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The spectrum of baryons containing three b quarks is calculated in nonperturbative QCD,

using the lattice regularization. The energies of ten excited bbb states with JP ¼ 1
2
þ, 3
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and 3
2
� are determined with high precision. A domain-wall action is used for the up, down, and strange

quarks, and the bottom quarks are implemented with nonrelativistic QCD. The computations are done at

lattice spacings of a � 0:11 fm and a � 0:08 fm, and the results demonstrate the improvement of

rotational symmetry as a is reduced. A large lattice volume of ð2:7 fmÞ3 is used, and extrapolations of

the bbb spectrum to realistic values of the light sea-quark masses are performed. All spin-dependent

energy splittings are resolved with total uncertainties of order 1 MeV, and the dependence of these

splittings on the couplings in the nonrelativistic QCD action is analyzed.
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I. INTRODUCTION

Heavy quarkonium has been studied in great detail both
experimentally and theoretically. Because its valence
quark masses are large compared to �QCD, heavy quark-

onium is an excellent system for probing the strong force
on multiple scales [1]. In addition to these familiar heavy
quark-antiquark bound states, QCD also predicts the ex-
istence of an analogous system in the baryonic sector: the
bound states of three heavy quarks. Given the huge im-
portance of quarkonium, it is desirable to investigate triply
heavy baryons in similar depth.

Several continuum-based calculations of triply heavy
baryon spectra can be found in the literature. The methods
used there include quark models [2–17], QCD sum rules
[18,19], and potential nonrelativistic QCD (pNRQCD)
with static potentials from perturbation theory, at leading
order [20], and next-to-next-to-leading order [21,22]. No
experimental results are available so far for triply heavy
baryons (see Ref. [23] for a recent calculation of produc-
tion cross sections at the LHC). This means that first-
principles nonperturbative lattice QCD calculations are
essential to test the model-dependent or perturbative ap-
proaches. For the�bbb, the ground-state mass was already
calculated with high precision using lattice QCD in
Ref. [24]. However, much more information about the
interactions between three heavy quarks can be gained by
computing the spectrum of the corresponding excited
states, including, in particular, the spin-dependent energy
splittings. The first such calculation of bbb excited states
in lattice QCD is reported here. Lattice calculations of
light-baryon excited states can be found, for example, in
Refs. [25–33].

To fully accommodate the physics of the light sea quarks in
lattice QCD, the spatial box size L has to be chosen such that
L � 1=m�. With the presently available computing resour-
ces, this requirement means that the lattice spacing is too
coarse to treat theb quarks in the sameway as the light quarks.

Therefore, as in Ref. [24], the b quarks are implemented here
with improved lattice nonrelativisticQCD(NRQCD) [34,35].
NRQCD is an effective field theory for heavy quarks that
retains all the gluon and light-quark degrees of freedom
without change. For the heavy-quark Lagrangian, a nonrela-
tivistic expansion is performed in powers of the heavy-quark
velocity v, and the coefficients of the NRQCD effective
operators are determined by matching to QCD. Thereby, the
results ofQCDcan be reproduced, in principle, to an arbitrary
order in v. For b �b and bbb hadrons, one has hv2i � 0:1. The
latticeNRQCDaction used inRef. [24]was complete through
order v4. Because the present work aims to accurately com-
pute also spin-dependent bbb energy splittings (fine and
hyperfine structure), here the spin-dependent order-v6 terms
are included in the NRQCD action, as already done in the
calculation of the bottomonium spectrum of Ref. [36].
Furthermore, the coefficients of the leading spin-dependent
operators, which are of order v4, are tuned nonperturbatively.
As usual in lattice QCD, the Euclidean path integral is

performed by averaging over importance-sampled gauge-
field configurations. The ensembles of gauge fields used
here match those used in Refs. [24,36], and have been
generated by the RBC/UKQCD Collaboration [37].
These ensembles include the effects of dynamical u, d,
and s quarks, which were implemented using a domain-
wall action [38–40]. Seven different ensembles with a
range of light-quark masses and lattice spacings of a �
0:11 fm and a � 0:08 fm are included in the analysis.
The bbb energy levels are extracted from the time

dependence of Euclidean two-point functions of interpo-
lating operators with the desired quantum numbers. The
construction of these interpolating operators, which takes
into account the reduction of the continuum rotational
symmetries to the lattice rotational symmetries, follows
the highly successful method originally developed for light
baryons in Ref. [33]. This method, as well as the compu-
tation of the bbb two-point functions, is explained in
Sec. II. The details of the lattice actions and parameters
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are given in Sec. III. Next, Sec. IV describes the fitting of
the two-point functions and the angular momentum iden-
tification. The spectrum results are extrapolated in the
light-quark masses to obtain the final results in Sec. V.
An additional section (Sec. VI) is devoted to investigating
the dependence of the bbb energy splittings on the various
operators in the NRQCD action.

II. CONSTRUCTION OF BARYON
INTERPOLATING OPERATORS

In this section we construct interpolating operators, �,
that give access to bbb states up to J ¼ 7

2 . The method is

taken from Ref. [33], but is described again in the follow-
ing specifically for the case needed here, where all three
quark flavors are equal and only two-component Pauli
spinors are used. Going through the derivation of the
interpolating operators also gives some insight into the
structure of the bbb states extracted in the numerical part
of the calculation. However, it is important to remember
that the spectrum calculated here is that of the (lattice)
QCDþ NRQCD Hamiltonian: HQCDjni ¼ Enjni. The in-

terpolating operators determine only the overlap factors
hnj�j0i, not the energies En. For the numerical calculation
it is nevertheless advantageous to construct operators that
have large overlaps only with selected bbb states, to get
good statistical precision for the energy levels and identify
their angular momentum J.

A key feature of the approach from Ref. [33] is the initial
construction of operators with definite quantum numbers J
and m according to the continuum rotational symmetry
(Sec. II A). This is then followed by the subduction, where
linear combinations of the different m components at a
given J are formed such that these transform irreducibly
under the lattice rotational symmetries (Sec. II B). The
numerical calculations demonstrate that the rotational
symmetry breaking is very weak, and operators subduced
from continuum operators with different values of J retain
an approximate orthogonality even if they fall in the same
irreducible representation of the octahedral group. This
feature dramatically simplifies the angular momentum
identification for the extracted energy levels.

Following the group-theoretical operator construction,
Sec. II C then describes the initial smearing of the quark
fields and the calculation of the baryon two-point functions
on the lattice.

A. Operators with definite continuum J

In all baryon operators, the colors of the three quarks are
combined into a singlet using the totally antisymmetric
color wave function �abc. In the case considered here, the
three quarks have equal flavor. Therefore, to satisfy the Pauli
principle, the product of the spin and spatial wave functions
must be totally symmetric. The spatial structure is obtained
by applying up to two derivative operators to Gaussian-
smeared quark fields. The derivatives are combined to a

definite total orbital angular momentum L and a definite
permutation symmetry. Similarly, the spins of the three
quarks are combined to a definite total spin S and definite
permutation symmetry. Finally, the derivative and spin wave
functions obtained in these two separate steps are combined
to obtain baryon operators with a definite total angular
momentum J and the desired total symmetry of the product
of the spin and spatial wave functions. Note that L and S are
not conserved quantum numbers and are only used to label
the structure of the interpolating operators.
We begin by combining the three quark fields to definite

total spin S. Because NRQCD is used for the heavy quarks,

there are only two spin components, denoted by ~c " and ~c #.
The color indices are omitted here, but remain uncon-
tracted at this stage (the contraction with �abc is only
performed after the gauge-covariant derivatives have
been applied). The S ¼ 3

2 combinations are given by

OSð32;þ3
2Þ ¼ ~c " ~c " ~c ";

OSð32;þ1
2Þ ¼

1ffiffiffi
3

p ð ~c " ~c " ~c # þ ~c " ~c # ~c " þ ~c # ~c " ~c "Þ;

OSð32;�1
2Þ ¼

1ffiffiffi
3

p ð ~c # ~c # ~c " þ ~c # ~c " ~c # þ ~c " ~c # ~c #Þ;

OSð32;�3
2Þ ¼ ~c # ~c # ~c #;

(1)

where the subscript S indicates the total symmetry
under permutations. For S ¼ 1

2 , one can construct both

mixed-symmetric (MS) and mixed-antisymmetric (MA)
combinations:

OMSð12;þ1
2Þ ¼

1ffiffiffi
6

p ð ~c " ~c # ~c " þ ~c # ~c " ~c " � 2 ~c " ~c " ~c #Þ;

OMSð12;�1
2Þ ¼ � 1ffiffiffi

6
p ð ~c # ~c " ~c # þ ~c " ~c # ~c # � 2 ~c # ~c # ~c "Þ;

(2)

OMAð12;þ1
2Þ ¼

1ffiffiffi
2

p ð ~c " ~c # ~c " � ~c # ~c " ~c "Þ;

OMAð12;�1
2Þ ¼ � 1ffiffiffi

2
p ð ~c # ~c " ~c # � ~c " ~c # ~c #Þ:

(3)

Next, we come to the derivatives. A single derivative is an
L ¼ 1 object, with m components given by

D�1 ¼ � i

2
ðDx � iDyÞ; D0 ¼ � iffiffiffi

2
p Dz: (4)

Recall that in this section we work in continuous space;
lattice derivatives will be defined in Sec. II C. In the

following, we use the notation DðkÞ
m for a derivative acting

on the kth quark in the baryon operator. As in Ref. [33], we
define the following combinations with definite permuta-
tion symmetry:
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D½1�
MSð1; mÞ ¼ 1ffiffiffi

6
p ð2Dð3Þ

m �Dð1Þ
m �Dð2Þ

m Þ;

D½1�
MAð1; mÞ ¼ 1ffiffiffi

2
p ðDð1Þ

m �Dð2Þ
m Þ:

(5)

(No totally antisymmetric combination exists, and
the totally symmetric combination vanishes at zero

momentum.) Using the Clebsch-Gordan coefficients
hL;mj1; m1; 1; m2i, we can combine two single-derivative
operators of the form (5) into double-derivative operators
with definite total L and definite permutation symmetry as
follows [33]:

D½2�
S ðL;mÞ ¼ 1ffiffiffi

2
p X

m1;m2

hL;mj1; m1; 1; m2iðþD½1�
MSð1; m1ÞD½1�

MSð1; m2Þ þD½1�
MAð1; m1ÞD½1�

MAð1; m2ÞÞ;

D½2�
MSðL;mÞ ¼ 1ffiffiffi

2
p X

m1;m2

hL;mj1; m1; 1; m2ið�D½1�
MSð1; m1ÞD½1�

MSð1; m2Þ þD½1�
MAð1; m1ÞD½1�

MAð1; m2ÞÞ;

D½2�
MAðL;mÞ ¼ 1ffiffiffi

2
p X

m1;m2

hL;mj1; m1; 1; m2iðþD½1�
MSð1; m1ÞD½1�

MAð1; m2Þ þD½1�
MAð1; m1ÞD½1�

MSð1; m2ÞÞ;

D½2�
A ð1; mÞ ¼ 1ffiffiffi

2
p X

m1;m2

h1; mj1; m1; 1; m2iðþD½1�
MSð1; m1ÞD½1�

MAð1; m2Þ �D½1�
MAð1; m1ÞD½1�

MSð1; m2ÞÞ:

(6)

The first three of the above combinations can give either L ¼ 0 or L ¼ 2, while the last combination is restricted
to L ¼ 1.

Now we can combine the spin and spatial wave functions, distinguishing the cases of zero, one, and two derivatives.
Without derivatives, the requirement of total symmetry restricts the spin to S ¼ 3

2 . Since L ¼ 0, we only get J ¼ 3
2 in this

case:

½OSð32Þ�J¼3=2
m ¼ OSð32; mÞ: (7)

In one-derivative baryon operators, the derivative part, Eq. (5), always has mixed symmetry. Therefore, to get a totally
symmetric combination, the spin part must also have mixed symmetry, and hence S ¼ 1

2 . Because the derivative has L ¼ 1,
we can combine L and S to the total angular momenta J ¼ 1

2 and J ¼ 3
2 :

½D½1�
M ð1ÞOMð12Þ�J¼1=2;3=2

m ¼ 1ffiffiffi
2

p X
m1;m2

hJ;mj1; m1;
1
2; m2iðD½1�

MSð1; m1ÞOMSð12; m2Þ þD½1�
MAð1; m1ÞOMAð12; m2ÞÞ: (8)

Finally, we consider the double-derivative operators. Because no totally antisymmetric spin combinations exist, the totally
antisymmetric derivative combination in the last line of Eq. (6) is excluded, and the two derivatives can only combine to
L ¼ 0 or L ¼ 2. In each case, one can have S ¼ 1

2 with mixed symmetry or S ¼ 3
2 with total symmetry. Thus, one obtains

the following combinations:

½D½2�
S ð0ÞOSð32Þ�J¼3=2

m ¼ D½2�
S ð0; 0ÞOSð32; mÞ;

½D½2�
M ð0ÞOMð12Þ�J¼1=2

m ¼ 1ffiffiffi
2

p ðD½2�
MSð0; 0ÞOMSð12; mÞ þD½2�

MAð0; 0ÞOMAð12; mÞÞ;

½D½2�
M ð2ÞOMð12Þ�J¼3=2;5=2

m ¼ 1ffiffiffi
2

p X
m1;m2

hJ;mj2; m1;
1
2; m2iðD½2�

MSð2; m1ÞOMSð12; m2Þ þD½2�
MAð2; m1ÞOMAð12; mÞÞ;

½D½2�
S ð2ÞOSð32Þ�J¼1=2;3=2;5=2;7=2

m ¼ X
m1;m2

hJ;mj2; m1;
3
2; m2iD½2�

S ð2; m1ÞOSð32; m2Þ: (9)

Note that the combination with D½2�
S ð0; 0Þ, which corre-

sponds to the spatial Laplacian, was excluded in
Ref. [33] with the argument that it vanishes at zero momen-
tum. However, this is not the case for the method of smearing
the quark fields and constructing the two-point functions

described in Sec. IIC. In fact, the operator

½D½2�
S ð0ÞOSð32Þ�J¼3=2

m has a good overlap with the first radially

excited J ¼ 3
2 state, and including this operator in the basis

significantly improves the extraction of this energy level.
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B. Subduction to irreducible representations of the
double cover of the octahedral group

In the previous section, we constructed operators ½��Jm
that transform under rotations like the basis vectors jJ;mi of
irreducible representations of SUð2Þ. The group SUð2Þ
is the double cover of the continuum three-dimensional rota-
tion group SOð3Þ. On a cubic lattice, the rotational symmetry
is reduced to the discrete group 2O, the double cover of the
octahedral group O. The group 2O, which is obtained fromO
by adding a negative identity for �2� rotations, has 48
elements in eight conjugacy classes. Correspondingly, 2O
has eight irreducible representations denoted as A1, A2, E,
T1, T2, G1, G2, H (see, for example, Ref. [41]). Their
dimensions are 1, 1, 2, 3, 3, 2, 2, 4, respectively. Starting
from an operator ½��Jm, it is possible to form suitable linear
combinations of its different m components, so that these
linear combinations transform in irreducible representations,
�, of the double-cover octahedral group:

½��Jn�;r ¼
X
m

SJ;m
n�;r½��Jm: (10)

This process is referred to as reduction or subduction [33,41],

and the coefficientsSJ;m
n�;r form the subductionmatrices.Here,

n� denotes the nth occurrence of an irrep � of 2O, and r ¼
1; . . . ; dimð�Þ denotes its row [likem denotes the row for the
SUð2Þ irrep]. For each value of J, only selected irreps of 2O
appear in the subduction, such that the sum of their dimen-
sions equals 2J þ 1 [the dimension of the original SUð2Þ
irrep J]. This is indicated in Table I. For integer values of J,
only the irreps A1, A2, E, T1, and T2 appear. Conversely, for
half-integer J, only the irrepsG1,G2, andH occur. Since we
are considering baryons,wewill only be concernedwith these
three irreps in the remainder of the paper. The subduction
matrices for ðJ ¼ 1

2Þ ! G1 and ðJ ¼ 3
2Þ ! H are simply the

2� 2 and 4� 4 identity matrices, so that, for example,

½��1=2G1;1
¼ ½��1=2þ1=2 and ½��1=2G1;2

¼ ½��1=2�1=2. The subduction

matrices for J ¼ 5
2 and J ¼ 7

2 can be found in Ref. [33].

So far we have only discussed the rotational symmetry.
Additionally, we can classify the operators according to

their transformation properties under space inversion,
which remains an exact symmetry on the lattice. Then all
of the irreducible representations come in parity-even and
parity-odd versions, as indicated by subscripts g (gerade)
and u (ungerade): A1g; . . . ; T2g, G1g, G2g, Hg, and

A1u; . . . ; T2u, G1u, G2u, Hu. In this work, the baryon
operators are constructed from two-component NRQCD
spinors, and therefore the parity of an operator is deter-
mined entirely by the number of derivatives it contains: an
even number of derivatives corresponds to even parity and
an odd number of derivatives corresponds to odd parity.
The 11 different baryon operators constructed in Eqs. (7)

–(9) subduce to seven operators in the Hg irrep, three

operators each in the G1g and G2g irreps, and one operator

each in the G1u and Hu irreps. This set of operators is
summarized in Table II.

C. Computation of two-point functions on the lattice

The group-theoretical construction of baryon operators
through subduction was performed here in the same way as
done for light baryons in Ref. [33]. However, the method
for smearing the quark fields and computing the two-point
functions in terms of quark propagators differs from that
used in Ref. [33]. Instead of distillation [42], here the more
traditional approach starting from Gaussian-smeared point
sources, as in Ref. [43], is chosen. This has the advantage
over distillation that the quark smearing width can be made
very narrow without increasing the computational cost. A
narrow smearing width is needed to get a good overlap
with the physical bbb states, which are expected to be very
small objects as a consequence of the large b-quark mass.

In the approach used here, the smeared b-quark fields ~c
entering in Eqs. (1)–(3) are defined in terms of the un-
smeared quark fields c through

TABLE I. Subduction of SUð2Þ irreps to 2O irreps, up to J ¼ 9
2

(from Ref. [41]).

J Subduction

0 A1

1=2 G1

1 T1

3=2 H
2 Eþ T2

5=2 G2 þH
3 A2 þ T1 þ T2

7=2 G1 þG2 þH
4 A1 þ Eþ T1 þ T2

9=2 G1 þ 1H þ 2H

TABLE II. Interpolating operators, named according to their
parity (g: þ; u: �) and irreducible representation of 2O. The
superscript labels the different operators within a given irrep and
parity.

Operator(s) Structure �½DðLÞOðSÞ�J
Hð1Þ

g ½OSð32Þ�J¼3=2

Gð1Þ
1u ½D½1�

M ð1ÞOMð12Þ�J¼1=2

Hð1Þ
u ½D½1�

M ð1ÞOMð12Þ�J¼3=2

Hð2Þ
g ½D½2�

S ð0ÞOSð32Þ�J¼3=2

Gð1Þ
1g ½D½2�

M ð0ÞOMð12Þ�J¼1=2

Gð2Þ
1g ½D½2�

S ð2ÞOSð32Þ�J¼1=2

Hð3Þ
g ½D½2�

S ð2ÞOSð32Þ�J¼3=2

Hð4Þ
g , Gð1Þ

2g ½D½2�
S ð2ÞOSð32Þ�J¼5=2

Hð5Þ
g , Gð3Þ

1g , G
ð2Þ
2g ½D½2�

S ð2ÞOSð32Þ�J¼7=2

Hð6Þ
g ½D½2�

M ð2ÞOMð12Þ�J¼3=2

Hð7Þ
g , Gð3Þ

2g ½D½2�
M ð2ÞOMð12Þ�J¼5=2
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~c ¼
�
1þ r2S

2nS
�ð2Þ

�
nS
c ; (11)

where �ð2Þ is a three-dimensional gauge-covariant lattice
Laplace operator,

�ð2Þc ðx; tÞ ¼ � 1

a2
X3
j¼1

ð ~Ujðx; tÞc ðxþ aĵ; tÞ � 2c ðx; tÞ

þ ~U�jðx; tÞc ðx� aĵ; tÞÞ: (12)

In this work, a smearing radius of rS � 0:14 fm is used in
Eq. (11). The gauge-covariant derivatives in the baryon
operators then act on these smeared quark fields. The
continuous derivatives Dj used in Sec. II A are replaced

by lattice versions rj, which are defined as

rj
~c ðx; tÞ ¼ 1

2a
ð ~Ujðx; tÞ ~c ðxþ aĵ; tÞ

� ~U�jðx; tÞ ~c ðx� aĵ; tÞÞ: (13)

The tilde on the gauge links in Eqs. (12) and (13) indicates
that these are also smeared, using the procedure of
Ref. [44]. The gauge link smearing in the hadron interpo-
lating fields is performed to reduce statistical noise [43].
The baryon operators constructed in the previous two
sections contain quark fields with up to two derivatives.

It is convenient to introduce new objects ~c i, where i labels
all the required 13 derivative combinations:

~c 1 ¼ ~c ;

~c 2 ¼ rx
~c ;

~c 3 ¼ ry
~c ;

~c 4 ¼ rz
~c ;

~c 5 ¼ rxrx
~c ;

~c 6 ¼ ryrx
~c ;

..

.

~c 13 ¼ rzrz
~c : (14)

In addition to the derivative index i ¼ 1; . . . ; 13, these

fields ~c i ¼ ð ~c a�iÞ have a color index a ¼ 1, 2, 3 and a
spinor index � ¼ 1, 2 ( ¼" , # ). Then, all baryon interpo-
lating operators used here have the form

��ðx; tÞ ¼ ��i�j�k�abc ~c a�iðx; tÞ ~c b�jðx; tÞ ~c c�kðx; tÞ;
(15)

where ��i�j�k is the set of complex-valued coefficients

from Sec. II B for each operator. The two-point function
at zero momentum, allowing different operators �� and
��0 at sink and source, is then defined as

C�;�0 ðt� t0Þ ¼ X
x

h��ðx; tÞ�y
�0 ðx0; t0Þi

¼ X
x

��i�j�k�abc�
0�
�� �i �� �j �� �k

� �a �b �ch ~c a�iðx; tÞ

� ~c b�jðx; tÞ ~c c�kðx; tÞ ~c y
�a �� �i

ðx0; t0Þ
� ~c y

�b �� �j
ðx0; t0Þ ~c y

�c �� �k
ðx0; t0Þi; (16)

where the brackets denote the Euclidean path integral over
the gauge fields and fermions, weighted with e�S. The path
integral over the fermions can be performed explicitly,
giving heavy-quark propagators and determinants of the
Dirac operators for all quark flavors. Following Ref. [43],
we define three-quark propagators (for a given gauge field
U) that have been color contracted and summed over x:

~Gð3Þ
�i �� �i �j �� �j �k �� �k

ðt; t0; x0Þ ¼ X
x

�abc� �a �b �c
~Ga�i �a �� �iðx; t; x0; t0Þ

� ~Gb�j �b �� �jðx; t; x0; t0Þ
� ~Gc�k �c �� �kðx; t; x0; t0Þ; (17)

where ~Ga�i �a �� �iðx; t; x0; t0Þ denotes a heavy-quark propaga-
tor with smearing and, depending on i and �i, derivatives at
the source and sink. Performing the fermionic path integral
in Eq. (16) gives six contractions because all three heavy-
quark flavors are equal. Using the antisymmetry of the
epsilon tensor, one obtains

C�;�0 ðt� t0Þ ¼ ��i�j�k�
0�
�� �i �� �j �� �k

h ~Gð3Þ
�i �� �i �j �� �j �k �� �k

ðt; t0; x0Þ þ ~Gð3Þ
�i �� �j �j �� �k �k �� �i

ðt; t0; x0Þ þ ~Gð3Þ
�i �� �k�j �� �i �k �� �j

ðt; t0; x0Þ
þ ~Gð3Þ

�i �� �j �j �� �i �k �� �k
ðt; t0; x0Þ þ ~Gð3Þ

�i �� �k�j �� �j �k �� �i
ðt; t0; x0Þ þ ~Gð3Þ

�i �� �i �j �� �k�k �� �j
ðt; t0; x0ÞiU: (18)

Here, h. . .iU denotes the path integral over the gauge
fields U only, where the weighting factor is given by
e�Sgauge � ðfermion determinantsÞ.

In the numerical calculations, performing all the multi-
plications in the three-quark propagator (17) is expensive,
and it is important to use symmetries to reduce the number
of operations needed. Defining multi-indices I ¼ ð�i �� �iÞ,
J ¼ ð�j �� �jÞ, and K ¼ ð�k �� �kÞ, one finds that ~Gð3Þ

IJK is
totally symmetric in I, J, K. Furthermore, since the baryon
operators constructed in the previous two sections contain
at most two derivatives total, only those components of
~Gð3Þ
�i �� �i �j �� �j �k �� �k

with

nDðiÞ þ nDðjÞ þ nDðkÞ 	 2;

nDð�iÞ þ nDð �jÞ þ nDð �kÞ 	 2
(19)

are needed [nDðiÞ denotes the number of derivatives asso-
ciated with the index i; see Eq. (14)].

III. LATTICE ACTIONS AND PARAMETERS

The path integral over the gauge fields U in Eq. (18) is
performed by averaging over samples of lattice gauge-field
configurations. The configurations used here have been
generated by the RBC/UKQCD Collaboration [37] and
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include dynamical u, d, and s quarks, with mu ¼ md.
These quarks were implemented with a domain-wall action
[38–40], which is a five-dimensional action that leads to
an approximate lattice chiral symmetry for the four-
dimensional theory. This chiral symmetry becomes exact
when the length of the auxiliary fifth dimension is taken to
infinity. For the gauge action, the Iwasaki discretization
[45,46] is used (the gauge fields are four dimensional, i.e.
constant in the five-direction). The domain-wall formalism
requires additional Pauli-Villars fields to cancel bulk
modes [39,47], so that the gauge fields U are distributed
with probability density proportional to

det½KDWðU;aM5; amu;dÞ�2 det½KDWðU; aM5; amsÞ�
det½KDWðU; aM5; 1Þ�3

� e�Sgauge½U�; (20)

where KDWðU;aM5; amÞ is the five-dimensional domain-
wall operator with domain-wall heightM5 and quark mass
m. Seven ensembles of gauge fields with different parame-
ters are included in the analysis, as shown in Table III.
There are ensembles with two different values of the gauge
coupling � ¼ 6=g2, leading to lattice spacings of a �
0:11 fm and a � 0:085 fm. The number of lattice points
is chosen to be 243 � 64 and 323 � 64, respectively, so that
the spatial volume in physical units is equal to about
ð2:7 fmÞ3 in both cases.

The lattice NRQCD action for the b quarks has the same
form as in Ref. [36]. It can be written as

Sc ¼ a3
X
x;t

c yðx; tÞ½c ðx; tÞ � KðtÞc ðx; t� aÞ�; (21)

where c is a two-component spinor, and KðtÞ is given
by [35]

KðtÞ ¼
�
1� a�Hjt

2

��
1� aH0jt

2n

�
n
Uy

4 ðt� aÞ

�
�
1� aH0jt�a

2n

�
n
�
1� a�Hjt�a

2

�
; (22)

with the leading-order kinetic energy operator,

H0 ¼ ��ð2Þ

2mb

; (23)

and the following higher-order relativistic and discretiza-
tion corrections:

�H ¼ �c1
ð�ð2ÞÞ2
8m3

b

þ c2
ig

8m2
b

ðr 
 ~E� ~E 
 rÞ

� c3
g

8m2
b

� 
 ð~r� ~E� ~E� ~rÞ � c4
g

2mb

� 
 ~B

þ c5
a2�ð4Þ

24mb

� c6
að�ð2ÞÞ2
16nm2

b

� c7
g

8m3
b

f�ð2Þ;� 
 ~Bg

� c8
3g

64m4
b

f�ð2Þ;� 
 ð~r� ~E� ~E� ~rÞg

� c9
ig2

8m3
b

� 
 ð ~E� ~EÞ: (24)

Here,E andB are the chromoelectric and chromomagnetic
components of a lattice gluon field strength tensor. Unlike
in the previous sections, the tilde appearing on some of the
quantities in Eq. (24) does not denote smearing; instead it
denotes improvement corrections which reduce discretiza-
tion errors [35]. The action is also tadpole improved [48],
with the values of the Landau gauge mean link u0L as given
in Table III. The heavy-quark masses in lattice units, amb,
are set to the physical values as determined for the same
gauge-field ensembles in Ref. [36].
In Eq. (24), the terms with matching coefficients c1, c2,

c3, and c4 are the relativistic corrections of order v4. The
terms with coefficients c5 and c6 are spatial and temporal
discretization improvements forH0. Finally, the terms with
coefficients c7, c8, and c9 are the spin-dependent order-v

6

terms. In principle, additional operators containing four (or
more) quark fields are introduced through gluon loops, but
these are not included here.
At tree level in the matching of NRQCD to QCD, the

coefficients ci in Eq. (24) are all equal to 1. Because the
terms in �H are suppressed relative to H0 by at least one
power of v2, using the tree-level values for ci already

TABLE III. Summary of lattice parameters. The coupling in the Iwasaki gauge action is given as � ¼ 6=g2, and amu;d, ams are the
bare masses of the domain-wall sea quarks. The parameters amb, u0L, c3, and c4 enter in the NRQCD action for the b quarks. The
lattice spacings a were computed in Ref. [36]. The molecular dynamics (MD) range specifies the range of the gauge-field generation
Markov chain [37] for which ‘‘measurements’’ are performed. The measurements are separated by the given step size in MD time and
are done for nsrc different source locations [ðx0; t0Þ in Eq. (16)] on each gauge-field configuration.

L3 � T � amu;d ams amb u0L c3 c4 MD range, step nsrc a (fm) m� (GeV)

243 � 64 2.13 0.005 0.04 2.487 0.8439 1.196 1.168 900–8660, 10 32 0.1119(17) 0.3377(54)

243 � 64 2.13 0.01 0.04 2.522 0.8439 1.196 1.168 1480–8520, 10 32 0.1139(19) 0.4194(70)

243 � 64 2.13 0.02 0.04 2.622 0.8433 1.196 1.168 1800–3600, 10 32 0.1177(29) 0.541(14)

243 � 64 2.13 0.03 0.04 2.691 0.8428 1.196 1.168 1280–3060, 10 32 0.1196(29) 0.641(15)

323 � 64 2.25 0.004 0.03 1.831 0.8609 1.175 1.113 580–6840, 10 24 0.0849(12) 0.2950(40)

323 � 64 2.25 0.006 0.03 1.829 0.8609 1.175 1.113 552–7632, 16 24 0.0848(17) 0.3529(69)

323 � 64 2.25 0.008 0.03 1.864 0.8608 1.175 1.113 540–5920, 10 24 0.0864(12) 0.3950(55)
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provides accuracy of order �sv
2 � 0:02 for the radial and

orbital energy splittings in the b �b and bbb systems.
However, spin splittings first arise through the operators
with coefficients c3 and c4, and therefore these two coef-
ficients are tuned nonperturbatively here. The tuning con-
dition used here is that, when calculated with the lattice
NRQCD action, the following two combinations of botto-
monium 1P energy levels agree with experiment:

� 2Eð�b0Þ � 3Eð�b1Þ þ 5Eð�b2Þ; (25)

� 2Eð�b0Þ þ 3Eð�b1Þ � Eð�b2Þ: (26)

As discussed in Ref. [49] and confirmed numerically in
Ref. [36], to a good approximation the combination (25) is
proportional to c3, while (26) is proportional to c24.
Table VII of Ref. [36] gives numerical results for (25) and
(26), computed with ci ¼ 1 for the same order-v6 NRQCD
action on the same gauge-field ensembles. Using these
results, one can then solve for c3 and c4 so that the
experimental values [50] for (25) and (26) are reproduced:

c3 ¼
(
1:196� 0:106; a � 0:11 fm

1:175� 0:084; a � 0:08 fm;

c4 ¼
(
1:168� 0:081; a � 0:11 fm

1:113� 0:053; a � 0:08 fm:

(27)

In the present work, the main calculations of the bbb
spectrum are performed directly at c3 and c4 set equal to
the central values in Eq. (27), and with c1 ¼ c2 ¼ c5 ¼
c6 ¼ c7 ¼ c8 ¼ c9 ¼ 1. The uncertainties in (27) are
mainly statistical, and the resulting uncertainties in the
bbb spectrum will be included in the final results (Sec. V).

IV. FITS OF THE TWO-POINT FUNCTIONS AND
ANGULAR MOMENTUM IDENTIFICATION

The two-point functions defined in Eq. (16) are labeled
by � and �0, which determine the baryon interpolating
operators at the sink and source, respectively. The two-
point functions vanish when � and �0 correspond to differ-
ent irreducible representations (irreps) of the double-cover
octahedral group, or when � and �0 correspond to different
rows of the same irrep. In the remaining cases of equal
irrep and equal row at source and sink, one can average
over the different rows. In the following, we use the

notation �ðiÞ
r for row r of the ith operator in irrep �,

according to Table II. Then the row-averaged two-point
functions are defined as

Cð�Þ
ij ðt� t0Þ ¼ 1

dimð�Þ
Xdimð�Þ

r¼1

C
�ðiÞ

r ;�ðjÞ
r
ðt� t0Þ: (28)

For the operators in Table II, one obtains a ð7� 7Þ
matrix of two-point functions in the Hg irrep, ð3� 3Þ
matrices in theG1g andG2g irreps, and ð1� 1Þ ‘‘matrices’’

in the Hu and G1u irreps. The magnitudes of the rescaled

two-point functions jCð�Þ
ij j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð�Þ
ii Cð�Þ

jj

q
at one time slice are

shown in Figs. 1–3, for the Hg, G1g, and G2g irreps,

respectively. The first important observation is that cross
correlations between operators subduced from continuum
operators that differ in at least one of the quantum numbers
L, S, or J are small. Note that J is an exactly conserved
quantum number in the continuum, but L and S are not.
The weak coupling between operators subduced from dif-
ferent J values indicates that rotational symmetry breaking
by the lattice is small. This has also been observed in
Ref. [33] for light baryons. On the other hand, the weak
coupling between operators subduced from common J
values but different L or S values is a new feature appear-
ing here. Because of the large mass of the b quarks,
the dynamics is approximately nonrelativistic, and the
spin-orbit coupling is suppressed, so that L and S are
approximately conserved. In fact, for the lattice spacings
considered here, the operator overlaps between different L
or S values appear to be smaller than that between different
J values. Furthermore, the overlaps between operators
subduced from different J values (for example, between

Hð3Þ
g and Hð5Þ

g , which are subduced from J ¼ 3
2 and J ¼ 7

2 ,

respectively) appear to be somewhat larger than what was
seen for light baryons in Ref. [33]. This may be a conse-
quence of the much smaller physical extent of the bbb
baryons [as modeled by the initial smearing width of rS �
0:14 fm in Eq. (11)], which makes the operators more
sensitive to the nonzero lattice spacing.
As can be seen in Fig. 1, there is a strong overlap

between the Hð1Þ
g and Hð2Þ

g operators, because both are
subduced from continuum operators with the common
quantum numbers L ¼ 0, S ¼ 3

2 , J ¼ 3
2 . All other cross

correlations, also in the G1g and G2g irreps (Figs. 2 and 3)

are small, because there is suppression as a consequence of
different J, L, or S.
Further information can be gained by looking at the

lattice-spacing dependence of the operator overlaps. In
each of the figures, the left plot shows data from a �
0:11 fm, while the right plot shows data from a �
0:08 fm. It can be seen that the cross correlations between
operators subduced from different continuum J are smaller
at the finer lattice spacing, demonstrating the improvement
of rotational symmetry as a is reduced. On the other hand,

the overlaps betweenHð3Þ
g andHð1Þ

g , as well as betweenHð3Þ
g

and Hð2Þ
g , are not smaller at the finer lattice spacing. In that

case, the operators are all subduced from the same Jð¼ 3
2Þ,

and one does not expect the cross correlations to vanish in
the continuum limit.
In this work, the matrix two-point functions in each irrep

� were fitted directly using the form

Cð�Þ
ij ðt� t0Þ ¼ XN

n¼1

Að�Þ
n;i A

ð�Þ
n;j e

�Eð�Þ
n ðt�t0Þ: (29)
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The number of exponentials was chosen to be equal to the
dimension of the matrix, i.e. equal to the number of inter-
polating operators for each irrep: N ¼ 7 for Hg, N ¼ 3 for

G1g and G2g, and N ¼ 1 for Hu and G1u. Of course, the

complete spectral decomposition of the two-point func-
tions also contains an infinite number of higher-energy
exponentials. Therefore, only the data with t� t0 � tmin

with sufficiently large tmin were included in the fit, so the
contributions from these higher states are negligible. The
dependence of the results on tmin will be discussed later.

The fits performed here fully take into account the
statistical correlations between all data points. The dimen-
sion of the data correlation matrix for an ðN � NÞmatrix fit
is equal to NtN

2, where Nt is the number of time slices
included in the fit (Nt ¼ tmax=a� tmin=aþ 1). The defini-
tion of �2 contains the inverse of this data correlation
matrix, and one has to make sure that the number of
measurements used to estimate the data correlation matrix
is much larger than its dimension. Because the number of
measurements was of order nsrc � ncfg � 104 for each

ensemble, these large, fully correlated matrix fits were
possible here (for sufficiently small Nt). In order to reduce
the dimension of the data correlation matrix to NtNðN þ
1Þ=2 and thereby allow slightly larger Nt, the symmetry of

the data in i, j (which is exact for infinite statistics) was
used. The data for the two-point functions were first sym-
metrized explicitly measurement by measurement, and
then the fits using Eq. (29) were performed only for i � j.

Within each irrep �, the operators �ðiÞ in Table II are
labeled by i such that they are ordered by the energy of the
state with which they have the strongest overlap (this
ordering was not known a priori and was only assigned
after some initial fits). For each irrep �, the amplitudes in
Eq. (29) are then rewritten as follows:

Að�Þ
n;i ¼

8<
:Að�Þ

i for n ¼ i

Bð�Þ
n;i A

ð�Þ
i for n � i;

(30)

using the new parameters Að�Þ
i and Bð�Þ

n;i instead of Að�Þ
n;i in

the fits. The parameters Bð�Þ
n;i then describe the overlaps of

the operator �ðiÞ with the other states n � i, relative to the
state with n ¼ i.

Furthermore, the energies Eð�Þ
n in Eq. (29) were rewrit-

ten for n > 1 as

Eð�Þ
n ¼ Eð�Þ

1 þ �ð�Þ
1 þ . . .þ �ð�Þ

n�1; with

�ð�Þ
n ¼ Eð�Þ

nþ1 � Eð�Þ
n ;

(31)

FIG. 1 (color online). Visualization of rescaled matrix two-point functions jCijj=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
in the Hg irreducible representation, at one

time slice. Off-diagonal entries larger than 0.01 are also given numerically (the i ¼ 1, j ¼ 2 entry is 0.98). The values of L, S, and J

from which each operator HðiÞ
g was subduced are indicated. Left plot: a � 0:11 fm, amu;d ¼ 0:005, ðt� t0Þ=a ¼ 5. Right plot: a �

0:08 fm, amu;d ¼ 0:004, ðt� t0Þ=a ¼ 6.

FIG. 2 (color online). Like Fig. 1, but for the G1g irreducible
representation.

FIG. 3 (color online). Like Fig. 1, but for the G2g irreducible
representation.

STEFAN MEINEL PHYSICAL REVIEW D 85, 114510 (2012)

114510-8



using the ground-state energy Eð�Þ
1 and the energy split-

tings �ð�Þ
1 ; . . . ; �ð�Þ

N�1 (all in units of 1=a) as the actual fit

parameters. When computing Eð�Þ
n (and other combina-

tions of energy levels) from the fit results for Eð�Þ
1 and

�ð�Þ
1 ; . . . ; �ð�Þ

N�1, the uncertainties were added in a fully

covariant way, using the parameter covariance matrix ob-
tained from the second derivatives of �2.

Following Ref. [33], the spectral overlaps Að�Þ
n;i are used

here to assign values of the continuum angular momentum

J to each energy level Eð�Þ
n . Examples of fitted energies

Eð�Þ
n , together with the relative overlap factors Að�Þ

n;i =A
ð�Þ
i ,

are shown in Fig. 4 for the Hg, G1g, and G2g irreps (in the

cases of the G1u and Hu irreps, there is only one operator

each, subduced trivially from J ¼ 1
2 and J ¼ 3

2 , respec-

tively). The angular momentum identification proceeds as

follows: for each energy level Eð�Þ
n , the operator �ðiÞ with

the largest relative overlap factor Að�Þ
n;i =A

ð�Þ
i is determined.

The value of J from which this operator was subduced is
then assigned to this energy level. As can be seen in Fig. 4,
no ambiguity arises here. Notice that the two J ¼ 5

2 levels

appearing in the Hg irrep also show up in the G2g irrep,

with nearly identical energies. Similarly, the J ¼ 7
2 level

appears in all three irreps Hg, G1g, and G2g, again with

nearly identical energies. For these levels, the absolute
overlap factors were also found to be consistent across
the different irreps, confirming the assignment of J.
Because of the strong statistical correlations across ir-

reps, the tiny splittings of the J ¼ 5
2 and J ¼ 7

2 levels into

the different lattice irreps, which are caused by rotational
symmetry breaking, can be computed with smaller uncer-
tainties than the individual energies of these levels. To this
end, simultaneous fits of the two-point functions in theHg,

G1g, and G2g irreps were performed, where a global corre-

lated �2 was formed but all fit parameters remained inde-
pendent for each irrep. The results for the rotational-
symmetry-breaking-induced energy splittings, converted

FIG. 4 (color online). Fitted energies Eð�Þ
n (in lattice units; from bottom to top: n ¼ 1; . . . ; N), together with histograms of the

corresponding relative overlap factors Að�Þ
n;i =A

ð�Þ
i [see Eqs. (29) and (30)]. The fits for the three different irreps were performed

independently. For each i, the continuum angular momentum J from which the operator �ðiÞ was subduced is given at the bottom.
These values of J are also indicated by the colors in the histograms (red: J ¼ 1

2 ; green: J ¼ 3
2 ; blue: J ¼ 5

2 ; orange: J ¼ 7
2 ). The data

shown here are from the ensemble with a � 0:08 fm and amu;d ¼ 0:004; the fits have tmin=a ¼ 6.
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to MeV, are given in Table IV for two gauge-field ensem-
bles. Up to some statistical fluctuations, the splittings are
smaller at a � 0:08 fm compared to a � 0:11 fm, consis-
tent with the discretization errors proportional to �sa

2 that
are expected for the improved lattice NRQCD action used
here. Along with the behavior of the off-diagonal matrix
elements that was discussed at the beginning of this sec-
tion, the results shown in Table IV provide another dem-
onstration of the improvement of rotational symmetry
when the lattice spacing a is reduced.

Finally, to get the best possible estimates of the contin-
uum energy levels, new simultaneous fits of the two-point
functions in theHg,G1g, andG2g irreps were performed, in

which the fitted energies for the matching J ¼ 5
2 and J ¼ 7

2

levels in different irreps were forced to be equal:

E
ðHgÞ
4 ¼ E

ðG2gÞ
1 ; E

ðHgÞ
7 ¼ E

ðG2gÞ
3 ;

E
ðHgÞ
5 ¼ E

ðG1gÞ
3 ¼ E

ðG2gÞ
2 :

(32)

This was implemented by augmenting the �2 function of
the simultaneous fit in the following way:

�2 ! �2 þ ½EðHgÞ
4 � E

ðG2gÞ
1 �2=�2 þ ½EðHgÞ

7 � E
ðG2gÞ
3 �2=�2

þ ½EðHgÞ
5 � E

ðG1gÞ
3 �2=�2 þ ½EðG1gÞ

3 � E
ðG2gÞ
2 �2=�2;

(33)

where the energies Eð�Þ
n are expressed in terms of the actual

fit parameters as Eð�Þ
n ¼ Eð�Þ

1 þ �ð�Þ
1 þ . . .þ �ð�Þ

n�1. The

width � in Eq. (33) was chosen about 2 orders of magni-
tude smaller than the typical statistical uncertainty in the
energies. By minimizing the augmented �2, fit parameters
are returned that satisfy the conditions (32) up to the input
width �. These new fits still had �2=d:o:f � 1, because of
the smallness of the energy splittings between the different
irreps. Performing the simultaneous fit with the enforced
relations (32) also stabilizes the extraction of the very close

energy levels (such as E
ðHgÞ
6 and E

ðHgÞ
7 ) and makes the

spectral overlap factors more sharply peaked, as can be
seen in Fig. 5. Note that in this work no further constraints
beyond that of Eq. (33) were imposed on any of the fit
parameters.

These simultaneous fits, along with simple one-exponential
fits in the Hu and G1u irreps, yield 11 different bbb energy
levels. Having performed the angular momentum identifica-
tion, these levels can nowbe labeled by JP and a new subscript
counting the states in each JP channel by increasing energy:

E1ð12þÞ; E2ð12þÞ; E1ð32þÞ; E2ð32þÞ;
E3ð32þÞ; E4ð32þÞ; E1ð52þÞ; E2ð52þÞ;
E1ð72þÞ; E1ð12�Þ; E1ð32�Þ: (34)

Because NRQCD is used in this work, the extracted energies
do not include the rest masses of the three b quarks; i.e. they
are all shifted by a common amount that is not known with
sufficient precision. Therefore, only energy differences are
considered in the following.
The remaining point to be discussed in this section is the

choice of tmin, the starting time slice from which the fits are
performed. This parameter has to be chosen large enough
such that the contamination from higher-excited states,
which decay exponentially with t, is negligible. However,
tmin must not be made too large either, as the statistical
uncertainties increase with tmin and the fits eventually
become unstable. Figures 6 and 7 show the tmin dependence
of the set of ten independent energy splittings chosen here.
For the matrix two-point functions in the Hg, G1g, and G2g

irreps, the total number of time slices included in the fit,
Nt ¼ tmax=a� tmin=aþ 1, was held constant as tmin was
varied, to keep the dimension of the data correlation matrix
fixed at a manageable size (Nt ¼ 5, 8, 8 for the Hg, G1g,

G2g irreps, respectively).

As can be seen in Figs. 6 and 7, for the energy splittings
aE1ð32�Þ � aE1ð32þÞ, aE2ð32þÞ � aE1ð32þÞ, and aE1ð72þÞ �
aE1ð32þÞ, which are large energy differences between bbb

states of rather different spatial structure, the plateaus set in
later than for the other, smaller splittings, which mainly
constitute the fine and hyperfine structures. To extract the
best possible estimates for further analysis, at the coarse
lattice spacing the three large energy splittings were taken
from the fits with tmin=a ¼ 8 or tmin=a ¼ 7, while the other
splittings were taken from tmin=a ¼ 5. At the fine lattice
spacing, tmin=a ¼ 12 was selected for the three large

TABLE IV. Splitting of continuum energy levels with J > 3
2 into different irreducible repre-

sentations of the double-cover octahedral group. All results are in MeV. The data at a � 0:11 fm
are from the ensemble with amu;d ¼ 0:005, while the data at a � 0:08 fm are from the ensemble

with amu;d ¼ 0:004.

Continuum JP Splitting a � 0:11 fm a � 0:08 fm

5
2
þ E

ðHgÞ
4 � E

ðG2gÞ
1 5.8(2.0) 2.5(2.0)

5
2
þ E

ðG2gÞ
3 � E

ðHgÞ
7 0.70(44) 0.44(64)

7
2
þ E

ðG2gÞ
2 � E

ðG1gÞ
3 2.1(1.1) 1.6(1.4)

7
2
þ E

ðHgÞ
5 � E

ðG1gÞ
3 1.49(78) 0.38(79)

7
2
þ E

ðG2gÞ
2 � E

ðHgÞ
5 0.59(45) 1.24(72)
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splittings, and tmin=a ¼ 6 for all other splittings. Possible
remaining systematic uncertainties resulting from the
choice of tmin=a were estimated by computing the shift
in the energy splittings when reducing tmin=a from the
selected values by one unit. These shifts were added in
quadrature to the original statistical uncertainties, and the
resulting total fitting uncertainties are indicated by the
shaded bands in Figs. 6 and 7.

V. FINAL RESULTS FOR THE bbb SPECTRUM

In the previous section, ten bbb energy splittings were
computed for each of the seven different ensembles of
gauge fields. These results are given by the horizontal

bands in Figs. 6 and 7. The values of the light sea-quark
masses used in the generation of the gauge-field ensembles
correspond to pion masses that are larger than physical (see
Table III). The final step of the analysis is to perform
extrapolations of the bbb spectrum to the physical value
of the pion mass. These extrapolations are done here using
the same method that was used for the bottomonium spec-
trum in Ref. [36]. The light quarks influence the bbb
spectrum only through their vacuum-polarization effects,
and the dependence on mu;d is weak. Therefore, it is

sufficient to perform the extrapolations linearly in mu;d,

and hence linearly in m2
�.

The bbb energy splittings were first converted to MeV
using the values of the lattice spacings as given in Table III.

FIG. 5 (color online). Like Fig. 4, but for a coupled fit containing the Hg, G1g, and G2g irreps, where the equalities of common J ¼ 5
2

and J ¼ 7
2 energy levels are enforced: E

ðHgÞ
4 ¼ E

ðG2gÞ
1 , E

ðHgÞ
7 ¼ E

ðG2gÞ
3 , and E

ðHgÞ
5 ¼ E

ðG1gÞ
3 ¼ E

ðG2gÞ
2 .
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Then, coupled fits to the data for the two different values of
the gauge coupling, �1 ¼ 2:25 and �2 ¼ 2:13, were per-
formed using

Eðm2
�; �1Þ ¼ Eð0; �1Þ þ Am2

�;

Eðm2
�; �2Þ ¼ Eð0; �2Þ þ Am2

�;
(35)

where Eðm2
�; �Þ denotes a generic bbb energy splitting.

The ensembles with � ¼ �1 have a � 0:08 fm, while the
ensembles with � ¼ �2 have a � 0:11 fm. The free fit
parameters in Eq. (35) are Eð0; �1Þ, Eð0; �2Þ, and A. No
continuum extrapolation is performed here, because lattice
NRQCD is an effective field theory that requires a cutoff

a�1 & mb. The only assumption made here is that higher-
order effects proportional to terms like a2m2

� are negli-
gible, so the same parameter A can be used for both values
of �.
The fits to the data for the ten bbb energy splittings

using Eq. (35) are visualized in Fig. 8. Evaluating the fitted
functions for m� ¼ 138 MeV leads to the results given in
Table V. In addition to the ten independent energy split-
tings discussed so far, the table also gives some further
combinations for convenience, in particular, the energy
differences of all ten excited states to the ground state
E1ð32þÞ, and a result for the very small splitting E4ð32þÞ �
E2ð52þÞ that, as a consequence of the strong correlations,

FIG. 6 (color online). Dependence of the results for the bbb energy splittings on the start time slice tmin that is used in the fit. The
data shown here are for the ensembles with a � 0:11 fm, with the light-quark masses of amu;d ¼ 0:005, 0.01, 0.02, 0.03 (from left to

right). The shaded bands indicate the best possible estimates of the energy splittings.
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has smaller absolute uncertainties than the other splittings
involving the same levels.

As can be seen in Fig. 8 and Table V, the results for the
bbb spectrum show only a weak dependence on the lattice
spacing, which in most cases is not statistically significant.
The results at a � 0:08 fm and m� ¼ 138 MeV can be
quoted as the predicted values for the continuum bbb
spectrum, once the remaining systematic uncertainties
have been estimated. These estimates can be made using
information from Sec. VI about the dependence of the bbb
energy splittings on the couplings ci in the NRQCD action
[see Eq. (24)]. The systematic uncertainty is computed
individually for each energy splitting E, using the formula

�ðsystÞ
E ¼

��
@E

@c3

�
2
�2

c3 þ
�
@E

@c4

�
2
�2

c4 þ ð0:02ESIÞ2

þ ð0:07ðE� ESIÞÞ2
�
1=2

; (36)

which takes into account the varying contributions from
spin-dependent and spin-independent NRQCD interactions.
The first two terms in Eq. (36) correspond to the uncer-

tainty in E that results from the uncertainty in the tuning of
the NRQCD coefficients c3, and c4 [see Eq. (27)]. The
derivatives with respect to c3 and c4 are approximated
using discrete difference quotients formed from the results
in the last three columns of Table VI. To save computer

FIG. 7 (color online). Dependence of the results for the bbb energy splittings on the start time slice tmin that is used in the fit. The
data shown here are for the ensembles with a � 0:08 fm, with the light-quark masses of amu;d ¼ 0:004, 0.006, 0.008 (from left to

right). The shaded bands indicate the best possible estimates of the energy splittings.
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FIG. 8 (color online). Extrapolation of the bbb energy splittings to the physical pion mass. The fits are linear in m2
� and were done

simultaneously for the data at the two different lattice spacings. The data are plotted with closed symbols, and the extrapolated results
at m� ¼ 138 MeV are plotted with open symbols. The fitted functions and their 1-sigma uncertainty are given by the lines and the
shaded regions.
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time, the results in Table VI were obtained at the coarser
lattice spacing a � 0:11 fm. However, for the purpose of

estimating �
ðsystÞ
E , it is sufficient to approximate the deriva-

tives with respect to c3 and c4 at a � 0:08 fm as being equal

to those at a � 0:11 fm, and then setting �c3 ¼ 0:084 and

�c4 ¼ 0:053 according to Eq. (27) for a � 0:08 fm.

The third term in Eq. (36) describes the systematic
uncertainty in the spin-independent contribution to the

energy splitting. This contribution, ESI, is obtained by

setting c3 ¼ c4 ¼ c7 ¼ c8 ¼ c9 ¼ 0 in the NRQCD

action. Given the weak a dependence of the spectrum,

ESI can be taken from the second column of Table VI.

However, the estimate of a 2% systematic uncertainty is

specific to a � 0:08 fm. It includes the radiative, discreti-

zation, and relativistic errors, and is based on the discus-

sion of radial and orbital energy splittings for the same

lattice spacing in bottomonium [36]. The estimates of

uncertainties for bottomonium are also valid for triply

bottom baryons, since the energy and momentum scales

involved are the same (indeed, the results of Sec. VI con-

firm that the v2 expansion converges at a similar rate for

the bbb system as for bottomonium).
The last term in Eq. (36) describes the systematic un-

certainty in the spin-dependent contribution to the energy

splitting. This contribution can be isolated by computing
the difference ðE� ESIÞ, where E is the result from the full
NRQCD action. Because the leading spin-dependent cou-
plings c3 and c4 have been tuned nonperturbatively (and
their tuning uncertainty is already taken into account), and
because the spin-dependent order-v6 terms have been in-
cluded in the NRQCD action at tree level, the dominant
remaining sources of error for the spin splittings are dis-
cretization errors and the missing radiative corrections in
the v6 terms. Following the discussion of the bottomonium
fine and hyperfine splittings in Ref. [36], a systematic
uncertainty of 7% is assigned here to the spin-dependent
contributions at a � 0:08 fm. Again, the values of ðE�
ESIÞ can be taken from Table VI (the differences of the
results from columns six and two), because the spectrum
has a weak a dependence.
The final results for the bbb spectrum, with systematic

uncertainties computed using Eq. (36), are given in the last
column of Table V. The energy differences of the ten
excited states to the ground state �bbb are plotted in
Fig. 9. The results for the different energy levels are highly
correlated, and the small splittings between nearby states
can in fact be computed with much smaller absolute un-
certainties. These smaller energy splittings are given in the
lower part of Table V and are plotted in Fig. 10.

TABLE V. Energy splittings in MeV between various bbb states, extrapolated to the physical
pion mass. In the final results (last column), the central values and statistical/fitting/scale setting
uncertainties are taken from a � 0:08 fm, and estimates of the total systematic uncertainties
computed using Eq. (36) are given. The ground-state mass is equal to E1ð32þÞ ¼ 14371� 4�
11 MeV [24].

a � 0:11 fm a � 0:08 fm Final result

E1ð12þÞ � E1ð32þÞ 563(21) 567(14) 567� 14� 12

E2ð12þÞ � E1ð32þÞ 579(20) 582(13) 582� 13� 13

E2ð32þÞ � E1ð32þÞ 453(16) 469(11) 469� 11� 9

E3ð32þÞ � E1ð32þÞ 584(20) 587(13) 587� 13� 12

E4ð32þÞ � E1ð32þÞ 629(21) 634(14) 634� 14� 13

E1ð52þÞ � E1ð32þÞ 589(19) 593(13) 593� 13� 12

E2ð52þÞ � E1ð32þÞ 630(21) 636(14) 636� 14� 13

E1ð72þÞ � E1ð32þÞ 593(19) 598(12) 598� 12� 12

E1ð12�Þ � E1ð32þÞ 338.4(8.0) 335.3(5.8) 335:3� 5:8� 7:4

E1ð32�Þ � E1ð32þÞ 345.5(7.5) 343.0(5.5) 343:0� 5:5� 7:2

E1ð12þÞ � E1ð72þÞ �30:3ð2:0Þ �30:7ð1:4Þ �30:7� 1:4� 0:8

E2ð12þÞ � E1ð72þÞ �14:1ð1:4Þ �15:6ð1:1Þ �15:6� 1:1� 1:6

E3ð32þÞ � E1ð72þÞ �9:4ð1:1Þ �10:71ð85Þ �10:7� 0:9� 1:2

E4ð32þÞ � E1ð72þÞ 36.1(2.1) 36.2(1.4) 36:2� 1:4� 1:4

E1ð52þÞ � E1ð72þÞ �3:86ð69Þ �4:75ð50Þ �4:75� 0:50� 0:55

E2ð52þÞ � E1ð72þÞ 37.2(2.2) 38:2ð1:4Þ 38:2� 1:4� 1:1

E1ð12�Þ � E1ð32�Þ �7:02ð45Þ �7:72ð32Þ �7:72� 0:32� 0:90

E4ð32þÞ � E2ð52þÞ �1:63ð62Þ �2:06ð48Þ �2:06� 0:48� 0:59
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It is interesting to compare the QCD results obtained
here to the potential-model calculation of Ref. [8] (see
Fig. 5 therein). The numbers of states in the considered
energy region are in agreement, and the energy differences to
the ground state predicted by Ref. [8] are found to be within
10% of the QCD results. However, the potentials used in
Ref. [8] did not include any spin-orbit or tensor interactions,
so the results obtained there have the exact degeneracies
E2ð12þÞ ¼ E3ð32þÞ ¼ E1ð52þÞ ¼ E1ð72þÞ, E4ð32þÞ ¼ E2ð52þÞ,
and E1ð12�Þ ¼ E1ð32�Þ. As can be seen in Fig. 10, the QCD

calculation performed here is so precise that the spin-
dependent effects that lift these degeneracies are clearly
resolved. These effects will be discussed further in Sec. VI.

Reference [8] also calculated the higher-lying bbb spec-
trum, and these additional states were all found to be
separated by energy gaps of order 300 MeV from the states
considered here. Along with the plateaus observed in
Figs. 6 and 7, the large energy gaps found in Ref. [8]
provide further confidence that the contamination from
higher states in the fits of Sec. IV is negligible.

Remarkably, the three energy splittings E2ð12þÞ �
E1ð32þÞ, E1ð12�Þ � E1ð32þÞ, and E2ð32þÞ � E1ð32þÞ that

were computed in the early bag-model calculation of
Ref. [3] also agree with the results obtained here to
within 10%. On the other hand, the energy splittings cal-
culated recently using a quark model in Ref. [15] (see
Table 19 therein) are in dramatic disagreement with the
QCD results obtained here: by about a factor of 2 for the
larger splittings and by about a factor of 10 for the smaller
splittings.

VI. DEPENDENCE OF THE SPECTRUM ON THE
COEFFICIENTS IN THE NRQCD ACTION

In Sec. V, the bbb spectrum was computed with coef-
ficients ci in the lattice NRQCD action tuned such that the
effective field theory reproduces relativistic QCD. Table V
and Figs. 9 and 10 give the best possible results obtained
here for the bbb energy levels in the real world. However,
with lattice NRQCD, one can perform simulations for
arbitrary values of the coefficients ci. The ability to selec-
tively turn on and off the different terms in the NRQCD
action and compute the effect on the bbb energy levels can
be exploited to gain deeper insight into the interactions
between three heavy quarks.

TABLE VI. Dependence of the bbb spectrum on the coefficients ci in the NRQCD action [see Eq. (24)]. All results are given in
MeV. The data are from the ensemble with a � 0:11 fm and amu;d ¼ 0:005.

Coefficient(s)

c1, c2 0 1 1 1 1 1 1 1

c3 0 0 0 1.196 1.196 1.196 1.196 1

c4 0 0 1.168 0 1.168 1.168 1 1.168

c7, c8, c9 0 0 0 0 0 1 1 1

Splitting

E1ð12þÞ � E1ð32þÞ 592(12) 582(11) 546(15) 559(15) 545(15) 548(21) 551(15) 548(15)

E2ð12þÞ � E1ð32þÞ 617(11) 607(10) 570(14) 572(15) 557(15) 563(20) 566(14) 565(14)

E2ð32þÞ � E1ð32þÞ 467(11) 457(10) 454(12) 458.9(9.9) 454(12) 456(15) 457(12) 456(12)

E3ð32þÞ � E1ð32þÞ 617(11) 607(10) 571(14) 576(15) 563(14) 568(20) 570(14) 569(14)

E4ð32þÞ � E1ð32þÞ 661(12) 650(12) 614(15) 622(16) 606(15) 611(21) 614(15) 612(15)

E1ð52þÞ � E1ð32þÞ 617(11) 606(11) 570(14) 581(14) 570(14) 573(20) 576(14) 573(14)

E2ð52þÞ � E1ð32þÞ 662(12) 651(12) 610(15) 631(16) 610(15) 613(21) 617(15) 613(15)

E1ð72þÞ � E1ð32þÞ 617(11) 607(10) 568(13) 591(14) 575(13) 577(19) 580(13) 576(13)

E1ð12�Þ � E1ð32þÞ 358.6(6.8) 356.1(6.0) 330.3(6.0) 356.0(6.4) 333.7(6.0) 335.1(6.1) 339.3(6.2) 334.5(6.1)

E1ð32�Þ � E1ð32þÞ 358.6(6.8) 356.1(6.0) 343.3(6.4) 348.9(6.6) 339.4(6.3) 342.0(6.4) 344.5(6.5) 342.7(6.4)

E1ð12þÞ � E1ð72þÞ �25:6ð1:3Þ �24:8ð1:2Þ �22:6ð1:5Þ �31:7ð1:5Þ �29:8ð1:8Þ �28:7ð1:7Þ �29:1ð1:6Þ �27:5ð1:6Þ
E2ð12þÞ � E1ð72þÞ �0:023ð17Þ �0:017ð16Þ 1.4(1.0) �18:64ð99Þ �17:2ð1:3Þ �13:5ð1:1Þ �13:63ð95Þ �10:51ð98Þ
E3ð32þÞ � E1ð72þÞ �0:023ð17Þ �0:017ð16Þ 2.21(74) �15:60ð84Þ �11:7ð1:1Þ �8:94ð87Þ �9:51ð77Þ �6:67ð78Þ
E4ð32þÞ � E1ð72þÞ 44.0(1.6) 43.6(1.5) 45.3(2.1) 31.3(1.8) 31.5(1.8) 34.5(2.0) 34.5(2.0) 36.6(2.1)

E1ð52þÞ � E1ð72þÞ �0:80ð37Þ �0:77ð35Þ 1.28(44) �9:66ð54Þ �4:94ð66Þ �3:69ð54Þ �4:30ð48Þ �2:59ð48Þ
E2ð52þÞ � E1ð72þÞ 44.3(1.6) 43.9(1.5) 41.3(1.9) 40.3(2.2) 35.0(1.8) 36.5(1.9) 37.1(2.0) 37.4(1.9)

E1ð12�Þ � E1ð32�Þ 0 0 �12:97ð45Þ 7.05(23) �5:70ð35Þ �6:96ð35Þ �5:19ð28Þ �8:14ð37Þ
E4ð32þÞ � E2ð52þÞ �0:28ð15Þ �0:26ð14Þ 4.02(47) �9:00ð51Þ �3:50ð50Þ �2:06ð46Þ �2:62ð39Þ �0:78ð45Þ
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The numerical results of this section are summarized in
Table VI. Shown there are the values of the bbb energy
splittings computed for eight different choices of the coef-
ficients in the NRQCD action. The various terms in the
NRQCD action were already discussed in Sec. III, and their
coefficients ci were defined in Eq. (24). The calculations in
this section were done for a single gauge-field ensemble only
(a � 0:11 fm, amu;d ¼ 0:005), to save computer time. As

shown in Sec. V, the dependence of the bbb spectrum on a
and mu;d is weak, and therefore a single ensemble is suffi-

cient for the purpose of studying the ci dependence. In all
cases, the b quark mass and the Symanzik-improvement
coefficients in the NRQCD action remain unchanged
(amb ¼ 2:487, c5 ¼ c6 ¼ 1). The following discussion fo-
cuses on the energy regions near E1ð72þÞ and E1ð32�Þ, as this
is where all the spin-dependent level splittings are found.

FIG. 10 (color online). Final results for the bbb spectrum relative to E1ð72þÞ (left panel) and E1ð32�Þ (right panel), showing only the
states in the vicinity of these levels. The superimposed shaded regions show the statistical/fitting/scale setting uncertainty and the total
(including systematic) uncertainty, respectively. See the last column of Table V for the numerical values.

FIG. 9 (color online). Final results for the bbb spectrum relative to the ground state E1ð32þÞ (see the last column of Table V for the
numerical values). The superimposed shaded regions show the statistical/fitting/scale setting uncertainty and the total (including
systematic) uncertainty, respectively. The results are highly correlated, and the uncertainties for energy differences between nearby
states are in fact much smaller than suggested by this plot. See Fig. 10 for close-ups of the spectra near E1ð72þÞ and E1ð32�Þ, where
advantage is taken of the correlations by computing the energy differences relative to these levels.
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The energy splittings in the first column of Table VI
were computed with the order-v2 NRQCD action, which

contains only H0 ¼ � 1
2mb

�ð2Þ (and the associated lattice

discretization improvement terms with c5 and c6). Turning

on also the spin-independent order-v4 terms, �c1
1

8m3
b

�
ð�ð2ÞÞ2 and c2

ig
8m2

b

ðr 
 ~E� ~E 
 rÞ, gives the results in the

second column of Table VI. These results are plotted in

Fig. 11. In both cases, the action does not depend on the
heavy-quark spin, so L and S become separately conserved
quantum numbers, up to the small effects of rotational
symmetry breaking introduced by the lattice. In the
absence of rotational symmetry breaking, one would then
have the exact level degeneracies E2ð12þÞ ¼ E3ð32þÞ ¼
E1ð52þÞ ¼ E1ð72þÞ, E4ð32þÞ ¼ E2ð52þÞ, and E1ð12�Þ¼E1ð32�Þ.
The relations E1ð12�Þ ¼ E1ð32�Þ and E2ð12þÞ ¼ E3ð32þÞ

FIG. 11 (color online). Dependence of the spectrum near E1ð72þÞ and E1ð32�Þ on the coefficients ci in the NRQCD action (at
a � 0:11 fm, amu;d ¼ 0:005). Shown here is the case of the spin-independent order-v4 NRQCD action, obtained by setting c3 ¼
c4 ¼ c7 ¼ c8 ¼ c9 ¼ 0. In the absence of rotational symmetry breaking, this leads to the exact degeneracies E2ð12þÞ ¼ E3ð32þÞ ¼
E1ð52þÞ ¼ E1ð72þÞ, E4ð32þÞ ¼ E2ð52þÞ, and E1ð12�Þ ¼ E1ð32�Þ. On the lattice, the relations E1ð12�Þ ¼ E1ð32�Þ and E2ð12þÞ ¼ E3ð32þÞ are
still exact, but the degeneracies with J > 3

2 levels are only approximate.

FIG. 12 (color online). Dependence of the spectrum near E1ð72þÞ and E1ð32�Þ on the coefficients ci in the NRQCD action (at a �
0:11 fm, amu;d ¼ 0:005). Shown here is the case of the order-v4 NRQCD action, but with the coefficient of the operator � 
 ð~r�
~E� ~E� ~rÞ set to zero, so that the only remaining spin-dependent interaction is �c4

g
2mb

� 
 ~B.
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actually remain exact on the lattice, an observation that can
be related to the trivial subduction of these two J values
into lattice irreps (cf. Sec. II B). The degeneracies with
J > 3

2 are only approximate, but the splittings remain

very small. Note that the energies quoted here for the
higher-J levels were obtained by averaging over the
different irreps into which a continuum level splits [see
the discussion around Eq. (33); also see Table IV for
the size of the original splittings between the different
irreps].

Next, Fig. 12 shows the spectrum after additionally
turning on the leading interaction with the chromomag-
netic moment of the heavy quark:

� c4
g

2mb

� 
 ~B: (37)

This interaction causes small positive splittings ½E2ð12þÞ �
E1ð72þÞ�subtr ¼ 1:5ð1:0Þ MeV, ½E3ð32þÞ � E1ð72þÞ�subtr ¼
2:23ð74Þ MeV, ½E1ð52þÞ � E1ð72þÞ�subtr ¼ 2:05ð56Þ MeV,

and ½E4ð32þÞ � E2ð52þÞ�subtr ¼ 4:28ð49Þ MeV, where the

FIG. 13 (color online). Dependence of the spectrum near E1ð72þÞ and E1ð32�Þ on the coefficients ci in the NRQCD action (at a �
0:11 fm, amu;d ¼ 0:005). Shown here is the case of the order-v4 NRQCD action, but with the coefficient of the operator � 
 ~B set to

zero, so that the only remaining spin-dependent interaction is �c3
g

8m2
b

� 
 ð~r� ~E� ~E� ~rÞ.

FIG. 14 (color online). Dependence of the spectrum near E1ð72þÞ and E1ð32�Þ on the coefficients ci in the NRQCD action (at a �
0:11 fm, amu;d ¼ 0:005). Shown here is the case of the complete order-v4 NRQCD action.
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rotational-symmetry-breaking-induced splittings seen at
c4 ¼ 0 (second column of Table VI) have been subtracted.
The operator (37) also introduces a very significant split-
ting of the two odd-parity levels considered here: E1ð12�Þ �
E1ð32�Þ ¼ �12:97ð45Þ MeV. For heavy quarkonium, the

operator (37) is mainly associated with spin-spin and
tensor interactions. However, simple potential models for
baryons that include only spin-spin and tensor interactions
predict E1ð12�Þ � E1ð32�Þ ¼ 0 [51–53]. Thus, one can con-

clude that the operator (37) also plays an important role in
the generation of spin-orbit interactions. This can indeed
be seen in the derivation of spin-dependent potentials using
pNRQCD [54].

The other spin-dependent interaction of order v4 is
given by

� c3
g

8m2
b

� 
 ð~r� ~E� ~E� ~rÞ: (38)

Setting c4 ¼ 0 again, and turning on the interaction (38)
instead, produces the results shown in Fig. 13. For the bbb
levels considered here, the operator (38) results in spin
splittings with the opposite sign compared to those intro-
duced by (37): ½E2ð12þÞ � E1ð72þÞ�subtr ¼ �18:63ð99Þ MeV,

½E3ð32þÞ � E1ð72þÞ�subtr ¼ �15:58ð84Þ MeV, ½E1ð52þÞ �
E1ð72þÞ�subtr ¼ �8:89ð64Þ MeV, E4½ð32þÞ � E2ð52þÞ�subtr ¼�8:74ð53Þ MeV, and E1ð12�Þ � E1ð32�Þ ¼ 7:05ð23Þ MeV.

Notice, in particular, that for the bbb levels with approxi-
mate structure L ¼ 2, S ¼ 3

2 , the effect of (38) is an order of

magnitude larger than the effect of (37). Furthermore, the
shifts introduced for these levels by the operator (38) are
approximately proportional to 2L 
 S ¼ JðJ þ 1Þ � LðLþ

1Þ � SðSþ 1Þ. This is what is expected for a spin-orbit
interaction in baryon levels with totally symmetric spatial
wave functions [55].
Next, Fig. 14 shows the bbb spectrumwith both (37) and

(38) turned on (fifth column of Table VI). For ½E2ð12þÞ �
E1ð72þÞ�subtr and E1ð12�Þ � E1ð32�Þ, the new results are con-

sistent with the sums of the results from separately turning
on (37) and (38), but there is some evidence for nonlinear
behavior in the other spin splittings. For example, the split-
ting ½E1ð52þÞ � E1ð72þÞ�subtr is equal to �4:17ð74Þ MeV

now, while the sum of the splittings obtained from sepa-
rately activating (37) and (38) is�6:85ð85Þ MeV. Of course
there is no reason to expect linearity here: the lattice calcu-
lation is fully nonperturbative.
Having included both (37) and (38), the action is now

complete through order v4. As can be seen by comparing
the results in the first and the fifth columns of Table VI, the
radial and orbital bbb energy splittings obtained with the
order-v2 and order-v4 NRQCD actions differ by & 10%,
demonstrating the convergence of the NRQCD expansion
with v2 � 0:1 as in bottomonium. Finally, turning on addi-
tionally the spin-dependent order-v6 terms by setting c7 ¼
c8 ¼ c9 ¼ 1 gives the results in the sixth column of
Table VI, which are plotted in Fig. 15. The order-v6 terms
affect some of the bbb spin splittings by as much as 30%,
showing that including these terms is essential to obtain
precise results. Most of the bbb spin splittings considered
here decrease in magnitude when the order-v6 terms are
included in the NRQCD action, as is familiar from botto-
monium [36]. However, one notable exception to this rule
is found here: the order-v6 corrections increase the mag-
nitude of E1ð12�Þ � E1ð32�Þ.

FIG. 15 (color online). Dependence of the spectrum near E1ð72þÞ and E1ð32�Þ on the coefficients ci in the NRQCD action (at a �
0:11 fm, amu;d ¼ 0:005). Shown here is the case of the complete NRQCD action as used in the main calculations of this work,

including all terms of order v4 as well as the spin-dependent order-v6 terms.
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VII. CONCLUSIONS

In this work, the first nonperturbative QCD calculation
of the baryonic analogue of the bottomonium spectrum
was performed. By combining improved lattice NRQCD
[35] with other powerful techniques that have been devel-
oped more recently, the energies of ten bbb excited states
were computed with high precision. The calculations in-
clude 2þ 1 dynamical flavors of light quarks, and the bbb
spectrum was extrapolated to the physical pion mass. The
main results are given in Table V and are plotted in Figs. 9
and 10.

The reliable identification of triply bottom baryon states
with angular momentum up to J ¼ 7

2was greatly simplified

by using interpolating operators constructed with the sub-
duction method of Ref. [33]. As already observed in
Ref. [33] for light baryons, the cross correlations between
interpolating operators subduced from different values of J
are small. In the present work, it was additionally shown
that these overlaps decrease when the lattice spacing is
reduced. Furthermore, it was possible to resolve the small
energy splittings of continuum bbb levels with J > 3

2 into

the different irreducible representations of the double-
cover octahedral group. It was shown that these splittings
also decrease when the lattice spacing is reduced (see
Table IV), providing another demonstration of rotational
symmetry restoration. While the suppression of mixing
between different J values is a general consequence of
the approximate rotational symmetry, additional suppres-
sions were observed here for the triply heavy baryon
two-point functions between operators constructed using
different values of L or S. This feature is likely to be a
consequence of the large b quark mass, resulting in a
suppression of the spin-orbit coupling and hence an
approximate individual conservation of L and S (the total
orbital angular momentum and total quark spin).

To implement the b quarks on the lattice, a NRQCD
action including the spin-dependent order-v6 terms was
used here, and the coefficients of the spin-dependent

order-v4 terms were tuned nonperturbatively. Together
with the high statistics, this allowed the calculation of the
bbb spin splittings with �1 MeV total uncertainty. To
learn more about the forces between three heavy quarks,
additional simulations were performed on one ensemble
for several ‘‘unphysical’’ choices of coefficients in the
NRQCD action, thereby disentangling the contributions
of different NRQCD operators to the bbb energy splittings.
These additional simulations also clearly demonstrated the
convergence of the velocity expansion for bbb baryons and
facilitated the estimates of the systematic uncertainties
given in Table V.
The lattice QCD results obtained here for the triply

bottom baryon spectrum provide a unique opportunity to
test quark models for baryons in the regime where the
description using potentials is expected to work best.
Most of the past potential-model calculations of baryon
excited states have focused on light baryons, for which
some experimental data are available. However, quark-
model descriptions are bound to remain poor approxima-
tions for these complicated systems. Now that precise
lattice QCD results for the much cleaner bbb spectrum
are available for comparison, it is desirable to perform new
continuum-based calculations for triply heavy baryons,
using, for example, the quark model of Ref. [56], or the
modern pNRQCD approach [21,57].
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