞnjm ¼ UðdÞD

nj ð�1ÞmeimdðjÞ0m

�
��

2

�
; (28)

where UðdÞA
nj ¼ UðdÞB

nj ¼ UðdÞD
nj is obtained by taking

N ¼ 1 in Eq. (19), while UðdÞC
nj , V ðdÞC

nj are found

using the index of refraction for the prism N ¼ Nprism in

(19) and (20).

FIG. 1. Ring resonator composed of two mirrors and a prism
with index of refraction N. The arms A, B, C, andD are of length
LA, LB, LC, and LD, respectively. Refraction at the prism is at
Brewster’s angle. Polarization is linear in the plane of the ring.
Arm A is oriented along the laboratory-frame x axis.

TABLE I. Nonzero modulation amplitudes for the Fabry-Pérot cavities in Refs. [7,8]. Camouflage coefficients up to dimension
d ¼ 8 are included. The numbers m and m0 give the harmonics of the turntable rotation frequency and sidereal frequency, respectively.
The dimension-6 amplitudes are in units of 10�18 GeV2 The dimension-8 amplitudes are in units of 10�36 GeV4

dimension m m0 CC
mm0 CS

mm0 SC
mm0 SS

mm0

d ¼ 4 2 0 �0:36cð4ÞðIÞ20 0 0 0

2 1 �0:75Re½cð4ÞðIÞ21	 0:75 Im½cð4ÞðIÞ21	 0:95 Im½cð4ÞðIÞ21	 0:95Re½cð4ÞðIÞ21	
2 2 �1:3Re½cð4ÞðIÞ22	 1:3 Im½cð4ÞðIÞ22	 1:2 Im½cð4ÞðIÞ22	 1:2Re½cð4ÞðIÞ22	

d ¼ 6 2 0 3:9ðc:ð6ÞF Þð0EÞ220 0 0 0

2 1 8:2Re½ðc:ð6ÞF Þð0EÞ221 	 �8:2 Im½ðc:ð6ÞF Þð0EÞ221 	 �10 Im½ðc:ð6ÞF Þð0EÞ221 	 �10 Re½ðc:ð6ÞF Þð0EÞ221 	
2 2 14Re½ðc:ð6ÞF Þð0EÞ222 	 �14 Im½ðc:ð6ÞF Þð0EÞ222 	 �13 Im½ðc:ð6ÞF Þð0EÞ222 	 �13Re½ðc:ð6ÞF Þð0EÞ222 	

d ¼ 8 2 0 11ðc:ð8ÞF Þð0EÞ420 0 0 0

�20ðc:ð8ÞF Þð0EÞ440

2 1 22Re½ðc:ð8ÞF Þð0EÞ421 	 �22 Im½ðc:ð8ÞF Þð0EÞ421 	 �29 Im½ðc:ð8ÞF Þð0EÞ421 	 �29Re½ðc:ð8ÞF Þð0EÞ421 	
�4:8Re½ðc:ð8ÞF Þð0EÞ441 	 þ4:8 Im½ðc:ð8ÞF Þð0EÞ441 	 þ29 Im½ðc:ð8ÞF Þð0EÞ441 	 þ29Re½ðc:ð8ÞF Þð0EÞ441 	

2 2 38Re½ðc:ð8ÞF Þð0EÞ422 	 �3:8 Im½ðc:ð8ÞF Þð0EÞ422 	 �37 Im½ðc:ð8ÞF Þð0EÞ422 	 �37Re½ðc:ð8ÞF Þð0EÞ422 	
þ0:53Re½ðc:ð8ÞF Þð0EÞ442 	 �0:53 Im½ðc:ð8ÞF Þð0EÞ442 	 �10 Im½ðc:ð8ÞF Þð0EÞ442 	 �10Re½ðc:ð8ÞF Þð0EÞ442 	

2 3 23Re½ðc:ð8ÞF Þð0EÞ443 	 �23 Im½ðc:ð8ÞF Þð0EÞ443 	 �20 Im½ðc:ð8ÞF Þð0EÞ443 	 �20Re½ðc:ð8ÞF Þð0EÞ443 	
2 4 �16Re½ðc:ð8ÞF Þð0EÞ444 	 16 Im½ðc:ð8ÞF Þð0EÞ444 	 16 Im½ðc:ð8ÞF Þð0EÞ444 	 16Re½ðc:ð8ÞF Þð0EÞ444 	
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We next take the energy-weighted average of the four

arms to get the total laboratory-frame MðdÞlab
ðcFÞnjm matrix.

Assuming perfect reflections at the mirrors and Brewster’s-
angle refraction at the prism, the power of the beam is the
same in all four arms. We may then write the power P ¼
�v ¼ �=N ¼ constant, where � is the energy per length of
the beam. The energy in a particular arm is hUiarm ¼ �L ¼
PNL. This implies that the energy is proportional to the
optical length NL. So, the energy fraction in a given arm is
the same as the fraction of the total optical length attributed
to that arm. The laboratory-frame matrix for the ring
resonator is then given by

M ðdÞlab
ðcFÞnjm ¼ LA

Lopt

MðdÞA
ðcFÞnjm þ LB

Lopt

MðdÞB
ðcFÞnjm

þ NLC

Lopt

MðdÞC
ðcFÞnjm þ LD

Lopt

MðdÞD
ðcFÞnjm; (29)

where Lopt ¼ LA þ LB þ NLC þ LD is the total optical

path length.
Unlike the Fabry-Pérot example, where we compare

identical modes in two different cavities, in this case we
compare two different modes in the same resonator. The
above calculation yields the frequency shift for the

counterclockwise-propagating mode. To get MðdÞ
ðcFÞnjm for

the clockwise mode, we note that a reversal in propagation
in each arm is achieved through a 180
 rotation about the
laboratory-frame z axis. This implies that the clockwise
mode can be found by multiplying the above result by
eim� ¼ ð�1Þm. We then get

�MðdÞlab
ðcFÞnjm ¼ ð1� ð�1ÞmÞMðdÞlab

ðcFÞnjm: (30)

Notice that this vanishes for even values of m. A 180

rotation about the vertical effectively interchanges the two
modes, changing the sign of the beat frequency. As a result,
no even harmonics of the turntable frequency can appear. A
parity transformation also interchanges the two modes,
changing the sign of the beat frequency. Consequently,
only parity-odd coefficients for Lorentz violation should
affect the beat frequency. In the current context, this cor-
responds to odd values of j.
The advantage of the ring resonator over most other

cavity experiments is its sensitivity to parity-odd coeffi-
cients. In order to demonstrate this sensitivity explicitly,
we consider the parameters for the experiment in
Ref. [9]. The dimensions are LA ¼ 34:9 mm, LB ¼ LD ¼
11:1 mm, and LC ¼ 14:1 mm and the index of refraction
of the prism is Nprism ¼ 1:44 [28]. Again, the photon

energy is approximately ! ¼ 1:17 eV. The colatitude for
this experiment is � ¼ 122
. The resulting modulation
amplitudes up to dimension d ¼ 8 are given in Table II.
Sensitivity to j ¼ 1 and j ¼ 3 coefficients is achieved, as
expected. Note, however, that the mSME d ¼ 4 coeffi-
cients do not appear.
The absence of d ¼ 4 coefficients can be understood by

focusing on the nonbirefringent parity-odd mSME terms.
There are a total of three coefficients in this limit, which
have previously been characterized using an antisymmetric

constant 3� 3 matrix ~�ð4Þ
oþ [19]. The nonzero components

of ~�ð4Þ
oþ are linear combinations of the three cð4ÞðIÞ1m

TABLE II. Nonzero modulation amplitudes for the ring resonator in Ref. [9]. Camouflage coefficients up to dimension d ¼ 8 are
included. The numbers m and m0 give the harmonics of the turntable rotation frequency and sidereal frequency, respectively. The
dimension-6 amplitudes are in units of 10�18 GeV2 The dimension-8 amplitudes are in units of 10�36 GeV4.

dimension m m0 CC
mm0 CS

mm0 SC
mm0 SS

mm0

d ¼ 6 1 0 0:22ðc:ð6ÞF Þð0EÞ110 0 0 0

1 1 �0:20Re½ðc:ð6ÞF Þð0EÞ111 	 0:20 Im½ðc:ð6ÞF Þð0EÞ111 	 �0:37 Im½ðc:ð6ÞF Þð0EÞ111 	 �0:37Re½ðc:ð6ÞF Þð0EÞ111 	
d ¼ 8 1 0 �0:61ðc:ð8ÞF Þð0EÞ110 0 0 0

þ6:5ðc:ð8ÞF Þð0EÞ310

�1:5ðc:ð8ÞF Þð0EÞ330

1 1 0:54Re½ðc:ð8ÞF Þð0EÞ111 	 �0:54 Im½ðc:ð8ÞF Þð0EÞ111 	 1:0 Im½ðc:ð8ÞF Þð0EÞ111 	 1:0Re½ðc:ð8ÞF Þð0EÞ111 	
�5:8Re½ðc:ð8ÞF Þð0EÞ311 	 þ5:8 Im½ðc:ð8ÞF Þð0EÞ311 	 �11 Im½ðc:ð8ÞF Þð0EÞ311 	 �11Re½ðc:ð8ÞF Þð0EÞ311 	
�9:2Re½ðc:ð8ÞF Þð0EÞ331 	 þ9:2 Im½ðc:ð8ÞF Þð0EÞ331 	 þ1:0 Im½ðc:ð8ÞF Þð0EÞ331 	 þ1:0Re½ðc:ð8ÞF Þð0EÞ331 	

1 2 �1:1Re½ðc:ð8ÞF Þð0EÞ332 	 1:1 Im½ðc:ð8ÞF Þð0EÞ332 	 7:2 Im½ðc:ð8ÞF Þð0EÞ332 	 7:2Re½ðc:ð8ÞF Þð0EÞ332 	
1 3 3:8Re½ðc:ð8ÞF Þð0EÞ333 	 �3:8 Im½ðc:ð8ÞF Þð0EÞ333 	 7:1 Im½ðc:ð8ÞF Þð0EÞ333 	 7:1Re½ðc:ð8ÞF Þð0EÞ333 	
3 0 2:5Re½ðc:ð8ÞF Þð0EÞ330 	 0 0 0

3 1 �2:7Re½ðc:ð8ÞF Þð0EÞ331 	 2:7 Im½ðc:ð8ÞF Þð0EÞ331 	 �5:0 Im½ðc:ð8ÞF Þð0EÞ331 	 �5:0Re½ðc:ð8ÞF Þð0EÞ331 	
3 2 4:8Re½ðc:ð8ÞF Þð0EÞ332 	 �4:8 Im½ðc:ð8ÞF Þð0EÞ332 	 4:0 Im½ðc:ð8ÞF Þð0EÞ332 	 4:0Re½ðc:ð8ÞF Þð0EÞ332 	
3 3 �3:2Re½ðc:ð8ÞF Þð0EÞ333 	 3:2 Im½ðc:ð8ÞF Þð0EÞ333 	 �3:3 Im½ðc:ð8ÞF Þð0EÞ333 	 �3:3Re½ðc:ð8ÞF Þð0EÞ333 	
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coefficients [15]. The frequency shift due to these coeffi-
cients can be written as

��

�
¼ � 1

2hUi 

jklð~�ð4Þ

oþÞkl
Z

d3x�hSji; (31)

where hSi ¼ 1
2 ReE

� �H is the time-averaged Poynting

vector, and � is the permeability of the media. For a
constant permeability, the frequency shift is proportional
to the Poynting vector averaged over the volume of
the resonator, which vanishes for a closed system.
Consequently, a lossless resonator cannot provide sensitiv-
ity to these coefficients unless media with different per-
meabilities are included. We can show this explicitly in the
ring resonator. The Poynting vector in one arm can be
written as hSi ¼ PL=V, where P is the power, L is the
beam length vector, and V is the beam volume. The fre-
quency shift then becomes

��

�
¼ 1

2

jklð~�ð4Þ

oþÞkl
P
a
�aL

j
a

Lopt

; (32)

where we sum over the arms, a ¼ A, B, C, D. This is
proportional to the vector sum of the La vectors in the
event that the permeability � is the same in all arms. The
sum vanishes for a closed path.

V. DISCUSSION

The results obtained in the two examples given here are
easily generalized to other optical experiments with linear
polarization. Assuming the resonator modes can be decom-
posed into the superposition of plane waves, we can use
Eq. (24) to get the contribution from each wave. We then
use Wigner matrices, as in Eq. (21), to rotate the result for
each component wave, giving it the correct orientation in
the laboratory. Taking the energy-weighted average of the

waves, we arrive at the laboratory-frame MðdÞ
ðcFÞnjm matrix

for the resonator.
As an example, a Fabry-Pérot cavity aligned with the

laboratory x axis can be treated as two plane waves at
angles � ¼ 0, �. A cavity aligned with the y axis has � ¼
1
2�,

3
2�. For index of refraction N ¼ 1, the difference is

then

�MðdÞlab
ðcFÞnjm ¼ 1

2
ð1þ eim� � eim�=2 � eim3�=2Þ

�UðdÞ
nj d

ðjÞ
0m

�
��

2

�

¼ 1

2
ð1� imÞð1þ ð�1ÞmÞUðdÞ

nj d
ðjÞ
0m

�
��

2

�
; (33)

which vanishes unless m is an even integer not divisible by

four. Using this and the property that dðjÞ0mð� �
2Þ vanishes

unless j andm are either both even or both odd, we arrive at

the same result obtained in Sec. III for crossed Fabry-Pérot
cavities.
The above methods can be applied to new optical

experiments utilizing different configurations. These
may provide sensitivity to different combinations of
coefficients for Lorentz violation. The results of this
work demonstrate that, while a large portion of the
coefficient space is accessible to the two types of ex-
periment discussed here, other experiments are needed
to fully constrain the coefficients up to d ¼ 8. Table III
summarizes the results. A given Fabry-Pérot experiment
based on orthogonal cavities can measure 23 of the 29
anisotropic parity-even camouflage coefficients. A single
ring resonator can test all but four of the 19 parity-odd
coefficients.
For both classes of Lorentz test, sensitivity to the miss-

ing anisotropic coefficients could be achieved by perform-
ing experiments at different latitudes or by changing the
experimental configuration. For example, introducing mat-
ter with index of refraction N � 1 in a Fabry-Pérot experi-
ment or choosing different cavity orientations will lead
to different sensitivities. In principle, all higher-order
anisotropic coefficients can be probed, without boost sup-
pression, using combinations of different optical-cavity
experiments.
Similar results are expected for higher dimensions, d ¼

10; 12; . . . , which are easily included in an analysis. One
could also consider the larger class of nonbirefringent

coefficients ðcðdÞF Þð0EÞnjm , which include dispersive effects.

Only a few bounds from astrophysical dispersion exist at
present. So cavity experiments currently offer an opportu-
nity for an indirect search for this unconventional feature at
interesting sensitivities. Future analyses could also take
advantage of boost effects to probe the isotropic coeffi-
cients. These tests would see suppressions in sensitivity
of roughly �2 � 10�8 in a parity-even experiment and
�� 10�4 in a parity-odd experiment. Nonetheless, they
may offer the best opportunity for searches for these elu-
sive forms of Lorentz violation.

TABLE III. Numbers of combinations of d ¼ 4, 6, 8 camou-
flage coefficients accessible to the existing experiments dis-
cussed in this work. The second column gives the number of
parity-even coefficients accessible to the Fabry-Pérot experi-
ments of Refs. [7,8]. The third column gives the number of
parity-odd coefficients for the ring resonator of Ref. [9]. For
comparison, the next three columns give the number of parity-
even anisotropic, parity-odd anisotropic, and isotropic camou-
flage coefficients.

coef. F.-P. ring P-even P-odd iso.

cð4ÞðIÞjm 5 0 5 3 1

ðc:ð6ÞF Þð0EÞnjm 5 3 5 3 2

ðc:ð8ÞF Þð0EÞnjm 13 12 19 13 3
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