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The magnetic interactions between a fermion and an antifermion of opposite electric or color charges in

the 1S�þ
0 and 3Pþþ

0 states with J ¼ 0 are very attractive and singular near the origin and may allow the

formation of new bound and resonance states at short distances. In the two-body Dirac equations

formulated in constraint dynamics, the short-distance attraction for these states for point particles leads

to a quasipotential that behaves near the origin as��2=r2, where � is the coupling constant. Representing

this quasipotential at short distances as �ð�þ 1Þ=r2 with � ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ=2, both 1S�þ

0 and 3Pþþ
0

states admit two types of eigenstates with drastically different behaviors for the radial wave function

u ¼ rc . One type of states, with u growing as r�þ1 at small r, will be called usual states. The other type of

states with u growing as r�� will be called peculiar states. Both of the usual and peculiar eigenstates have

admissible behaviors at short distances. Remarkably, the solutions for both sets of 1S0 states can be written

out analytically. The usual bound 1S0 states possess attributes the same as those one usually encounters in

QED and QCD, with bound QED state energies explicitly agreeing with the standard perturbative results

through order �4. In contrast, the peculiar bound 1S0 states, yet to be observed, not only have different

behaviors at the origin, but also distinctly different bound state properties (and scattering phase shifts). For

the peculiar 1S0 ground state of fermion-antifermion pair with fermion rest mass m, the root-mean-square

radius is approximately 1=m, binding energy is approximately ð2� ffiffiffi
2

p Þm, and rest mass approximatelyffiffiffi
2

p
m. On the other hand, the ðnþ 1Þ1S0 peculiar state with principal quantum number (nþ 1) is nearly

degenerate in energy and approximately equal in size with the n1S0 usual states. For the 3P0 states, the

usual solutions lead to the standard bound state energies and no resonance, but resonances have been

found for the peculiar states whose energies depend on the description of the internal structure of the

charges, the mass of the constituent, and the coupling constant. The existence of both usual and peculiar

eigenstates in the same system leads to the non-self-adjoint property of the mass operator and two

nonorthogonal complete sets. As both sets of states are physically admissible, the mass operator can be

made self-adjoint with a single complete set of admissible states by introducing a new peculiarity quantum

number and an enlarged Hilbert space that contains both the usual and peculiar states in different

peculiarity sectors. Whether or not these newly-uncovered quantum-mechanically acceptable peculiar 1S0
bound states and 3P0 resonances for point fermion-antifermion systems correspond to physical states

remains to be further investigated.
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I. INTRODUCTION

It is well-known that for some combinations of the spin
configurations and orbital motion the magnetic interaction
can be strongly attractive and singular1 at short distances
[2–4].We can illustrate this by a classical example as shown
schematically in Fig. 1(a) where a positive charge qþ is
making a circular orbit about a fixed negative charge q�
whose spin sðq�Þ is pointing in a direction opposite to the
orbital angular momentum of qþ [4]. In the external field
problem, (e.g., Fermi’s treatment of hyperfine structure),
the charged particle q� at rest with a magnetic moment

�ðq�Þ generates a vector potential A ¼ �ðq�Þ � r=r3

which acts on the other particle, qþ. Such a ‘‘magnetic’’

interaction can be very attractive when the spins and the

orbital angular momentum are oppositely aligned, as shown

in the configuration of (qþq�) in Fig. 1, where the vector

potential A, arising from the q� magnetic dipole moment

�ðq�Þ, is parallel to the qþ orbital momentum p. The
interaction ð�p �AÞ from q� acting on qþ is attractive

and is proportional to ½LðqþÞ � sðq�Þ�=r3 that is quite sin-
gular in nature. At short distances it may overwhelm the

centrifugal barrier that is proportional to 1=r2. Similarly, the
interaction from qþ acting on q� will be likewise attractive

and singular if the spin of the sðqþÞ is parallel to the

electron spin sðq�Þ and pointing in the same direction,

resulting in the total spin of the qþq� system aligning

opposite to the orbital angular momentum, as in the 3Pþþ
0

state with S ¼ 1, L ¼ 1, J ¼ 0, P ¼ þ1, and C ¼ þ1.

*hcrater@utsi.edu
†wongc@ornl.gov
1A potential is quantum-mechanically singular if it is more

attractive than �1=4r2 at the origin in the context of (
�d2=dr2 � 1=4r2). See [1].
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The 3Pþþ
0 state is not the only state with a strong mag-

netic interaction. One can envisage classically another spin
configuration, the 1S�þ

0 state, that also has attractive and

singular magnetic interactions. As illustrated schematically
in Fig. 1(b), a fermion q� with an electric or color charge
interacts with an antifermion qþ of opposite electric or
color charge with spins sðq�Þ and sðqþÞ pointing in oppo-
site directions in the 1S�þ

0 state configuration. With the

spins opposite each other, the magnetic moments of q� and
qþ are parallel to each other. The interaction between the
magnetic moments is [5] Hint ¼ �ð8�=3Þ�q� ��qþ�ðrÞ
which is attractive and singular at short distances. The
strong and singular magnetic interaction may overcome
other repulsive interactions and may allow the formation
of bound states of the fermion and antifermion system at
short distances. For brevity of notation, the quantum num-
bers P and C in and 1S�þ

0 and 3Pþþ
0 will be understood.

Previously, one of us (C. Y. W), in collaboration with R.
L. Becker, studied the ðeþe�Þ system using the Kemmer-
Fermi-Yang equation [6] with interactions consisting of the
Coulomb interaction and the vector (magnetic) interaction,
Ai ¼ �j � ðri � rjÞ=jri � rjj3, in connection with a pos-

sible scalar 3P0 magnetic resonance [4]. The interest was to

investigate whether there could be a resonance at the mass
of 1.579 MeV that might explain the anomalous positron
peak in heavy-ion collisions near the Coulomb barrier [7].
The experimental evidence for the anomalous positron peak
later turned out to be negative when greater statistics were
accumulated [8]. Nevertheless, it remains of interest to
study the behavior of the two-body system at short distances
and see how the attractive magnetic interaction in the 3P0

state may reveal itself in some observable properties.
While the use of the Kemmer-Fermi-Yang equation

with a two-body magnetic interaction, as illustrated in
Fig. 1, is useful to motivate an approximate description
[4], a consistent relativistic and quantitative description of

the two-body interaction at short distances can be found in
the relativistic two-body Dirac equations (TBDE) formu-
lated in Dirac’s constraint dynamics [9–12]. These relativ-
istic two-body Dirac equations give a good description to
the entire meson mass spectrum (excluding most flavor-
mixed mesons) with constituent world-scalar and vector
potentials depending on just two or three invariant functions,
in previous relativistic quark-model calculations [13–15].
The application of the TBDE equations to two-body

bound and resonance states in quantum electrodynamics
has intrinsic merits. In Ref. [16], the properties of these
TBDE equations that made them work so well for the
relativistic quark model were investigated by solving
them nonperturbatively (i.e., analytically or numerically)
in quantum electrodynamics (QED), where order �4 per-
turbative solutions are well-known. The two coupled Dirac
equations in the constraint formalism depend on Lorentz-
covariant potentials between the two constituents and act on
a 16-component wave function. An exact Pauli reduction
led to a second-order relativistic Schrödinger-like equation
for a reduced four-component wave function with an effec-
tive interaction containing all the dependencies on spin,
orbital angular momentum, and tensor operators. We were
able to solve the TBDE nonperturbatively (analytically
or numerically) as well as perturbatively because the
spin-dependent short-distance components of the effective
interaction are not singular [12,16]. The situation is very
different from the approximate Fermi-Breit forms, which
contain singular potentials and necessitate the introduction
of arbitrary short-distance cut-off parameters. The spin-
dependence of the relativistic potentials in the exact
Schrödinger-like equation arises naturally from the relativ-
istic reduction procedure from the two coupled Dirac equa-
tions, and it incorporates detailed minimal interaction and
dynamical recoil effects characteristic of field theory. We
shall also use the term ‘‘quasipotential’’ to represent this
effective, nonsingular interaction.
To obtain the interaction used in the TBDE formalism,

we first determined the relativistic quasipotential to the
lowest order in � for the Schrödinger-like equation in
Ref. [16] by comparing the effective interaction with the
interaction derived from the Bethe-Salpeter equation. This,
in turn, led to an invariant Coulomb-like potential AðrÞ ¼
��=r, where � is the coupling constant. Insertion of this
information into the minimal interaction structures of the
two-body Dirac equations then completely determined
all aspects (spin-dependent as well as spin-independent)
of the interaction. (In [17] we gave a procedure to construct
the full 16-component solution to our coupled first-order
Dirac equations from a solution of the second-order equa-
tion for the reduced wave function.)
Next, we showed that both the quantum mechanical

perturbative and the TBDE nonperturbative treatments
(i.e., analytic or numerical) yield the standard spectral
results for QED and related interactions through order
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FIG. 1 (color online). (a) The schematic picture of the 3P0

state spin configuration and the orbital motion of a negative
charge q� and a positive charge qþ that can lead to a strong
magnetic attraction at short distances. Here, �ðq�Þ is the mag-
netic moment of the charge q� arising from its spin sðq�Þ.
(b) The schematic picture of the spin configurations of q� and
qþ in the 1S0 state.
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�4. Such an agreement depends crucially on the inclusion
of the coupling between various components of our
16-component Dirac wave functions and on the short-
distance behavior of the relativistic quasipotential in the
associated Schrödinger-like equation. We then examined
the speculations [4] whether the quasipotentials (including
the angular momentum barrier) for some states in the eþe�
system may become attractive enough at short distances to
yield a pure QED resonance corresponding to the anoma-
lous positron peaks in heavy-ion collisions [7]. For the 3P0

state we found that, even though the quasipotential be-
comes attractive and overwhelms the centrifugal barrier
at short distances, the spatial extension of the attraction is
not large enough to hold a resonance at the energy of
1.579 MeV [16]. This result contradicted predictions of
such states by other authors [18] based on numerical
solutions of three-dimensional truncations of the Bethe-
Salpeter equation, for which the entire QED bound state
spectrum has been treated successfully through order �4

only by perturbation theory.
In this paper we return to this problem of the magnetic

resonance and magnetic states, not motivated so much by
new experimental data as by a discovery of an additional
peculiar solution of the TBDE overlooked in the earlier
work in Ref. [16]. Our examination of the two-body Dirac
equations reveals that at short distance for both 1S0 and

3P0

states, the magnetic interactions is indeed quite strong. As
a consequence, they counterbalance other repulsive inter-
actions to result in a quasipotential for these states that
behaves as ��2=r2 at short distances.

In standard quantum mechanics for central interactions
including the angular momentum barrier LðLþ 1Þ=r2 for
states with L � 0 at short distances, one generally retains
only one of the two solutions for the radial part of the wave
function, u ¼ rc , the one that grows with distance as
ð�rLþ1Þ, dropping the other solution ð�r�LÞ as being too
singular. If we likewise represent the quasipotential as

�ð�þ 1Þ=r2 with � ¼ ð�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 4�2
p Þ=2, it leads to a

short-distance solution that behaves as r�þ1, which we call
the usual solution, in addition to a solution, whose radial
part grows as r��, which we call the peculiar solution.
However, both usual and peculiar states have quantum-
mechanically acceptable behaviors at short distances, as
the wave functions at short distances are square-integrable.

In the case of the spin-singlet 1S0 states, the eigenstates
and eigenenergies can be obtained analytically and are
found to encompass both usual and peculiar states. We
find usual bound states with attributes the same as those
one usually encounters in QED and QCD, explicitly agree-
ing with the standard perturbative results through order �4.
In contrast, the peculiar 1S0 ground state of a fermion-

antifermion pair with a fermion rest mass m has a root-
mean-square radius approximately 1=m, a binding energy

of approximately ð2� ffiffiffi
2

p Þm, and a rest mass approxi-

mately
ffiffiffi
2

p
m. However, the (nþ 1)th 1S0 peculiar state is

nearly degenerate in energy and approximately equal in
size with the nth usual 1S0.
The existence of both usual and peculiar eigenstates in

the same system brings with them conceptual and mathe-
matical problems of the non-self-adjoint property of the
mass operator and the over-completeness of the set of
eigenstates. We resolve these problems by the introduction
of a new quantum number, the peculiarity quantum num-
ber, that makes the mass operator self-adjoint and the
combined set of usual and peculiar states a complete set
in an enlarged Hilbert space.
In the case of the 3P0 states, both of the usual and

peculiar solutions reflect the overwhelmed centrifugal bar-
rier and so differ substantially from the rLþ1 and r�L

behaviors at short distances respectively. As a peculiar
state radial wave function u rises from the zero value at

the origin as r�� � r�
2
, the strongly attractive magnetic

interaction has the tendency of bending the wave function
in such a way to allow for the possibility of a resonance.
Furthermore, as the quasipotential obtained through the
relativistic reduction is sensitively energy-dependent, we
can explore the behavior of the two-body system over a
larger domain of energies. We find that the usual solutions
lead to no resonant behavior, but the peculiar solution can
lead to a 3P0 resonance whose phase shift changes by � at

an appropriate energy, depending on the description of the
internal structure of the charges, the mass of the constitu-
ent, and the coupling constant.
This paper is organized as follows. In Sec. II we give a

review of the two-body Dirac equations of constraint dy-
namics. For those readers who are already familiar with the
constraint approach we refer them to the TBDE given in
Eq. (14) and their Schrödinger-like Pauli reduction given
in Eq. (17). We specialize to electromagnetic-like inter-
actions only in this paper. We give in Sec. III the single-
component radial forms of Eq. (17) relevant to this paper.
In Sec. IV we examine both solutions for the 1S0 states. In
addition to examining new bound state solutions, we show
how the 1S0 wave functions for positive energies (and their
corresponding phase shifts) can be determined analytically
in terms of Coulomb wave functions for noninteger angular
momentum. This is done for both the usual and peculiar
solutions. We explain why and how we introduce of a new
quantum number, which we call the peculiarity quantum
number, to solve the problems of the non-self-adjoint
property of the mass operator and the over-completeness
of the set of eigenstates. In Sec. V we examine the short-
distance behaviors for the 3P0 state for the usual and

peculiar solutions. In Sec. VI we discuss the variable
phase-shift formalism of Calogero [19] and outline how
we use it for our phase-shift analysis. Since the short-
distance behavior of the 3P0 quasipotential is the same as

that of 1S0 quasipotential, we can use those same 1S0
Coulomb wave functions as reference wave functions in
that region to compute phase shifts. There is, however, an
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additional term [proportional to �ðrÞ] that does not appear
in the extreme short-distance region for the 1S0 quasipo-

tential. Even though this term does not contribute in the
case of the phase shift for the usual solution, its contribu-
tion to the phase-shift calculations for the peculiar solution
must be considered. In Sec. VII we discuss our numerical
results and in Sec. VIII our conclusions. Various technical
results are presented in the appendices. In Appendix Awe
give an outline of the details on the relation between the
two-body Dirac equations and their Pauli reduced
Schrödinger forms. In Appendix B we present the radial
forms of those Schrödinger-like equations for a general
angular momentum coupling. In Appendix C we present
details of the 1S0 usual and peculiar bound states. In

Appendix D we review the connections between the
Coulomb wave functions for noninteger angular momen-
tum index. Appendix E presents a review of the variable
phase method of Calogero [19] for our problem.

II. TWO-BODY DIRAC EQUATIONS

We briefly review the two-body Dirac equations of con-
straint dynamics [11–15,20] providing a covariant three-
dimensional truncation of the Bethe-Salpeter equation for
the two-body system. Sazdjian [21–23] has shown that the
Bethe-Salpeter equation can be algebraically transformed
into two independent equations. The first yields a covariant
three-dimensional eigenvalue equation which for spinless
particles takes the form

ðH 10 þH 20 þ 2�Þ�ðx1; x2Þ ¼ 0; (1)

where H i0 ¼ p2
i þm2

i . The quasipotential � is a modi-
fied geometric series in the Bethe-Salpeter kernel K such
that in lowest order in K

� ¼ �i�ðP � pÞK; (2)

where P ¼ p1 þ p2 is the total momentum, p ¼ �2p1 �
�1p2 is the relative momentum, w is the invariant total
center of momentum (c.m.) energy with P2 ¼ �w2.
The �i must be chosen so that the relative coordinates
x ¼ x1 � x2 and p are canonically conjugate, i.e., �1 þ
�2 ¼ 1. The second equation, Eq. (2), overcomes the
difficulty of treating the relative time in the center of
momentum system by setting an invariant condition on
the relative momentum p,

ðH 10 �H 20Þ�ðx1; x2Þ ¼ 0 ¼ 2P � p�ðx1; x2Þ: (3)

Note that this implies p��¼p
�
?��ð���þP̂�P̂�Þp�� in

which P̂� ¼ P�=w is a timelike unit vector (P̂2 ¼ �1) in
the direction of the total momentum.2

One can further combine the sum and the difference of
Eqs. (1) and (3) to obtain a set of two relativistic equations
one for each particle with each equation specifying two
generalized mass-shell constraints

H i�ðx1; x2Þ ¼ ðp2
i þm2

i þ�Þ�ðx1; x2Þ ¼ 0; i¼ 1;2;

(4)

including the interaction with the other particle. These
constraint equations are just those of Dirac’s Hamiltonian
constraint dynamics for spinless particles [9,10,24]. In
order for Eq. (4) to have consistent solutions, Dirac’s
constraint dynamics stipulate that these two constraints
must be compatible among themselves, ½H 1;H 2�� ¼
0, that is, they must be first-class constraints. This requires
that the quasipotential � satisfy ½p2

1 � p2
2;��� ¼ 0.

Working out the commutator shows that for this to be
true in general, � must depend on the relative coordinate
x ¼ x1 � x2 only through its component, x?, perpendicu-
lar to P,

x
�
? ¼ ð��� þ P̂�P̂�Þðx1 � x2Þ�: (5)

The invariant x2? � r2 becomes r2 in the c.m. frame. Since

the total momentum is conserved, the single-component
wave function� in coordinate space is a product of a plane
wave eigenstate of P and an internal part c ðx?Þ [25].3
We find a plausible structure for the quasipotential �

by observing that the one-body Klein-Gordon equation
ðp2 þm2Þc ¼ ðp2 � "2 þm2Þc ¼ 0 takes the form
ðp2 � "2 þm2 þ 2mSþ S2 þ 2"A� A2Þc ¼ 0 when
one introduces a scalar interaction and timelike vector
interaction via the minimum substitutions m ! mþ S
and " ! "� A. In the two-body case, separate classical
[26] and quantum field theory [23] arguments show that
when one includes world-scalar and vector interactions
then � depends on two underlying invariant functions

SðrÞ and AðrÞ (r ¼
ffiffiffiffiffiffi
x2?

q
) through the two-body Klein-

Gordon-like potential form with the same general struc-
ture, that is

� ¼ 2mwSþ S2 þ 2"wA� A2: (6)

Those field theories further yield the c.m. energy-
dependent forms

mw ¼ m1m2=w; (7)

and

"w ¼ ðw2 �m2
1 �m2

2Þ=2w; (8)

ones that Tododov [10,27] introduced as the relativistic
reduced mass and effective particle energy for the two-
body system. Similar to what happens in the nonrelativistic
two-body problem, in the relativistic case we have the

2We use the metric �11 ¼ �22 ¼ �33 ¼ ��00 ¼ 1.

3We use the same symbol P for the eigenvalue so that the
w-dependence of mw and "w in Eq. (6) is regarded as an eigen-
value dependence. Thewave function� can be viewed either as a
relativistic two-body wave function (similar in interpretation to
the Dirac wave function) or, if a close connection to field theory is
required, related directly to the Bethe-Salpeter wave function �
by [22] � ¼ ��i�ðP � pÞH 10� ¼ ��i�ðP � pÞH 20�.
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motion of this effective particle taking place as if it were in
an external field (here generated by S and A). The two
kinematical variables (7) and (8) are related to one another
by the Einstein condition

"2w �m2
w ¼ b2ðwÞ; (9)

where the invariant

b2ðwÞ � ðw4 � 2w2ðm2
1 þm2

2Þ þ ðm2
1 �m2

2Þ2Þ=4w2;

(10)

is the c.m. value of the square of the relative momentum
expressed as a function of w. One also has

b2ðwÞ ¼ "21 �m2
1 ¼ "22 �m2

2; (11)

in which "1 and "2 are the invariant c.m. energies of the
individual particles satisfying

"1 þ "2 ¼ w; "1 � "2 ¼ ðm2
1 �m2

2Þ=w: (12)

In terms of these invariants, the relative momentum
appearing in Eq. (2) and (3) is given by

p� ¼ ð"2p�
1 � "1p

�
2 Þ=w; (13)

so that�1 þ�2 ¼ ð"1 þ "2Þ=w ¼ 1. In [28] the forms for
these two-body effective kinematic variables are given
sound justifications based solely on relativistic kinematics,
supplementing the dynamical arguments of [23,26].

This covariant and useful three-dimensional truncation
of the Bethe-Salpeter equation has been extended to
the case of a two-fermion system where the two con-
straint equations become the two-body Dirac equations
[11,11–15]

S1c � 	51ð	1 � ðp1 � ~A1Þ þm1 þ ~S1Þ� ¼ 0;

S2c � 	52ð	2 � ðp2 � ~A2Þ þm2 þ ~S2Þ� ¼ 0: (14)

Here � is a 16-component wave function consisting of an
external plane wave part that is an eigenstate of P and an

internal part c ¼ c ðx?Þ. The vector potential ~A
�
i was

taken to be an electromagnetic-like four-vector potential
with the timelike and spacelike portions both arising from a
single invariant function AðrÞ.4 The tilde on these four-
vector potentials indicate that they are not only position-
dependent but also spin-dependent by way of the gamma
matrices. The operators S1 and S2 must commute or at the
very least ½S1;S2�c ¼ 0 since they operate on the same
wave function.5 This compatibility condition gives restric-
tions on the spin dependencies of the vector and scalar
potentials,

~A
�
i ¼ ~A�

i ðAðrÞ; p?; P̂; w; 	1; 	2Þ; (15)

in addition to requiring that they depend on the invariant

separation r �
ffiffiffiffiffiffi
x2?

q
through the invariant AðrÞ. The cova-

riant constraint (3) can also be shown to follow from

Eq. (14). We give the explicit connections between ~A
�
i

and the invariant AðrÞ in Appendix A. [A similar depen-

dence occurs for ~Si on SðrÞ.] The general structural depen-
dence on AðrÞ and SðrÞ and the spin dependence of ~A

�
i ,

~Si is a consequence of the compatibility condition
½S1;S2�c ¼ 0.
The Pauli reduction of these coupled Dirac equations

lead to a covariant Schrödinger-like equation for the rela-
tive motion with an explicit spin-dependent potential �,

ðp2
? þ�ðSðrÞ; AðrÞ; p?; P̂; w; 
1; 
2ÞÞcþ ¼ b2ðwÞcþ;

(16)

with b2ðwÞ playing the role of the eigenvalue.6 This eigen-
value equation can then be solved for the four-component
effective particle spinor wave function cþ related to the
16-component spinor c ðx?Þ in appendix A.
In Appendix Awe outline the steps needed to obtain the

explicit c.m. form of Eq. (16). That form is [29,30],
[13–15]

fp2 þ�ðr; m1; m2; w;�1;�2Þgcþ
¼ fp2 þ 2mwSþ S2 þ 2"wA� A2 þ�D

þ L � ð�1 þ �2Þ�SO þ �1 � r̂
2 � r̂L � ð
1 þ 
2Þ�SOT

þ �1 � 
2�SS þ ð3�1 � r̂
2 � r̂� �1 � 
2Þ�T

þ L � ð
1 � 
2Þ�SOD þ iL � 
1 � 
2�SOXgcþ
¼ b2cþ; (17)

where the detailed forms of the separate quasipotentials�i

are given in Appendix A. The subscripts of most of the
quasipotentials are self-explanatory.7 After the eigenvalue
b2 of (17) is obtained, the invariant mass of the composite
two-body system w can then be obtained by inverting
Eq. (10). It is given explicitly by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þm2

2

q
: (18)

4In particular, in a perturbative context that would mean that
these aspects of ~A

�
i were regarded as arising from a Feynman

gauge vertex coupling of a form proportional to 	�
1 	2�A.

5The 	5 matrices for each of the two particles are designated
by 	5i i ¼ 1, 2. The reason for putting these matrices out front of
the whole expression is that including them facilitates the proof
of the compatibility condition, see [11,25].

6Because of the dependence of � on w, this is a nonlinear
eigenvalue equation.

7The subscript on quasipotential �D refers to Darwin. It
consist of what are called Darwin terms, those that are the
two-body analogue of terms that accompany the spin-orbit
term in the one-body Pauli reduction of the ordinary one-body
Dirac equation, and ones related by canonical transformations to
Darwin interactions [26,31], momentum-dependent terms aris-
ing from retardation effects. The subscripts on the other quasi-
potentials refer, respectively, to SO (spin-orbit), SOD (spin-orbit
difference), SOX (spin-orbit cross terms), SS (spin-spin), T
(tensor), SOT (spin-orbit-tensor).
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For this reason we call the operator that appears to the left
of Eq. (17) the invariant mass operator. The structure of the
linear and quadratic terms in Eq. (17) as well as the Darwin
and spin-orbit terms, are plausible in light of the discussion
given above Eq. (6), and in light of the static limit Dirac
structures that come about from the Pauli reduction of the
Dirac equation. Their appearance as well as that of the
remaining spin structures are direct outcomes of the Pauli
reductions of the simultaneous TBDE Eq. (14). In this
paper we take the scalar interaction SðrÞ ¼ 0.

III. TBDE SINGLE-COMPONENT WAVE
EQUATIONS

The four-component two-body wave function cþ of the
above Pauli-form (17) of the TBDE can be conveniently
represented by spin-singlet S ¼ 0 and spin-triplet S ¼ 1
components with quantum numbers fJ; L; Sg and basis
wave functions

hrjwJLSi � c JLSðrÞ ¼ uJLSðrÞ
r

YJMðr̂Þ: (19)

In general, the singlet and triplet states are coupled.
However, we see from Appendix B that for the case of
equal masses and certain angular momentum states, the
spin-singlet and spin-triplet components decouple, and the
TBDE reduce to a single-component equation.
Specifically, for the spin-singlet S ¼ 0 state with J ¼ L,

(the 1JJ state), the TBDE is

�
� d2

dr2
þ JðJ þ 1Þ

r2
þ 2"wA� A2 þ�D � 3�SS

�
uJJ0

¼ b2uJJ0; (20)

where, using the results in Appendix B, the magnetic
interaction �3�SS is

�3�SS ¼ �3�SSðA; A0;r2AÞ

¼ �3

�
1

r2
� 3

2r

�
A0

w� 2A

����
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2A=w
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2A=w

p �
� 2

�
� 3

2r

�
A0

w� 2A

��
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2A=w
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2A=w

p �

� 21

2

�
A0

w� 2A

�
2 � 3r2A

w� 2A

¼ ��DðA; A0;r2AÞ; (21)

which is attractive and singular, as we discussed in the
Introduction. At large distances and for A ¼ ��=r poten-
tial, r2A ¼ 4���ðrÞ and the spin-spin interaction indeed
becomes a singular interaction as described in [5]. In
addition to the magnetic spin-spin interaction, there is
also the repulsive Darwin quasipotential �D. In the 1JJ
state, the attractive magnetic spin-spin quasipotential in the
spin-singlet configuration exactly cancels the repulsive
Darwin quasipotential,

� 3�SS þ�D ¼ 0: (22)

As a result of this remarkable cancelation, the eigenvalue
equation for the 1JJ state in Eq. (21) becomes simply�

� d2

dr2
þ JðJ þ 1Þ

r2
þ 2"wA� A2

�
uJJ0 ¼ b2uJJ0: (23)

Of all spin-singlet states, only in the 1S0 states (J ¼ L ¼ 0)
do the effects of the quasipotential and the absence of a
centrifugal barriermake the combinedquasipotential strongly
attractive at short distances. This, of course,would not happen
were it not for the highly attractive spin-spin interaction
discussed in the Introduction and in Eq. (21). Among the
spin-singlet stateswith differentJ quantumnumbers,we shall
therefore focus our attention only on the 1S0 states.

For the spin-triplet S ¼ 1 states, there are two states with
single-component radial equations. The first is the 3JJ state
whose radial equation takes the form (J � 1)

�
� d2

dr2
þ JðJ þ 1Þ

r2
þ 2"wA� A2 � 2A0

rðw� 2AÞ
þ 3

�
A0

w� 2A

�
2 þ r2A

w� 2A

�
uJ1J ¼ b2uJJ1: (24)

The second is the 3P0 equation which takes the form

�
� d2

dr2
þ 2

r2
þ 2"wA� A2 � 8A0

rðw� 2AÞ þ 8

�
A0

w� 2A

�
2

þ 2r2A

w� 2A

�
u011 ¼ b2u011: (25)

Of the two spin-triplet cases, only in the 3P0 states (J ¼ 0,
L ¼ 1) do the combined effects of the quasipotentials
become so strongly attractive at short distances that they
overwhelm the presence of the centrifugal barrier. As dis-
cussed in the Introduction, this is due to the highly attrac-
tive spin-orbit interaction (magnetic interaction) when the
total spin and the orbital angular momentum are oppositely
aligned. In that case, the competing effects of both the
short-distance attraction and the presence of the potential
barrier raise the question whether the attraction is strong
enough to hold a resonance state in the continuum. Among
the spin-triplet states with different J and L quantum
numbers, we shall therefore focus our attention only on
the 3P0 states.
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In the last term of the quasipotential in Eq. (25), the
quantity r2A is related to the particle charge density, �ðrÞ,
seen by each of the two particles by

r2AðrÞ ¼ 4���ðrÞ: (26)

Therefore, the equation for the two-body relative wave
function for the 3P0 state becomes�
� d2

dr2
þ 2

r2
þ 2"wA� A2 � 8A0

rðw� 2AÞ þ 8

�
A0

w� 2A

�
2

þ 8���ðrÞ
w� 2A

�
u011 ¼ b2u011: (27)

As we shall see in this case, the attractive magnetic
interaction overwhelms the centrifugal barrier, allowing
the wave function to reach the short-distance region where
the particle charge density �ðrÞ, if any, can be exposed for
scrutiny. This is in contrast to the situation for states in
which the centrifugal barrier dominates the short-distance
region. In that case, the centrifugal barrier will prevent the
wave function from reaching the short-distance region and
the particle charge density will not make a significant
difference in observable quantities.8 We obtain the impor-
tant result that the 3P0 quasipotential depends explicitly on

the particle charge density �ðrÞ at short distances. As a
consequence, some observable quantities may depend
more critically on the nature of the particle charge distri-
bution and the forces binding the charge elements together.

For the 3P0 state, it is convenient to separate out the

centrifugal barrier 2=r2 and the quasipotential � to write
the above equation as�

� d2

dr2
þ 2

r2
þ�ðrÞ

�
u011 ¼ b2u011; (28)

where

�ðrÞ ¼ 2"wA� A2 � 8A0

rðw� 2AÞ þ 8

�
A0

w� 2A

�
2

þ 8���ðrÞ
w� 2A

: (29)

In our early work [16], we limited our attention to
energy regions around 1.579 MeV for the ðeþe�Þ system
and searched for 3P0 resonances whose wave functions

start from the origin in the usual way. We found no reso-
nance states. We return to this problem again including
now an additional (peculiar) solution of the TBDE that
was overlooked in the earlier work but has quantum-
mechanically acceptable behaviors at short distances.

In Eqs. (27), both the gauge field AðrÞ and the gauge field
source �ðrÞ appear in the equation of motion for the wave
function in the 3P0 state. The appearance of the fermion

charge source distribution �ðrÞ brings into focus the
question whether it is sufficient to describe the magnetic
interaction in the 3P0 state completely within quantum

electrodynamics or quantum chromodynamics. Electrons
in QED and quarks in QCD are taken to be point particles
with no structure. It may be necessary to go beyond these
field theories, to include additional auxiliary interactions
that hold the charge elements together, in order to properly
describe the internal structure of these particles. If these
auxiliary interactions act on the charged elements of the
fermion to hold them together, they can also act on the
charged elements of the antifermion charge and will affect
the 3P0 wave function in the interior region of the charge

distribution �ðrÞ.
The nature of these auxiliary forces holding the charged

elements together is completely unknown, although there
have been many attempts to carry out such an investiga-
tion [32]. For example, in Dirac’s model of an electron, a
surface tension from an unknown axillary interaction is
invoked to hold the electric charged elements of an electron
together [33–38]. However, our knowledge on the internal
structures of electrons and quarks remain very uncertain. We
shall return to examine how such a lack of knowledge of the
internal structures of these elementary quanta leads to un-
certainties in the 3P0 magnetic resonance states in Sec. VC.

IV. SOLUTIONS OF THE TWO-BODY DIRAC
EQUATIONS FOR THE 1S0 STATE

The 1S0 quasipotential

We first consider the case of the 1S0 state of a point

fermion-antifermion pair with electric or color charges in-
teracting through an electromagnetic-type interaction arising
from the exchange of a single photon or gluon. The single
photon annihilation diagram does not contribute because the
1S0 state is a charge-parity-even state. We thus have

A ¼ ��

r
: (30)

For brevity of notation in this subsection, we shall abbreviate
the radial wave function u0JJ ¼ u000 as u. Equation (20) for
u becomes �

� d2

dr2
� 2"w�

r
� �2

r2

�
u ¼ b2u: (31)

with a short-distance (r 	 �=2"w) behavior given by�
� d2

dr2
� �2

r2

�
u ¼ 0; (32)

with solutions

�þ ¼ � ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ=2; �� ¼ ��� 1

¼ ð�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ=2; uþ � r�þ1 � r�þþ1;

u� � r�� � r��þ1;

(33)8Such would also be the case for 1S0 states in which, due to the
cancelation inEq. (22), there is no explicit�ðrÞ dependence so that
�ðrÞ is only indirect or implicit through the altered form for AðrÞ.
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or

u� � rð1�
ffiffiffiffiffiffiffiffiffiffiffi
1�4�2

p
Þ=2; (34)

both of which approach zero as r approaches zero. With
these behaviors, the probability

c 2�d3r ¼
u2�
r2

r2drd� ¼ u2�drd� ¼ rð1�
ffiffiffiffiffiffiffiffiffiffiffi
1�4�2

p
Þdrd�

(35)

is finite for both signs. We call uþ the usual solution, and it

behaves as r�þ1 � r1��2
for small �. We call u� the pecu-

liar solution, and it behaves as r�� � r�
2
for small �. Both

of these behaviors are physically acceptable near the origin
in the sense of (i) uð0Þ ! 0, and (ii) being square-integrable
in the neighborhood of r� 0. We note that if the sign in front
of�2 were positive or if we had nonzero angular momentum
such that LðLþ 1Þ � �2 > 0 then the second or peculiar set
of solutions are not physically admissible states.

In [39] one finds a thorough discussion on the proper
boundary condition for the radial wave function of the
Schrödinger equation at the origin. They discuss several
conditions that appear in the literature: (1) Continuity of
R ¼ u=r at r ¼ 0, requiring uð0Þ ¼ 0. (2) A finite differ-
ential probability in the spherical slice (r, rþ dr), that is
R2r2dr <1 requiring uðrÞ ! rsþ1, s >�1 and again
uð0Þ ¼ 0. (3) Requiring a finite total probability inside a
sphere of small radius a which allows a more singular

behavior, namely uðrÞ ! r�1=2þ" where " > 0 is a small
positive constant, which would also include a finite
behavior of the norm. (4) Requiring time-independence
of the norm leading to uðrÞ ! cr�sþ1, s < 1 which
again leads to uð0Þ ¼ 0. Reference [39] furthermore
shows that the radial Schrödinger equation [� d2=dr2 þ
lðlþ 1Þ=r2 þ 2mVðrÞ�uðrÞ ¼ 2mEuðrÞ is compatible with

the full Schrödinger equation ð�r2 þ 2mVðrÞÞ uðrÞr Ylm ¼
2mEuðrÞ

r Ylm if and only if the condition uð0Þ ¼ 0 is sat-

isfied. This uð0Þ ¼ 0 condition is clearly satisfied for both
solutions in Eq. (34).

In Schiff’s Quantum Mechanics [40], a solution similar
to the peculiar one discussed here is examined for the case
of the Klein-Gordon equation for the Coulomb system. He
argues that what we call the peculiar solution can be
discarded since the source of the Coulomb attraction is a
finite sized nucleus of radius r0. In particular, he states that
for r < r0 for which the potential is finite all the way to the
origin, matching at r0 would rule out the peculiar solution.
In our case, with point particles, the potential does not
satisfy this condition.

1. 1S0 Bound States

The solutions of the 1S0 bound states can be obtained

analytically. In Appendix C we show how we can obtain
the two sets of 1S0 bound state solutions that correspond to
the usual and peculiar short-distance behaviors. The re-

spective sets of eigenvalues and normalized eigenfunctions
for the state with total invariant c.m. energy (mass) w�n

and the principal quantum number n ¼ 1; 2; 3; . . . are

w�n ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2=ðn�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4��2

q
� 1=2Þ2

rs
;

u�nðrÞ ¼
��

4"w��r

n0�

�
2 nr!

2n0�ðn0� þ ��Þ!
�
1=2

exp

�
�"w��r

n0�

�

�
�
2"w��r

n0�

�
��þ1

L2��þ1
nr

�
2"w��r

n0�

�
; (36)

where n0� ¼ nr þ �� þ 1 ¼ nþ �� and

"w� ¼ ðw2� � 2m2Þ=2w�: (37)

For the usual states uþn, the bound state eigenvalues
wþn agree with standard QED perturbative results through
order �4,

wþn¼2m�m�2=4n2�m�4=2n3ð1�11=32=nÞþOð�6Þ;
n¼1;2;3; . . . (38)

For the set of peculiar states u�n, note that the peculiar
ground state u�1 with n ¼ 1 has eigenenergy (mass)

w�1 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2=ð1=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4� �2

q
Þ2

rs

� ffiffiffi
2

p
m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
; (39)

which represents very tight binding, with a binding energy
on the order 300 keV for an eþe� state and a root-mean-
square radius on the order of a Compton wave length
instead of an angstrom. In particular we find (see
Appendix C) ffiffiffiffiffiffiffiffiffiffiffiffiffi

hr2i�1

q
! 1

m
: (40)

We note further the anti-intuitive behavior of the peculiar
ground state energy (mass), increasing with increasing
coupling constant � instead of decreasing. The excited
states are quite near to the usual bound states. We find
the following pattern for those excited peculiar states

w�n ¼ 2m�m�2=4ðn� 1Þ2 þm�4=2ðn� 1Þ3
� ð1þ 11=32ðn� 1ÞÞ þOð�6Þ;

n ¼ 2; 3; 4; . . . (41)

In the nonrelativistic limit, where terms of order �4 are
ignored we find that the states are degenerate with the nth
usual state identical to the (nþ 1)th peculiar state. If we
include the �4 corrections then we find that

wþn � w�ðnþ1Þ ¼ �m�4=n3; (42)

where n ¼ 2; 3; 4 . . .For all of the usual states and the
remaining peculiar states we have
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hr2iþn¼ ðnþ�þÞ2
6ð"wþn

�Þ2 ½ðnþ�þÞ2þ5�2þ3�; n¼1;2;3.. . ;

hr2i�n¼ ðnþ��Þ2
6ð"w�n

�Þ2 ½ðnþ��Þ2þ5�2þ3�; n¼2;3... ;

(43)

so that the size in the (nþ 1)th peculiar state is nearly the
same as with the nth usual state.

As shown in the Appendix C, the two sets of solutions
are not orthogonal with respect to one another. For ex-
ample, the two n ¼ 1 wave functions have the respective
forms

uþðrÞ ¼ cþr�þþ1 expð��þ"wþ�rÞ;
�þ ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p ¼ 1

�þ þ 1
;

u�ðrÞ ¼ c�r��þ1 expð���"w��rÞ;
�� ¼ 2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p ¼ 1

�� þ 1
; (44)

where for brevity of notation, we have omitted the princi-
pal quantum number designation in u� for the of the
ground state. Clearly since they are both zero node solu-
tions we have

hu�juþi ¼
Z 1

0
druþðrÞu�ðrÞ � 0: (45)

How do we reconcile this with the expected orthogonality
of the eigenfunctions of a self-adjoint operator correspond-
ing to different eigenvalues? In the present context, the
naive self-adjoint property requires that

huþj
�
� d2

dx2
� 2

x
� �2

x2

�
ju�i

¼ hu�j
�
� d2

dx2
� 2

x
� �2

x2

�
juþi: (46)

This boils down to

Z 1

0
dxuþ

d2u�
dx2

¼
Z 1

0
dxu�

d2uþ
dx2

: (47)

Let us integrate by parts. Then we haveZ 1

0
dxuþ

d2u�
dx2

¼
�
uþ

du�
dx

���������1

0
�
Z 1

0
dx

duþ
dx

du�
dx

¼
�
u�

duþ
dx

���������1

0
�
Z 1

0
dx

duþ
dx

du�
dx

:

(48)

We thus have a self-adjoint operator if�
uþ

du�
dx

���������1

0
¼

�
u�

duþ
dx

���������1

0
: (49)

Now clearly these vanish at the upper end points. Since we
have that

duþ
dx

¼ uþ
�
�þ þ 1

x
� 1

�þ þ 1

�
;

du�
dx

¼ u�
�
�� þ 1

x
� 1

�� þ 1

�
(50)

at the lower end point the left-hand side of Eq. (49) is

lim
x!0

x�þþ1 expð�x=ð�þ þ 1ÞÞx��þ1 expð�x=ð�� þ 1ÞÞ

�
�
�� þ 1

x
� 1

�� þ 1

�

¼ lim
x!0

x

�
�� þ 1

x
� 1

�� þ 1

�
¼ �� þ 1 (51)

whereas at the lower end point the right-hand side is
�þ þ 1 � �� þ 1. Thus, the second derivative is not
self-adjoint in this context! This accounts for the nonortho-
gonality of the usual and peculiar ground states in Eq. (45).
In general beginning with a set of usual and peculiar

wave functions fuþn; u�ng such that

huþnjuþn0 i ¼ �nn0 ; hu�nju�n0 i ¼ �nn0 ;

hu�njuþni � bnn0 ¼ bn0n; (52)

we find with

H � 1

ð"w�Þ2
�
� d2

dr2
� 2"w�

r
� �2

r2

�

¼
�
� d2

dx2
� 2

x
� �2

x2

�
;

Hu�n ¼ h�nu�n; h�n � ��2�n ¼ �1=ð�� þ nÞ2;
n ¼ 1; 2; . . . (53)

where x ¼ "w�r, that

huþnjHjuþn0 i ¼ �nn0hþn hu�njHju�n0 i ¼ �nn0h�n;

hu�njHjuþn0 i ¼ bnn0hþn0

huþnjHju�n0 i ¼ bnn0h�n0 � hu�n0 jHjuþni: (54)

In the first two terms it does not matter whether the H
operators operate to the left or the right. In the last two
cases we explicitly have H operating to the right. To
emphasize that we write them as

hu�njðHjuþn0 iÞ ¼ bnn0hþn0 ;

huþnjðHju�n0 iÞ ¼ bnn0h�n0 :
(55)

It is evident that with both sets of basis, H is not
self-adjoint since hu�njðHjuþn0 iÞ � ðhu�njHÞjuþni and
huþnjðHju�n0 iÞ � ðhuþnjHÞju�n0 i.
Let us see where the nonorthogonality leads us if we

treat both bases on an equal footing. In that case a general
wave function for the 1S0 system would be expanded as9

9Strictly speaking we should include the continuum states. See
section below for discussion of those states. For the purpose here
the use of discrete states is sufficient.
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� ¼ X
nþ

cþnuþn þ
X
n�

c�nu�n; (56)

and applying the variational principle to

hHi ¼ h�jHj�i
h�j�i ; (57)

and defining (we show just a finite n� n portion of the
matrices)

B ¼

b11 b12 . . . b1n

b21 b22 . . . b2n

. . . . . . . . . . . .

bn1 bn2 . . . bnn

2
666664

3
777775;

Hþ ¼

hþ1 0 . . . 0

0 hþ2 . . . 0

. . . . . . . . . . . .

0 0 . . . hþn

2
666664

3
777775;

H� ¼

h�1 0 . . . 0

0 h�2 . . . 0

. . . . . . . . . . . .

0 0 . . . h�n

2
666664

3
777775; (58)

then in block form wewould have the eigenvalues equation

Hþ BH�
BHþ H�

" #
cþ
c�

" #
¼ ��2

1 B

B 1

" #
cþ
c�

" #
: (59)

(Note that the way this stands, the matrix on the left is not
self-adjoint.) Multiplying both sides on the right by

1 B

B 1

" #�1

¼ ð1� B2Þ�1 �Bð1�B2Þ�1

�Bð1� B2Þ�1 ð1�B2Þ�1

" #

(60)

we obtain

Hþ 0

0 H�

" #
cþ
c�

" #
¼ ��2

cþ
c�

" #
: (61)

It is clear that the eigenvectors corresponding to the eigen-
value sets of ��2þ and ��2� are of the form

cþ
0

" #
;

0

c�

" #
: (62)

From Eq. (36). one recalls that the two sets of basis
functions fuþn; u�ng have distinctly different behaviors at
the origin, corresponding to the usual and peculiar solu-
tions. In particular

uþnðxÞ ¼ cþnx
�þþ1 expð�xÞL2�þþ1

nr ðxÞ;
u�nðxÞ ¼ cþnx

��þ1 expð�xÞL2��þ1
nr ðxÞ;

(63)

These generalized Laguerre polynomials are orthonormal
with respect to different weight functions x��þ1 expð�xÞ.

They would each correspond to a complete set. Together
they would constitute an over-complete set. However, that
does not imply that Eq. (56) is incorrect as it allows for the
function �ðxÞ to be a linear combination of functions with
two distinct behaviors at the origin. Nevertheless, the setup
here is a bit clumsy with questions of completeness and the
non-self-adjoint property remaining.
It should be realized that for the given quasipotential of

the type��2=r2 at short distances that is at hand, both the
set of usual states and the peculiar states are physically
admissible states. There do not appear to be reasons to
exclude one set as being unphysical, if one is given the
attractive interaction near the origin as it is. We note
however that the peculiar states with the r�� behavior at
the origin are excluded from existence if coefficient �ð�þ
1Þ for the 1=r2 term is greater than zero since that would
lead to a uðrÞ that is singular at the origin. Only for
interactions with sufficient attraction at the origin (so that
�1=4 
 �ð�þ 1Þ< 0) can these states be pulled into
existence and appear as eigenstates in the physically
acceptable sheet, with regular nonsingular radial wave
functions at the origin. It is desirable to find ways to admit
both types of physical states into a larger Hilbert space to
accommodate both sets of states with the mass operator to
be self-adjoint and the states to be part of a complete set. It
is reasonable to assign a quantum number which we call
‘‘peculiarity’’ for a states emerging into the physical sheet
in this way as physically acceptable states. The introduc-
tion of the peculiarity quantum number enlarges the
Hilbert space, allows the mass operator to be self-adjoint,
and the set of physically allowed states become a complete
set, as we shall demonstrate.

We introduce a new peculiarity observable 
̂ with the
quantum number peculiarity 
 such that


̂�þ ¼ 
�þ with eigenvalue 
 ¼ þ1;


̂�� ¼ 
�� with eigenvalue 
 ¼ �1; (64)

with the corresponding spinor wave function �
 assigned

to the states so that a usual state is represented by the
peculiarity spinor �þ,

�þ ¼ 1
0

� �
; (65)

and a peculiar state is represented by the peculiarity spinor
��,

�� ¼ 0
1

� �
: (66)

With this introduction, a general wave function can be
expanded in terms of the complete set of basis functions
fuþn; u�ng as

� ¼ X

n

a
nu
n�
 ; (67)
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where n represent all the spin and spatial quantum numbers
of the state and 
 the peculiarity quantum number. The
variational principle applied to

hHi ¼ h�jHj�i
h�j�i ; (68)

would lead to

Huþn�þ ¼ ��2þnuþn�þ; Hu�n�� ¼ ��2�nu�n��:
(69)

It is clear that in this context the usual and peculiar wave
functions are orthogonal, H is self-adjoint, and the basis
states are complete. That is,

hijji ¼ hu
ini ju
jnji �
Z 1

0
dru
ini�
iu
jnj�
j

¼ �
i
j�ninj ¼ �ij (70)

and so the set of basis functions fuþn
þ; u�n
�g, contain-
ing both the usual states and peculiar states in the enlarged
Hilbert space, form a complete set. We also have

hijHjji ¼ hu
ini jHju
jnji �
Z 1

0
dru
ini�
iHu
jnj�
j

¼ h
i�
i
j�ninj ¼ hu
jnj jHju
inii ¼ hjjHjii; (71)

so that the mass operatorH in this enlarged Hilbert space is
self-adjoint. We see that the introduction of the peculiarity
quantum number resolves the problem of over-
completeness property of the basis states and the non-
self-adjoint property of the mass operator.

2. 1S0 Scattering States

The 1S0 state equation�
� d2

dr2
� 2"wðrÞ�

r
� �2

r2

�
u ¼ b2u (72)

has the same form as the nonrelativistic Schrödinger equa-
tion for Coulomb interaction

�
� d2

dr2
� 2m�

r
þ LðLþ 1Þ

r2

�
u ¼ 2mE �u ¼ k2u; (73)

except that the standard angular momentum term with
LðLþ 1Þ now takes on the value of ð��2Þ. The two
solutions to the above equation are given by the regular
FL and irregular GL Coulomb wave functions,

�u ¼ aFLð�; krÞ þ cGLð�; krÞ; � ¼ �m�

k
; (74)

with only the regular Coulomb wave function having an
acceptable behavior at the origin. The long-distance
behaviors of the regular and irregular solutions are

FLð�; kr ! 1Þ
! const� sinðkr� � log2krþ 
L � L�=2Þ;

GLð�; kr ! 1Þ
! const� cosðkr� � log2krþ 
L � L�=2Þ;

(75)

in which 
L is the Coulomb phase shift given by


L ¼ argð�ðLþ 1þ i�Þ: (76)

Nowwe can solve Eq. (72) exactly for b2 > 0 by analyti-
cally continuing the above solutions to an arbitrary (non-
integer) angular momentum � and making a few obvious
replacements by analogy,

�u ¼ aF�ð�; brÞ þ cG�ð�; brÞ;
�ð�þ 1Þ ¼ ��2; � ¼ �"w�

b
: (77)

Using the expressions for the analytically continued
Coulomb wave functions to noninteger � [41] we will
presently see that we have solutions given by the F and
G functions in Eqs. (83) and (84) below.We emphasize that
both solutions have an acceptable behavior at the origin.
Since � is not an integer, one can replace the irregular
solution G�ð�; brÞ by F���1ð�; brÞ.10 In particular, as
shown in Appendix D, in terms of the confluent hyper-
geometric function Mða; b; zÞ
F�ð�Þ¼C�ð�Þ��þ1 expð�i�ÞMð�þ1� i�;2�þ2;2i�Þ;

(78)

one has with

xð�; �Þ �
�
�þ 1

2

�
�þ 
���1ð�Þ � 
�ð�Þ; (79)

that

G�ð�Þ ¼ F���1ð�Þ � cosxð�;�ÞF�ð�Þ
sinxð�;�Þ ; (80)

a linear combination of F�ð�Þ and F���1ð�Þ. In other
words, Eq. (77) can be written as

�u ¼ dF�ð�; brÞ þ eF���1ð�; brÞ; (81)

where

� ¼ 1

2
ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ � �þ;

��� 1 ¼ 1

2
ð�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ � ��; (82)

10The reason that GL is used in place of F�L�1 for L integer is
that the latter is not linearly independent of FL in that case. It is
melded together with FL to produce GL by a limited process
analogous to how the Neumann function is obtained from the
Bessel functions. For � � integer, F� and F���1 are linearly
independent.
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corresponding to the separate 
 ¼ �1 sectors. As with the
solutions in Eq. (77), F�ð�; brÞ and F���1ð�; brÞ have
acceptable behaviors at the origin corresponding to
Eq. (34). Their respective long-distance behaviors are
given by

F�ð�; br ! 1Þ
! const� sinðbr� � log2brþ 
�þ � �þ�=2Þ;

F���1ð�; br ! 1Þ
! const� sinðbr� � log2brþ 
�� � ���=2Þ: (83)

Alternatively we can use the related G functions to deter-
mine the behaviors

G�ð�; br ! 1Þ ! const� cosðbr� � log2br

þ 
�þ � �þ�=2Þ;
G���1ð�; br ! 1Þ ! const� cosðbr� � log2br

þ 
�� � ���=2Þ: (84)

The respective total Coulomb phase shifts for Eq. (72) are
the phase shifts for the usual and peculiar solutions over
and above those due to any angular barrier part (absent
here). They are given by

��� ¼ 
�� � ���=2; 
�� ¼ argð�ð�� þ 1þ i�Þ;
(85)

in which

arg�ð�� þ 1þ i�Þ ¼ �c ð�� þ 1Þ þ X1
n¼0

�
�

�� þ 1þ n

� arctan

�
�

�� þ 1þ n

��
; (86)

with the digamma function given by

c ð�� þ 1Þ ¼ �	þ ��
ð2Þ � �2�
X1
n¼1

1

n2ðnþ ��Þ
: (87)

The (modified) Coulomb phase shift 
�� � ���=2 is

that for the Coulomb 2"wA plus �A2 term alone. [Again,
the � sign corresponds to the two sectors 
 ¼ �1, with
usual (þ ) and peculiar (� ) boundary conditions given in
Eq. (34).] Without the �A2 term the phase shift would be
simply 
0.

V. SOLUTIONS OF THE TWO-BODY DIRAC
EQUATIONS FOR THE 3P0 STATE

A. The 3P0 quasipotential

We now consider the case of the 3P0 state of a fermion-

antifermion pair with electric or color charges interacting
through an electromagnetic-type interaction arising from
the exchange of a single photon or gluon. As with the 1S0
state, the single photon annihilation diagram does not
contribute because the 3P0 state is a charge-parity-even

state. Then, the two terms in Eq. (25) that precede the
r2A term precisely cancel the barrier term 2=r2 at very
short distances to give the equation for the radial wave
function

�
� d2

dr2
þ 2

ðrþ2�=wÞ2�
2"w�

r
��2

r2
þ8��r�ðrÞ

wrþ2�

�
u¼b2u:

(88)

The cancelation of terms takes place in the following way.
In Eq. (25), the three terms beyond �A2 arise from a
combination of spin-orbit, spin-spin, tensor and spin-orbit
tensor interactions. From a detailed examination of
Eq. (B12) in the Appendix B, we can see that the spin-
orbit and tensor terms gives rise to the first ‘‘magnetic
interaction’’ term on the far right-hand side of Eq. (B12)
that has a strongly attractive�8�=wr3 attractive part down
to distances on the order of 2�=w after which this magnetic
interaction approaches �4=r2. The dominance of the at-
tractive magnetic interaction at short distances that can
overwhelm the centrifugal barrier is in agreement with
the simple intuitive classical picture presented in the
Introduction. The second term on the far right-hand side
of Eq. (B12), arising from a combination of Darwin, spin-
spin and tensor terms, has a stronger repulsive 8�2=w2r4

part down to distances on the order of 2�=w after which it
approaches þ2=r2. Together they tend to exactly cancel
the angular momentum barrier term þ2=r2 at very short
distances. In addition to the repulsive interaction contain-
ing �ðrÞ arising from the assumption that the electron and
positron are point particles, the quasipotential behaves as
��2=r2 at short distances, separated from the outside long-
distance region by a barrier. The interaction containing the
delta function comes from a combination of Darwin, spin-
spin, and tensor terms. Three-fourths of the repulsive term
containing �ðrÞ comes from the Darwin piece while one-
fourth from the combination of the spin-spin and tensor
parts. For brevity of nomenclature we shall just call it the
delta function term.
One of us (H. W. C) examined in a previous work [42]

the effects on bound state energies due to a repulsive �ðrÞ
interaction by itself, without additional radial dependence.
It was found that for wave functions c that do not vanish at
the origin and for potentials that are less singular than 1=r2,
the exact effects on the eigenvalue of including a repulsive
delta function do not agree with the results of perturbation
theory in the limit of weak coupling, when the delta
function potential is modeled as the limit of a sequence
of spherically symmetric square wells. In particular it is
shown that the repulsive delta function, viewed as the limit
of square well potentials, produces no effects at all on
bound state energies. In our case here the appearance of
the �ðrÞ potential differs from this reference in two aspects
however. First of all the �ðrÞ appears in conjunction with
r=ðwrþ 2�Þ, softening its repulsive effects. Secondly, the
wave function c ¼ u=r for the solution without the delta
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function term diverges at the origin both for what we call
the usual solution and what we call the peculiar solution. If
the null effects on bound state energies and phase shifts
seen in [42] should occur in our case as well, this, however,
does not lead to a problem with perturbative agreement
with the spectral results.

In the case of weak potentials where the denominator
(wrþ 2�) is replaced by wr, we have shown previously in
[16] that the remaining terms in Eq. (88) without the delta
function term, when treated nonperturbatively, would pro-
duce numerically the same spectral results for the 3P0 state

as the inclusion of the repulsive �ðrÞ interaction treated
perturbatively. The agreement of the perturbative treatment
with the delta function term for weak coupling with the
nonperturbative treatment containing no delta function
term justifies the first approximate analysis of ignoring
the delta function term and treating the remainder of the
equation nonperturbatively in the following subsection.

B. Usual and Peculiar Solutions for the 3P0 State

The wave Eq. (88) for the 3P0 state without the delta

function term becomes�
� d2

dr2
þ 2

ðrþ 2�=wÞ2 �
2"w�

r
� �2

r2

�
u ¼ b2u; (89)

with a short-distance (r 	 2�=w) form�
� d2

dr2
� �2

r2

�
u ¼ 0; (90)

the same as with the 1S0 states. Thus, the 3P0 states also

have the same types of solutions as the 1S0 states, with

radial wave functions near the origin as given in Eqs. (33)
and (34). Thus, there are usual 3P0 states with peculiarity 1,

and peculiar 3P0 states with peculiarity �1.
Note that both the usual and the peculiar solutions u�

�rð1�
ffiffiffiffiffiffiffiffiffiffi
1�4a2

p
Þ=2 arise from the strong magnetic interaction

that significantly modifies the qualitative behavior of the
interaction at short distances, when the total spin and the
orbital angular momentum are oppositely aligned in
the 3P0 state. If the strong magnetic interaction is absent,

the 2=ðrþ 2�=wÞ2 term in Eq. (88) would be 2=r2, and the
wave function near the origin would be

u� ¼ arð1�
ffiffiffiffiffiffiffiffiffiffiffiffi
32�4a2

p
Þ=2; (91)

with

c 2�d3r ¼ r½ð1�
ffiffiffiffiffiffiffiffiffiffiffiffi
32�4a2

p
Þ�drd�: (92)

In that case, as stated below Eq. (35), only the usual uþ
solution is quantum-mechanically admissible, while the
u� state becomes singular at short distances. Such a com-
parison shows that the peculiar solution u� is not present
when there is no strongly attractive magnetic interaction at
short distances or more generally for J � 0.

C. The � function term and the charge distribution

The discussions in the above subsection pertain to the
quasipotential without the delta function term. We now
examine the full Eq. (25) for both the usual and peculiar
solutions with the �ðrÞ term included. Consider first the
perturbative treatment of taking the interaction containing
�ðrÞ as a perturbation. We evaluate the expectation value of
the interaction term containing �ðrÞ. Even though both
usual and peculiar solutions have a diverging c�ðrÞ near
the origin they each are allowed as a probability amplitude
since the probability

R
�V jc�ðrÞj2d3r for an arbitrarily

small volume �V about the origin would be finite, in
addition to the essential boundary condition u�ð0Þ ¼ 0.
With jc�ðrÞj2 near the origin having the behavior of

rð�1�
ffiffiffiffiffiffiffiffiffiffi
1�4a2

p
Þ, the expectation value of �ðrÞ=ðw� 2AÞ, after

performing the angular integration, isZ
d3r

r�ðrÞ
wrþ 2�

jc�ðrÞj2 !
Z

d3rr�
ffiffiffiffiffiffiffiffiffiffi
1�4a2

p �ðrÞ
wrþ 2�

;

!
Z

drr�
ffiffiffiffiffiffiffiffiffiffi
1�4a2

p �ðrÞ
ðwrþ 2�Þ ;

(93)

which is zero for the plus sign for the usual solution but
diverges for the minus sign for the peculiar solution.
The results of Eq. (93) for the usual solution explains our

previous agreement between (i) the perturbative treatment
with the delta function term for weak coupling and (ii) the
nonperturbative treatment without the delta function term
[16]. The agreement arises because in Ref. [16] we limited
our attention only to the usual solution for which the
expectation value of the delta function term is zero.
The results of Eq. (93) for the peculiar solution indicates

that the delta function term cannot be treated as a pertur-
bation in the present formulation, as such a treatment will
lead to a diverging energy. The delta function term arises
from the charge distribution of the interacting particles, as
it is related to the Laplacian of the gauge field, r2A, as
given in Eq. (26). A proper nonperturbative treatment of
the problem of the peculiar solution states requires the
knowledge of the wave function at very short distances.
Therefore, it will require not only the knowledge of the
structure of the charge distribution but also the necessary
auxiliary interactions at even shorter distances that are
needed to bind the charge elements of the distribution
together. The auxiliary interactions will affect the solutions
of the two-body wave functions at very short distances and
the states of the peculiar solution. At the present moment,
we have little knowledge of the structure of elementary
charges, much less the auxiliary forces that would bind the
charge distribution together at very short distances.
The structure of the charge distribution of elementary

particles at very short distances is basically an experimental
question. As the strong magnetic interaction allows the two
interacting particles to probe the short-distance region, it is
therefore useful to investigate quantities that may reveal

MAGNETIC STATES AT SHORT DISTANCES PHYSICAL REVIEW D 85, 116005 (2012)

116005-13



information on the structure of the charge distribution. While
many possibilities can be opened for examination, we shall
examine the following possibilities in the present manuscript:

(i) We shall first examine the case in which the (un-
known) auxiliary interaction that binds the charge
elements of the elementary particles together and the
repulsive interaction arising from the charge density
�ðrÞ counteract in such a way that the total interac-
tion at short distances would still be dominated by
the ��2=r2 term. Under such a circumstance, the
effects of the auxiliary interaction would cause the
delta function term in Eq. (88) to make no contribu-
tion at short distances. Keeping the dominant terms,
the equation of motion for the wave function be-
comes Eq. (89) without the delta function term. It
also must be recognized that for the usual solution,
the perturbative effect of the delta function term
(in which we ignore the effect or the potential in
the denominator w� 2A) is accounted for by a non-
perturbative (numerical) treatment of the entire �
without the delta function term. So, our treatment of
the delta function term in this case parallels that used
in our earlier spectroscopy calculations [16].

(ii) We examine subsequently the case when the auxil-
iary interaction that holds the charge element to-
gether leaves the gauge field AðrÞ unchanged while
the delta function term in Eq. (88) is modified by
treating the delta function as the limit of a set of
Gaussian distributions with different widths.

(iii) We examine two additional models completely
within QED (or QCD) with an assumed basic
charge distribution that generates the gauge field
also in the region interior to the charge distribution.
However, the auxiliary interactions that hold the
charge together and that can interact with the other
antifermion are altogether neglected. It should be
recognized that within pure QED (or QCD), with
the neglect of the auxiliary interactions that hold
the charge elements together, the charge distribu-
tion cannot be a stable configuration.

In the next section we describe the method we use to
indicate the presence or absence of a resonance in the 3P0

system.

VI. PHASE-SHIFT ANALYSIS

In our study of the 3P0 state for both the usual and

peculiar solutions, we wish to find out whether or not there
is an energy that will lead to a�=2 phase shift for a given �
and constituent massm. Equation (28) for the 3P0 state is a

Schrödinger-like equation of the form�
� d2

dr2
þ LðLþ 1Þ

r2
þ�ðrÞ

�
uðrÞ ¼ b2uðrÞ: (94)

We calculate the phase shift for this problem by the
variable phase method of Calogero [19]. We first describe

this method generally (see Appendix D for a more detailed
review) and then later in this section describe its application
to the 3P0 state. We take WðrÞ to include not only the

quasipotential�ðrÞ but also the angular momentum barrier.

WðrÞ ¼ LðLþ 1Þ
r2

þ�ðrÞ: (95)

Thus our equation has the form�
� d2

dr2
þWðrÞ

�
uðrÞ ¼ b2uðrÞ: (96)

The Calogero method relies on introducing a reference po-
tential �WðrÞ that can be solved exactly, with two independent
solutions �u1 and �u2,�

� d2

dr2
þ �WðrÞ

�
�uiðrÞ ¼ b2 �uiðrÞ; i ¼ 1; 2: (97)

There are manyways to choose the reference potential �WðrÞ.
To display the general idea, we consider the case in which
WðrÞ is short-range. In that case the phase shift �L is defined
by

uðr ! 1Þ ! sinðbr� L�=2þ �LÞ: (98)

TheCalogeromethod uses two different types of �WðrÞ. In the
first, �WðrÞ � �WIðrÞ, the reference potential has the same
long- and short-distance behavior as WðrÞ. In the second
�WðrÞ � WIIðrÞ, the reference potential does not have the
same long- and short-distance behavior asWðrÞ but is espe-
cially simple.
We consider first Type I reference potential, �WIðrÞ ¼

LðLþ 1Þ=r2, the angular momentum barrier potential, for
which the reference wave functions �u1ðrÞ and �u2ðrÞ are the
well-known spherical Bessel functions |̂LðbrÞ and n̂LðbrÞ
[19]. The solution �u1ðrÞ is taken to be the regular solution,
having the same short-distance behavior as uðrÞ, in par-
ticular, �u1ðr ! 0Þ ¼ 0. The solution �u2ðrÞ is taken to be
the irregular solution, �u2ðr ! 0Þ � 0. Those functions
together with their long-distance behaviors are given by

�u1ðrÞ ¼ |̂LðbrÞ ! const sinðbr� L�=2Þ;
�u2ðrÞ ¼ �n̂LðbrÞ ! const cosðbr� L�=2Þ: (99)

We introduce the amplitude function �ðrÞ and phase-
shift function �LðrÞ to represent the wave function solu-
tions for the WðrÞ potential, uðrÞ and u0ðrÞ, as
uðrÞ ¼ �ðrÞðcos�LðrÞ �u1ðrÞ þ sin�LðrÞ �u2ðrÞÞ;
u0ðrÞ ¼ �ðrÞðcos�LðrÞ �u01ðrÞ þ sin�LðrÞ �u02ðrÞÞ: (100)

This leads to the following equation for the phase-shift
function (see Appendix D)

tan�LðrÞ ¼ �u01ðrÞuðrÞ � �u1ðrÞu0ðrÞ
ð �u2ðrÞu0ðrÞ � �u02ðrÞuðrÞÞ

: (101)

Further manipulations lead to the differential equation for
�LðrÞ given by
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�0
LðrÞ ¼ � ½WðrÞ � �WðrÞ�

b
½|̂LðbrÞ cos�LðrÞ

� n̂LðbrÞ sin�LðrÞ�2: (102)

To find the connection to the phase shift �L note that from
Eq. (100) and (99),

uðr ! 1Þ ¼ constfcos�Lðr ! 1Þ sinðbr� L�=2Þ
þ sin�Lðr ! 1Þ cosðbr� L�=2Þg

¼ const� sinðbr� L�=2þ �Lð1ÞÞ; (103)

and so comparison with (98) gives the solution of the phase
shift �L for the WðrÞ potential as

�L ¼ �Lð1Þ: (104)

Thus, the second-order linear different equation becomes a
first-order nonlinear equation whose solution at r ! 1
gives the phase shifts of the scattering problem with the
WðrÞ effective potential. The boundary condition of
�Lð0Þ ¼ 0 follows from Eq. (101) when one chooses
�u1ðrÞ to have the same behavior as uðrÞ as r ! 0.
We consider next type II of the short-range reference

potentials �WIIðrÞ which do not need to have the same long-
distance behavior as WðrÞ as long as the Schrödinger
Eq. (97) containing the reference potential �WIIðrÞ has an
exact solution. For example we may choose �WIIðrÞ ¼ 0.
Then the two exact reference solutions of Eq. (97) are simply

�u 1ðrÞ ¼ sinðbrÞ; �u2ðrÞ ¼ cosðbrÞ: (105)

One defines a phase-shift function 	LðrÞ as in Eq. (100) so
that

uðr ! 1Þ ¼ const� fcos	Lðr ! 1Þ sinðbrÞ
þ sin	Lðr ! 1Þ cosðbrÞg

¼ const� sinðbrþ 	Lð1ÞÞ: (106)

Comparison with (98) gives

�L ¼ 	Lð1Þ þ L�

2
: (107)

Since the angular momentum barrier is excluded from the
equations for �uiðrÞ one finds that the phase-shift equation for
integrating the phase-shift function 	LðrÞ includes the re-
pulsive barrier term inW [Eq. (95)],

	0
LðrÞ ¼ �WðrÞ

b
½cos	LðrÞ sinðbrÞ þ sin	LðrÞ cosðbrÞ�2

¼ �WðrÞ
b

sin2ðbrþ 	LðrÞÞ: (108)

Note that because of the LðLþ 1Þ=r2 behavior of WðrÞ �
�WIIðrÞðrÞ ¼ WðrÞ, which dominates at large distances, one
will have to integrate quite far to obtain convergence for
	LðrÞ.11 For this case of �WIIðrÞ ¼ 0, one has an equation

similar to (101) with �LðrÞ replaced by 	LðrÞ. Thus even
though �u1ðrÞ has a different behavior than uðrÞ, we still have
the boundary condition	Lð0Þ ¼ 0. Equation (107) compen-
sates for the�L�=2 effective phase shift due to the barrier
term in WðrÞ in Eq. (108). We also have the additional
boundary condition of (see Appendix E)

	0
Lð0Þ ¼ � bL

Lþ 1
: (109)

We now turn our attention to the 3P0 system, in particu-

lar, Eq. (28) for a general �ðrÞ. In this application of the
Calogero method we choose a reference potential �WðrÞ �
�WIIIðrÞ that in a sense is a hybrid of the two types of
reference potentials considered above. Since Eq. (28) con-
tains a long-range Coulomb interaction�2"w�=r we must
include that interaction into our choice for �WIIIðrÞ. If it did
not have the same behavior as WðrÞ at large distances we
would have to have a way of subtracting an infinite
Coulomb phase shift, log2br. So, in this way our applica-
tion is similar to the first type �WI (r)above. We also include
the ��2=r2 term in �WIIIðrÞ because as seen in Eqs. (89),
(90), and (34) the solution displays the desired short-
distance peculiar as well as usual behaviors. We do not
include the angular momentum barrier term 2=r2 however,
as this would prohibit a treatment of the peculiar solution
[see comments below Eq. (92)]. Thus we choose

�W IIIðrÞ ¼ � 2"w�

r
� �2

r2
; WðrÞ ¼ 2

r2
þ�ðrÞ;

(110)

where �ðrÞ is given in Eq. (29). In this way �WIIIðrÞ has
some similarities to the second type �WIIðrÞ discussed
above. Our choice for �WIIIðrÞ permits the two exact solu-
tions �u1ðrÞ, �u2ðrÞ of Eq. (97) which becomes that of the 1S0
state �

� d2

dr2
� 2"wðrÞ�

r
� �2

r2

�
�u ¼ b2 �u: (111)

Now to determine the phase shift for the actual 3P0 state we

return to the conditions defined in Eq. (110). Then the full
solution has the asymptotic form

uðr!1Þ! const� sinðbr�� log2brþ
1��=2þ�1Þ:
(112)

The appearance of 
1 and �1 includes the effects of the
angular momentum barrier term 2=r2 in the presence of the
Coulomb interaction. In Appendix E, using

�u 1ðrÞ ¼ F�ð�; brÞ; �u2ðrÞ ¼ G�ð�; brÞ; (113)

we show that the full 3P0 phase shift � is given by

� ¼ �1 þ 
1 ¼ 	�ð1Þ þ 
�� þ ð1� ��Þ�=2; (114)

where (in analogy to the proof of Eq. (108) with �W � 0)
	�ðrÞ satisfies the nonlinear equation

11Alternatively Calogero gives a formula for avoiding integrat-
ing to large distances to build up a centrifugal phase shift. (See
[19], p. 92).
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	0�ðrÞ¼�WðrÞ� �WIIIðrÞ
b

½cos	�ðrÞF�� þ sin	�ðrÞG���2;
(115)

subject to the boundary condition that 	�ð0Þ ¼ 0 (see
Appendix E). The functions F�� and G�� are the regular

and irregular Coulomb wave functions corresponding to
the negative effective centrifugal barrier ��2=r2. Again,
because of the 2=r2 behavior of WðrÞ � �WIIIðrÞ which
takes over at large distances, one will have to integrate
quite far to obtain convergence for 	�ðrÞ.

We consider numerical solutions for both the usual

solution with �þ ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ=2, and the peculiar

solution, with �� ¼ ð�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ=2. In the next sec-

tion we discuss the results obtained in the numerical
integration of the phase-shift Eq. (115) for different behav-
iors at very short distances.

VII. NUMERICAL RESULTS FOR 3P0
RESONANCES

A. The case without the delta function term

With the above general formalism, we can begin to
examine states in the quasipotential of Eq. (88) first with-
out the delta function term. The Schrödinger equation for
the 3P0 state becomes Eq. (89). In order to gain an idea on

the attractive magnetic interaction at short distances for
this 3P0 state, we plot in Fig. 2 the corresponding quasi-

potential including the angular momentum barrier,

WðrÞ ¼ 2

ðrþ 2�=wÞ2 �
2�w�

r
� �2

r2
;

forw ¼ 27:85 MeV,� ¼ 1=137 and a constituent electron
mass of 0.511 MeV. One observes that at short distances
WðrÞ becomes very attractive and behaves as ��2=r2.
There is a barrier in the region between 10�2 to

10�1 GeV�1. Such a potential becomes singular at r ! 0
when � exceeds 1=2 [1].
We calculate the phase shift as a function of energy

using the boundary condition 	�ð0Þ ¼ 0, including the
dependence of the potential as a function of energy. For
the usual solution (
 ¼ þ1), our results for the QED e�eþ
system in the 3P0 state with � ¼ 1=137 and m ¼
0:511 MeV show no evidence whatsoever for resonances
for all c.m. energies tested (from about 1 MeV to about
100 MeV). The magnitude of the phase shifts are of the
order of �=100.
For the peculiar solution (
 ¼ �1) with the wave func-

tions starting with a less positive slope, the attraction at
short distances is able to bend the wave function downward
to result in a very sharp resonance at about 27.85 MeV. In
Fig. 3(a) we plot the phase shift � ¼ �1 þ 
1 as a function
of the c.m. energy w and sin2� versus w in Fig. 3(b). We
start the integration at the origin and extend to about 1 Å.
As one observes, the phase shift undergoes a transition
from near zero to �. The resonance has a full width at half
maximum of 15 KeV. We also include a plot of the wave
function in Fig. 4 from the origin up to about 1000 GeV�1.

The wave function rises as rð1�
ffiffiffiffiffiffiffiffiffiffiffi
1�4�2

p
Þ=2 near the origin,

and appears nearly flat at r� 10�3 GeV�1, and it slowly
decreases near the barrier. It oscillates when it emerges
from the barrier at r� 2� 10�2 GeV�1.
Having observed a resonance for the QED interaction

with the eþ and e� constituents, we turn our attention to
quarks and antiquarks interacting with a color-coulomb
type interaction with an effective coupling constant �s.
We focus here only on the 
 ¼ �1 sector. In the color-
singlet ðq �qÞ states of interest, the effective interaction is
then�eff ¼ 4�s=3. To get an idea of the order of energy for
these quark-antiquark two-body resonance states, we cal-
culate the resonance energies for the typical case of �s ¼
0:11 For this value, the resonance energy varies nearly
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linearly with quark mass. The largest energy resonances
occur with the largest quark masses. In Table I we present
the resonance energies wR for the families of quarks from
the up quark to the top quark. It should be pointed out
that these resonance values take into account only the
Coulomb-like portion of AðrÞ ¼ �ð4=3Þ�s=r and ignores
any affects on the resonance values of the confining part of
the potential.

To examine how the resonance energies vary with the
coupling constant, we have found that for fixed mass (e.g.,
0.511 MeV) the resonance energy wR increases as the
coupling parameter decreases until the coupling constant
gets to be on the order of 0.01, when wR starts decreasing
again.

B. The case of representing the delta function by a
Gaussian function

For the second case for the 3P0 state given in Eqs. (88)

and (96) using (115), we take

WðrÞ ¼ 2

ðrþ 2�=wÞ2 �
2"w�

r
� �2

r2
þ 8��r�ðrÞ

ðwrþ 2�Þ ;
(116)

in which we model the three-dimensional delta function by

�ðrÞ ! �
ðrÞ ¼ expð�r2=2
2Þ
ð2�Þ3=2
3

: (117)

In this treatment, we keep the point charge source term
for the AðrÞ so that AðrÞ ¼ ��=r. What we are attempting
to do is just present a mathematical representation of the
delta function that will allow a numerical solution. The
reference potential �WIIIðrÞ is the same as without the delta
function. With this modeling of the delta function we start
off our Runge-Kutta integration of Eq. (115) with 	�ð0Þ ¼
0 since WðrÞ � �WIIIðrÞ is w22�2 at the origin just as
without the delta function term. The function �
 does
not alter the extreme short-distance behavior since it is
multiplied by r and vanishes at the origin. We obtain the
resonance energy results as given in Table II. It is obvious

that for small r0 we obtain a limiting behavior of w ¼
3:13 GeV-fm=

ffiffiffi
2

p

. There is however, a difference be-

tween what we are doing here and what was done in
[42]. There the delta function was just regarded as given,
not related to other parts of the potential. Here that is not
the case. The delta function arose from the Laplacian of
AðrÞ. There may therefore be some ambiguity of, in effect,
modeling r2A in one part of the quasipotential while
leaving AðrÞ unaffected in the other part. That leads us
then to the third case.

C. The case of representing the charge distribution
by a continuous function

In Eq. (25), if one replaces AðrÞ by

A ¼
�
�

r
� �

r0

�
1

1þ expfðr� r0Þ=�r0g �
�

r
; (118)

or alternatively as

AðrÞ ¼
8<
:

�r2

2r3
0

� 3�
2r0

for r 
 r0

� �
r for r � r0:

; (119)

then our numerical solutions show that there is no 3P0

resonance for the peculiar solution for both cases, resulting

TABLE I. Variation of the resonant energy as a function of the
quark mass for a fixed �s ¼ 0:11.

quark mass wR

up 3 MeV 27 MeV

down 5 MeV 45 MeV

strange 135 MeV 1220 MeV

charm 1.5 GeV 13.6 GeV

bottom 4.5 GeV 40.8 GeV

top 175 GeV 1590 GeV

TABLE II. Variation of resonance energy with the width of the
Gaussian distribution.ffiffiffi
2

p

 (fm) w (GeV)

1000 0.0279

100 0.0278

10 0.0279

1 0.0398

0.1 0.314

0.01 3.13

0.001 31.3

0.0001 313

0.00001 3130

0.000001 31300

0.0000001 313000
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FIG. 4. The wave function u of the peculiar resonance at w ¼
27:85 MeV for � ¼ 1=137 and m ¼ 0:511 MeV.
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in a phase shift of � all the way down to threshold
(w ¼ 2m). Both of these corresponds to smeared charge
distributions from r2A but neither have auxiliary interac-
tions at short distances that would bind the elements of the
charge distribution together. The reason no resonance is
produced in this case is that in the interior of the charge
distribution (r < r0), the angular momentum barrier in
Eq. (25) comes out from under the dominance of the
magnetic interaction terms as AðrÞ tends to a finite con-
stant. By following steps similar to those used to determine
	�ð0Þ in Appendix E for the point charge one can show this
results in an initial value for 	�ð0Þ defined by

tan	�ð0Þ ¼ tanxð�; �Þ: (120)

This is positive and even though small (� 0:007) is large
enough to prevent the formation of a resonance. Note that
this differs from the previous subsection in that here we are
giving a physical connectionr2A ¼ 4���ðrÞ between the
smeared delta function and the invariant potential AðrÞ,
whereas in the previous subsection we simply mathemati-
cally modeled the delta function in isolation.

VIII. DISCUSSION AND CONCLUSION

Magnetic interactions in the 1S0 and
3P0 states are very

attractive and singular at short distances. In the two-body
Dirac equation formulated in constraint dynamics, the
magnetic interactions lead to quasipotentials that behave
as ��2=r2 near the origin and admit two different types
of states. At short distances, the radial wave functions uðrÞ
of the usual states, grow as r�þ1, while the radial
wave functions of the peculiar states grow as r��, where

� ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ=2. They have drastically different

properties.
The existence of usual and peculiar states for the same

fermion-antifermion system poses conceptual and mathe-
matical problems. If we keep both sets of states in the same
Hilbert space, then each set is complete by itself, but the two
sets of states are not orthogonal to each other. Our system is
thus over-complete. Furthermore, the matrix element of H
(the scaled invariant mass operator for these states) between
states of one type and states of the other type are not
symmetric and the H operator is not self-adjoint.

Given our quasipotential of the type ��2=r2 at short
distances for the 1S0 and 3P0 states, both the usual and

peculiar states are physically admissible. There donot appear
to be compelling reasons to exclude one of the two sets as
being unphysical, if one is given the attractive interaction
��2=r2 near the origin as it is. It is desirable to find ways to
admit both types of states as physical states while maintain-
ing the self-adjoint property of the mass operator and the
completeness property of the set of basis states.

We are therefore motivated to introduce a quantum
number 
 , which we call peculiarity, to specify the usual
or peculiar properties of a state. The peculiarity quantum
number 
 is 1 for usual states which have properties the

same as those one usually encounters in QED and QCD.
The peculiarity quantum number is �1 for peculiar states
which intrude into the physical region, when the interac-
tion near the origin becomes very attractive, such as the
�ð�þ 1Þ=r2 interaction with �1=4 
 �ð�þ 1Þ< 0. The
introduction of the peculiarity quantum number enlarges
the Hilbert space, makes the mass operator self-adjoint,
and the enlarged physical basis states containing both usual
and peculiar states in a complete set. It is also clear from
our discussions that to maintain the self-adjoint property of
the mass operator and to have a single complete set, the
presence of the peculiarity quantum number will be a
general phenomenon, when the mass operator contains
very attractive interactions at short distances such that
there are more than one set of eigenstates satisfying the
boundary conditions at the origin.
It should be emphasized that the quasipotential ��2=r2

has been obtained under the assumption of a point fermion
and a point antifermion for which the gauge field potential
between them is AðrÞ ¼ ��=r. The point nature of
an electron may be a good experimental concept as the
lower limits on the QED cutoff parameter �cut with the
present day high-energy accelerators exceeds the value of
250 GeV, suggesting that the electron, muon, and tauon,
behave as point particles down to 10�3 fm [43]. The
asymptotic freedom is a good description for the interac-
tion of quarks at short distances. It may appear that point
charge particles may be a reasonable description. On the
other hand, a finite structure of the electron or quarks may
modify significantly the short-distance attractive interac-
tions so substantially that the peculiar states may be pushed
out of existence. The experimental search of the peculiar
states, which follows from the point charge potential, can
provide a probe of the point nature of these particles and
the interaction at short distances.
Our first focus on the attractive magnetic interaction is

for the 1S0 states, where the spins of the fermion and

antifermion of opposite electric or color charges are oppo-
sitely aligned. The usual bound 1S0 states possess attributes
the same as those one usually encounters in QED and
QCD, with bound state energies explicitly agreeing with
the standard perturbative results through order �4. In con-
trast, the peculiar bound 1S0 states, yet to be observed, not

only have different behaviors at the origin, but also dis-
tinctly different bound state properties (and scattering
phase shifts). For the peculiar 1S0 ground state of a

fermion-antifermion pair with fermion rest mass m,
the root-mean-square radius is approximately 1=m, bind-

ing energies approximately ð2� ffiffiffi
2

p Þm, and a rest mass

approximately
ffiffiffi
2

p
m. On the other hand, the ðnþ 1Þ1S0

peculiar state with principal quantum number (nþ 1) is
nearly degenerate in energy and approximately equal in
size with the n1S0 usual states.
Our second focus is for the 3P0 state where the total spin

and the orbital angular momentum are oppositely aligned.
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The magnetic interaction overwhelms the centrifugal
repulsion at short distances and the wave function admits

a peculiar solution that grows with radial distances as u�
rð1�

ffiffiffiffiffiffiffiffiffiffiffi
1�4�2

p
Þ=2. The particle charge density �ðrÞ and auxil-

iary interactions that bind the charge elements together can
be exposed for scrutiny. As the structures of elementary
particles are basically experimental questions, it is useful
to utilize the magnetic interaction to probe such charge
distributions at very short distances. While many possibil-
ities can be opened for examination, we have investigated
only a few possibilities in the present manuscript.

The 3P0 quasipotential contains a term proportional to

�ðrÞ. As the delta function term does not contribute to the
usual QED 3P0 bound state energies, it was plausible to

ignore it as one of our explored possibilities. In that case,
we find that there is a magnetic 3P0 resonance at

27.85 MeV for the peculiar solution of the ðeþe�Þ system.
For various ðq �qÞ systems of different flavors, we find
magnetic 3P0 resonances at energies of the peculiar solu-

tion ranging from many tens of MeV to thousands of GeV.
It is interesting to note that these 3Pþþ

0 resonances have the

same quantum number as the vacuum.
In another one of our explored possibilities, if we mathe-

matically model the delta function at short distances by a
sequence of Gaussians of different widths without chang-
ing the gauge field AðrÞ ¼ ��=r, then a completely differ-
ent behavior for the resonance energies ensues as they
occur at different energies, depending on the width of the
Gaussian. In the third of our explored possibilities, if we
replace the delta function by a charge distribution that also
alters the gauge field AðrÞ, we obtain no resonance at all.

Because of (1) the limited knowledge of the unknown
auxiliary interactions and charge distributions at very short
distances, not to mention possible alterations on the angu-
lar momentum barrier itself, and (2) the ambiguity of
treating the delta function in isolation nonperturbatively,
and (3) the fact that the delta function term does not
contribute to the 3P0 usual bound state solution, we specu-

late that the first case may provided a more reliable repre-
sentation of the physics. It furthermore makes a clear
prediction of a QED resonance in a region that has not
been investigated.

While we have studied the resonance 3P0 states, future

work calls for the investigation of possible 3P0 peculiar

bound states where the attractive interaction near the origin
may allow the formation of bound states. The presence of a
delta function repulsion at the origin will also lead to
difficulties and problems similar to the ones we encounter
here with the 3P0 peculiar resonances.

Fermion-antifermion states as we know them experi-
mentally belong to the usual states. Peculiar states have
not been observed. Can the peculiar states be observed?
How do the usual and peculiar states interplay between
them? Will there be transitions between the usual states
and peculiar states? Clearly, the stability of peculiar states

first and foremost depends on the strong attraction near the
origin, which in turn depends on the pointlike nature of the
elementary particles. As we discussed earlier, substantial
modification of the attractive interaction at the origin may
push the peculiar states out of existence. Only for inter-
actions with sufficient attraction at the origin can the
peculiar states be pulled into existence and appear as
eigenstates in the physically acceptable sheet, with nonsin-
gular radial wave functions at the origin. This is true for both
1S0 and

3P0 states. From such a perspective, we expect that

interactions at short distances have important bearings on the
existence or nonexistence of the peculiar states, and presum-
ably also on the transition between the usual and peculiar
states. However, the interactions at short distances that may
allow the peculiar states to be stable and may effect transi-
tions between states with different peculiarity quantum num-
bers (flipping the peculiarity spinor) are not yet known. They
can only be obtained by careful experimental investigations.
The first task of such investigations should be to locate these
peculiar states in high-energy experiments where interac-
tions at short distance may be involved and these strong
interactions at short distances may lead us to probe short-
distance transition from the usual to the peculiar states. These
new 1S0 peculiar bound states correspond to a very tightly

bound state and a set of (nþ 1)th excited states nearly
degenerate with the nth usual states. It will also be of interest
to search for these states as a result of some tunneling process
between the usual and peculiar states, relying on the small
probability of the usual states to explore short-distance re-
gions where the interaction at short distances may induce a
transition from a usual state to a peculiar state. The fact that
peculiar states of (nþ 1)th 1S0 state is nearly degenerate

with the usual nth 1S0 state may facilitate such a tunneling

transition. Whether or not these quantum-mechanically ac-
ceptable resonances correspond to physical states remains to
be further investigated. Future experimental as well as theo-
retical work on this interesting topic will be of great interest
in shedding light on the question whether magnetic bound
states and resonances play any role in the states of fermion-
antifermion systems.
Future work should include the effects of the weak

interactions, in particular, the exchange of the Z0 boson.
Since the mass of the Z0 is about 91.2 GeV the range is on
the order of 10�2 GeV�1. The exchange of this particle
corresponds to not only a vector interaction but also a
pseudovector interaction. The coupling corresponding to
the vector portion is [44]

e� � þ g2 � g02

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p þ g0

2
;

g ¼ � e

sin�
; g0 ¼ � e

cos�
; (121)

and so
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e� ¼ e

� 1
sin2�

� 1
cos2�

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sin2�
þ 1

cos2�

q � 1

2 cos�

�
¼ e

�
cos2�
2 sin2� � 1

2 cos�

�
:

(122)

With sin2�� 0:23 we find that

e� � �0:25e (123)

so, its coupling appears with the same sign as that of the
photon. Since �� ¼ e�2 � 0:063 Its effect should be small
but not negligible. There is also the question of the effects
of the pseudovector interaction, not discussed in this
appendix but in [45,46].

Finally, there are however important mathematical and
conceptual issues associated with these two-body fermion-
antifermion system at short distances that require future
careful considerations. In standard QED theory, the charge
and mass of a single charged object due to vacuum polar-
ization and self energy corrections need to be renormalized
and regularized to render them finite for comparison with
observables. For the case with two-body magnetic bound
and resonance states, for example, how are the two-body
Green’s functions regularized, with internal lines off mass
shell in a way that reflects the Dirac constraints? How do
such regularizations modify the short-distance two-body
interaction? Can the regularization affects the magnetic
interaction at short distances so substantially that the pecu-
liar states no longer survive to intrude into the physical
states? Are these peculiar states stable against fluctuation
of the vacuum in quantum field theory? These are some of
the many interesting questions associated with the two-
body problem raised by the possibility of magnetic states
under consideration.

APPENDIX A: DETAILS OF THE EQUIVALENT
RELATIVISTIC SCHRÖDINGER EQUATION

1. Connections between TBDE and the equivalent
relativistic Schrödinger equation [Eq. (17)]

Here we present an outline of some details of Eq. (14)
and its Pauli-Schrödinger reduction given in full elsewhere
(see [25,29,45,46]). This appendix and the one following it
are specializations of Appendixes A and B given in [14].
Each of the two Dirac equations in (14) has a form similar
to a single particle Dirac equation in an external
four-vector and scalar potential but here acting on
16-component wave function � which is the product of
an external part being a plane wave eigenstate of P multi-
plying the internal wave function c

c ¼

c 1

c 2

c 3

c 4

2
666664

3
777775: (A1)

The four c i are each four-component spinor wave func-
tions. To obtain the actual general spin-dependent forms of

those ~A�
i potentials (including scalar interactions in gen-

eral) which were required by the compatibility condition
½S1;S2�c ¼ 0 was a most perplexing problem, involving
the discovery of underlying supersymmetries in the case of
scalar and timelike vector interactions [11,25]. Extending
those external potential forms to more general covariant
interactions necessitated an entirely different approach
leading to what is called the hyperbolic form of the
TBDE. Their most general form for compatible TBDE is

S1c ¼ ðcoshð�ÞS1 þ sinhð�ÞS2Þc ¼ 0;

S2c ¼ ðcoshð�ÞS2 þ sinhð�ÞS1Þc ¼ 0; (A2)

where � represents any invariant interaction singly or in
combination. It has a matrix structure in addition to coor-
dinate dependence. Depending on that matrix structure we
have either covariant vector, scalar or more general cova-
riant tensor interactions [45]. The operators S1 and S2 are
auxiliary constraints satisfying

S1c � ðS10 coshð�Þ þ S20 sinhð�ÞÞc ¼ 0;

S2c � ðS20 coshð�Þ þ S10 sinhð�ÞÞc ¼ 0; (A3)

in which the Si0 are the free Dirac operators

S i0 ¼ iffiffiffi
2

p 	5ið	i � pi þmiÞ: (A4)

This, in turn leads to the two compatibility conditions
[12,20,45]

½S1;S2�c ¼ 0; (A5)

and

½S1;S2�c ¼ 0; (A6)

provided that �ðxÞ ¼ �ðx?Þ. These compatibility condi-
tions do not restrict the gamma matrix structure of �. That
matrix structure is determined by the type of vertex-vertex
structure we wish to incorporate in the interaction. The
three types of invariant interactions � that was used in the
relativistic quark model based on this approach (as most
recently discussed in [14,15]) are

�Lðx?Þ ¼ �1112
Lðx?Þ

2
O1;

O1 ¼ �	51	52; scalar;

�J ðx?Þ ¼ �1�2

J ðx?Þ
2

O1; time-like vector;

�Gðx?Þ ¼ 	1? � 	2?
Gðx?Þ

2
O1; space-like vector;

(A7)

where

	5i ¼ 	0
i 	

1
i 	

2
i 	

3
i ; �i ¼ �	i � P̂: (A8)

For general independent scalar, timelike vector, and space-
like vector interactions we have

�ðx?Þ ¼ �L þ �J þ�G: (A9)
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The special case of an electromagnetic-like interaction (in
the Feynman gauge) applied in this paper and in [16]
corresponds to J ¼ �G or

�J þ �G � �EM

¼ ð�	1 � P̂	2 � P̂þ 	1? � 	2?ÞGðx?Þ
2

O1

¼ 	1 � 	2

Gðx?Þ
2

O1: (A10)

and for scalar and electromagnetic interaction,

�ðx?Þ ¼ �L þ �EM: (A11)

This leads to12 [45,46]

S1c ¼
�
�G�1�1 � P 2 þ E1�1	51 þM1	51

�G
i

2
�2 � @ðL�2 � J�1Þ	51	52

�
c ¼ 0;

S2c ¼
�
G�2�2 � P 1 þ E2�2	52 þM2	52

þG
i

2
�1 � @ðL�1 � J�2Þ	51	52

�
c ¼ 0; (A12)

in which @� ¼ @=@x�. With

G ¼ expG; P i � p? � i

2
�i � @G�i: (A13)

The connections between what we call the vertex invariants
L, J , G and the mass and energy potentials Mi, Ei are

M1 ¼ m1 coshLþm2 sinhL;

M2 ¼ m2 coshLþm1 sinhL;

E1 ¼ "1 coshJ þ "2 sinhJ ;

E2 ¼ "2 coshJ þ "1 sinhJ : (A14)

Equation (A12) depends on standard Pauli-Dirac represen-
tation of gamma matrices in block forms (see Eq. (2.28) in
[13] for their explicit forms) and where13

�i ¼ 	5i�i	?i: (A15)

2. Vector potentials ~A
�
i in terms of the invariant AðrÞ

Comparing Eq. (A12) with Eq. (14) we find that the
spin-dependent electromagnetic-like vector interactions of
Eq. (14) are [16,25]

~A
�
1 ¼ ðð"1 � E1ÞÞP̂� þ ð1�GÞp�

? � i

2
@G � 	2	

�
2 ;

A�
2 ¼ ðð"2 � E2ÞÞP̂� � ð1�GÞp�

? þ i

2
@G � 	1	

�
1 ;

(A16)

Note that the first portion of the vector potentials is timelike

(parallel to P̂�) while the next two portions are spacelike

(transverse to P̂�). The spin-dependent scalar potentials ~Si
are

~S1 ¼ M1 �m1 � i

2
G	2 � @L;

~S2 ¼ M2 �m2 þ i

2
G	1 � @L: (A17)

We have chosen a parametrization for the vertex invar-
iants L, J ¼ �G that takes advantage of the Todorov
effective external potential forms and at the same time
will display the correct static limit form for the Pauli
reduction. The logic of the choice for these parametriza-
tions is strengthened by the fact that for classical [26] or
quantum field theories [23] for separate scalar and timelike
vector interactions one can show that the spin-independent
part of the quasipotential � involves the difference of
squares of the invariant mass and energy potentials

M2
i ¼ m2

i þ 2mwSþ S2; E2
i ¼ "2i � 2"wAþ A2;

(A18)

so that

M2
i � E2

i ¼ 2mwSþ S2 þ 2"wA� A2 � b2ðwÞ: (A19)

Equations (14) and (12) involve combined scalar and
electromagnetic-like vector interactions (without the sepa-
rate timelike interactions this amounts to working in the
Feynman gauge with the simplest relation between space-
and timelike parts, see Eqs. (A10) and (A11), and [13,47]).
In that case the mass and energy potentials in place of
Eq. (A18) are respectively

M2
i ¼ m2

i þ expð2GÞð2mwSþ S2Þ;
E2
i ¼ expð2GðAÞÞðð"i � AÞ2Þ;

M2
i � E2

i ¼ expð2GðAÞÞ½2mwSþ S2 þ 2"wA

� A2 � b2ðw� (A20)

so that from Eq. (A14)

12In short, one inserts Eqs. (A3) into (A2) and brings the free
Dirac operator (A4) to the right of the matrix hyperbolic func-
tions. Using commutators and cosh2�� sinh2� ¼ 1 one arrives
at Eq. (A12). The structure of these equations is very much the
same as that of a Dirac equation for each of the two particles,
with Mi and Ei playing the roles that mþ S and "� A do in the
single-particle Dirac equation. Over and above the usual kinetic
part, the spin-dependent modifications involving GP i and the
last set of derivative terms are two-body recoil effects essential
for the compatibility (consistency) of the two equations.
13Just as x� is a four-vector, so is P�. Thus, the timelike and
spacelike interactions in Eq. (A7) become 	0

1	
0
2 and �1 � �2 only

in the c.m. system due to the fact that from Eq. (A8), �i ¼ 	0
i

only in the c.m. frame. Likewise, �
�
i ¼ ð0;�Þ only in the c.m.

frame just as is x
�
? ¼ ð0; rÞ in that frame only.
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expðLÞ ¼ expðLðS; AÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ expð2GÞð2mwSþ S2Þ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ expð2GÞð2mwSþ S2Þ
q

m1 þm2

; expðJ Þ ¼ expð�GÞ
(A21)

with

expð2GðAÞÞ ¼ 1

ð1� 2A=wÞ � G2; (A22)

or

� G ¼ 1

2
logð1� 2A=wÞ ¼ log

E1 þ E2

w
; (A23)

and the spin-independent minimal coupling appears like

�SI ¼ 2mwSþ S2 þ 2"wA� A2: (A24)

3. Interaction terms in the equivalent relativistic
Schrödinger equation [Eq. (17)]

The Klein-Gordon like potential energy terms appearing
in the Pauli form (17) arise from (see Eq. (A20))

M2
i � E2

i ¼ expð2GÞ½2mwSþ S2 þ 2"wA� A2 � b2ðwÞ�:
(A25)

To obtain the simple Pauli form of Eq. (16) and the sub-
sequent detailed form in Eq. (17) involves steps similar to
those used in the Pauli reduction of the single particle
Dirac equation [15] but with the combinations �� ¼
c 1 � c 4 and �� ¼ c 2 � c 3 instead of the upper and
lower components of the single particle wave function.
This reduces the Pauli forms to four uncoupled four-

component relativistic Schrödinger equations

[13,29,30,46]. We work in the c.m. frame in which P̂ ¼
ð1; 0Þ and r̂ ¼ ð0; r̂Þ. We also define four-component wave
functions c�, �� by [29]

�� ¼ expðF þK�1 � r̂�2 � r̂Þc�

¼ ðexpF ÞðcoshKþ �1 � r̂�2 � r̂ sinhKÞc�;

�� ¼ expðF þK�1 � r̂�2 � r̂Þ��

¼ ðexpF ÞðcoshKþ �1 � r̂�2 � r̂ sinhKÞ��;
(A26)

in which

F ¼ 1

2
log

D
"2m1 þ "1m2

� G;

D ¼ E2M1 þ E1M2; K ¼ ðLþGÞ
2

: (A27)

The substitution (A26) has the convenient property that in
the resultant bound state equation, the coefficients of the
first-order relative momentum terms vanish.
Using the results in [15,29] we obtain for the general

case of unequal masses the relativistic Schrödinger
Eq. (17) that is a detailed c.m. form of Eq. (16). In that
equations we have introduced the abbreviations14

�D ¼ � 2ðF 0 þ 1=rÞðcosh2K� 1Þ
r

þF 02 þK02 þ 2K0 sinh2K
r

� r2F þmðrÞ;

2�SO ¼ �F 0

r
� ðF 0 þ 1=rÞðcosh2K� 1Þ

r
þK0 sinh2K

r
;

�SOD ¼ ðl0 cosh2K� q0 sinh2KÞ;
�SOX ¼ ðq0 cosh2Kþ l0 sinh2KÞ;

�SS ¼ �ðrÞ þ 2K0 sinh2K
3r

� 2ðF 0 þ 1=rÞðcosh2K� 1Þ
3r

þ 2F 0K0

3
� r2K

3
;

�T ¼ 1

3

�
nðrÞ þ ð3F 0 �K0 þ 3=rÞ sinh2K

r
þ ðF 0 � 3K0 þ 1=rÞðcosh2K� 1Þ

r
þ 2F 0K0 � r2K

�
;

�SOT ¼ �K0 cosh2K� 1

r
�K0

r
þ ðF 0 þ 1=rÞ sinh2K

r
; (A28)

where

14Minor misprints of the equations below have appeared in appendices in [14,15]. The ones presented here are corrected.
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nðrÞ ¼ r2K� 1

2
r2G þ 3ðG � 2KÞ0

2r
þF 0G0 � 2F 0K0;

�ðrÞ ¼ 1

3
r2ðG þKÞ � 1

2
G02 � 2F 0ðG þKÞ0

3
;

mðrÞ ¼ � 1

2
r2G þ 3

4
G02 �K02 þ G0F 0;

l0 ¼ � ðL�GÞ0
2r

E2M2 � E1M1

E2M1 þ E1M2

;

q0 ¼ ðL� GÞ0
2r

E1M2 � E2M1

E2M1 þ E1M2

: (A29)

[The prime symbol stands ford=dr, and the explicit forms of
the derivatives are given in Eq. (A30)]. For L ¼ J states, the
hyperbolic terms cancel and the spin-orbit difference terms in
general produce spin mixing except for equal masses or J ¼
0. For ease of usewe have listed below the explicit forms that
appear in the above�s in Eqs. (A28) and (A29) in terms of
the general invariant potentials AðrÞ and SðrÞ. The radial
components of Eq. (17) are given in Appendix B.

4. Explicit expressions for terms in the relativistic
Schrödinger Eq. (17) from AðrÞ and SðrÞ

Given the functions AðrÞ and SðrÞ for the interaction,
users of the relativistic Schrödinger Eq. (17) will find it
convenient to have an explicit expression in an order that

would be useful for programing the terms in the associated
Eq. (A28). We use the definitions above given in
Eqs. (A20)–(A22) and (A27). In order that the terms
in Eq. (A28) be reduced to expressions involving just
AðrÞ, and SðrÞ and their derivatives, we list the following
formulas

F 0 ¼ ðL0 �G0ÞðE2M2 þ E1M1Þ
2ðE2M1 þ E1M2Þ � G0;

G0 ¼ A0

w� 2A
; L0 ¼ M0

1

M2

¼ M0
2

M1

¼ w

M1M2

�
S0ðmw þ SÞ
w� 2A

þ ð2mwSþ S2ÞA0

ðw� 2AÞ2
�
;

K0 ¼ ðL0 þG0Þ
2

: (A30)

Also needed are

cosh2K¼ 1

2

�ð"1þ"2ÞðM1þM2Þ
ðm1þm2ÞðE1þE2Þþ

ðm1þm2ÞðE1þE2Þ
ð"1þ"2ÞðM1þM2Þ

�
;

sinh2K¼ 1

2

�ð"1þ"2ÞðM1þM2Þ
ðm1þm2ÞðE1þE2Þ�

ðm1þm2ÞðE1þE2Þ
ð"1þ"2ÞðM1þM2Þ

�
;

(A31)

and

r2F ¼ ðr2L� r2GÞðE2M2 þ E1M1Þ
2ðE2M1 þ E1M2Þ � ðL0 � G0Þ2 ðm2

1 �m2
2Þ2

2ðE2M1 þ E1M2Þ2
� r2G;

r2L ¼ �L02ðM2
1 þM2

2Þ
M1M2

þ w

M1M2

�r2Sðmw þ SÞ þ S02

w� 2A
þ 4S0ðmw þ SÞA0 þ ð2mwSþ S2Þr2A

ðw� 2AÞ2 þ 4ð2mwSþ S2ÞA02

ðw� 2AÞ3
�
;

r2G ¼ r2A

w� 2A
þ 2G02: (A32)

The expressions for �ðrÞ,mðrÞ, and nðrÞ that appear in Eqs. (A28)) are given in Eqs. (A29). They can be evaluated using the
above expressions plus

r 2K ¼ r2Lþ r2G
2

: (A33)

The only remaining parts of Eq. (A28) that need expressing are those for l0 and q0. Using Eq. (A27) they can be obtained in
terms of the above formulas.

APPENDIX B: RADIAL EQUATIONS

The following are radial eigenvalue equations [15,29] corresponding to Eq. (17). For a general singlet 1JJ wave function
uLSJ ¼ uJ0J � u0 coupled to a general triplet 3JJ wave function uJ1J � u1, the wave equation

�
� d2

dr2
þ JðJ þ 1Þ

r2
þ 2mwSþ S2 þ 2"wA� A2 þ�D � 3�SS

�
u0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ

p
ð�SOD ��SOXÞu1 ¼ b2u0; (B1)

is coupled to

�
� d2

dr2
þ JðJ þ 1Þ

r2
þ 2mwSþ S2 þ 2"wA� A2 þ�D � 2�SO þ�SS þ 2�T � 2�SOT

�
u1

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ

p
ð�SOD þ�SOXÞu0 ¼ b2u1: (B2)
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For a general S ¼ 1, J ¼ Lþ 1 wave function uJ�11J � uþ coupled to a general S ¼ 1, J ¼ L� 1 wave function
uJþ11J � u� the equation

�
� d2

dr2
þ JðJ � 1Þ

r2
þ 2mwSþ S2 þ 2"wA� A2 þ�D þ 2ðJ � 1Þ�SO þ�SS þ 2ðJ � 1Þ

2J þ 1
ð�SOT ��TÞ

�
uþ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp
2J þ 1

f3�T � 2ðJ þ 2Þ�SOTgu� ¼ b2uþ (B3)

is coupled to

�
� d2

dr2
þ ðJ þ 1ÞðJ þ 2Þ

r2
þ 2mwSþ S2 þ 2"wA� A2 þ�D � 2ðJ þ 2Þ�SO þ�SS þ 2ðJ þ 2Þ

2J þ 1
ð�SOT ��TÞ

�
u�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp
2J þ 1

f3�T þ 2ðJ � 1Þ�SOTguþ ¼ b2u�: (B4)

For the uncoupled 3P0 states the single equation is�
� d2

dr2
þ 2

r2
þ 2mwSþ S2 þ 2"wA� A2 þ�D � 4�SO

þ�SS þ 4ð�SOT ��TÞ
�
u� ¼ b2u�: (B5)

1. Specialization to vector interactions,
equal masses and J ¼ 0

In this case we need only consider the 1S0 and
3P0 states.

The corresponding equations are�
� d2

dr2
þ 2"wA� A2 þ�D � 3�SS

�
u0 ¼ b2u0 (B6)

and�
� d2

dr2
þ 2

r2
þ 2"wA� A2 þ�D � 4�SO þ�SS

þ 4ð�SOT ��TÞ
�
u� ¼ b2u�:

(B7)

We consider the explicit forms for the quasipotentials
given above that appear in these equations for the case of
vector interactions only, for J ¼ 0 and equal masses. In

that case we have

F 0 ¼ � 3G0

2
; G0 ¼ A0

w� 2A
; L0 ¼ 0;

J 0 ¼ �G0 ¼ � A0

w� 2A
; K0 ¼ ðL0 � J 0Þ

2
¼ G0

2
:

(B8)

Also needed are

cosh2K ¼ coshG ¼ 1

2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2A=w
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2A=w

p �
;

sinh2K ¼ � sinhG ¼ � 1

2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2A=w
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2A=w
p �

;

(B9)

and

r 2F ¼ � 3

2
r2G; r2L ¼ 0;

r2J ¼ �r2G ¼ � r2A

w� 2A
� 2G02:

(B10)

In that case we have that the combination for the 1S0
equation is

�D � 3�SS ¼ � 2ðF 0 þ 1=rÞðcosh2K� 1Þ
r

þF 02 þK02 þ 2K0 sinh2K
r

� r2F þmðrÞ � 3�ðrÞ � 2K0 sinh2K
r

þ 2ðF 0 þ 1=rÞðcosh2K� 1Þ
r

� 2F 0K0 þ r2K

¼ r2

�
�F þK�G

2
� G �K

�
þF 02 þ 9

4
G02 þ 3F 0G0 ¼ 0; (B11)

while the combination that appears in the 3P0 equation is
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�D � 4�SO þ�SS þ 4ð�SOT ��TÞ ¼ � 2ðF 0 þ 1=rÞðcosh2K� 1Þ
r

þF 02 þK02 þ 2K0 sinh2K
r

� r2F þmðrÞ

þ 4F 0

r
þ 4ðF 0 þ 1=rÞðcosh2K� 1Þ

r
� 4K0 sinh2K

r
þ �ðrÞ þ 2K0 sinh2K

3r

� 2ðF 0 þ 1=rÞðcosh2K� 1Þ
3r

þ 2F 0K0

3
� r2K

3
� 4K0 cosh2K� 1

r
� 4K0

r

þ 4ðF 0 þ 1=rÞ sinh2K
r

� 4

3

�
nðrÞ þ ð3F 0 �K0 þ 3=rÞ sinh2K

r

þ ðF 0 � 3K0 þ 1=rÞðcosh2K� 1Þ
r

þ 2F 0K0 � r2K
�

¼ � 8A0

rðw� 2AÞ þ 8

�
A0

w� 2A

�
2 þ 2r2A

w� 2A
: (B12)

Thus we have the two J ¼ 0 single-component equa-
tions reducing to�

� d2

dr2
þ 2"wA� A2

�
u0 ¼ b2u0; (B13)

and�
� d2

dr2
þ 2

r2
þ 2"wA� A2 � 8A0

rðw� 2AÞ þ 8

�
A0

w� 2A

�
2

þ 2r2A

w� 2A

�
¼ b2u�: (B14)

We consider the case in which

A ¼ ��

r
; A0 ¼ �

r2
; r2A ¼ 4��ðrÞ: (B15)

In that case

� 8A0

rðw� 2AÞ ¼ � 8�

r2ðwrþ 2�Þ !r!0
� 4

r2
;þ8

�
A0

w� 2A

�
2

¼ 8

r2

�
�

wrþ 2�

�
2 !
r!0

þ 2

r2
: (B16)

This displays explicitly how the spin-orbit and other effects
completely overwhelm the angular momentum barrier
leaving a nonsingular potential at the origin. In particular,
combining with 2=r2 we obtain

2

r2
� 8A0

rðw� 2AÞ þ 8

�
A0

w� 2A

�
2 ¼ 2

ðrþ 2�=wÞ2 : (B17)

From this we obtain Eq. (88).

2. Specialization to vector interactions, equal masses,
and J ¼ L > 0

In this case we need only consider the 1JJ and
3JJ states.

The corresponding equations are�
� d2

dr2
þ JðJþ 1Þ

r2
þ 2"wA�A2þ�D� 3�SS

�
u0 ¼ b2u0

(B18)

and�
� d2

dr2
þ JðJ þ 1Þ

r2
þ 2"wA� A2 þ�D � 2�SO þ�SS

þ 2�T � 2�SOT

�
u1 ¼ b2u1: (B19)

The first equation simplifies as before �D ¼ 3�SS while
for the second equation we have

�D � 2�SO þ�SS þ 2�T � 2�SOT

¼ 2G0

r
þr2G �G02

¼ � 2

r

A0

w� 2A
þ 3

�
A0

w� 2A

�
2 þ r2A

w� 2A
: (B20)

Hence, our two J ¼ 1 uncoupled equations become�
� d2

dr2
þ 2

r2
þ 2"wA� A2

�
u0 ¼ b2u0 (B21)

and�
� d2

dr2
þ 2

r2
þ 2"wA� A2 � 1

r

A0

w� 2A
þ 3

2

�
A0

w� 2A

�
2

þ 1

2

r2A

w� 2A

�
u1 ¼ b2u1: (B22)

APPENDIX C: SOLUTIONS OF EQ. (31) FOR
USUAL AND PECULIAR 1S0 BOUND STATES

Let us use the Coulomb variable r ¼ x="w� so that our
1S0 Eq. (31) becomes

Hu �
�
� d2

dx2
� 2

x
� �2

x2

�
u ¼ ð"2w �m2

wÞ
"2w�

2
u � ��2u;

u ¼ x�þ1vðxÞ expð��xÞ; (C1)

in which the two solutions for � are
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�þ ¼ 1

2
ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ;

�� ¼ 1

2
ð�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ:

(C2)

corresponding to the usual and peculiar solutions, respec-
tively. Then our equation becomes

� v00 þ 2v0�� 2ð�þ 1Þv0

x
þ 2�ð�þ 1Þv

x
� 2

x
v ¼ 0:

(C3)

Let

v ¼ X1
nr¼0

vnrx
nr (C4)

and we obtain

vnrþ1 ¼ ð2�nr � 2þ 2�ð�þ 1ÞÞ
ðnr þ 1Þðnr þ 2ð�þ 1ÞÞ vnr : (C5)

For bound states we have

� ¼ 1

nr þ �þ 1
; nr ¼ 0; 1; 2; . . . (C6)

We let

n0 ¼ nr þ �þ 1: (C7)

If � were an integer then this would be the principal
quantum number n. We write�

� d2

dx2
� 2

x
� �2

x2
þ �2

�
u ¼ 0 (C8)

as �
d2

dy2
þ 1

y�
þ �2

y2
� 1

4

�
u ¼ 0; (C9)

where x ¼ y=ð2�Þ, so that [48]

uðyÞ ¼ expð�y=2Þy�þ1L2�þ1
nr ðyÞ: (C10)

Let

r ¼ x

"w�
¼ y

2�"w�
(C11)

and so our radial wave function is

uðrÞ ¼ k exp

�
�"w�r

n0

��
2"w�r

n0

�
�þ1

L2�þ1
nr

�
2"w�r

n0

�
:

(C12)

The corresponding hydrogenic radial wave function is

uðrÞ ¼ k exp

�
� r

na0

��
2

na0

�
Lþ1

L2Lþ1
nr

�
2r

na0

�
: (C13)

Using the result [48] for the hydrogenic wave function

hr2i ¼ a20n
2

6
½n2 � 5LðLþ 1Þ þ 3� (C14)

and identifying LðLþ 1Þ ! ��2, n ! n0, a0 ! 1=ð"w�Þ
we see that for our states

hr2i ¼ n02

6ð"w�Þ2
½n02 þ 5�2 þ 3�: (C15)

Our total c.m. energy eigenvalues come from

ð"2w �m2
wÞ

"2w�
2

¼ ��2 ¼ � 1

n02

"2w

�
1þ �2

n02

�
¼ m2

w; "w ¼ � mwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �2

n02Þ
q :

n0 ¼ nr þ �þ 1; nr ¼ 0; 1; . . . (C16)

In the static limit case for which m2 � m1 we use w ¼
m2 þ " in which " 	 m2 includes the rest mass and
binding energy of particle 1. Then

mw ¼ m1m2

m2 þ "
! m1;

"w ¼ m2
2 þ 2"m2 þ "2 �m2

1 �m2
2

2m1m2

! 2"m2 þ "2 �m2
1

2m1m2

! ": (C17)

In that case the above solution would be for the binding
energy

" ¼ � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �2

n02Þ
q : (C18)

Sincewe do not include negative energies we dispense with
the lower sign.
Let us solve for the total c.m. energy in the case of equal

masses m1 ¼ m2 � m,

"w
mw

¼ w2 � 2m2

2m2
¼ fð�Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ �2

n02Þ
q ;

w2 ¼ 2m2ð1þ fð�ÞÞ: (C19)

Thus the solutions are

w� ¼ ffiffiffi
2

p
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ �2

ðnrþ��þ1Þ2Þ
q

vuuut : (C20)

Since L ¼ 0 we take our principal quantum number to
be n ¼ nr þ 1. This leads to the results in the text for the
spectrum. The value of hr2i for the peculiar ground state is
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hr2i� ¼ n02

6ð"w�Þ2
½n02 þ 5�2 þ 3�

¼ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ2

8ð"w�Þ2
�
1

4
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

p
Þ2 þ 5�2 þ 3

�

! �2

2"2w
! �2

2ðm�=
ffiffiffi
2

p Þ2 ¼
1

m2
(C21)

so that
ffiffiffiffiffiffiffiffiffiffiffihr2i�

p
is the electron Compton radius. For all of the

usual states and the remaining peculiar states they have the
following forms

hr2iþ ¼ n02þ
6ð"wþ�Þ2

½n02þþ5�2þ3�

¼ ðnþ�þÞ2
6ð"wþ�Þ2

½ðnþ�þÞ2þ5�2þ3�; n¼ 1;2;3. . . ;

hr2i� ¼ n02�
6ð"w��Þ2

½n02�þ5�2þ3�

¼ ðnþ��Þ2
6ð"wþ�Þ2

½ðnþ��Þ2þ5�2þ3�; n¼ 2;3. . . ;

(C22)

and we see that the size of the nth usual state is very nearly
the same as the size of the nþ 1st peculiar state.

In light of this one might wonder how the excited
peculiar states (which have the size of angtroms) can be
orthogonal to the peculiar ground state, that has size of a
Compton wave length. As an example, as seen from
Eq. (C5) the first node of the first excited state occurs at

x ¼ ð�� þ 1Þð�� þ 2Þ � �2; r� �

"w
�

ffiffiffi
2

p
m

; (C23)

which is on the order of 560 fermis.

APPENDIX D: THE CONNECTION BETWEEN
F�ð�; brÞ AND G�ð�; brÞ

We begin with [49–51]

F�ð�Þ ¼ C�ð�Þ��þ1 expð�i�Þ
�Mð�þ 1� i�; 2�þ 2; 2i�Þ (D1)

and

G�ð�Þ ¼ 1

2
j�ð�þ 1þ i�Þj expð��=2Þ

�
�

expði��=2Þ
�ð�þ 1þ i�ÞWi�;�þ1=2 ð2i�Þ

þ expð�i��=2Þ
�ð�þ 1� i�ÞW�i�;�þ1=2 ð�2i�Þ

�
: (D2)

We introduce the Coulomb phase shift


�ð�Þ ¼ 1

2i
½logð�ð�þ 1þ i�Þ � logð�ð�þ 1� i�Þ�;

�ð�þ 1þ i�Þ ¼ j�ð�þ 1þ i�Þj expði
�ð�ÞÞ
(D3)

and so

G�ð�Þ ¼ 1

2
½expð�i½
�ð�Þ � ð�� i�Þ�=2ÞWi�;�þ1=2

� ð2i�Þ þ expði½
�ð�Þ � ð�� i�Þ�=2Þ
�W�i�;�þ1=2 ð�2i�Þ�

� 1

2
½c�ð�;�; �Þ þ cþð�;�; �Þ�; (D4)

where

cþð�;�; �Þ ¼ expði½
�ð�Þ � ð�� i�Þ�=2�ÞW�i�;�þ1=2

� ð�2i�Þ;
c�ð�;�; �Þ ¼ expð�i½
�ð�Þ � ð�� i�Þ�=2�ÞWi�;�þ1=2

� ð2i�Þ; (D5)

and since �, �, � are all real

c�ð�;�; �Þ ¼ c �þð�;�; �Þ: (D6)

Also we have

F�ð�Þ ¼ 1

2i
½cþð�;�; �Þ � c�ð�;�; �Þ�;

c�ð�;�; �Þ ¼ G�ð�Þ � iF�ð�Þ: (D7)

Note that since the Whittaker function W�;�ðzÞ is an even

function of � we have that

cþð��� 1; �; �Þ
¼ expði½
���1ð�Þ � ð��� 1� i�Þ�=2�Þ

�W�i�;���1=2 ð�2i�Þ
¼ expðixð�;�ÞÞ expði½
�ð�Þ � ð�� i�Þ�=2�Þ

�W�i�;�þ1=2 ð�2i�Þ
¼ expðixð�;�ÞÞcþð�;�; �Þ; (D8)

where

xð�;�Þ ¼
�
�þ 1

2

�
�þ 
���1ð�Þ � 
�ð�Þ: (D9)

Similarly

c�ð��� 1; �; �Þ ¼ expð�ixð�;�ÞÞc�ð�;�; �Þ:
(D10)

As a result of this we have
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F���1ð�Þ ¼ 1

2i
½cþð��� 1; �; �Þ � c�ð��� 1; �; �Þ�

¼ 1

2i
½expðixð�; �ÞÞcþð�;�; �Þ

� expð�ixð�;�ÞÞc�ð�; �; �Þ�
¼ 1

2i
½expðixð�; �ÞÞ½G�ð�Þ þ iF�ð�Þ�

� expð�ixð�;�ÞÞ½G�ð�Þ � iF�ð�Þ�
¼ cosxð�; �ÞF�ð�Þ þ sinxð�;�ÞG�ð�Þ (D11)

and thus

G�ð�Þ ¼ F���1ð�Þ � cosxð�;�ÞF�ð�Þ
sinxð�;�Þ : (D12)

APPENDIX E: THE VARIABLE PHASE
METHOD OF CALOGERO

Here we outline the variable phase method, first applied
to short-range potentials and then to long-range potentials.
We begin with the short-range potentials. We consider the
following two sets of differential equations

u00 þ ðb2 �WÞu ¼ 0; �u00i þ ðb2 � �WIÞ �ui ¼ 0;

i ¼ 1; 2; �u1ð0Þ ¼ uð0Þ ¼ 0; �WI ¼ LðLþ 1Þ
r2

;

(E1)

where WðrÞ is a short-range potential less singular at the
origin than const=r2 and

�u1ðrÞ ¼ |̂LðbrÞ ! const sinðbr� L�=2Þ;
�u2ðrÞ ¼ �n̂LðbrÞ ! const cosðbr� L�=2Þ: (E2)

Let

uðrÞ ¼ �ðrÞðcos�LðrÞ �u1ðrÞ þ sin�LðrÞ �u2ðrÞÞ
uðr ! 1Þ ¼ constðcos�Lðr ! 1Þ sinðbr� L�=2Þ

þ sin�Lðr ! 1Þ cosðbr� L�=2Þ
¼ const sinðbr� L�=2þ �Lð1ÞÞ

! sinðbr� L�=2þ �LÞ (E3)

and so

�L ¼ �Lð1Þ: (E4)

To find the differential equation that �LðrÞ satisfies,
define

u0ðrÞ ¼ �ðrÞðcos�LðrÞ �u01ðrÞ þ sin�LðrÞ �u02ðrÞÞ (E5)

and so

u0ðrÞ
uðrÞ ¼

ðcos�LðrÞ �u01ðrÞ þ sin�LðrÞ �u02ðrÞÞ
ðcos�LðrÞ �u1ðrÞ þ sin�LðrÞ �u2ðrÞÞ

¼ ð �u01ðrÞ þ tan�LðrÞ �u02ðrÞÞ
ð �u1ðrÞ þ tan�LðrÞ �u2ðrÞÞ ;

tan�LðrÞ ¼ �u01ðrÞuðrÞ � �u1ðrÞu0ðrÞ
ð �u2ðrÞu0ðrÞ � �u02ðrÞuðrÞÞ

: (E6)

Then

�0
LðrÞsec2�LðrÞ ¼ �0

LðrÞð1þ tan2�LðrÞÞ ¼ ð �u2u0 � �u02uÞð �u001u� �u1u
00Þ � ð �u01u� �u1u

0Þð �u2u00 � �u002uÞ
ð �u2ðrÞu0ðrÞ � �u02ðrÞuðrÞÞ2

¼ �ðW � �WIÞu2b
ð �u2u0 � �u02uÞ2

;

(E7)

where we have used the Wronskian relation

�u 2 �u
0
1 � �u02 �u1 ¼ const ¼ b (E8)

and so

�0
LðrÞ ¼ � ðW � �WIÞb

sec2�Lð �u2u0=u� �u02Þ2
: (E9)

Further manipulations lead to

�0
LðrÞ ¼ � ðW � �WIÞð|̂LðbrÞ cos�LðrÞ � n̂LðbrÞ sin�LðrÞÞ2

b
:

(E10)

Note that in case of type two reference potentials ( �W ¼
�WIIðrÞ ¼ 0) we would obtain

tan	LðrÞ ¼ �u01ðrÞuðrÞ � �u1ðrÞu0ðrÞ
ð �u2ðrÞu0ðrÞ � �u02ðrÞuðrÞÞ

(E11)

and with

�u 1ðr ! 0Þ ! br; �u2ðr ! 0Þ ! 1

uðr ! 0Þ ¼ cðbrÞLþ1;
(E12)

we obtain

tan	Lðr ! 0Þ ! bcðbrÞLþ1 � brcbðLþ 1ÞðbrÞL
cbðLþ 1ÞðbrÞL ! 0;

(E13)

and so we obtain the same boundary condition as with the
type I reference potentials. From Eq. (108)

	0
LðrÞ ¼ �W

b
sin2ðbrþ 	LðrÞÞ (E14)

at short distances becomes
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	0
Lð0Þ ¼ �LðLþ 1Þ

b
sin2ðbþ 	0

Lð0ÞÞ; (E15)

with the solution given in Eq. (109).
Next we sketch an analogous derivation for the phase-

shift equation which involves long-range potentials corre-
sponding to Eq. (89) in which the Coulomb potential
appears. As discussed in the text we begin with the follow-
ing two sets of differential equations

u00 þ ðb2 �WÞu ¼ 0; �u00i þ ðb2 � �WIIIÞ �ui¼ 0;

i ¼ 1; 2; �WIII ¼ � 2"w�

r
� �2

r2
;

W ¼ 2

ðrþ 2�=wÞ2 �
2"w�

r
� �2

r2
: (E16)

Note that the total potential plus barrier term W appears in
the equation for u. We are not including the angular
momentum barrier in the definitions of �uiðrÞ.

The solutions �u1, �u2 to

�u 00
i þ

�
b2 þ 2"w�

r
þ �2

r2

�
�ui ¼ 0; i ¼ 1; 2; (E17)

are Coulomb wave functions

�u 1 ¼ aF�� þ cG�� �u2 ¼ dF�� þ fG�� : (E18)

We choose the constants so that �u1 has the same behavior at
the origin that u does.

Even though four functions are listed here, only two are
linearly independent [see Eq. (80)]. To determine the
phase-shift equation let us write down first the wave func-
tion uðrÞ in terms of �u1, �u2

uðrÞ ¼ �ðrÞðcos	�ðrÞ �u1ðrÞ þ sin	�ðrÞ �u2ðrÞÞ: (E19)

In that case

uðr ! 1Þ ! ðcos	�ðr ! 1Þ sinðbr� � log2brþ 
��

� ���=2Þ þ sin	�ðr ! 1Þ cosðbr� � log2br

þ 
�� � ���=2Þ ¼ sinðbr� � log2brþ 
��

� ���=2þ 	�ð1ÞÞ: (E20)

This defines the phase-shift function 	�ðrÞ and its relation
to the asymptotic behavior of uðrÞ. On the other hand
since uðrÞ is the wave function for a potential that includes
at r � 2�=w the modified angular momentum barrier
ð2� �2Þ=r2 � �ð�þ 1Þ=r2 in addition to the Coulomb
term, we must have

uðr ! 1Þ ! sinðbr� � log2brþ 
� � ��=2þ ��Þ
(E21)

and so comparison gives


�� � ���=2þ 	�ð1Þ ¼ 
� � ��=2þ ��: (E22)

Thus with

�ð�þ 1Þ ¼ 2� �2; � ¼ �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 4�2

p

2
; (E23)

the full phase shift is

�� þ 
� ¼ 
�� þ ð�� ��Þ�=2þ 	�ð1Þ
¼ arg�ð�� þ 1þ i�Þ þ ð�� ��Þ�=2þ 	�ð1Þ
� arg�ð�� þ 1þ i�Þ þ ð1� ��Þ�=2þ 	�ð1Þ:

(E24)

To find the differential equation that 	�ðrÞ satisfies,
define

u0ðrÞ ¼ �ðrÞðcos	�ðrÞ �u01ðrÞ þ sin	�ðrÞ �u02ðrÞÞ;
uðrÞ ¼ �ðrÞðcos	�ðrÞ �u1ðrÞ þ sin	�ðrÞ �u2ðrÞÞ: (E25)

Then following a procedure similar that given in Eqs. (E5)
we obtain

tan	�ðrÞ ¼ �u01ðrÞuðrÞ � �u1ðrÞu0ðrÞ
ð �u2ðrÞu0ðrÞ � �u02ðrÞuðrÞÞ

: (E26)

Also

	0�ðrÞsec2	�ðrÞ ¼ � Wu2b

ð �u2u0 � �u02uÞ2
; (E27)

where we have used the Wronskian relation

�u2 �u
0
1 � �u02 �u1 ¼ const

¼ cosðÞ cosðÞ
�
b� �

r

�
þ sinðÞ

� sinðÞ
�
b� �

r

�
! b (E28)

and so

	0�ðrÞ ¼ � ðW � �WIIIÞb
sec2	�ð �u2u0=u� �u02Þ2

: (E29)

Now use

u0ðrÞ
uðrÞ ¼ ðcos	�ðrÞ �u01ðrÞ þ sin	�ðrÞ �u02ðrÞÞ

ðcos	�ðrÞ �u1 þ sin	�ðrÞ �u2Þ ; (E30)

and hence, with �u1 ¼ F�� , �u2 ¼ G�� we have

	0�ðrÞ¼�ðW� �WIIIÞðcos	�ðrÞF��ðrÞþsin	�ðrÞG��ðrÞÞ2
b

:

(E31)

Because of the 2=r2 behavior ofW for large r one will have
to integrate quite far to obtain a convergence for 	�ðrÞ and
after that one must subtract the phase shift��=2 due to the
2=r2 angular momentum barrier. An alternative form of
this equation is

tan 0	�ðrÞ ¼ � ðW � �WIIIÞðF��ðrÞ þ tan	�ðrÞG��ðrÞÞ2
b

:

(E32)
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The question now arises about the boundary condition at
the origin for 	�ðrÞ. We focus on Eq. (E26) to determine
the boundary condition at the origin for 	�ðrÞ,

tan	�ðrÞ ¼ �u01ðrÞuðrÞ � �u1ðrÞu0ðrÞ
ð �u2ðrÞu0ðrÞ � �u02ðrÞuðrÞÞ

: (E33)

We determine the behavior at the origin by evaluating the
right-hand side for very small r. The dominant term for the
quasipotential for both case is��2=r2. Thus it is sufficient
to focus on the first case.

We use Eq. (E33) with�
� d2

dr2
þ 2

ðrþ 2�=wÞ2 �
2"w�

r
� �2

r2

�
u ¼ b2u (E34)

and�
� d2

dr2
� 2"w�

r
� �2

r2

�
�u1;2 ¼ b2 �u1;2; �u1 ¼ F�ðbrÞ;
�u2 ¼ G�ðbrÞ: (E35)

At short distance, the potential energy for u is the same as
that for �u1;2. At very short distance, we choose

u; �u1 ! const ! r�þ1; �u2 ! ar�þ1 þ br��:

Clearly then tan	�ð0Þ ¼ 0 as the numerator vanishes in
both cases where as the denominator is proportional to the
Wronskian of �u1 and �u2 which is b

2. This case allows us to
integrate either Eq. (E31) or (E32) with the boundary
condition of tan	�ð0Þ ¼ 	�ð0Þ ¼ 0.

To find the total wave function we need to find the
additional differential equation for the amplitude of the
wave function. We use

u0ðrÞ ¼ �ðrÞðcos	�ðrÞ �u01ðrÞ þ sin	�ðrÞ �u02ðrÞÞ
¼ �0ðrÞðcos	�ðrÞ �u1ðrÞ þ sin	�ðrÞ �u2ðrÞÞ

þ �ðrÞðcos	�ðrÞ �u01ðrÞ þ sin	�ðrÞ �u02ðrÞÞ
þ 	0��ðrÞð� sin	�ðrÞ �u1ðrÞ þ cos	�ðrÞ �u2ðrÞÞ

(E36)

and thus, using Eq. (E31)

�0ðrÞ
�ðrÞ ¼�WðrÞ�WIII

b

�ð �u21� �u22Þsin2	�ðrÞ
2

� �u1 �u2 cos2	�
�
;

�ðrÞ¼�ðr0Þexp
�
�
Z r

0

WðrÞ�WIIIðrÞ
b

�
�ð �u21� �u22Þsin2	�ðrÞ

2
� �u1 �u2 cos2	�ðrÞ

��
:

(E37)

So, the total wave function is

uðrÞ ¼ �ðr0Þ exp
�
�

Z r

0

WðrÞ �WIIIðrÞ
b

�
�ð �u21 � �u22Þ sin2	�ðrÞ

2
� �u1 �u2 cos2	�ðrÞ

��
� ðcos	�ðrÞ �u1ðrÞ þ sin	�ðrÞ �u2ðrÞÞ: (E38)
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