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The rare semileptonic Bc ! D�
s‘

þ‘� decay is studied in the scenario of the universal extra dimension

model with a single extra dimension in which the inverse of the compactification radius R is the only new

parameter. The sensitivity of differential branching ratio, total branching ratio, polarization, and forward-

backward asymmetries of final state leptons, both for muon and tau, to the compactification parameter is

presented. For some physical observables, the uncertainty on the form factors and resonance contributions

have been considered in the calculations. The obtained results, compared with the available data, show

that new contributions appear due to the extra dimension.
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I. INTRODUCTION

Flavor-changing neutral current (FCNC) b ! s, d tran-
sitions which occur at the loop level in the standard model
(SM) provide us a powerful tool to test the SM and also a
frame to study physics beyond the SM. After the observa-
tion of b ! s� [1], these transitions became more
attractive and since then rare radiative, leptonic, and semi-
leptonic decays of Bu;d;s mesons have been intensively

studied [2]. Among these decays, semileptonic decay chan-
nels are significant because of having relatively larger
branching ratios. The experimental data for exclusive

B ! Kð�Þ‘þ‘� also increased the interest in these decays.
These studies will be even more complete if similar studies
for Bc, discovered by the CDF Collaboration [3], are also
included.

The Bc meson is the lowest bound state of two heavy
quarks, bottom b and charm c, with explicit flavor that can
be compared with the c �c and b �b bound states which have
implicit flavors. The implicit-flavor states decay strongly
and electromagnetically whereas the Bc meson decays
weakly. Bu;d;s are described very well in the framework of

the heavy quark limit, which gives some relations between
the form factors of the physical processes. In the case of the
Bc meson, the heavy flavor and spin symmetries must be
reconsidered because of heavy b and c. On the experimen-
tal side of the decay, for example, at LHC, 1010Bc events
per year are estimated [4,5]. This reasonable number is
stimulating the work on the Bc phenomenology and this
possibility will provide information on rare Bc decays as
well as CP violation and polarization asymmetries.

In the rare B meson decays, the effects of the new
physics may appear in two different manners, either
through the new contributions to the Wilson coefficients
existing in the SM or through the new structures in the
effective Hamiltonian which are absent in the SM.

Considering different models beyond the SM, extra
dimensions are specially attractive because of including

gravity and other interactions, giving hints to the hierarchy
problem and a connection with string theory. Those with
universal extra dimensions (UED) are of special interest
because all the SM particles propagate in extra dimensions,
the compactification of which allows Kaluza-Klein (KK)
partners of the SM fields in the four-dimensional theory
and also KKmodes without corresponding the SM partners
[6–9]. Throughout the UED, a simpler scenario with a
single universal extra dimension is the Appelquist-
Cheng-Dobrescu (ACD) model [10]. The only additional
free parameter with respect to the SM is the inverse of the
compactification radius, 1=R. In the particle spectrum of
the ACDmodel, there are infinite towers of KKmodes, and
the ordinary SM particles are presented in the zero mode.
This is the only parameter where putting a theoretical or

experimental restriction on it has been attempted. Tevatron
experiments put the bound 1=R � 300 GeV. Analysis of
the anomalous magnetic moment and B ! Xs� [11] also
lead to the bound 1=R � 300 GeV. In the study of B !
K�� decay [12], the results restrict R to be 1=R �
250 GeV. Also, in [13] this bound is 1=R � 330 GeV. In
two recent works, the theoretical study of B ! K��
matches with the experimental data if 1=R � 250 GeV
[14] and using the experimental result [15] and theoretical
prediction on the branching ratio of �b ! ��þ��, the
lower bound was obtained to be approximately 1=R�
250 GeV [16]. In this work, we will consider 1=R from
200 GeV up to 1000 GeV, however, under above consid-
eration the 1=R ¼ 250–350 GeV region will be taken as
the more common bound region. In the literature, the
effective Hamiltonian of several FCNC processes
[17,18], semileptonic and radiative decays have been in-
vestigated in the ACD model [19–29].
Concentrating on Bc ! D�

s‘
þ‘� decay, it has been

studied by using the model independent effective
Hamiltonian [30], in supersymmetric models [31] and
with fourth generation effects [32]. Also in [33], the
UED effects on the branching ratio and helicity fractions
of the final state D� meson were calculated using the
form factors obtained through the Ward identities for this*uoyilmaz@karabuk.edu.tr
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process. The weak annihilation contribution in addition
to the FCNC transitions were taken into account. We
will, however, only consider the FCNC transitions and
calculate the lepton asymmetries adding the resonance
contributions.

The main aim of this paper is to find the effects of
the ACD model on some physical observables related
to the Bc ! D�

s‘
þ‘� decay, and while doing this we also

give the behavior of these observables by a couple of figures
in the SM.Measurement of final state lepton polarizations is
a useful way to search new physics beyond the SM.Another
tool is the study of forward-backward asymmetry ðAFBÞ,
especially the position of the zero value of AFB is very
sensitive to the new physics. In addition to a differential
decay rate and branching ratio, we study forward-backward
asymmetry and the polarization of final state leptons, in-
cluding resonance contributions and the uncertainty on the
form factors in as many as possible cases. We analyze these
observables in terms of the compactification factor and the
form factors. The form factors forBc ! D�

s‘
þ‘� have been

calculated using the light front, constitute quark models
[34], the relativistic constituent quark model [35], relativ-
istic quark model [36], and light-cone quark model [37]. In
this work, we will use the form factors calculated in the
three-point QCD sum rules [38].

The paper is organized as follows. In Sec. II, we give the
effective Hamiltonian for the quark-level process b !
s‘þ‘� and mention briefly the Wilson coefficients in the
ACD model (a detailed discussion is given in the
Appendix). We derive the matrix element using the form
factors and calculate the decay rate in Sec. III. In Sec. VI,
we present the forward-backward asymmetry and Sec. V is
devoted to lepton polarizations. In the last section, we
introduce our conclusions.

II. EFFECTIVE HAMILTONIAN AND
WILSON COEFFICIENTS

The quark-level transition of Bc ! D�
s‘

þ‘� decay is
governed by b ! s‘þ‘� and given by the following effec-
tive Hamiltonian in the SM [39]:

H eff ¼GF�ffiffiffi
2

p
�
VtbV

�
ts

�
Ceff
9 ð�s��LbÞ �‘��þC10ð �s��LbÞ �‘���5‘

�2Ceff
7 mb

�
�si���

q�

q2
Rb

�
�‘��‘

�
; (1)

where q is the momentum transfer, L, R ¼ ð1� �5Þ=2 and
Cis are the Wilson coefficients evaluated at the b quark
mass scale.

The coefficient Ceff
9 has perturbative and resonance con-

tributions. So, Ceff
9 can be written as

Ceff
9 ð�Þ¼C9ð�Þ

�
1þ�sð�Þ

�
!ðs0Þ

�
þYð�;s0ÞþCres

9 ð�;s0Þ;
(2)

where s0 ¼ q2=m2
b.

The perturbative part, coming from the one-loop matrix
elements of the four-quark operators, is

Yð�;s0Þ¼hðy;s0Þ½3C1ð�ÞþC2ð�Þþ3C3ð�ÞþC4ð�Þ
þ3C5ð�ÞþC6ð�Þ�� 1

2hð1;s0Þð4C3ð�Þþ4C4ð�Þ
þ3C5ð�ÞþC6ð�ÞÞ� 1

2hð0;s0Þ½C3ð�Þþ3C4ð�Þ�
þ 2

9ð3C3ð�ÞþC4ð�Þþ3C5ð�ÞþC6ð�ÞÞ; (3)

with y ¼ mc=mb. The explicit forms of the functions!ðs0Þ
and hðy; s0Þ are given in [40,41].
The resonance contribution due to the conversion of the

real c �c into lepton pair can be done by using a Breit-
Wigner shape as [42],

Cres
9 ð�;s0Þ¼� 3

�2
em

�
X

Vi¼c i

��ðVi!‘þ‘�ÞmVi

sm2
b�m2

Vi
þ imVi

�Vi

�½3C1ð�ÞþC2ð�Þþ3C3ð�Þ
þC4ð�Þþ3C5ð�ÞþC6ð�Þ�: (4)

The normalization is fixed by the data in [43] and the
phenomenological parameter � is taken 2.3 to produce
the correct branching ratio BRðB ! J=cK� !
K�‘þ‘�Þ ¼ BRðB ! J=cK�ÞBðJ=c ! ‘þ‘�Þ.
In the ACDmodel, there are no new operators, therefore,

new physics contributions appear by modifying the Wilson
coefficients available in the SM. In this model, the Wilson
coefficients can be written in terms of some periodic
functions, as a function of compactification factor 1=R.
The function Fðxt; 1=RÞ generalizes the F0ðxtÞ SM func-
tions according to

Fðxt; 1=RÞ ¼ F0ðxtÞ þ
X1
n¼1

Fnðxt; xnÞ; (5)

where xt ¼ m2
t =m

2
W , xn ¼ m2

n=m
2
W with the mass of KK

particlesmn ¼ n=R. n ¼ 0 corresponds to the ordinary SM
particles. The modified Wilson coefficients in the ACD
model, taken place in many works in the literature, are
discussed in the Appendix.
Briefly, for C9, in the ACD model and in the naive

dimensional regularization (NDR) scheme, we have

C9ð�;1=RÞ¼PNDR
0 þYðxt;1=RÞ

sin2	W
�4Zðxt;1=RÞ

þPEEðxt;1=RÞ: (6)

Instead of C7, a normalization scheme independent effec-
tive coefficient Ceff

7 can be written as

Ceff
7 ð�;1=RÞ¼�16=23C7ð�W;1=RÞþ8

3
ð�14=23��16=23ÞC8

�ð�W;1=RÞþC2ð�W;1=RÞ
X8
i¼1

hi�
ai : (7)

The Wilson coefficient C10 is independent of scale � and
given by
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C10ð1=RÞ ¼ �Yðxt; 1=RÞ
sin2	W

: (8)

TheWilson coefficients differ considerably from the SM
values for small R. The variation of modified Wilson
coefficients with respect to 1=R at q2 ¼ 14 GeV2, in which
the normalization scale is fixed to � ¼ �b ’ 4:8 GeV, is
given in Fig. 1. The suppression of jCeff

7 j for 1=R ¼
250–350 GeV amounts to 75%–86% relative to the SM
value. jC10j is enhanced by 23%–13%. The impact of the

ACD on jCeff
9 j is very small. For 1=R * 600 GeV, the

difference is less than 5%.

III. MATRIX ELEMENTS AND DECAY RATE

The hadronic matrix elements in the exclusive Bc !
D�

s‘
þ‘� decay can be obtained by sandwiching the

quark-level operators in the effective Hamiltonian between
the initial and the final state mesons. The nonvanishing
matrix elements are parameterized in terms of the form
factors as follows: [44,45]

hD�
sðpD�

s
; "Þj�s��ð1� �5ÞbjBcðpBc

Þi ¼ �
����"
��p�

D�
s
q�

2Vðq2Þ
mBc

þmD�
s

� i"��ðmBc
þmD�

s
ÞA1ðq2Þ

þ iðpBc
þ pD�

s
Þ�ð"�qÞ A2ðq2Þ

mBc
þmD�

s

þ iq�ð"�qÞ
2mD�

s

q2
½A3ðq2Þ � A0ðq2Þ�; (9)

and

hD�
sðpD�

s
; "Þj�si���q

�ð1þ �5ÞbjBcðpBc
Þi ¼ 2
����"

��p�
D�

s
q�T1ðq2Þ þ i½"��ðm2

Bc
�m2

D�
s
Þ � ðpBc

þ pD�
s
Þ�ð"�qÞ�T2ðq2Þ

þ ið"�qÞ
�
q� � ðpBc

þ pD�
s
Þ� q2

m2
Bc

�m2
D�

s

�
T3ðq2Þ; (10)

FIG. 1 (color online). The variation of Wilson coefficients with respect to 1=R at q2 ¼ 14 GeV2 for the normalization scale
� ¼ 4:8 GeV. (Ceff

9 does not include resonance contributions.)
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where q ¼ pBc
� pD�

s
is the momentum transfer and " is

the polarization vector of D�
s meson.

The relation between the form factors A1ðq2Þ, A2ðq2Þ and
A3ðq2Þ can be stated as

A3ðq2Þ ¼
mBc

þmDs�

2m�

A1ðq2Þ �
mBc

�mD�

2m�

A2ðq2Þ;

and in order to avoid kinematical singularity in the matrix
element at q2 ¼ 0, it is assumed that A0ð0Þ ¼ A3ð0Þ and
T1ð0Þ ¼ T2ð0Þ [45].
Using the effective Hamiltonian and matrix elements in

Eqs. (9) and (10), the transition amplitude for Bc !
D�

s‘
þ‘� is written as

MðBc ! D�
s‘

þ‘�Þ ¼ G�

2
ffiffiffi
2

p
�
VtbV

�
tsf �‘��‘½�2A
����"

��p�
D�

s
q� � iB"�� þ iCð"�qÞðpBc

þ pD�
s
Þ� þ iDð"�qÞq��

þ �‘���5‘½�2E
����"
��p�

D�
s
q� � iF"�� þ iGð"�qÞðpBc

þ pD�
s
Þ� þ iHð"�qÞq��g; (11)

with the auxiliary functions

A¼Ceff
9

Vðq2Þ
mBc

þmD�
s

þ2mb

q2
Ceff
7 T1ðq2Þ; B¼Ceff

9 ðmBc
þmD�

s
ÞA1ðq2Þþ2mb

q2
Ceff
7 ðm2

Bc
�m2

D�
s
ÞT2ðq2Þ;

C¼Ceff
9

A2ðq2Þ
mBc

þmD�
s

þ2mb

q2
Ceff
7 ðT2ðq2Þþ q2

m2
Bc
�m2

D�
s

T3ðq2ÞÞ; D¼2Ceff
9

mD�
s

q2
ðA3ðq2Þ�A0ðq2ÞÞ�2

mb

q2
Ceff
7 T3ðq2Þ;

E¼C10

Vðq2Þ
mBc

þmD�
s

; F¼C10ðmBc
þmD�

s
ÞA1ðq2Þ; G¼C10

A2ðq2Þ
mBc

þmD�
s

; H¼2C10

mD�
s

q2
ðA3ðq2Þ�A0ðq2ÞÞ:

(12)

Integrating over the angular dependence of the double differential decay rate, the following dilepton mass spectrum is
obtained:

d�

ds
¼ G2�2mBc

212�5
jVtbV

�
tsj2

ffiffiffiffi



p
v�D�

s
; (13)

where s ¼ q2=m2
Bc
, 
 ¼ 1þ r2 þ s2 � 2r� 2s� 2rs, r ¼ m2

D�
s
=m2

Bc
, v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘=sm
2
Bc

q
and

�D�
s
¼8

3

m6

Bc
s½ð3�v2ÞjAj2þ2v2jEj2�þ1

r

m4

Bc

�
1

3

m2

Bc
ð3�v2ÞjCj2þm2

Bc
s2ð1�v2ÞjHj2þ2

3
½ð3�v2Þðrþs�1Þ

�3sð1�v2Þ�Re½FG��þ2m2
Bc
sð1�rÞð1�v2ÞRe½GH���2sð1�v2ÞRe½FH��þ2

3
ð3�v2Þðrþs�1ÞRe½BC��

�

þ 1

3r
ð3�v2Þm2

Bc
½ð
þ12rsÞjBj2þ
m4

Bc
½
�3sðs�2r�2Þð1�v2Þ�jGj2þ½
þ24rsv2�jFj2�: (14)

In the numerical analysis, we have used
mBc

¼ 6:28 GeV, mD�
s
¼ 2:112 GeV, mb ¼ 4:8 GeV,

m� ¼ 0:105 GeV, m� ¼ 1:77 GeV, jVtbV
�
tsj ¼ 0:041,

GF ¼ 1:17� 10�5 GeV�2, �Bc
¼ 0:46� 10�12 s, and

the values that are not given here are taken from [43]. In
our work, we have used the numerical values of the form
factors calculated in the three-point QCD sum rules [38], in
which q2 dependencies of the form factors are given as

Fðq2Þ ¼ Fð0Þ
1þ aðq2=m2

Bc
Þ þ bðq2=m2

Bc
Þ2 ;

and the values of parameters Fð0Þ, a, and b for the Bc !
D� decay are listed in Table I.

The differential branching ratio is calculated without
resonance contributions, including the uncertainty on the
form factors, and with resonance contributions, and the s
dependence for 1=R ¼ 200, 350, 500 GeV is presented in

Figs. 2 and 3, respectively. The change in the differential
decay rate and the difference between the SM results and
the new effects can be noticed in the figures. The maxi-
mum effect is around s ¼ 0:25� 0:05ð0:37� 0:02Þ for
�ð�Þ in Fig. 2. In spite of the hadronic uncertainty, for

TABLE I. Bc meson decay form factors in the three-point
QCD sum rules.

Fð0Þ a b

V 0:54� 0:018 �1:28 �0:230
A1 0:30� 0:017 �0:13 �0:180
A2 0:36� 0:013 �0:67 �0:066
/ ðA3 � A0Þ �0:57� 0:040 �1:11 �0:140
T1 0:31� 0:017 �1:28 �0:230
T2 0:33� 0:016 �0:10 �0:097
T3 0:29� 0:034 �0:91 0.007
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FIG. 2 (color online). The dependence of differential branching ratio on s, including the uncertainty on the form factors in the
nonresonance case. (In the legend 1=R ¼ 200, 350, 500 GeV.)

FIG. 3 (color online). The dependence of the differential branching ratio on s with the central values of the form factors including
resonance contributions.

FIG. 4 (color online). The dependence of the differential branching ratio on 1=R, with and without resonance contributions,
including the uncertainty on the form factors at s ¼ 0:18 for �, and s ¼ 0:4 for �. (The subscript R in the legend represents resonance
contributions.)
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1=R ¼ 200 GeV and 350 GeV, studying the differential
decay rate can be a suitable tool for studying the effect of
an extra dimension.

Supplementary to these, the 1=R dependence of differ-
ential branching ratio at s ¼ 0:18ð0:4Þ for�ð�Þ is plotted in
Fig. 4. Considering any given bound on the compactifica-
tion factor, the effect of a universal extra dimension can be
seen clearly for low values of R, with and without reso-
nance contributions. On the other hand, when 1=R *
600 GeV the contribution varies between �5–8% more
than the SM results.

To obtain the branching ratio, we integrate Eq. (13) in
the allowed physical region. While taking the long-
distance contributions into account we introduce some
cuts around the J=c and c ð2sÞ resonances to minimize
the hadronic uncertainties. The integration region for
q2 is divided into three parts for � as 4m2

� 	 q2 	
ðmJ=c � 0:02Þ2, ðmJ=c þ 0:02Þ2 	 q2 	 ðmc ð2sÞ � 0:02Þ2
and ðmc ð2sÞ þ 0:02Þ2 	 q2 	 ðmBc

�mD�
s
Þ2 and for � we

have 4m2
� 	 q2 	 ðmc ð2sÞ � 0:02Þ2 ðmc ð2sÞ þ 0:02Þ2 	

q2 	 ðmBc
�mD�

s
Þ2, the same as in [46].

The results of the branching ratio in the SM with reso-
nance contributions and the uncertainty on the form fac-
tors, we obtain

BrðBc ! D�
s�

þ��Þ ¼ 2:13þ0:27
�0:25 � 10�7

BrðBc ! D�
s�

þ��Þ ¼ 1:45þ0:15
�0:14 � 10�8:

(15)

Observing the contribution of the ACD, the 1=R dependent
branching ratios, including the resonance contributions and
the uncertainty on the form factors, are given in Fig. 5.
Comparing the SM results and our theoretical predictions
on the branching ratio for both decay channels, the lower
bound for 1=R is found to be approximately 250 GeV,
which is consistent with the previously mentioned results.

As 1=R increases, the branching ratios approach their
SM values. For 1=R � 550 GeV in both channels, they

become less than 5% greater than that of the SM values.
Between 1=R ¼ 250–350 GeV the ratio is ð2:66�
2:40Þþ0:30

�0:28 � 10�7 for �, ð1:75� 1:61Þþ0:16
�0:15 � 10�8 for

the � decay. Comparing these with the SM results, the
differences are worth studying and can be considered as
a signal of new physics and evidence of the existence of an
extra dimension.

IV. FORWARD-BACKWARD ASYMMETRY

Another efficient tool for establishing new physics is the
study of forward-backward asymmetry. The position of
the zero value of AFB is very sensitive to the new physics.
The normalized differential form is defined for final state
leptons as

AFBðsÞ ¼
R
1
0
d2�
dsdz dz�

R
0
�1

d2�
dsdz dzR

1
0
d2�
dsdz dzþ

R
0
�1

d2�
dsdz dz

; (16)

where z ¼ cos	 and 	 is the angle between the directions
of ‘� and Bc in the rest frame of the lepton pair.
In the case of Bc ! D�

s‘
þ‘�, we get

AFB¼
G2�2mBc

212�5
jVtbV

�
tsj2

8m4
Bc

ffiffiffiffi



p
vsðRe½BE��þRe½AF��Þ

d�=ds

¼8m4
Bc

ffiffiffiffi



p
vsðRe½BE��þRe½AF��Þ

�D�
s

: (17)

Using the above equation, we present the variation of
lepton forward-backward asymmetry with s including the
uncertainty on the form factors in Fig. 6. As 1=R becomes
smaller, a considerable difference appears between the SM
and the ACD results for s & 0:16 in � and 0:33 & s &
0:43 in the � decays. Considering the resonance contribu-
tions (the results are given in Fig. 7), one can recognize a
similar situation for s & 0:23 and 0:32 & s & 0:44,
respectively.

FIG. 5 (color online). The dependence of branching ratio on 1=R, including the resonance contributions and the uncertainty on the
form factors.

U. O. YILMAZ PHYSICAL REVIEW D 85, 115026 (2012)

115026-6



FIG. 6 (color online). The lepton forward-backward asymmetry including the uncertainty on the form factors.

FIG. 7 (color online). The lepton forward-backward asymmetry including resonance contributions.

FIG. 8 (color online). The dependence of lepton forward-backward asymmetry on 1=R at s ¼ 0:05 for � and s ¼ 0:4 for �.
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To better understand the dependence of AFB on 1=R for
both lepton channels, we perform a calculation at s ¼
0:05ð0:4Þ for �ð�Þ and present the results in Fig. 8. In the
� channel, the UED contribution on AFB becomes impor-
tant between 1=R ¼ 200–600 GeV, while in the � decay,
the contribution is insignificant for 1=R * 400 GeV.

The position of the zero of forward-backward asymme-
try, s0, is determined numerically, and the results are
presented in Fig. 9. Both plots for Bc ! D�

s�
þ�� are

for the zero point in the s < 0:1 region; the lower (upper)
one is for the resonance (nonresonance) case, while the
zero point for Bc ! D�

s�
þ�� is because of resonance

contributions. In the SM, the resonance shifts the zero
point of the asymmetry, s0 ¼ 0:079, to a lower value, s0 ¼
0:068, in Bc ! D�

s�
þ��, i.e., further corrections could

shift s0 to smaller values [12]. As 1=R ! 200 GeV the s0
approaches low values for both decay channels. In the
1=R ¼ 250–350 GeV region, s0 varies between (0.058–
0.068) without resonance contributions and (0.051–0.058)
with resonance contributions. The s0 shift is �5% of the
SM value for 1=R * 600 GeV. The variation of s0 for
Bc ! D�

s�
þ�� is negligible.

V. LEPTON POLARIZATION ASYMMETRIES

Wewill discuss the possible effects of the ACDmodel in
lepton polarizations, as a way of searching new physics.
Using the convention followed by previous works [47,48],
in the rest frame of ‘� we define the orthogonal unit
vectors S�i , for the polarizations of the lepton along the
longitudinal, transverse, and normal directions as

S�L 
 ð0; ~eLÞ ¼
�
0;

~p‘

j ~p‘j
�
;

S�N 
 ð0; ~eNÞ ¼
�
0;

~pD�
s
� ~p‘

j ~pD�
s
� ~p‘j

�
;

S�T 
 ð0; ~eTÞ ¼ ð0; ~eN � ~eLÞ;

(18)

where ~p‘ and ~pD�
s
are the three momenta of ‘� and D�

s

meson in the center of mass (CM) frame of ‘þ‘� system,
respectively. The longitudinal unit vector S�L is boosted by
Lorentz transformation,

S
��
L;CM ¼

�j ~p‘j
m‘

;
E‘ ~p‘

m‘j ~p‘j
�
; (19)

while vectors of perpendicular directions remain un-
changed under the Lorentz boost.
The differential decay rate of Bc ! D�

s‘
þ‘� for any

spin direction ~n� of the ‘� can be written in the following
form:

d�ð ~n�Þ
ds

¼1

2

�
d�

ds

�
0
½1þðPL ~e

�
L þP�

N ~e�N þP�
T ~e�T Þ � ~n��: (20)

Here, ðd�=dsÞ0 corresponds to the unpolarized decay rate,
whose explicit form is given in Eq. (13).
The polarizations P�

L , P
�
T and P�

N in Eq. (20) are defined
by the equation

P�
i ðsÞ ¼

d�
ds ðn� ¼ e�i Þ � d�

ds ðn� ¼ �e�i Þ
d�
ds ðn� ¼ e�i Þ þ d�

ds ðn� ¼ �e�i Þ
;

for i ¼ L, N, T. Here, P�
L and P�

T represent the longitudi-
nal and transversal asymmetries, respectively, of the
charged lepton ‘� in the decay plane, and P�

N is the normal
component to both of them.
The explicit form of longitudinal polarization for ‘� is

P�
L ¼ 1

3�D�
s

4m2
Bc
v½8m4

Bc
s
Re½AE��þ1

r
ð12rsþ
ÞRe½BF��

�1

r

m2

Bc
ð1�r�sÞ½Re½BG��þRe½CF���

þ1

r

2m4

Bc
Re½CG���: (21)

FIG. 9 (color online). The variation of the zero position of lepton forward-backward asymmetry with 1=R.
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Similarly, the transversal polarization is given by

P�
T ¼ 1

�D�
s

mBc
m‘�

ffiffiffiffiffiffi
s


p �
�8m2

Bc
Re½AB��

þð1�r�sÞ
rs

Re½BF���m2
Bc



rs
Re½CF��

�m2
Bc

rs
ð1�rÞð1�r�sÞRe½BG��

þm4
Bc

rs

ð1�rÞRe½CG���m2

Bc

r
ð1�r�sÞRe½BH��

þm4
Bc



r
Re½CH��

�
(22)

and the normal polarization by

P�
N ¼ 1

�D�
s

m3
Bc
m‘�v

ffiffiffiffiffiffi
s


p �
�4 Im½BE�� � 4 Im½AF��

þ 1

r
ð1� r� sÞ Im½FH�� þ 1

r
ð1þ 3r� sÞ Im½FG��

� 1

r
m2

Bc

 Im½GH��

�
: (23)

We eliminate the dependence of the lepton polarizations on
s in order to clarify the dependence on 1=R, by considering
the averaged forms over the allowed kinematical region.
The averaged lepton polarizations are defined by

hPii ¼
Rð1�mD�

s
=mBc Þ2

ð2m‘=mBc Þ2
Pi

dB
ds ds

Rð1�mD�
s
=mBc Þ2

ð2m‘=mBc Þ2
dB
ds ds

: (24)

The dependence of longitudinal polarizations on s with
and without resonance contributions are given in Figs. 10

FIG. 10 (color online). The dependence of longitudinal polarization on s without resonance contributions using the central values of
the form factors.

FIG. 11 (color online). The dependence of longitudinal polarization on s with resonance contributions using the central values of the
form factors.
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FIG. 12 (color online). The dependence of longitudinal polarization on 1=R including the uncertainty on the form factors and
resonance contributions.

FIG. 13 (color online). The dependence of transversal polarization on s without resonance contributions using the central values of
the form factors.

FIG. 14 (color online). The dependence of transversal polarization on s with resonance contributions using the central values of the
form factors.
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FIG. 15 (color online). The dependence of transversal polarization on 1=R, including the uncertainty on the form factors.

FIG. 16 (color online). The dependence of normal polarization on s with resonance contributions using the central values of the form
factors.

FIG. 17 (color online). The dependence of normal polarization on s without resonance contributions using the central values of the
form factors.
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and 11, respectively. For high values of s as 1=R ap-
proaches 200 GeV the deviation from the SM results
become greater for � in both the resonance and nonreso-
nance cases, while for the� channel this effect can be seen
clearly for all s values when resonance contributions are
not added; when including resonance contributions, around
the peaks this effect seems to be suppressed and only for
low values of s can we mention a deviation. Eliminating
the dependence of the polarization on s, we get a variation
of longitudinal polarizations with respect to 1=R, given by
Fig. 12. For 1=R � 500 GeV, the difference becomes less
important for both channels. The SM longitudinal polar-
ization, PL ¼ �0:599, develops into�0:670 (� 0:646) for
1=R ¼ 250ð350Þ GeV for �. A similar aspect can also be
noticed for �. That is, the PL ¼ �0:321 SM value varies to
�0:366 (� 0:347) for 1=R ¼ 250ð350Þ.

The dependence of transversal polarization on s with
and without resonance contributions are given in Figs. 13
and 14, respectively. The UED effect is unimportant in
both decay channels. In view of the 1=R dependency, given
by Fig. 15, no difference is observed for the � decay. Up to
1=R ¼ 600 GeV, the change is sizeable for the � channel.
In particular, between 1=R ¼ 250–350 GeV the difference
might be checked for a signal of new physics.

We have plotted the variation of normal polarizations on
s with and without resonance contributions in Figs. 16 and
17, respectively, and on 1=R in Fig. 18. The SM value itself
for � is tiny and as can be seen from the figures the effect
of UED on normal polarization in this channel is irrelevant.
Additionally, the relatively greater value of normal polar-
ization in the SM for � differs slightly.

VI. CONCLUSION

In this work, we discussed the Bc ! D�
s‘

þ‘� decay for
� and � as final state leptons in the SM and the ACD
model. We used the form factors calculated in QCD sum
rules and throughout the work, we reflected the errors in

the form factors in the calculations and demonstrate the
results in possible plotting.
Comparing the SM results and our theoretical predic-

tions on the branching ratio for both decay channels, we
obtain the lower bound as 1=R� 250 GeV. Although this
is consistent with the previously mentioned results, a
detailed analysis, particularly with the data supplied by
experiments, is necessary to put a precise bound on the
compactification scale.
As an overall result, we can conclude that, as stated

previous works in the literature, as 1=R ! 200 GeV the
physical values differ from the SM results. Up to a few
hundreds GeV above the considered bounds, 1=R �
250 GeV or 1=R � 350 GeV, it is possible to see the
effects of UED.
Taking the differential branching ratio into considera-

tion, for small values of 1=R there is an essential difference
compared with the SM results.
The difference between the SM and the ACD results in

the forward-backward asymmetry of final state leptons,
particularly in the specified region, the obtained result
is essential. In addition, the position of the zero of
forward-backward asymmetry, which is sensitive in
searching new physics, can be a useful tool to check the
UED contributions.
Polarizations of the leptons have been studied compre-

hensively and we found that transversal and normal polar-
izations are not sensitive to the extra dimension, only the
dependence of transversal (normal) polarization on 1=R for
the � (�) decay channel for low values of 1=R might be
useful. However, studying longitudinal polarizations for
both leptons up to 1=R ¼ 600 GeV will be a powerful
tool in establishing new physics effects.
In the discussion throughout this work, the sizable dis-

crepancies between the ACD model and the SM predic-
tions at lower values of the compactification scale can be
considered as indications of new physics and should be
searched in the experiments.

FIG. 18 (color online). The dependence of normal polarization on 1=R including the uncertainty on the form factors and resonance
contributions.
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APPENDIX: WILSON COEFFICIENTS
IN THE ACD MODEL

In the ACDmodel, the new physics contributions appear
by modifying available Wilson coefficients in the SM. The
modified Wilson coefficients are calculated in [17,18] and
can be expressed in terms of Fðxt; 1=RÞ which generalize
the corresponding SM functions F0ðxtÞ according to

Fðxt; 1=RÞ ¼ F0ðxtÞ þ
X1
n¼1

Fnðxt; xnÞ; (A1)

where xt ¼ m2
t =m

2
W , xn ¼ m2

n=m
2
W and mn ¼ n=R.

Instead of C7, an effective, normalization scheme
independent, coefficient Ceff

7 in the leading logarithmic
approximation is defined as

Ceff
7 ð�b;1=RÞ¼�16=23C7ð�W;1=RÞþ8

3
ð�14=23��16=23ÞC8

�ð�W;1=RÞþC2ð�W;1=RÞ
X8
i¼1

hi�
ai (A2)

with � ¼ �sð�W Þ
�sð�bÞ and

�sðxÞ ¼ �sðmZÞ
1� �0

�sðmZÞ
2� lnðmZ

x Þ
; (A3)

where in the fifth dimension �sðmZÞ ¼ 0:118 and
�0 ¼ 23=3.
The coefficients ai and hi are

ai ¼ ð1423; 1623; 6
23;�12

23; 0:4086;�0:4230;�0:8994; 0:1456Þ
hi ¼ ð2:2996;�1:088;�3

7;� 1
14;�0:6494;�0:0380;

� 0:0186;�0:0057Þ: (A4)

The functions in (A2) are

C2ð�WÞ ¼ 1; C7ð�W; 1=RÞ ¼ �1
2D

0ðxt; 1=RÞ;
C8ð�W; 1=RÞ ¼ �1

2E
0ðxt; 1=RÞ: (A5)

Here,D0ðxt; 1=RÞ and E0ðxt; 1=RÞ are defined by using (A1)
with the following functions:

D0
0ðxtÞ ¼ � ð8x3t þ 5x2t � 7xtÞ

12ð1� xtÞ3
þ x2t ð2� 3xtÞ

2ð1� xtÞ4
lnxt (A6)

E0
0ðxtÞ ¼ � xtðx2t � 5xt � 2Þ

4ð1� xtÞ3
þ 3x2t

2ð1� xtÞ4
lnxt (A7)

D0
nðxt;xnÞ ¼ xtð�37þ 44xtþ 17x2t þ 6x2nð10� 9xtþ 3x2t Þ� 3xnð21� 54xtþ 17x2t ÞÞ

36ðxt� 1Þ3

�ð�2þ xnþ 3xtÞðxtþ 3x2t þ x2nð3þ xtÞ� xnð1þð�10þ xtÞxtÞÞ
6ðxt� 1Þ2 ln

xnþ xt
1þ xn

þ xnð2� 7xnþ 3x2nÞ
6

ln
xn

1þ xn

(A8)

E0
nðxt; xnÞ ¼ xtð�17� 8xt þ x2t � 3xnð21� 6xt þ x2t Þ � 6x2nð10� 9xt þ 3x2t ÞÞ

12ðxt � 1Þ3

þ ð1þ xnÞðxt þ 3x2t þ x2nð3þ xtÞ � xnð1þ ð�10þ xtÞxtÞÞ
2ðxt � 1Þ4 ln

xn þ xt
1þ xn

� 1

2
xnð1þ xnÞð�1þ 3xnÞ ln xn

1þ xn
:

(A9)

Following [17] or directly from [12] one gets the expressions for the sum over n as

X1
n¼1

D0
nðxt;xnÞ¼�xtð�37þxtð44þ17xtÞÞ

72ðxt�1Þ3 þ�MWR

2

�Z 1

0
dy

ð2y1=2þ7y3=2þ3y5=2Þ
6

cothð�MWR
ffiffiffi
y

p Þ

þð�2þ3xtÞxtð1þ3xtÞ
6ðxt�1Þ4 JðR;�1=2Þ� 1

6ðxt�1Þ4 ½xtð1þ3xtÞ�ð�2þ3xtÞð1þð�10þxtÞxtÞ�JðR;1=2Þ

þ 1

6ðxt�1Þ4 ½ð�2þ3xtÞð3þxtÞ�ð1þð�10þxtÞxtÞ�JðR;3=2Þ� ð3þxtÞ
6ðxt�1Þ4JðR;5=2Þ

�
(A10)

and
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X1
n¼1

E0
nðxt; xnÞ ¼ � xtð�17þ ð�8þ xtÞxtÞ

24ðxt � 1Þ3 þ �MWR

4

�Z 1

0
dyðy1=2 þ 2y3=2 � 3y5=2Þ cothð�MWR

ffiffiffi
y

p Þ

� xtð1þ 3xtÞ
ðxt � 1Þ4 JðR;�1=2Þ þ 1

ðxt � 1Þ4 ½xtð1þ 3xtÞ � ð1þ ð�10þ xtÞxtÞ�JðR; 1=2Þ � 1

ðxt � 1Þ4 ½ð3þ xtÞ

� ð1þ ð�10þ xtÞxtÞ�JðR; 3=2Þ þ ð3þ xtÞ
ðxt � 1Þ4 JðR; 5=2Þ

�
(A11)

where

JðR;�Þ ¼
Z 1

0
dyy�½cothð�MWR

ffiffiffi
y

p Þ � x1þ�
t cothð�mtR

ffiffiffi
y

p Þ�: (A12)

The Wilson coefficient C9 in the ACD model and the NDR scheme is

C9ð�; 1=RÞ ¼ PNDR
0 þ Yðxt; 1=RÞ

sin2	W
� 4Zðxt; 1=RÞ þ PEEðxt; 1=RÞ; (A13)

where PNDR
0 ¼ 2:6� 0:25 and PE is numerically negligible. The functions Yðxt; 1=RÞ and Zðxt; 1=RÞ are defined as

Yðxt; 1=RÞ ¼ Y0ðxtÞ þ
X1
n¼1

Cnðxt; xnÞ (A14)

Zðxt; 1=RÞ ¼ Z0ðxtÞ þ
X1
n¼1

Cnðxt; xnÞ; (A15)

with

Y0ðxtÞ ¼ xt
8

�
xt � 4

xt � 1
þ 3xt

ðxt � 1Þ2 lnxt

�
(A16)

Z0ðxtÞ ¼ 18x4t � 163x3t þ 259x2t � 108xt
144ðxt � 1Þ3 þ

�
32x4t � 38x3t � 15x2t þ 18xt

72ðxt � 1Þ4 � 1

9

�
lnxt (A17)

Cnðxt; xnÞ ¼ xt
8ðxt � 1Þ2

�
x2t � 8xt þ 7þ ð3þ 3xt þ 7xn � xtxnÞ lnxt þ xn

1þ xn

�
(A18)

and

X1
n¼1

Cnðxt; xnÞ ¼ xtð7� xtÞ
16ðxt � 1Þ �

�MWRxt
16ðxt � 1Þ2 ½3ð1þ xtÞJðR;�1=2Þ þ ðxt � 7ÞJðR; 1=2Þ�: (A19)

The � independent C10 is given by

C10ð1=RÞ ¼ �Yðxt; 1=RÞ
sin2	W

(A20)

where Yðxt; 1=RÞ is defined in (A14).
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