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We derive a linearized kinetic equation for fermionic excitations with an ultrasoft momentum, g2T,

from the Kadanoff-Baym equation in a Yukawa model and quantum electrodynamics (QED) at extremely

high T, where g is the coupling constant. We show that this equation is equivalent to the self-consistent

equation in the resummed perturbation theory used in the analysis of the fermion spectrum with the

ultrasoft momentum at the leading order. Furthermore, we derive the equation that determines the n-point

function with external lines for a pair of fermions and (n� 2) bosons with ultrasoft momenta in QED.
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I. INTRODUCTION

Relativistic plasmas at extremely high temperature T
such as electron and/or quark-gluon plasma are expected
to be realized in the early Universe and the experiments of
heavy ion collisions at the Relativistic Heavy Ion Collider
and Large Hadron Collider. These systems have multi-
energy scale at weak coupling (g� 1) even at so high T
that all mass scale in the Lagrangian is negligible; e.g.,
typical energy of particles is of order T, while the energy of
the bosonic and fermionic collective excitations called
plasmon [1] and plasmino [2] is of order gT, and the
fermion damping rate in gauge theories is of order g2T
[3]. These energy scales, T, gT, and g2T, are called hard,
soft, and ultrasoft scales, respectively.

Unlike perturbation theory in the vacuum, the loop
expansion at finite temperature does not correspond to
the coupling nor ℏ expansions, and the scale dependent
expansion is necessary (Fig. 1). When the energy scale is
gT, the one-loop approximation obtained by integrating
out hard internal momenta, called hard thermal loop
(HTL) approximation [4], is reliable, and the approxima-
tion establishes the HTL effective theory [5]. If the
energy is of order or much less than g2T, some resum-
mation1 is necessary [6–12]. Here let us focus on the
analysis for the fermion propagator with an ultrasoft
momentum. The resummation scheme used in the analy-
sis of the fermion propagator consists of the following
procedures [6,8]:

(1) Resumming the thermal mass and the decay width
of the hard particles.

(2) Summing all the ladder diagrams (in gauge theory).

By analyzing the fermion propagator using the resummed
perturbation theory, a novel fermionic excitation was
found [6,8].
Each perturbation scheme with soft and ultrasoft mo-

menta can be interpreted as different kinetic equations.
When the energy is soft, the effect of collisions is negli-
gible and hence the collisionless kinetic equation called
Vlasov equation is valid [13]. This equation corresponds to
the HTL approximation [4] introduced above. When the
energy is of order or less than g2T, the effects of the
interaction among the hard particles are no longer negli-
gible in general, so it is necessary to take into account their
effects even if the analysis at the leading order is per-
formed. In fact, the analysis on the gluon self-energy
with an ultrasoft momentum should be performed with
the resummed perturbation theory including the effect of
collisions, and it was done by constructing the linearized
Boltzmann equation [7]. The computation of transport
coefficients, whose energy scale is much smaller than
g2T, is also performed with the resummed perturbation
theory [10], the linearized Boltzmann equation [11], and
the n-particle irreducible formalism [12,14]. These meth-
ods produce the same result in the leading order of the
coupling constant. Using the correspondence between the
perturbation theory and the linearized kinetic theory,
the self-consistent equation in the resummed perturbation
theory is interpreted with the language of the kinetic
theory.
In this paper, we derive a generalized and linearized

kinetic equation for fermionic excitations with an ultrasoft
momentum, which we will call the ‘‘off-diagonal’’ kinetic
equation later, in the Yukawa model and QED, while the
Boltzmann equation discussed above is employed for bo-
sonic excitations. Our equation is systematically derived
from the Kadanoff-Baym equation, and is equivalent to the
self-consistent equation in the resummed perturbation
theory [6,8] used in the analysis of the fermion propagator
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1This resummation [6–12] is different from the well-known

HTL resummation, which is the resummation for the contribu-
tion from soft-internal momenta [5].
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at the leading order. The derivation helps us to establish
the foundation of the resummed perturbation scheme. The
kinetic equation will also give us the kinetic interpretation
of the resummation scheme. Furthermore, we also discuss
the procedure of analyzing the higher point functions not
only two-point function of the fermion in QED.

This paper is organized as follows: Section II is devoted
to the derivation of the generalized and linearized kinetic
equation and the discussion of the kinetic interpretation of
the self-consistent equation in the resummed perturbation
theory in the Yukawamodel, which is the simplest fermion-
boson system. In Sec. III, a similar analyses in QED is done
in the Coulomb gauge. We make concluding remarks
and summarize our results in Sec. IV. In Appendix A, we
evaluate the structure of the induced source terms. We
analyze the Kadanoff-Baym equation that would yield
the linearized kinetic equation in the diagonal case in
Appendix B. Appendix C is devoted to showing that the
temporal component of K�ðx; yÞ introduced in Sec. III can
be neglected. We show that the result obtained in Sec. III is
valid also in the temporal gauge, which is the gauge fixing
of the original paper [8] of the resummed perturbation
theory, in Appendix D.

II. KINETIC EQUATION IN YUKAWA MODEL

In this section, we derive a novel linearized kinetic
equation from the Kadanoff-Baym equation in the
Yukawa model, which is the simplest model for fermion-
boson systems. We will find the vertex correction is
negligible, which makes the analysis simpler than that in
gauge theories. Next, we show that the kinetic equation is
equivalent to the self-consistent equation in the resummed
perturbation theory [6,9], and discuss the interpretation of
the self-consistent equation using the correspondence to
the kinetic theory.

A. Derivation of the kinetic equation

Throughout this paper, we work in the closed-time-path
formalism [15,16]. We perform the derivation of the ki-
netic equation in a similar way used in [13,15] by applying

the gradient expansion to the Kadanoff-Baym equation
[17] and taking into account the interaction effect among
the hard particles in the leading order.
Let us consider the following situation to analyze the

fermionic ultrasoft excitation: Before the initial time t0, the
system is at equilibrium with a temperature T. Then, a
(anti-) fermionic external source �ðxÞ ( ��ðxÞ) and a scalar
external source jðxÞ are switched on. As a result, the
system becomes nonequilibrium. We will consider the
case that jðxÞ and ��ðxÞ vanish and �ðxÞ is so weak that
the system is very close to the equilibrium, i.e., the linear
response regime. Concretely, we will retain only the terms
in the linear order of the fermionic average field � in the
fermionic induced source, which will be introduced later.
Let us consider the generating functional in the closed

time formalism [15],

Z½j; �; ��� ¼
Z

D�D �cDc eiS; (2.1)

with

S ¼
Z
C
d4x½L½�; c ; �c � � ðj�þ �c�þ ��c Þ�; (2.2)

where � and c are the scalar and the fermion fields. The
space-time integral is defined as

R
C d

4x � R
C dx

0
R
d3x,

where
R
C dx

0 is the complex-time integral along the con-

tour C ¼ Cþ [ C� [ C0 in Fig. 2. We will take t0 ! �1
and tf ! 1 to factorize out the contribution from the path

C0. The Lagrangian in the Yukawa model with the mass-
less fermion and boson has the form,

L ½�; c ; �c � ¼ 1
2ð@��Þ2 þ �c ið@þ ig�Þc ; (2.3)

where we did not take into account the self-interaction of�
such as ��4 for simplicity. By performing an infinitesimal
variation with respect to � or c in Eq. (2.1), we obtain the
following equations of motion:

i 6Dx½���ðxÞ ¼ �ðxÞ þ �indðxÞ; (2.4)

� @2�ðxÞ � g ���ðxÞ ¼ jðxÞ þ jindðxÞ; (2.5)

where � � h�i (� � hc i) is the expectation value of the
scalar (fermion) field, and 6Dx½�� � @x þ ig�ðxÞ. Here the
expectation value for an operator O is defined as

FIG. 2. The contour path C in the complex x0 plane.

FIG. 1 (color online). The correspondence between the re-
summed perturbation theory and the kinetic theory, and the
fermionic modes obtained from these theories. The vertical
axis denotes the energy scale.
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hOi � 1

Z

Z
D�D �cDc eiSO: (2.6)

�indðxÞ � gh�ðxÞc ðxÞic (jindðxÞ � gh �c ðxÞc ðxÞic) is the
fermionic (scalar) induced source, and the subscript c
denotes ‘‘connected,’’ i.e., h�ðxÞc ðxÞic � h�ðxÞc ðxÞi �
�ðxÞ�ðxÞ.

By differentiating Eq. (2.4) with respect to jðyÞ and
Eq. (2.5) with respect to ��ðyÞ, we obtain

i 6Dx½��Kðx; yÞ � gDðx; yÞ�ðxÞ ¼ i
��indðxÞ
�jðyÞ ; (2.7)

@2xKðy; xÞ � gð ��ðxÞhc ðyÞc ðxÞic þ Sðy; xÞ�ðxÞÞ

¼ i
�jindðxÞ
� ��ðyÞ : (2.8)

Here we have introduced the following propagators:

Dðx; yÞ � hTC�ðxÞ�ðyÞic ¼ i
��ðxÞ
�jðyÞ ; (2.9)

Sðx; yÞ � hTCc ðxÞ �c ðyÞic ¼ i
� ��ðyÞ
� ��ðxÞ ; (2.10)

Kðx; yÞ � hTCc ðxÞ�ðyÞic ¼ i
��ðxÞ
�jðyÞ ¼ i

��ðyÞ
� ��ðxÞ ; (2.11)

where TC means the path ordering on the complex-time
path C; explicitly,

Dðx;yÞ¼�Cðx0;y0ÞD>ðx;yÞþ�Cðy0;x0ÞD<ðx;yÞ;
Sðx;yÞ¼�Cðx0;y0ÞS>ðx;yÞ��Cðy0;x0ÞS<ðx;yÞ;
Kðx;yÞ¼�Cðx0;y0ÞK>ðx;yÞþ�Cðy0;x0ÞK<ðx;yÞ;

(2.12)

with

D>ðx; yÞ � h�ðxÞ�ðyÞic; (2.13)

D<ðx; yÞ � h�ðyÞ�ðxÞic; (2.14)

S>ðx; yÞ � hc ðxÞ �c ðyÞic; (2.15)

S<ðx; yÞ � h �c ðyÞc ðxÞic; (2.16)

K>ðx; yÞ � hc ðxÞ�ðyÞic; (2.17)

K<ðx; yÞ � h�ðyÞc ðxÞic; (2.18)

and �Cðx; yÞ being the step-function along the path C. In
the approximations introduced later, we can see that
K>ðx; yÞ and K<ðx; yÞ coincide, which can be checked by
KRðx; yÞ � i�ðx0; y0Þ½K>ðx; yÞ � K<ðx; yÞ� ’ 0. For this
reason, we simply write these two functions as Kðx; yÞ
from now on. We call Kðx; yÞ ‘‘off-diagonal propagator,’’
which mixes the fermion and boson, while we call Dðx; yÞ
and Sðx; yÞ ‘‘diagonal propagators.’’ As will be seen in

Sec. II C, in the calculation of the ultrasoft fermion self-
energy, the off-diagonal propagator is more relevant than
other diagonal ones.
By setting x0 2 Cþ and y0 2 C� in Eqs. (2.7) and (2.8),

we obtain

i 6Dx½��Kðx; yÞ � gD<ðx; yÞ�ðxÞ ¼ i
��indðxÞ
�jðyÞ ; (2.19)

� @2yKðx; yÞ þ gð ��ðyÞhc ðyÞc ðxÞic þ S<ðx; yÞ�ðyÞÞ

¼ i
�jindðyÞ
� ��ðxÞ : (2.20)

Here we have interchanged x and y in the second equation.
Let us evaluate the right-hand side of Eqs. (2.19) and (2.20)
using the chain rule:

��indðxÞ
�jðyÞ ¼

Z
C
d4z

�
��indðxÞ
��ðzÞ

��ðzÞ
�jðyÞ þ

��indðxÞ
��ðzÞ

��ðzÞ
�jðyÞ

�

¼
Z
C
d4zð	ðx; zÞKðz; yÞ þ
ðx; zÞDðz; yÞÞ;

(2.21)

@jindðyÞ
@ ��ðxÞ ¼

Z
C
d4z

�
��ðzÞ
� ��ðxÞ

�jindðyÞ
��ðzÞ þ

� ��ðzÞ
� ��ðxÞ

�jindðyÞ
� ��ðzÞ

�

¼
Z
C
d4zð�ðy; zÞKðx; zÞ þ Sðx; zÞ
ðz; yÞÞ:

(2.22)

Here we have dropped ð��ind=� ��Þð� ��=�jÞ and
ð�jind=��Þð��=� ��Þ since they contain more than one
fermionic average field. We have also used 	ðx; yÞ �
�i��indðxÞ=��ðyÞ and �ðx; yÞ � �i�jindðxÞ=��ðyÞ ¼
�ðy; xÞ, where 	 (�) is the fermion (scalar) self-energy
[7,15]. We also introduced the off-diagonal self-energy,


ðx; yÞ � �i��indðxÞ=��ðyÞ ¼ �i�jindðyÞ=� ��ðxÞ.
The self-energies are decomposed for arbitrary x0 and y0

on the time path C:

� ðx; yÞ ¼ �Cðx0; y0Þ�>ðx; yÞ þ �Cðy0; x0Þ�<ðx; yÞ;
(2.23)

	 ðx; yÞ ¼ �Cðx0; y0Þ	>ðx; yÞ � �Cðy0; x0Þ	<ðx; yÞ;
(2.24)


 ðx; yÞ ¼ �Cðx0; y0Þ
>ðx; yÞ þ �Cðy0; x0Þ
<ðx; yÞ:
(2.25)

We have not taken into account contact terms, which is
negligible in the leading order as will be seen later. From
Eqs. (A1), (A7), (A7), and (A8) in Appendix A, we can
rewrite Eqs. (2.19) and (2.20) in terms of real time integral
instead of that on the complex-time path:
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i 6Dx½��Kðx; yÞ � gD<ðx; yÞ�ðxÞ
¼

Z 1
�1

d4zð	Rðx; zÞKðz; yÞ þ
Rðx; zÞD<ðz; yÞÞ;
(2.26)

� @2yKðx; yÞ þ gS<ðx; yÞ�ðyÞ
¼

Z 1
�1

d4zð�Aðz; yÞKðx; zÞ � S<ðx; zÞ
Rðz; yÞÞ;
(2.27)

where the retarded fermion (advanced scalar) self-energy
	Rðx; yÞ � i�ðx0; y0Þ½	>ðx; yÞ þ 	<ðx; yÞ� (�Aðx; yÞ �
�i�ðy0; x0Þ½�>ðx; yÞ ��<ðx; yÞ�) and the retarded off-
diagonal self-energy 
Rðx; zÞ � i�ðx0; z0Þ½
>ðx; zÞ �

<ðx; zÞ� have been introduced, and the limits t0 ! �1
and tf ! 1 have been taken. Here we dropped ��ðyÞ�
hc ðyÞc ðxÞic because hc ðyÞc ðxÞic contains more than one
�. Equations (2.26) and (2.27) are the Kadanoff-Baym
equations from which the kinetic equation is derived.

Let us introduce the Wigner transformation to derive the
kinetic equation, which is defined as

fðk; XÞ �
Z

d4seik�sf
�
X þ s

2
; X � s

2

�
; (2.28)

where s � x� y, X � ðxþ yÞ=2, and fðx; yÞ is an arbi-
trary function. After performing the Wigner transforma-
tion, Eqs. (2.26) and (2.27) become�

�i6kþ @X
2
þ ig�ðXÞ

�
Kðk; XÞ þ igD<ðk; XÞ�ðXÞ

¼ ið�	Rðk; XÞKðk; XÞ �
Rðk; XÞD<ðk; XÞÞ;
(2.29)

ðk2 � ik � @XÞKðk; XÞ þ gS<ðk; XÞ�ðXÞ
¼ �Aðk; XÞKðk; XÞ � S<ðk; XÞ
Rðk; XÞ: (2.30)

Here we have used the following transformation law under
the Wigner transformation:

fðxÞgðx; yÞ ! fðXÞgðk; XÞ � i

2
ð@XfÞ � ð@kgÞ þ . . . ;

(2.31)

fðyÞgðx; yÞ ! fðXÞgðk; XÞ þ i

2
ð@XfÞ � ð@kgÞ þ . . . ;

(2.32)

Z 1
�1

d4zgðx;zÞhðz;yÞ!gðk;XÞhðk;XÞþ i

2
fg;hgP:B:þ . . . ;

(2.33)

where fg; hgP:B: � @kg � @Xh� @Xg � @kh is the Poisson
bracket, and neglected higher-order terms that contain @X
since we focus on the case that the inhomogeneity of the

average field is @X � g2T, while a typical magnitude of k is
of order T. This expansion is called gradient expansion
[7,13,15]. We retained the second terms in the left-hand
sides of Eqs. (2.29) and (2.30) because the first terms,
which seem to be the leading terms in the gradient expan-
sion, will cancel out in the next manipulation.
By multiplying Eq. (2.29) by ð�i6kþ @X=2þ ig�ðXÞ þ

i	Rðk; XÞÞ, adding Eq. (2.30), and setting � ¼ 0, we get

ð2ik � @X � f6k; 	Rðk; XÞg þ�Aðk; XÞÞKðk; XÞ
¼ gð6kD<ðk; XÞ þ S<ðk; XÞÞ ~�ðk; XÞ: (2.34)

Here we have introduced g ~�ðk; XÞ � g�ðXÞ þ
Rðk; XÞ.
We have neglected higher-order terms of order g4T2K and

g3T�1 ~�. In the leading order, the coupling dependence in
D<ðkÞ and S<ðkÞ is negligible, so thatD<ðkÞ and S<ðkÞ are
replaced by the propagators at equilibrium and free limit
(g ¼ 0):

D0<ðkÞ ¼ 
0ðkÞnBðk0Þ; (2.35)

S0<ðkÞ ¼ 6k
0ðkÞnFðk0Þ; (2.36)

where 
0ðkÞ is the free spectral function given by


0ðkÞ � 2� sgnðk0Þ�ðk2Þ
¼ 2�

2jkj ð�ðk
0 � jkjÞ � �ðk0 þ jkjÞÞ;

(2.37)

and nBðk0Þ � ðek0=T � 1Þ�1 (nFðk0Þ � ðek0=T þ 1Þ�1) is
the boson (fermion) distribution function at equilibrium.
We note that though the massless condition k2 ¼ 0 appears
in Eq. (2.37) in the present approximation, k2 is expected to
be of order g2T2 if one takes into account the interaction at
equilibrium. For this reason, we will use the order estimate
k2 � g2T2. We also note that K cannot be replaced by that
at equilibrium since K vanishes at equilibrium.
We see that k2 terms in the left-hand side of Eq. (2.34)

were canceled out and the k � @X � g2T2 term remains.
Thus, we can neglect the terms much smaller than g2T2K
in the calculation of the leading order. Following this line,
the diagonal self-energies are replaced by those at equilib-
rium in the leading order, whose diagrams are shown in
Figs. 3 and 4:

f6k; 	RðeqÞðkÞg ¼ m2
f; (2.38)

FIG. 3. The fermion retarded self-energy 	RðeqÞðkÞ in the lead-
ing order. The solid line is the fermion propagator and the dashed
line is the scalar (the case of the Yukawa model) or photon
propagator (the case of QED). We note that the photon propa-
gator in the case of QED should be replaced with the HTL-
resummed one [5] in this figure.
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� AðeqÞðkÞ ¼ m2
b; (2.39)

where mf � gT=ð2 ffiffiffi
2
p Þ and mb � gT=

ffiffiffi
6
p

are asymptotic

thermal masses for the fermion and the scalar boson in the
leading order [18]. Note that the imaginary parts of the
self-energies �g4T2 lnð1=gÞ and momentum dependence
are negligible due to the higher order of the coupling
constant. We have used the on-shell condition, k2 ’ 0,
which will be verified later.

The same line as the diagonal self-energies case justifies
substituting the off-diagonal self-energy in the leading
order, shown in Fig. 5 diagrammatically. The expression
is given by


 Rðk; XÞ ¼ �g2
Z d4k0

ð2�Þ4 S
0Rðkþ k0ÞKðk0; XÞ: (2.40)

Here S0RðkÞ � �6k=ððk0 þ i�Þ2 � k2Þ is the free fermion
retarded propagator at equilibrium. We note that the self-
energies cannot be neglected unlike @X � gT case2 [13],
because f6k; 	gK, �K, T�1
 is the same order as g2T2K.

Using these expressions, Eq. (2.34) becomes

ð2ik � @X þ �m2ÞKðk; XÞ ¼ g6k
0ðkÞðnBðk0Þ
þ nFðk0ÞÞ ~�ðk; XÞ; (2.41)

where �m2 � m2
b �m2

f. We note that Kðk; XÞ becomes

finite only when k2 ¼ 0 because of �ðk2Þ in the right-
hand side. We also note that 6kKðk; XÞ � g2TKðk; XÞ, which
is confirmed by multiplying Eq. (2.41) by 6k from the left.
This property makes the vertex correction term, 6k
Rðk; XÞ,
negligible, which corresponds to the fact that there is no
vertex correction in the analysis using the resummed per-
turbation theory [6,9]. Thus we get

ð2ik �@Xþ�m2ÞKðk;XÞ ¼ g6k
0ðkÞðnBðk0ÞþnFðk0ÞÞ�ðXÞ:
(2.42)

The schematic figure of Kðk; XÞ is depicted in Fig. 6. The
solid (dashed) line with the blob stands for the resummed
fermion (boson) propagator.

B. Kinetic interpretation

By introducing the ‘‘off-diagonal density matrix’’
��ðk; XÞ defined as Kðk; XÞ � 2��ðk2Þð�ðk0Þ�þðk; XÞ þ
�ð�k0Þ��ð�k; XÞÞ, we arrive at the following generalized
and linearized kinetic equation from Eq. (2.42):�
2iv �@X��m2

jkj
�
��ðk;XÞ ¼ g 6vðnBðjkjÞþ nFðjkjÞÞ�ðXÞ;

(2.43)

where v� � ð1; k̂Þ and k̂ � k=jkj. We have to note that
this equation is not a usual kinetic equation because
�ðk; XÞ cannot be interpreted as a distribution function
since it is the propagator between different particles in the
fermionic background. Nevertheless, we call this equation
the ‘‘generalized kinetic equation’’ because we can obtain
the Boltzmann equation if we analyze the time-evolution
of the diagonal propagator instead of the off-diagonal one
[7]. In fact, Eq. (2.43) has the following points similar to
the Boltzmann equation:
(i) The particle is on shell (k2 ’ 0).
(ii) The equation has the common structure as the

Boltzmann equation: both have the noninteracting
part, the interaction part between the hard particle
and the average ultrasoft field, and the interaction
part among the hard particles, which correspond to
the drift term, the force term, and the collision term
in the Boltzmann equation, respectively.

When @X � gT, �m2 is negligible, and Eq. (2.43) becomes
the counterpart of the Vlasov equation [13]. Let us reca-
pitulate the interpretations of each term in Eq. (2.43) ex-
cept for the �m2 term. The first term in the left-hand side
describes the time-evolution of ��ðk; XÞ in the free limit
(g ¼ 0), so this term corresponds to the drift term in the
Boltzmann equation. On the other hand, the term in the

FIG. 6. The schematic figure of the off-diagonal propagator
Kðx; yÞ in the Yukawa model in the leading order in the linear
response regime. The solid (dashed) line with black blob is the
resummed fermion (boson) propagator that contains the infor-
mation on the fermion (boson) self-energy 	 (�). The gray blob
represents the fermionic average field �.

FIG. 4. The boson advanced self-energy �AðeqÞðkÞ in the lead-
ing order. The notations are the same as Fig. 3.

FIG. 5. The off-diagonal self-energy 
ðk; XÞ in the leading
order. The propagator that is composed of the solid line and
the dashed line with the black blob is the off-diagonal propa-
gator. The other notations are the same as Fig. 3.

2This is because k � @XK � gT2K	 f6k; 	gK, �K, T�1
�
g2T2K.
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right-hand side expresses the effect from the average fer-
mionic field. Hence this term corresponds to the force term
in the Boltzmann equation.

�m2 term has no counterpart in the usual Boltzmann
equation, which describes the time-evolution of the diago-
nal propagators, Sðk; XÞ and Dðk; XÞ. Therefore we cannot
obtain kinetic interpretation of that term in the usual
sense.

Now let us discuss the origin of the �m2 term. The origin
of the term is�f6k; 	Rðk; XÞg þ�Aðk; XÞ in Eq. (2.34). The
real parts of those terms are of order g2T2 while the
imaginary parts are g4T lng�1, so the contribution in
the leading order comes from the real parts. The difference
of the real parts of the diagonal self-energies expresses the
difference of the dispersion relations of the scalar and the
fermion, so we call the �m2 term the ‘‘mass difference
term.’’ We note that the ‘‘mass’’ here is not the bare one but
dynamically generated one thorough the interaction among
the hard particles.

Here let us see the reason why the mass difference
term does not have its counterpart in the diagonal case.
In the case of the kinetic equation on Sðk; XÞ, the
corresponding term to the mass difference becomes
�f6k; 	Rðk; XÞg þ f6k; 	Aðk; XÞg ¼ �2i Imf6k; 	Rðk; XÞg in-
stead of �f6k; 	Rðk; XÞg þ�Aðk; XÞ, so that the real
part is canceled out. (See Appendix B for the detailed
derivation.)

We note that this term, which is purely imaginary as a
result of the cancellation of the real part, is of order
g4T lnð1=gÞ and thus negligible since @X � g2T. We also
see that the terms coming from the self-energy have com-
plicated form in the diagonal case, while they are reduced
to the simple form,�f6k; 	RðkÞg þ�AðkÞ term in Eq. (2.34),
in the off-diagonal case in the linear response region. This
difference comes from the following two facts:

(1) Since we linearize the equation in terms of the
deviation from the equilibrium state, the terms con-
taining �	 and S0 in Eq. (B11) do not have its
counterparts in the off-diagonal case [Kðk; XÞ van-
ishes at equilibrium.]

(2) The structure of the right-hand sides of Eqs. (2.29)
and (2.30) after neglecting the vertex correction
terms are simpler than those of Eqs. (B4) and (B5).
It is because K<ðx; yÞ ¼ K>ðx; yÞ.

C. Correspondence between kinetic theory
and resummed perturbation theory

Here, let us show the relation between our kinetic equa-
tion, Eq. (2.42), and the self-consistent equation in the
resummed perturbation theory in Ref. [6]. For this purpose,
we evaluate the retarded self-energy of the fermion, 	RðpÞ,
which can be obtained from the linear response theory
[13,15] in momentum space as

�indðpÞ ¼ 	RðpÞ�ðpÞ: (2.44)

On the other hand, �ind can be written as �indðXÞ ¼
gKðx; xÞ ¼ g

R
d4k=ð2�Þ4Kðk; XÞ in our theory. Thus, the

induced source is obtained from Eq. (2.42) as

�indðXÞ ¼ g2
Z d4k

ð2�Þ4
6k
0ðkÞðnBðk0Þ þ nFðk0ÞÞ
ð2ik � @X þ �m2Þ �ðXÞ:

(2.45)

By performing the Fourier transformation,

fðk; pÞ �
Z

d4Xeip�Xfðk; XÞ; (2.46)

we obtain

�indðpÞ ¼ g2
Z d4k

ð2�Þ4
6k
0ðkÞðnBðk0Þ þ nFðk0ÞÞ

ð2k � pþ �m2Þ �ðpÞ:
(2.47)

Comparing Eq. (2.44) with Eq. (2.47), we obtain the self-
energy,

	RðpÞ ¼ g2
Z d4k

ð2�Þ4
6k
0ðkÞðnBðk0Þ þ nFðk0ÞÞ

ð2k � pþ �m2Þ : (2.48)

This expression coincides with that of the retarded fermion
self-energy in Ref. [6] except for the absence of the decay
widths of the hard particles in the denominator. As men-
tioned in the previous subsection, the decay widths of order
g4T lnð1=gÞ is neglected when the external momentum is
of order g2T; one can include them by taking into account
the imaginary part of Eq. (2.42) if one is interested in the
decay width.
The diagrammatic representation of the fermion re-

tarded self-energy in our formalism is the same as that in
the resummed perturbation theory [6], which is explained
as follows: The off-diagonal density matrix ��ðk; XÞ,
which follows the generalized kinetic equation, is repre-
sented by Fig. 6. �indðXÞ, shown in Fig. 7, is diagrammati-
cally obtained by connecting the ends of fermion and
boson propagators in the right-hand side of Fig. 6. This
diagram is the resummed one-loop diagram appeared in [6]
itself except for the fermion average field �.

FIG. 7. The fermionic induced source �indðXÞ in the leading
order in the Yukawa model. This diagram is obtained by con-
necting two ends in Fig. 6. By truncating �, we obtain the
diagram expressing 	 in the resummed one-loop analysis [6].
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III. KINETIC EQUATION IN QED

First we introduce the background field method, which
is useful to construct the equations for the average fields
and the Kadanoff-Baym equation in a gauge-covariant
form. Next, we derive the generalized kinetic equation in
the linear response regime adopting the Coulomb gauge
fixing, in which the transversality of the free photon propa-
gator simplifies the analysis. After the derivation, we show
the equivalence between the generalized kinetic equation
and the resummed perturbation theory [6,8], and discuss
the interpretation of the terms in the kinetic equation. We
also check that the Ward-Takahashi identity for the self-
energy, consequence of the Uð1Þ gauge symmetry, is sat-
isfied in our formalism. Finally we discuss how to compute
the higher-point-vertex function whose external momenta
are all ultrasoft, and make an order estimate of it at the
weak coupling regime.

A. Background field gauge method

In the derivation of the average field equation and the
Kadanoff-Baym equation in QED, it is convenient to for-
mulate them in a covariant form under gauge transforma-
tions. For this purpose, we employ the background field
gauge method [15,19]. In this method, the following
generating functional is employed:

~Z½j; �; ��;A;�; ��� ¼
Z
½Da�½D �c �½Dc �eiS; (3.1)

with

S ¼
Z
C
d4x½L½A� þ a�;�þ c ; ��þ �c � þLGF

� ðj�a� þ �c�þ ��c Þ�; (3.2)

where we dropped the ghost term, which is not coupled

with the other fields. A� and a� are vector fields, � ( ��)
and c ( �c ) are (anti-) spinor fields, and j� is the external
current, respectively. The Lagrangian of QED has the form,

L ½a; c ; �c � ¼ �1
4F

��½a�F��½a� þ i �c 6D½a�c ; (3.3)

where F��½a� � @�a� � @�a� is the field strength and

D�½a� � @� þ iga� is the covariant derivative. We have

used g as a coupling constant of QED instead of the
standard notation e to make it clear that the same order
counting appears as that in the Yukawa model. In the
background field method, the fields in the Lagrangian are
decomposed to the classical field, identified as the average
fields later, and fluctuations in Eq. (3.1). The external
sources are chosen to be coupled to a�, c , and �c , but

not to A�,�, and ��. We impose the following conditions:

ha�i ¼ hc i ¼ h �c i ¼ 0; (3.4)

which implies that A� and � ( ��) can be interpreted as

the average parts of the photon and (anti) electron field,

respectively, and � ln ~Z coincides with the effective action
[15,19].
In the background gauge field method, the gauge-fixing

term is chosen to be a functional of a� such as

L GF ¼ �� ð
~G½a�Þ2
2

; (3.5)

where ~G½a� is the gauge-fixing function and � is the gauge-
fixing parameter. Although a� is fixed by the gauge-fixing

term, the generating functional, Eq. (3.1), is invariant under
the background field gauge transformations defined by

�ðxÞ!hðxÞ�ðxÞ; A�ðxÞ!A�ðxÞ� i

g
hðxÞ@�hyðxÞ;

c ðxÞ!hðxÞc ðxÞ; �c ðxÞ! �c ðxÞhyðxÞ;
a�ðxÞ!a�ðxÞ; �ðxÞ! hðxÞ�ðxÞ;
��ðxÞ! ��ðxÞhyðxÞ; j�ðxÞ! j�ðxÞ; (3.6)

where hðxÞ � exp½i�ðxÞ�.
Since the fluctuations covariantly transform under

Eq. (3.6), the propagators also covariantly transform as

D��ðx; yÞ � hTCa�ðxÞa�ðyÞic ! D��ðx; yÞ; (3.7)

Sðx; yÞ ! hðxÞSðx; yÞhyðyÞ; (3.8)

K�ðx; yÞ � hTCc ðxÞa�ðyÞic ! hðxÞK�ðx; yÞ: (3.9)

Also, theWigner transformed off-diagonal propagator in
the leading order of g is covariant, which can be confirmed
by performing the gradient expansion [15]:

K�ðk; XÞ ! hðXÞK�ðk; XÞ; (3.10)

which implies that the Kadanoff-Baym equation cova-
riantly transforms with respect to the background gauge
transformations as will be seen in the next subsection.
We note that, apart from the covariance with respect to

the background field gauge transformation, the gauge-
fixing dependence, which will be confirmed only in the
Coulomb gauge and temporal gauge in this paper, should
be analyzed.

B. Derivation of the kinetic equation

We work in the Coulomb gauge-fixing condition be-
cause this gauge fixing makes the analysis simple owing
to the transversality of the free photon propagator. The

gauge-fixing condition is ~G½a� ¼ @ia
i and �! 1, which

constrain the off-diagonal propagator as

@iyKiðx; yÞ ¼ 0: (3.11)

The equations of motion for the average fields are given
by

i 6Dx½A��ðxÞ ¼ �ðxÞ þ �indðxÞ; (3.12)
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@2A�ðxÞ � @�@�A�ðxÞ � g ��ðxÞ���ðxÞ
¼ j�ðxÞ þ j

�
indðxÞ: (3.13)

Here we have used Eq. (3.4), and the induced fermionic
source and the induced current are defined as

�indðxÞ � ghaðxÞc ðxÞic ¼ g��K�ðx; xÞ; (3.14)

j
�
indðxÞ � gh �c ðxÞ��c ðxÞic ¼ gTrð��S<ðx; xÞÞ; (3.15)

which transform �indðxÞ ! hðxÞ�indðxÞ and j�indðxÞ !
j�indðxÞ under the background gauge transformations.

Therefore, Eqs. (3.12) and (3.13) transform covariantly
with respect to the background gauge transformation.

The equations for the propagators are given by

6DxK
�ðx; yÞ þ ig��D

��ðx; yÞ�ðxÞ
¼ �i

Z 1
�1

d4zð	Rðx; zÞK�ðz; yÞ þ
R
� ðx; zÞD<��ðz; yÞÞ;

(3.16)

ð@2g�� � @�@�ÞyK�ðx; yÞ þ gS<ðx; yÞ���ðyÞ
¼

Z 1
�1

d4zð�A��ðz; yÞK�ðx; zÞ � S<ðx; zÞ
R�ðz; yÞÞ;
(3.17)

where ���ðx; yÞ and 
�ðx; yÞ are the photon and the off-

diagonal self-energies, respectively. Here we set x0 2 Cþ
and y0 2 C�.

The Wigner transformed equations read

�
�i6kþ @X

2
þ ig 6AðXÞ

�
K�ðk; XÞ þ ig��D

<��ðk; XÞ�ðXÞ
¼ �ið	Rðk; XÞK�ðk; XÞ þ
R

� ðk; XÞD<��ðk; XÞÞ;
(3.18)

ð�k2 þ ik � @XÞK�ðk; XÞ þ k�k0K0ðk; XÞ
þ gS<ðk; XÞ���ðXÞ
¼ �A��ðk; XÞK�ðk; XÞ � S<ðk; XÞ
R�ðk; XÞ; (3.19)

where Eq. (3.11), the estimation K0 � g2Ki, shown in
Appendix C, and the gradient expansion have been used.
Multiplying Eq. (3.18) by ½�i6kþ @X=2þ ig 6AðXÞ þ
i	Rðk; XÞ� and Eq. (3.30) by PT

�iðkÞ defined below, and

subtracting the latter from the former, we obtain

ð�2ik � @X þ 2gk � AðXÞ þ f6k; 	Rðk; XÞgÞKiðk; XÞ
þ PT

�iðkÞ�A��ðk; XÞK�ðk; XÞ
¼ �gð6kD<�iðk; XÞ þ PT�iðkÞS<ðk; XÞÞ ~��ðk; XÞ;

(3.20)

where we have introduced the projection operator into

the transverse component, PT
��ðkÞ � g�ig�jð�ij � k̂ik̂jÞ,

and g ~��ðk; XÞ � g���ðXÞ þ
R�ðk; XÞ, and used
PT
�iðkÞK�ðk; XÞ ¼ �Kiðk; XÞ ¼ Kiðk; XÞ. One can show

that the background fields and the coupling dependences
in the diagonal propagators are weak,3 so that we can
replace the electron and the photon propagator, which is
given as follows, by that in the free limit at equilibrium:

D0<
��ðkÞ ¼ 
0ðkÞnBðk0ÞPT

��ðkÞ: (3.21)

The diagonal self-energies at on-shell in the leading order
are given by

f6k; 	RðeqÞðkÞg ¼ m2
e � 2i�ek

0; (3.22)

PT
�iðkÞ�AðeqÞ��ðkÞ ¼ �m2

�P
T�
i ðkÞ; (3.23)

where me � gT=2 and m� � gT=
ffiffiffi
6
p

are the asymptotic

thermal masses of the electron and the photon in the
leading order. �e � g2T lnð1=gÞ is the damping rate of
the hard electron [3], which is much larger than the case
of the Yukawa model. Unlike in the case of Yukawa model,
the damping rate of the electron �e cannot be neglected
because �ek

0 �m2
e, while the photon damping rate of order

g4T lnð1=gÞ can be neglected [20]. We note that the longi-
tudinal part of the photon self-energy does not contribute
because the projection operator PTi

� ðkÞ is multiplied.
The off-diagonal self-energy in the leading order has the

following expression, which has a similar form to that in
the Yukawa model:


 R�ðk; XÞ ¼ �g2
Z d4k0

ð2�Þ4 �
�S0Rðkþ k0Þ��K�ðk0; XÞ:

(3.24)

The off-diagonal self-energy in ~��ðk; XÞ has to be retained
in the case of QED unlike the Yukawa model since there is
no special suppression mechanism.
By substituting these expressions in Eq. (3.20), we

obtain

ð�2ik �DX � 2i�ek
0 � �m2ÞKiðk; XÞ

¼ �g6kPT�iðkÞ
0ðkÞðnBðk0Þ þ nFðk0ÞÞ

�
�
���ðXÞ þ g

Z d4k0

ð2�Þ4
k��� þ ��k0�

k � k0 K�ðk0; XÞ
�
:

(3.25)

Here we have used PT
��ðkÞPT�

� ðkÞ ¼ �PT
��ðkÞ and intro-

duced �m2 � m2
� �m2

e. In this gauge-fixing condition, it

3It can be shown by evaluating �S and �D�� in the diagonal
kinetic equation: �S� gA� from Eq. (B12). Similarly, �D�� �
�S. These order estimates imply that A� contribution from S and
D�� in the right-hand side of Eq. (3.20) is much smaller than that
from the left-hand side of that equation, by using the order
estimate K� � g�1�.
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is apparent that only the transverse component of the
thermal photon contributes to Kiðk; XÞ because of the
projection operator PT�iðkÞ appearing in the right-hand
side of Eq. (3.25). We note that this equation transforms
covariantly with respect to the background gauge trans-
formation from Eq. (3.10).

From Eq. (3.25), we write Kiðk; XÞ in terms of the off-
diagonal self-energy for later use:

Kiðk; XÞ ¼ g
6kPTi

� ðkÞ
0ðkÞðnBðk0Þ þ nFðk0ÞÞ
2ik �DX þ 2i�ek

0 þ �m2
~��ðk; XÞ:

(3.26)

The diagrammatic representation of this equation is shown
in Fig. 8.

C. Kinetic interpretation

Next, we derive the linearized kinetic equation.
Multiplying Eq. (3.25) by �i from the left, we obtain

ð�2ik �DX � 2i�ek
0 � �m2Þ 6Kðk; XÞ

¼ �g26k
0ðkÞðnBðk0Þ þ nFðk0ÞÞ�ðXÞ
þ �i 6kPTi

� ðkÞ
0ðkÞðnBðk0Þ

þ nFðk0ÞÞg2
Z d4k0

ð2�Þ4
k��� þ k0���

k � k0 K�ðk0; XÞ:
(3.27)

We decompose �
�
�ðk; XÞ into positive and negative

energy terms as K�ðk; XÞ � 2��ðk2Þ½�ðk0Þ��
þðk; XÞ þ

�ð�k0Þ���ð�k; XÞ�, so that we arrive at the kinetic equa-
tion from Eq. (3.27):

�
2iv � @X � �m2

jkj þ 2i�e

�
��ðk; XÞ

¼ 2gv½nBðjkjÞ þ nFðjkjÞ��ðXÞ � g2�iv½nFðjkjÞ

þ nBðjkjÞ�P�i
T ðvÞ

X
s¼�

Z d3k0

ð2�Þ3
1

2jk0j

� sjkjv��� � jk0jv0���

jkjjk0jv � v0 �s�ðk0; XÞ; (3.28)

where we have introduced v0� � ð1; k̂0Þ. There are two
terms that do not appear in the Yukawa model analyzed
in Sec. II. One is the last term in the right-hand side.
Because the bare vertex term, which contains �ðXÞ and
is in the right-hand side, is interpreted as the counterpart

of the force term in the diagonal case [13], that vertex
correction term acts like ‘‘the correction to the force term,’’
at least in the linear response regime. Note that this term
mixes the positive and negative energy modes, unlike the
case of the Yukawa model.
The other is the third term in the left-hand side. This

term has a similar form to the collision term in the relaxa-
tion time approximation of the diagonal case, i.e., pure
imaginary constant (2i�e) times ��ðk; XÞ. For this reason,
we call this term the ‘‘collision term.’’ We note that this
term is negligible in the case of the Yukawa model as
shown in the previous section.
In the diagonal case [7], the collision term contains

momentum integral for the diagonal density matrix.4 In
contrast, in the off-diagonal case, such term does not
survive in the linearized equation. As a result, the collision
term in the off-diagonal kinetic equation has a similar form
to that in the relaxation time approximation.
We emphasize that the off-diagonal self-energy is not

negligible in the off-diagonal kinetic equation, while neg-
ligible in the diagonal one because we neglect the higher-
order terms in �. This fact makes the correction to the
force term, which is absent in the diagonal case, appears in
Eq. (3.28).
As we discussed in Sec. II B, both of the usual

Boltzmann equation and our generalized and linearized
kinetic equation are composed of the noninteracting part,
the interaction part between the hard particle and the
average ultrasoft field, and the interaction part among the
hard particles. Which part is the counterpart of the mass
difference term, the collision term, and the correction to the
force term? Because the mass difference and the collision
term come from the self-energies at equilibrium, they
correspond to the interaction part among the hard particle.
The correction to the force term is a part of the interaction
part between the hard particle and the average ultrasoft
field.

D. Correspondence between kinetic theory
and resummed perturbation theory

Here, let us show the equivalence between Eq. (3.25) and
the self-consistent equation in the resummed perturbation
theory [6,8]. To this end, we rewrite Eq. (3.24) in terms of
the off-diagonal self-energy using Eq. (3.26):

+=
FIG. 8. The diagrammatic representation of self-consistent equation for K�ðx; yÞ in the leading order. For simplicity, A� is not
drawn.

4The integral comes from the terms containing �	 in
Eq. (B12).
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~��ðk; XÞ ¼ ���ðXÞ � g2
Z d4k0

ð2�Þ4 �
�S0Rðkþ k0Þ��

� 6k
0PT

��ðk0Þ
0ðk0Þ½nBðk00Þ þ nFðk00Þ�
2ik0 � @X þ 2i�ek

00 þ �m2
~��ðk0; XÞ:

(3.29)

Here we set A� ¼ 0. By performing the Fourier trans-
formation, Eq. (2.46), we get

��ðk; pÞ ¼ �� � g2
Z d4k0

ð2�Þ4 �
�S0Rðkþ k0Þ��

� 6k
0PT

��ðk0Þ
0ðk0Þ½nBðk00Þ þ nFðk00Þ���ðk0; pÞ
2k0 � pþ 2i�ek

00 þ �m2
;

(3.30)

where ~��ðk; pÞ � ��ðk; pÞ�ðpÞ. We note that ��ðk; pÞ is
the vertex function introduced in [6,8] whose momenta are
hard and ultrasoft. Equation (3.30) is none other than the
integral equation appearing in [6,8].

The retarded fermion self-energy is also written in terms
of the vertex function: from Eq. (3.26), we arrive at

	RðpÞ ¼ g
Z d4k

ð2�Þ4
� 6Kðk; pÞ
��ðpÞ

¼ g2
Z d4k

ð2�Þ4
�i 6kPTi

� ðkÞ
0ðkÞ½nBðk0Þ þ nFðk0Þ�
2k � pþ 2i�ek

0 þ �m2

� ��ðk; pÞ: (3.31)

This expression equals to that of the fermion retarded self-
energy in the resummed perturbation theory5 [6,8]. Thus
we see that Eq. (3.38), derived in the nonequilibrium state
in a linear response regime from the Kadanoff-Baym equa-
tion, is equivalent to the self-consistent equation in the
resummed perturbation theory, which is constructed in
the thermal equilibrium state.

Here we discuss the correspondence between each
scheme in the resummed perturbation theory [6,8] and
each term in the kinetic equation. As in the Yukawa model,
the resummation of the thermal mass difference in the
resummed perturbation theory corresponds to the mass
difference term in the kinetic equation. The decay width
corresponds to the collision term since both of them con-
tains the damping rate of the hard electron, �e. The ladder
summation in the resummed perturbation theory [6,8] is
caused by the correction to the force term in the kinetic
equation. Thus, the ladder summation corresponds to the
correction to the force term. These interpretations are
summarized in the Table. I.

E. Higher point functions

The fermionic induced source �ind generates the
higher point function, not only the fermion self-energy.
In this subsection, we derive the self-consistent equation
determining the n-point function whose external lines
consist of two fermions (�) and (n� 2) bosons (A�)
with ultrasoft external momenta, and make an order
estimate of the quantity. For example in the case of
n ¼ 3, we obtain the correction to the bare three-point

function, g���
ð4Þðp� q� rÞ, from �ind [13,15]:

�ð4Þðp� q� rÞg���ðp;�q;�rÞ

� �2�indðpÞ
��ðqÞ�A�ðrÞ

��������A¼0

¼ g
Z d4k0

ð2�Þ4
�2

��ðqÞ�A�ðrÞ� 6Kðk; pÞ:

(3.32)

Here we have expanded K�ðk; XÞ around A� ¼ 0:

K�ðk; XÞ ¼ K�ðk; XÞA¼0 þ �K�ðk; XÞ þOðA2�Þ;
(3.33)

where K�ðk; XÞA¼0 contains one � while �K�ðk; XÞ
contains one � and one A�.
�K�ðk; XÞ can be obtained by the following way.

Collecting terms that contain one A� in Eq. (3.25), we
obtain

ð�2ik �@X�2i�ek
0��m2Þ�Kiðk;XÞ

þ2gk �AðXÞKiðk;XÞA¼0
¼�g26kPT�iðkÞ
0ðkÞ½nBðk0Þ

þnFðk0Þ�
Z d4k0

ð2�Þ4
k���þ��k0�

k �k0 �K�ðk0;XÞ: (3.34)

Since K�ðk; XÞA¼0 is determined by setting A� ¼ 0 in
Eq. (3.25), this equation is closed and �K�ðk; XÞ can be
determined.
Let us estimate the order of �K�ðk; XÞ. From Eq. (3.25)

andK�
A¼0 � g�1T�3�, we find �K� � g�1T�1A�K�

A¼0 �
g�2T�4�A�. Therefore, the vertex correction is estimated
as g��� � g�1, which is much larger than the bare vertex,
g�� � g. A similar order estimate for the n-point function
with n > 3 can be done with the same procedure; as a
result, we find that the order of the n-point-vertex function
is g2�n.

TABLE I. The correspondence between the resummed pertur-
bation theory and the generalized and linearized kinetic equa-
tion.

Diagrammatic method Kinetic equation

Thermal mass difference Mass difference term

Decay width Collision term

Ladder diagrams Correction to force term

5Equation (3.25) is analytically solved for the energy region
jp0 þ i�ej � g2T [6].
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F. Ward-Takahashi identity

Let us see that the off-diagonal self-energy given in
Eq. (3.24) satisfies the Ward-Takahashi (WT) identity.
From Eq. (3.24), we get

k�

R�ðk; XÞ ¼ g2

Z d4k0

ð2�Þ4 �
� 6kþ 6k0
ðkþ k0Þ2

� ð6kþ 6k0 � 6k0ÞK�ðk0; XÞ

¼ g2
Z d4k0

ð2�Þ4 6Kðk
0; XÞ ¼ g�indðXÞ: (3.35)

Here we have used 6k0K�ðk0; XÞ ¼ 0, which can be con-
firmed by multiplying Eq. (3.25) by 6k from the left. This
equation generates the WT identity derived in Ref. [6] by
setting A� ¼ 0. The WT identity implies that the vertex
correction is not negligible because the identity relates the
vertex correction to the fermion self-energy, which is much
larger than the inverse of the fermion propagator with an
ultrasoft momentum. In the Yukawa model, the WT iden-
tity associated with gauge symmetries is absent, so the
smallness of the vertex correction is not in contradiction
with any identity.

Equation (3.35) can be derived from the conservation
law of the induced current,

� igð ��ind�� ���indÞðxÞ ¼ @�j
�
indðxÞ: (3.36)

By differentiating Eq. (3.36) with respect to ��ðyÞ, we
obtain

� g

�
� ��indðxÞ
� ��ðyÞ �ðxÞ � �Cðx0 � y0Þ�ð3Þðx� yÞ�indðxÞ

�

¼ @x�

�ðy; xÞ: (3.37)

Here �Cðx� yÞ is the delta function defined along the con-
tourC. Bymultiplying this equation by

R
d4s expðik � sÞ and

taking only the leading-order terms, we find

ig�indðXÞ ¼ �ik�
R�ð�k; XÞ: (3.38)

This is nothing but Eq. (3.35). The detail of the derivation of
Eq. (3.38) is shown in the Appendix A.

IV. SUMMARYAND CONCLUDING REMARKS

We derived the novel generalized and linearized kinetic
equation with an ultrasoft momentum from the Kadanoff-
Baym equation in the Yukawa model and QED. Our kinetic
equation is equivalent to the self-consistent equation in the
resummed perturbation theory [6,8] used in the analysis of
the fermion propagator at the leading order. This derivation
helps us to establish the foundation of the resummed
perturbation theory. We gave the kinetic interpretation of
the resummation scheme (Table. I). Furthermore, we made
an order estimate of the higher point function with ultrasoft
external momenta, and obtained the equation determining
the vertex correction in QED.
In our analysis, the difference of the masses and the

vertex correction, which reflects the fact that we analyze a
process that changes the type of particle, plays an impor-
tant role. This fact suggests that these quantities may play
an important role in the analysis of other ultrasoft quantity
such as the flavor diffusion constant in QCD, where the
masses of u, d and s are different. It is natural to ask
whether such kinetic equation is derived in QCD because
the investigation of the QCD at high temperature is quite
interesting since it is relevant to analysis of quark-gluon
plasma [21], which is realized in heavy ion collision ex-
periments. We hope to report the analysis in QCD else-
where [22].
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APPENDIX A: ANALYTIC STRUCTURE OF
INDUCED TERMS

In this Appendix, we derive the right-hand sides of
Eqs. (2.26), (2.27), and (3.38). First let us derive the
right-hand sides of Eqs. (2.26) and (2.27):

Z
C
d4z	ðx; zÞKðz; yÞ ¼

Z x0

t0
d4z	>ðx; zÞKðz; yÞ �

Z y0

x0
d4z	<ðx; zÞKðz; yÞ �

Z t0�i�

y0
d4z	<ðx; zÞKðz; yÞ

¼
Z x0

t0
d4zð	>ðx; zÞ þ 	<ðx; zÞÞKðz; yÞ �

Z t0�i�

t0
d4z	<ðx; zÞKðz; yÞ

’ �i
Z 1
�1

d4z	Rðx; zÞKðz; yÞ: (A1)

In the last line we have taken t0 ! �1. We used the fact that the term integrated on C0 becomes negligible in this limit
[15]. In the same way, we get
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Z
C
d4z�ðy; zÞKðx; zÞ ’ �i

Z 1
�1

d4z�Aðz; yÞKðx; zÞ: (A2)

Next, we evaluate the off-diagonal self-energy term. The vertex correction term of Eq. (2.21) becomes

Z
C
d4z
ðx;zÞDðz;yÞ¼

Z x0

t0
d4z
>ðx;zÞD<ðz;yÞþ

Z y0

x0
d4z
<ðx;zÞD<ðz;yÞþ

Z t0�i�

y0
d4z
<ðx;zÞD>ðz;yÞ

¼
Z x0

t0
d4zð
>ðx;zÞ�
<ðx;zÞÞD<ðz;yÞþ

Z y0

t0
d4z
<ðx;zÞðD<ðz;yÞ�D>ðz;yÞÞ

�
Z t0�i�

t0
d4z
<ðx;zÞD>ðz;yÞ

’�i
Z 1
�1

d4zð
Rðx;zÞD<ðz;yÞþ
<ðx;zÞDAðz;yÞÞ; (A3)

where the advanced boson propagator is DAðz; yÞ �
�i�ðy0 � z0Þ½D>ðz; yÞ �D<ðz; yÞ�. Here we stop and dis-
cuss the structure of the off-diagonal self-energy in the
leading order in the ðk; XÞ space.

The off-diagonal self-energy in the leading order and
linear response regime is given by


 ðx; yÞ ¼ g2S0ðx; yÞKðy; xÞ; (A4)

where S0ðx; yÞ is the free fermion propagator at equilib-
rium. Thus, the components of 
 are given by


 _ðx; yÞ ¼ �g2S0_ðx; yÞKðy; xÞ: (A5)

By performing the Wigner transformation, we get


 _ðk; XÞ ¼ �g2
Z d4k0

ð2�Þ4 S
0_ðkþ k0ÞKðk0; XÞ; (A6)

with S0>ðkÞ � 6k
0ðkÞð1� nFðk0ÞÞ. We see that since
Kðk0; XÞ contains �ðk02Þ and we focus on the on-shell
case k2 ’ 0, which are confirmed from the analysis
in Sec. II A, ðkþ k0Þ2 ’ 2k � k0 � 0. For this reason,
S0_ðkþ k0Þ ’ 0, which implies 
_ðk; XÞ ’ 0, so the only
nonzero function of the off-diagonal self-energy appearing
at Wigner-transformed Eq. (A3) is 
Rðk; XÞ ’ 
Aðk; XÞ.
Therefore, we drop the second term in Eq. (A3) because
that term becomes negligible after the Wigner transforma-
tion, and hence the equation becomes

Z
C
d4z
ðx;zÞDðz;yÞ’�i

Z 1
�1

d4z
Rðx;zÞD<ðz;yÞ: (A7)

In the same way, we get

Z
C
d4zSðx; zÞ
ðz; yÞ ’ i

Z
d4zS<ðx; zÞ
Rðz; yÞ: (A8)

The calculation in QED can be performed in the same way.
Finally we derive Eq. (3.38). By multiplying Eq. (3.37)

by
R
d4s expðik � sÞ, we get

�g
Z
d4seik�s

�
� ��indðxÞ
� ��ðyÞ �ðxÞ��ðx0�y0Þ�ð3Þðx�yÞ�indðxÞ

�

¼
Z
d4seik�s@s�
�ðy;xÞ: (A9)

Here we have set x0, y0 2 Cþ and neglected the subleading
terms. The first term in the left-hand side has the same
order of magnitude as the hard fermion self-energy 	ðkÞ
times �ðXÞ, so that term is negligible. Thus the left-hand
side becomes �indðXÞ. The right-hand side becomes

Z 0

�1
d4seik�s@s�
>�ðy; xÞ þ

Z 1
0

d4seik�s@s�
<�ðy; xÞ

¼
Z 1
�1

d4seik�s@s�
>�ðy; xÞ

þ
Z 1
0

d4seik�s@s�ð
<�ðy; xÞ �
>�ðy; xÞÞ
¼ �ik�
>�ð�k; XÞ � k�


A�ð�k; XÞ: (A10)

We see that the first term in the last line is negligible
because of the on-shell condition. Thus we obtain
Eq. (3.38) if we remember that 
Rðk; XÞ ’ 
Aðk; XÞ.

APPENDIX B: KINETIC EQUATION
IN DIAGONAL CASE

We derive the equation that corresponds to Eq. (2.42) in
the diagonal case in this Appendix. The equation govern-
ing the propagator of the fermion is as follows:

6Dx½��Sðx; yÞ þ igðKðy; xÞÞy�0�ðxÞ

¼ �Cð4Þðx� yÞ þ i
��indðxÞ
��ðyÞ : (B1)

Since the second term in the left-hand side contains two�,
we neglect that term. Let us calculate the right-hand side.
We set x0 2 Cþ and y0 2 C�. Since the vertex correction
term, which contains more than one �, is negligible, we
obtain
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��indðxÞ
��ðyÞ ¼

Z
C
d4z	ðx; zÞSðz; yÞ ¼ �R

x0

t0
d4z	>ðx; zÞS<ðz; yÞ þ Ry0

x0
d4z	<ðx; zÞS<ðz; yÞ � Rt0�i�

y0
d4z	<ðx; zÞS>ðz; yÞ

¼ �
Z x0

t0
d4zð	>ðx; zÞ þ 	<ðx; zÞÞS<ðz; yÞ þ

Z y0

t0
d4z	<ðx; zÞðS<ðz; yÞ þ S>ðz; yÞÞ: (B2)

By taking the limit t0 ! �1, we get
��indðxÞ
��ðyÞ ’ i

Z 1
�1

d4zð	Rðx; zÞS<ðz; yÞ þ 	<ðx; zÞSAðz; yÞÞ:
(B3)

Here we have introduced the advanced fermion propagator,
SAðx; yÞ � �i�ðy0; x0ÞðS>ðx; yÞ þ S<ðx; yÞÞ.

By performing the Wigner transformation, we get

�
�i6kþ @X

2
þ ig

�
�ðXÞ � i

@k
2
� ð@X�ðXÞÞ

��
S<ðk; XÞ

¼ �ið	Rðk; XÞS<ðk; XÞ þ 	<ðk; XÞSAðk; XÞÞ: (B4)

The following equation is derived from the conjugate of
Eq. (B4) by using �0S>ðx; yÞ�0 ¼ S<ðy; xÞ:

S<ðk; XÞ
�
i6kþ 6@

 
X

2
� ig

�
�ðXÞ þ i

@
 
k

2
� ð@X�ðXÞÞ

��

¼ iðSRðk; XÞ	<ðk; XÞ þ S<ðk; XÞ	Aðk; XÞÞ: (B5)

Here we have introduced the retarded fermion propagator,
SR, and the advanced fermion self-energy, 	A, which are
defined as follows:

SRðx; yÞ � i�ðx0; y0ÞðS>ðx; yÞ þ S<ðx; yÞÞ; (B6)

	 Aðx; yÞ � �i�ðy0; x0Þð	>ðx; yÞ þ 	<ðx; yÞÞ: (B7)

By multiplying Eq. (B4) (Eq. (B5)) by �i6kþ @X=2þ
igð�ðXÞ � i@k � @X�ðXÞ=2Þ � i	Rðk; XÞ ði6kþ @X=2�
igð�ðXÞ þ i@k � @X�ðXÞ=2Þ � i	Aðk; XÞÞ from the left
(right), we get

ð�k2 � ik � @X þ gð26k�ðXÞ � i6k@k � ð@X�ðXÞÞ
þ�ðXÞ@XÞ þ f6k; 	Rðk; XÞgÞS<ðk; XÞ

¼ �6k	<ðk; XÞSAðk; XÞ; (B8)

S<ðk; XÞð�k2 þ ik � @ X þ gð26k�ðXÞ þ i@
 
k � ð@X�ðXÞÞ6k

� i 6@
 
X�ðXÞÞ þ f6k; 	Aðk; XÞgÞ

¼ �SRðk; XÞ	<ðk; XÞ6k: (B9)

By subtracting Eq. (B8) from Eq. (B9), we get

ð2ik � @X � f6k; 	Rðk; XÞgÞS<ðk; XÞ þ S<ðk; XÞf6k; 	Aðk; XÞg
þ 2g�ðXÞ½S<ðk; XÞ; 6k� þ igð@�X�ðXÞÞ
� f6k; @k�S<ðk; XÞg � ig�ðXÞf��; @

�
XS

<ðk; XÞg
¼ 6k	<ðk; XÞSAðk; XÞ � SRðk; XÞ	<ðk; XÞ6k: (B10)

Here we linearize this equation. By introducing �Sðk; XÞ ¼
Sðk; XÞ � S0ðkÞ and �	ðk; XÞ � 	ðk; XÞ � 	ðeqÞðkÞ, we ar-
rive at the following equation:

ð2ik � @X � f6k; 	ðeqÞRðkÞ � 	ðeqÞAðkÞgÞ�S<ðk; XÞ
� f6k; �	Rðk; XÞgS0<ðkÞ þ S0<ðkÞf6k; �	Aðk; XÞg
þ igð@�X�ðXÞÞf6k; @k�S0<ðkÞg

¼ 6k�	<ðk; XÞS0AðkÞ � S0RðkÞ�	<ðk; XÞ6k
þ 6k	ðeqÞ<ðkÞ�SAðk; XÞ � �SRðk; XÞ	ðeqÞ<ðkÞ6k: (B11)

Similarly, we obtain the following equation in QED:

ð2ik � @X � f6k; 	ðeqÞRðkÞ � 	ðeqÞAðkÞgÞ�S<ðk; XÞ
� f6k; �	Rðk; XÞgS0<ðkÞ þ S0<ðkÞf6k; �	Aðk; XÞg
þ 2igk�@k � @XA�ðXÞS0<ðkÞ � g

2
F��ðXÞ½���; S

0<ðkÞ�
¼ 6k�	<ðk; XÞS0AðkÞ � S0RðkÞ�	<ðk; XÞ6k
þ 6k	ðeqÞ<ðkÞ�SAðk; XÞ � �SRðk; XÞ	ðeqÞ<ðkÞ6k: (B12)

APPENDIX C: SMALLNESS OF K0

Here we show that K0 is negligible compared with the
spatial components in the Coulomb gauge. For simplicity,
we set A� ¼ 0. We get the following equation by multi-
plying Eq. (3.18) by �i6kþ @X=2þ i	Rðk; XÞ from the
left, subtracting Eq. (3.19) from the quantity obtained
above, and setting � ¼ 0:

ð2ik � @X � f6k; 	Rðk; XÞg þ ðk0Þ2ÞK0ðk; XÞ
��A0�ðk; XÞK�ðk; XÞ

¼ gS<ðkÞ ~�0ðk; XÞðk0Þ2K0ðk; XÞ ��A0iðk; XÞKiðk; XÞ
¼ gS<ðkÞ ~�0ðk; XÞ: (C1)

Since k0 � T, we see that

K0 � g2Ki: (C2)
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APPENDIX D: TEMPORAL GAUGE

We show that the equation determining K� in the tem-
poral gauge is the same as that in the Coulomb gauge,
Eq. (3.25), in this Appendix because the resummed pertur-
bation theory was first proposed in the temporal gauge [8].
The gauge-fixing condition in the temporal gauge is
~G½a� ¼ a0 and �! 1. This condition is equivalent to
the constraint a0 ¼ 0. Because of this constraint, we have

K0ðx; yÞ ¼ D0�ðx; yÞ ¼ 0: (D1)

The equations governing Ki are�
�i6kþ @X

2
þ ig 6AðXÞ

�
Kiðk; XÞ þ ig�jD

<jiðk; XÞ�ðXÞ

¼ �ið	Rðk; XÞKiðk; XÞ þ
R
j ðk; XÞD<jiðk; XÞÞ;

(D2)

ð�k2 þ ik � @XÞKiðk; XÞ þ
�
k� i@X

2

�
i
�
k� i@X

2

�
j
Kjðk; XÞ

þ gS<ðk; XÞ�i�ðXÞ
¼ �Aijðk; XÞKjðk; XÞ � S<ðk; XÞ
Riðk; XÞ: (D3)

From these equations, we obtain

ð�2ik � @X þ 2gk � AðXÞ þ f6k; 	Rðk; XÞgÞKiðk; XÞ
�

�
k� i@X

2

�
i
�
k� i@X

2

�
j
Kjðk; XÞ þ�Aijðk; XÞKjðk; XÞ

¼ �ð6kD<jiðk; XÞ þ �ijS<ðk; XÞÞ ~�jðk; XÞ: (D4)

Here let us evaluate kiKiðk; XÞ, which is the longitudinal
component of Kiðk; XÞ. By multiplying Eq. (D4) by ki, we
get

jkj2
�
k� i@X

2

�
j
Kjðk; XÞ þ ki�

Aijðk; XÞKjðk; XÞ

¼ �S<ðk; XÞki ~�iðk; XÞ: (D5)

Here we have neglected the terms that are of order
g2T2kiKiðk; XÞ. We see that kiKiðk; XÞ � g2TKiðk; XÞ and
thus the longitudinal component of Kiðk; XÞ, k̂iKiðk; XÞ, is
negligible compared with the transverse component of
Kiðk; XÞ. We note that K0 ¼ 0, which is the result of the
gauge-fixing condition, and kiKi ¼ 0 are valid also in the
Coulomb gauge in the leading order. Furthermore, also
the free photon propagator at equilibrium is the same as
that in the Coulomb gauge. Thus, we can obtain Eq. (3.25)
in the same way as in the Sec. III B.
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