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We derive the relation between the scattering phase shift and the two-particle energy in the finite box,

which is relevant for extracting the strong phase shifts in lattice QCD. We consider elastic scattering of

two particles with different mass and with nonzero total momentum in the lattice frame. This is a

generalization of the Lüscher formula, which considers zero total momentum, and a generalization of

Rummukainen-Gottlieb’s formula, which considers degenerate particles with nonzero total momentum.

We focus on the most relevant total momenta in practice, i.e. P ¼ ð2�=LÞez and P ¼ ð2�=LÞðex þ eyÞ,
including their multiples and permutations. We find that the P-wave phase shift can be reliably extracted

from the two-particle energy if the phase shifts for l � 2 can be neglected, and we present the

corresponding relations. The reliable extraction of the S-wave phase shift is much more challenging

since �l¼0 is always accompanied by �l¼1 in the phase shift relations, and we propose strategies for

estimating �l¼0. We also propose the quark-antiquark and meson-meson interpolators that transform

according the considered irreducible representations.
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I. INTRODUCTION

The phase shifts for strong elastic scattering of two
hadrons encode the basic knowledge on the strong inter-
action between two hadrons, which is nonperturbative in its
nature. The phase shift �l is related to the phase between
the outgoing and the ingoing l wave in the region outside
the interaction range, and parametrizes our ignorance
of the complicated form of this interaction. The phase shift
indicates whether the interaction is attractive or repulsive,
what is its strength as well as the range, and it provides the
value of the scattering length. The knowledge of the phase
shift also serves to determine the masses and the width of
the resonance that appears in the l wave: �l ¼ �=2 at the
resonance peak, while the sharpness of the rise allows the
determination of the resonance width according to Breit-
Wigner type functional form. In fact, the only feasible
method for determining the resonance width on the lattice
at present goes through the determination of the phase
shift.

Two decades ago, Lüscher proposed how do determine
phase shifts for elastic scattering in a lattice simulation [1].
He derived the phase shift relation, that relates the two-
particle energy E on a lattice of size L and the infinite
volume scattering phase shift �lðsÞ, where s ¼ E2 � P2

and P is the total three-momentum of two particles. If one
determines two-particle energy E from a lattice simulation
with a given momentum P, one can extract the phase shift
�ðsÞ at particular s ¼ E2 � P2 using this relation. Lüscher
considered only the case of P ¼ 0. The explicit phase shift
relations for higher l at P ¼ 0 were written down in [2].

In order to determine �ðsÞ at more values of s ¼
E2 � P2, one better considers also the case of P � 0.
The phase shift relations for this case were derived in
[3–6], but these consider the scattering of two particles
with equal mass (m1 ¼ m2).

1

In this paper we derive the phase shift relations for the
general scattering of two particles with different mass
(m1 � m2) and with nonzero total momentum (P � 0). A
first step in this direction was made by Davoudi and Savage
[7] and by Fu [8], where the phase shift relation for the
irreducible representation A1 was written down: the rela-
tion in [7] takes into account only the S-wave interaction
and neglects all higher partial waves, while the relation in
[8] takes into account the Swave andPwave. However, the
A1 representation is the least interesting in practice as it
mixes S-wave and P-wave phase shifts in one relation if
P � 0 and m1 � m2, making it difficult to reliably extract
any of the two. We derive the phase shift relations also for
the other irreducible representations entering in S-wave or
P-wave scattering with total momentum P ¼ ð2�=LÞez
and P ¼ ð2�=LÞðex þ eyÞ: these representations do not

mix S-wave and P-wave phase shifts. We also propose
the form of lattice interpolators that transform according to
these irreducible representations.
The analogous case of a moving bound state, which is

composed of two particles with different mass, has been
recently explored in [7,9]. The corresponding finite volume
corrections for the S-wave interaction of two particles has
been derived in nonrelativistic quantum mechanics [9] and
in quantum field theory [7].

* sasa.prelovsek@ijs.si

1The determinant condition (50) is derived for general m1;2 in
[4], while the function F that enters in it is provided form1 ¼ m2.
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There have been a number of lattice simulations that
extracted the phase shift using P ¼ 0, or considering
P � 0 but m1 ¼ m2. The �� scattering with I ¼ 2 has
been studied most frequently; see for example [10,11] for
the Swave at P � 0 and [12] for theDwave at P ¼ 0. The
� resonance in �� scattering with I ¼ 1 is the only
resonance that has been clearly observed in the lattice
studies of the phase shifts, which allowed the determina-
tion of its mass and width [13–18]. The preliminary results
for the challenging �� scattering with I ¼ 0 were pre-
sented in [19,20]. The K� phase shift was extracted from
the ground state with P ¼ 0 [21], and the results on
I ¼ 3=2 are more reliable than the I ¼ 1=2 ones. The
analytic studies of the phase shift relations with P ¼ 0
that may reveal the nature of the scalars mesons in these
channels were presented in [22]. The �� scattering and the
related a1 resonance were simulated in [23], while the
corresponding phase shift relations for the scattering of
unstable particles was analytically studied in [24]. The
preliminary results for channels including charmed and
charmonium states were presented in [25], while D�D1

scattering relevant for Zþð4430Þ was simulated in [26]. A
recent review of the applications, including baryons, multi-
particle interactions, and bound states was presented
in [27].

There are however many interesting channels, where
two scattering particles have different mass, and the simu-
lations at nonzero total momentum would provide the
valuable information on the corresponding phase shifts.
To our knowledge, the phase shifts have not been extracted
from lattice in such a case, and we provide analytical tools
that would enable that in the near future.

In Sec. II we first consider two noninteracting particles
in the finite volume, then we consider the interacting
particles and write down the general phase shift relation.
In Sec. III we simplify the general phase shift relations by
considering the discrete symmetries. First we focus on the
case of total momentum P ¼ ð2�=LÞðex þ eyÞ, write down
the phase shift relations for three irreducible representa-
tions that appear in S-wave or P-wave scattering, discuss
the strategies for extracting the phase shifts �l¼0;1 and

provide the quark-antiquark and meson-meson interpola-
tors that transform according to these representations.
Then we repeat the same steps for the total momentum
P ¼ ð2�=LÞez. We end with our conclusions. The
Appendix provides the derivation of the expression for
the generalized zeta function Zd

lmð1; q2Þ for m1 � m2,

that is appropriate for numerical evaluation.

II. TWO PARTICLES IN A FINITE VOLUME

We consider a square lattice box of volume L3 with
periodic boundary conditions in all three spatial directions,
while the time extent is infinite. We assume continuous
space-time and we do not consider discretization errors due
to the finite lattice spacing a in actual simulations with a

given action. There are two particles with total three-
momentum P in such a box, and the total momentum has
to satisfy the periodic boundary condition

P ¼ p1 þ p2 � 2�

L
d; d 2 Z3: (1)

The main task is to derive the total energy E of the these
two particles, where E refers to the energy measured by the
observer that is at rest with respect to the lattice frame, i.e.
lattice square box. First we consider the noninteracting
case, which is trivial. Then we turn to the interacting
case, where the energy E depends on the scattering phase
shifts �l in the l-th partial wave. This relation will ulti-
mately allow for the determination of �l from the energies
determined by lattice simulations in a finite box.
The scattering in the partial wave l refers to the

center-of-momentum frame (CMF), which moves with
the velocity

v ¼ P

E
; � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ; (2)

with respect to the lattice frame. Therefore we need to
consider the physical system in the CMF, where the quan-
tities will be denoted by *. The Lorentz transformation
between two systems is performed by �̂, which acts on a
general vector u as

�̂u ¼ �uk þ u?; �̂�1u ¼ ��1uk þ u?;

uk ¼ u � v
jv2j v; u? ¼ u� uk

(3)

so it preserves the component perpendicular to v and
modifies the component parallel to v. The lattice square
box is deformed to some general parallelepiped, and its
shape depends on the direction of P. The two-particle wave
functions in the CMF will ‘‘see’’ the lattice box in the
shape of this parallelepiped and the technical difficulty is
that the periodic boundary condition on the CMF wave
functions has to be enforced with respect to this
parallelepiped.

A. Noninteracting case

In the noninteracting case there are two major simplifi-
cations: the momenta of the individual particles also satisfy
the periodic boundary condition and the energy is the sum
of the individual energies

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þm2

2

q
; p1 þ p2 ¼ P;

p1 ¼ 2�

L
n; p2 ¼ 2�

L
n0; n;n0 2 Z3:

(4)

This already provides the two-particle discrete energy
spectrum in absence of interactions.
The energies of the interacting scattering states will be

slightly shifted with respect to the noninteracting case (4).
However the noninteracting case already gives us a rough
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estimate of the expected spectrum of scattering states and
the corresponding values of s ¼ E2 � P2 in a simulation
with given total momentum P. The approximate knowl-
edge on the allowed values of s is very valuable, since such
simulation would provide values of phase shifts �ðsÞ at
those values of s. The allowed values of

ffiffiffi
s

p
for the

noninteracting scattering states with p1 �
ffiffiffi
3

p
2�
L and

p2 �
ffiffiffi
3

p
2�
L are presented in Fig. 1. In this example we

take m1 ¼ 200 MeV, m2 ¼ 500 MeV (possible values of
m� and mK in the present lattice simulations) and
L ¼ 3 fm. The simulations with P ¼ 0 will provide only
the values of the S-wave and P-wave phase shifts �ðsÞ atffiffiffi
s

p ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ nð2�L Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ nð2�L Þ2
q

shown by circles;

note that the lowest scattering state P1ð0ÞP2ð0Þ is not
present in the P wave. Simulations at P ¼ 2�

L ez and

P ¼ 2�
L ðex þ eyÞ will provide the values of the S-wave2

and P-wave phase shifts at additional values of
ffiffiffi
s

p
given

by the stars and triangles, respectively. Those values offfiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � P2

p
are obtained simply by using the energies

E (4) for certain values of p1 2 2�
L n and p2 2 2�

L n0. The
allowed combinations of p1 and p2 will be understood only
after we consider the symmetries of the two-particle sys-
tem in the CMF. For each irreducible representation they

can be read off from the P1P2 interpolators given in (49)
and (58).
Since symmetries in the CMF will be important, we also

need the values of the allowed momenta p� in the CMF for
noninteracting case

p � ¼ p�
1 ¼ �p�

2 p� ¼ jp�j (5)

to study the scattering. We extract p� from p1 ¼ 2�
L n using

p1 ¼ �̂ðp� þ vE�
1Þ;

p2 ¼ �̂ð�p� þ vE�
2Þ

so p� ¼ �̂�1p1 � vE�
1 ¼ �̂�1½p1 � �vE�

1�

¼ �̂�1

�
p1 � �

2�d

LE

E�

2

�
1þm2

1 �m2
2

E�2

��

p� ¼ �̂�1

�
p1 � 1

2
AP

�
;

(6)

where in the second step E1¼ðE�=2Þ½1þðm2
1�m2

2Þ=E�2�
is expressed in terms of energy in the CMF

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�2 þm2

2

q
¼ ��1E; (7)

and we have defined coefficient A

A � 1þm2
1 �m2

2

E�2 ; (8)

which is different from 1 only when m1 � m2. We express
the values of p� in terms of the dimensionless CMF mo-
mentum q

p � � 2�

L
q (9)

and the allowed values of q in the noninteracting case are

q ¼ r r 2 Pd ðfor noninteracting caseÞ; (10)

where the r 2 Pd is set of vectors given by the mesh
obtained combining (6), (9), and (10) and p1 ¼ 2�

L n

Pd ¼ frjr ¼ �̂�1ðn� 1
2AdÞg; n 2 Z3; (11)

which agrees with [7,8].3 The symmetries under which this
set of points is invariant will play a major role later on. The
equality q ¼ r (10) will be modified by the two-particle
interactions in the finite volume.

B. Interacting case

Nowwe consider the elastic scattering of two interacting
particles with spin 0 in a finite box using relativistic
quantum mechanics, along the lines of Rummukainen-
Gottlieb that consider m1 ¼ m2 [3], and Fu that presented
the analogous derivation for m1 � m2 [8].

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
sqrt(s)  [GeV]

P = 0

P = 0

P = ez

P = ez

P=ex+ey

P=ex+ey

P=ex+ey

total
momenta

T1
_

A1
+

E

A1

B2

B3

A1

irrep

P-wave

S-wave

S-wave and P-wave

FIG. 1 (color online). Values of the allowed
ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � P2

p
for noninteracting scattering states of two particles with mass
m1 ¼ 200 MeV, m2 ¼ 500 MeV and total momentum P in the
lattice box of L ¼ 3 fm. Simulations at P ¼ 0 provide only the
values of

ffiffiffi
s

p
given by the circles, while the simulations with

P ¼ 2�
L ez and P ¼ 2�

L ðex þ eyÞ provide also the values of
ffiffiffi
s

p
given by the stars and triangles, respectively. Each line corre-
sponds to a definite irreducible representation in the CMF, and
corresponding

ffiffiffi
s

p
are obtained from E (4) and choices of p1;2 in

(49) and (58).

2It will be shown in the following sections that the S wave
appears only in the irreducible representation A1 for P / ez and
P / ex þ ey. P wave will also appear in this irrep, so extracting
the S-wave phase shift is challenging, as discussed in
Sec. III A 1.

3We have a different sign than [8] in Pd, but both signs lead to
the same (infinite) mesh of points.

SCATTERING PHASE SHIFTS FOR TWO PARTICLES OF . . . PHYSICAL REVIEW D 85, 114507 (2012)

114507-3



For the case of m1 ¼ m2, the quantum mechanics result
of [3] was subsequently reproduced using the Bethe-
Salpeter equation [6] and using the quantum field theory
[4]. The phase shift relations from all approaches agree
when one neglects the terms, that are exponentially sup-
pressed with the box size L in quantum field theory. The
phase shift relations derived here can therefore be applied
if L in the simulation is large enough that the terms of the
order of e�m�L can be neglected.

We need to find the two-particle energies E in the finite
box in the presence of the potential Vðx�Þ, which depends
on their relative distance x� ¼ x�

1 � x�
2. The strong poten-

tial between two hadrons in not known ab initio in QCD, so
one cannot analytically calculate the eigen energies E,

which satisfy Ĥc ðx1; x2Þ ¼ Ec ðx1; x2Þ, but rather deter-
mines eigen energies E in lattice QCD, which incorporates
fundamental QCD interactions.

However, one can analytically consider the two-particle
wave functions in the exterior region, where the potential
drops to zero

Vðx�Þ ¼ 0 for jx�j ¼ x� >R; (12)

and we assume the interaction is of finite range4 R< L=2.
In the exterior region, the two-particle wave function

will satisfy Ĥfreec freeðx1; x2Þ ¼ Ec freeðx1; x2Þ with the

same eigen energy E as in the case of Hamiltonian Ĥ

with interactions. The relation Ĥfreec freeðx1; x2Þ ¼
Ec freeðx1; x2Þ in the exterior region of the CMF has a
form of the well-known Helmholtz equation

ðr2 þ p�2Þ�CMðx�Þ ¼ 0; x� >R; (13)

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�2 þm2

2

q
¼ ��1E; (14)

and the total energy E� is just a sum of both individual
energies in this region.

The only effect of the interior region x� < R on the free
solutions in the exterior region is that�CMðx�Þ will depend
on the phase shifts �lðp�Þ, which are related to the phase
between the outgoing and ingoing l wave and parametrize
our ignorance of the exact form of the potential Vðx�Þ. A
free solution in the exterior region with momentum p�,
which is shifted by phase shift �lðp�Þ, will satisfy the
periodic boundary condition only for some specific values
of p�, which fulfill certain relation between p�, �lðp�Þ, and
L. This relation is the analog of the Lüscher formula we are
looking for: it will provide �lðp�Þ if one determines the
momentum p� in the exterior region on a lattice of size L.
This exterior momentum p� is extracted via relation (14)
from the energy E of two strongly interacting particles,
where E is directly measured with a lattice QCD simula-
tion in a box of size L.

Before imposing the boundary conditions in the finite
volume, let us review the familiar solutions of the
Helmholtz equation for given p� in the infinite volume

�CMðx�Þ ¼X
l;m

clmYlmð�;’Þ½alðp�Þjlðp�x�Þ

þ blðp�Þnlðp�x�Þ�; x� >R; (15)

which apply in the exterior region. The phase shift �lðp�Þ
in the continuum is commonly defined through the ratio of
the outgoing5 lwave jl � inl and the ingoing wave jl þ inl
with momentum p�

e2i�lðp�Þ � alðp�Þ þ iblðp�Þ
alðp�Þ � iblðp�Þ : (16)

We will use the same definition of the phase shift in the
finite volume, but there the wave function will not be so
simply expressed in terms of jl and nl due to the boundary
conditions.
Now we turn to the solutions �CMðx�Þ in the exterior

region, that satisfy the Helmholtz equation and also the
boundary condition at finite L. We consider the case of the
periodic boundary condition in the lattice frame

c ðx1;x2Þ ¼ c ðx1 þ n1L;x2 þ n2LÞ; (17)

which is most commonly used in the actual simulations.
These boundary conditions impose that �CMðx�Þ need to
satisfy the so-called d-periodic boundary condition, which
was derived by Fu [8] for P � 0 and m1 � m2 using the
Lorentz transformation between the two frames:6

�CMðx�Þ ¼ ð�1ÞAn�d�CMðx� þ �̂nLÞ n 2 Z3: (18)

A simple example, that satisfies the Helmholtz equation
and the d-periodic boundary condition, is the Green func-
tion

Gdðx�; p�2Þ ¼ ��1L�3
X

k¼ð2�=LÞr;r2Pd

eik�x�

k2 � p�2 ; (19)

where Pd is a mesh of points Pd (11). Other solutions that
satisfy the Helmholtz equation and the boundary condi-
tions (18) are [1,3,8]7

4Presence of the exterior region is not necessary in the quan-
tum field derivation [4].

5We apply the definition of nlðxÞ!x!1 cosðx� l�=2Þ=x
which agrees with [1,28], but differs in sign with commonly
used definitions.

6Fu [8] has a different sign here, but this represents exactly the

same boundary condition since ð�1ÞAn�d ¼ expð�i�n � dÞ	
expð�i�

m2
1
�m2

2

E�2 n � dÞ where each of two signs can be þ or �.

We choose different sign than Fu as it is more in line with our
definition of Pd (11).

7For our purpose YlmðrÞ was most conveniently applied if
both Gdðx�; p�2Þ and Ylmð @

@x� ;
@
@y� ;

@
@z�Þ are expressed in terms of

the Cartesian coordinates.
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Gd
lmðx�; p�2Þ ¼ YlmðrÞGdðx�; p�2Þ;

YlmðxÞ � xlYlmð�; ’Þ:
(20)

The solutions Gd
lm form a complete basis, as shown by

Lüscher for d ¼ 0 [1], and the general solution �CMðx�Þ
can be expanded in terms of them

�CMðx�Þ ¼ X
l;m

vlmG
d
lmðx�; p�2Þ; x� > R: (21)

The technical difficulty arises from the fact that the
solutions (21) satisfy boundary conditions (18) related to
the parallelepiped in the CMF, while the phase shifts �l are
related to the coefficients in front of the outgoing jl � inl
and ingoing jl þ inl spherical waves as in the infinite
volume (16). So one needs to express the d-periodic solu-
tions (20) in terms of the spherical Bessel functions jl and
nl. That can be fortunately done in analogous way as
performed for d ¼ 0 by Lüscher [1] and we omit the
derivation here

Gd
lmðx�;p�2Þ¼ð�1Þlðp�Þlþ1

4�

�
nlðp�x�ÞYlmð�;’Þ

þX1
l0¼0

Xl0
m0¼�l0

Md
lm;l0m0 ðq2Þjl0 ðp�x�ÞYl0m0 ð�;’Þ

�
;

(22)

where Md
lm;l0m0 ðq2Þ are calculable matrices for given l, m,

l0, m0, d, q ¼ Lp�=ð2�Þ and A (8) and the explicit expres-
sion will be given in the next section. The � and’ are polar
angles of x�.

The general solution in the exterior region�CMðx�Þ (21)
is obtained by inserting (22), and one needs to relate this
to the form (15) in order to extract the phase shifts defined
by (16)

�CMðx�Þ ¼ X
lm

vlm

ð�1Þlðp�Þlþ1

4�

�
nlðp�x�ÞYlmð�; ’Þ

þ X
l0;m0

Md
lm;l0m0 ðq2Þjl0 ðp�x�ÞYl0m0 ð�;’Þ

�

¼ X
l;m

clmYlmð�;’Þ½alðp�Þjlðp�x�Þ

þ blðp�Þnlðp�x�Þ�; x� >R: (23)

By equating the terms in from of Ylmnl and Ylmjl we get
two relations

vlm

ð�1Þlðp�Þlþ1

4�
¼ clmblðp�Þ;

X
l0;m0

vl0m0
ð�1Þl0 ðp�Þl0þ1

4�
Ml0m0;lmðq2Þ ¼ clmalðp�Þ;

(24)

and vlm can be expressed from the first relation and in-
serted into the second

X
l0;m0

cl0m0 ½bl0 ðp�ÞMl0m0;lmðq2Þ � al0 ðp�Þ�ll0�mm0 � ¼ 0: (25)

This linear system has a nontrivial solution for cl0m0 only if

detðBM� AÞ ¼ 0 Alm;l0m0 � alðp�Þ�ll0�mm0 ;

Blm;l0m0 � blðp�Þ�ll0�mm0 ; (26)

where A and B are defined as diagonal matrices related to
coefficients al and bl [1] and they finally provide the
information on the phase �l defined by (16)

e2i� ¼ Aþ iB

A� iB
: (27)

By dividing (26) by detðA� iBÞ, which is nonzero [1], one
obtains the final relation between the diagonal matrix e2i�

and (in general) nondiagonal matrix M

det½e2i�ðM� iÞ � ðMþ iÞ� ¼ 0; l; l0 � lmax;

Mlm;l0m0 � Md
lm;l0m0 ðq2Þ;

½e2i��lm;l0m0 � e2i�lðp�Þ�ll0�mm0 :

(28)

This condition is the heart of the phase shift relation and
relates the energy E (or q) measured on the lattice to the
unknown phases �lðp�Þ via the calculable matrix elements
Md

lm;l0m0 ðq2Þ, that will be given in the next subsection. The
energy level E will provide the information on the phase
shift �lðp�Þ at CMF momentum p�, that is related to E
via (14).
If �l ¼ 0 for l > lmax, the relation (28) needs to be

satisfied for the truncated square matrices with l,
l0 � lmax, as shown in [4].
The determinant of the block-diagonal matrix is a prod-

uct of determinants for separate blocks. So the determinant
condition will get simplified when M will be written in
such basis that leads to a block-diagonal form of M
and therefore the block-diagonal form of e2i�ðM� iÞ �
ðMþ iÞ.

C. Definitions of Md
lm;l0m0 and Zd

lm for m1 � m2

Finally we write down the explicit expression for
Md

lm;l0m0 ðq2Þ, that were introduced while expanding Gd
lm

in terms of jl and nl (22) [1,3,8]

Md
lm;l0m0 ðq2Þ� ð�1Þl

��3=2

Xlþl0

j¼jl�l0j

Xj
s¼�j

ij

qjþ1
Zd
jsð1;q2ÞClm;js;l0m0 ;

Clm;js;l0m0 � ð�1Þm0
il�jþl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þð2jþ1Þð2l0 þ1Þ

q
	 l j l0

m s �m0

 !
l j l0

0 0 0

 !
; (29)

where Clm;js;l0m0 is expressed in terms of the 3j-Wigner

symbols. The modified zeta function is defined as in [7,8]
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Zd
lmðs;q2Þ �

X
r2Pd

YlmðrÞ
ðr2 � q2Þs ; (30)

where Pd is the mesh of points defined in (11), and Ylm is
defined in (20). In the special case of d ¼ 0, the definition
of the zeta function (30) agrees with the original definition
by Lüscher [1]. The zeta function depends on l, m, q2 ¼
ðLp�=2�Þ2, d, and A (8). The Z00 is finite only for s > 3=2,
but the divergence is not physical as it cancels in the
difference between the finite and infinite volume result,
as explained in the Appendix, where Zd

00 is obtained by

analytical continuation from s > 3=2 to s ¼ 1. Zd
lmð1; q2Þ

is finite for l � 0, but the sum (30) converges slowly for
practical evaluation. In the Appendix we derive an expres-
sion that is suitable for the numerical evaluation and
reproduces the known result in the special case of
m1 ¼ m2 [3,5,15].

D. General form of M for lmax¼1

In this paper we are especially interested in extracting
the S-wave and P-wave phase shifts �l¼0;1ðp�Þ for the

scattering of two particles with different mass. This prob-
lem is significantly simplified if the scattering phases for
the partial waves with l > lmax ¼ 1 are small and can be
neglected, i.e. we will assume that �l>1 ¼ 0. This is gen-
erally true for small p�, where higher partial waves are
generally suppressed by �ðp�Þ / ðp�Þ2lþ1 and is often true
also for a range of p� if there is noD-wave resonance in the
vicinity. The phases for the higher partial waves were
explicitly found to be small for p� � 1 GeV in the simu-
lation [12] of the nonresonant channel �� with I ¼ 2.
Assuming �l>1 ¼ 0, the matrix M is a 4	 4 matrix in

the basis lm ¼ 00, 10, 11, 1� 1 and the expression
Md

lm;l0m0 (29) leads to the following form for general d:

M ¼ Md
lm;l0m0 ¼

00

10

11

1� 1

00 10 11 1� 1

w00 i
ffiffiffi
3

p
w10 i

ffiffiffi
3

p
w11 i

ffiffiffi
3

p
w1�1

�i
ffiffiffi
3

p
w10 w00 þ 2w20

ffiffiffi
3

p
w21

ffiffiffi
3

p
w2�1

i
ffiffiffi
3

p
w1�1 � ffiffiffi

3
p

w2�1 w00 � w20 � ffiffiffi
6

p
w2�2

i
ffiffiffi
3

p
w11 � ffiffiffi

3
p

w21 � ffiffiffi
6

p
w22 w00 � w20

0
BBBBB@

1
CCCCCA

; (31)

where we defined wlm to simplify the notation

wlm � 1

�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
�qlþ1

Zd
lmð1;q2Þ: (32)

III. CONSEQUENCES OF THE DISCRETE
SYMMETRIES OF MESH Pd

Some of the matrix elements Md
lm;l0m0 (31) are zero for

particular choices of d, which becomes apparent after
explicit numerical evaluation of thewlm / Zd

lmð1; q2Þ given
in the Appendix. This is a consequence of the discrete
symmetries of the mesh Pd (11) in the CMF. It is helpful
to first study these symmetries and determine the texture of
the matrixM (31) for particular d before inserting M into
the master determinant condition (28).

So we explore in this section the group G of the sym-

metry elements R̂ that leaves the mesh Pd (11) invariant.
Later on we study the consequences of these symmetries
for two most useful types of nonzero momentum d / ez
and d / ex þ ey, or permutations. There are several rea-

sons why symmetry consideration will be helpful:
(i) It will indicate which Zd

lm are zero, purely real or

purely imaginary, as indicated above.
(ii) The Helmholtz solution Gd (19) is invariant under

the transformations R̂ 2 G due to the sum over
r 2 Pd. The other solutions Gd

lm are generated by

applying YlmðrÞ, so they transform like Ylm [1,5]

Gd
lmðR̂x�; p�2Þ ¼ Xl

m0¼�l

DðlÞ
mm0 ðR̂ÞGd

lm0 ðx�; p�2Þ;

(33)

where DðlÞ
mm0 ðR̂Þ is defined as a representation in the

bases Ylm

YlmðR̂xÞ ¼
Xl

m0¼�l

DðlÞ
mm0 ðR̂ÞYlm0 ðxÞ (34)

and is in general reducible. So the solutions Gd
lm

form a representation of group G, which is in gen-
eral reducible. The energy eigenstates in (21) are
certain linear combinations of Gd

lm that transform

according to the irreducible representation of the G;

the representationDðlÞ
mm0 ðR̂Þ of transformation R̂ (33)

has the irreducible block-diagonal form in this basis.
(iii) The same linear combinations of Ylm will also lead

to the block-diagonal form of M, as shown by
Lüscher (see Sec. 5.3 of [1]). We will therefore
write down M and search for the basis that leads
to the block-diagonal form.8 It will turn out that the
resulting basis indeed corresponds to the irreduc-
ible representations of D (33) and (34).

8For higher lmax it is probably easier to first determine the basis
that makes representation D (34) block diagonal.
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(iv) The determinant condition (28) is greatly simplified
in the bases where M is block diagonal since the
determinant of the block-diagonal matrix is a prod-
uct of determinants for separate blocks.9 In this case
the determinant condition is simplified to analogous
conditions for separate blocks (i.e. irreducible
representations).

(v) The lattice interpolators, that are written down in the
lattice frame, have to transform according to the
irreducible representation of the group G after
transformed to the CMF. We will provide useful
examples of quark-antiquark and meson-meson
interpolators, that satisfy this property and be
used in the actual simulations to extract the phase
shifts.

All these reasons prompt us to consider the symmetries of
the mesh Pd (11) for separate cases of d.

A. P ¼ ð2�=LÞðex þ eyÞ and consequences
of C2v symmetries

We first explain the case of the momentum d ¼ ex þ ey
in detail, since it is general enough to illustrate the proce-
dure and since the corresponding group has only few
elements. All the results can be easily generalized to
the case of d ¼ Nðex þ eyÞ or any permutation in the

direction.
We first need to determine the symmetry transforma-

tions R̂ that leave Pd invariant. The mesh Pd (11) can be
visualized in Fig. 2(c) and is obtained in two steps:

(1) First the cubic mesh r ¼ n 2 Z3 in Fig. 2(a) is
shifted by � 1

2Ad / ex þ ey and since A � 1 for

m1 � m2 (8), the origin is not in the center of the
unit cell in xy plane [Fig. 2(b)]. The inversion I with
respect to the origin is lost as a symmetry at this
stage, so the corresponding groupG will not contain
I; this is a major difference with respect to the
degenerate case m1 ¼ m2, when the origin is at
the center of the unit cell in xy plane and I is the
symmetry. We will see that this has important con-
sequences, for example, that sectors with even and
odd l will not decouple, which will present chal-
lenges in certain cases.

(2) In the second step �̂�1 contracts the distances in the
direction v / ex þ ey and keeps the distances per-

pendicular to that, so the mesh is not modified in z
direction.

The resulting unit cell in Fig. 2(c) has the form of a
rhombic prism and the mesh Pd is invariant only under

four transformations R̂ listed in Table I. There Id denotes
the identity, CnðVÞ denotes a rotation by 2�=n around V,

while �ðVÞ denotes the reflection with respect to the plane
perpendicular to V. These four transformations form group
C2v, which has only one-dimensional irreducible represen-
tations. For the one-dimensional irreducible representation

‘‘irrep’’ the transformation R̂ on a vector u is given by the

character �irrepðR̂Þ
R̂u ¼ �irrepðR̂Þu; �irrepðR̂Þ ¼ �1; for 1D irrep:

(35)

The characters of the irreducible (A1;2; B2;3) and reducible

(lm) representations are given in Table I along with an
example of polynomials and vectors u that transform
according to these representations.10

The functions Ylm (34) and also the solutions Gd
lm (33)

form a representation �ðlÞ for transformations R̂ 2 C2v,

but the 2lþ 1 dimensional representation �ðlÞ with
m ¼ �l; . . . ; l is in general reducible. We will need the
number of times (Nirrep) that the irreducible representation

‘‘irrep’’ enters in �ðlÞ [29]

Nirrep ¼ 1

g

X
R̂

�irrepðR̂Þ��ðlÞðR̂Þ; (36)

where g is the number of elements R̂ of the group G, while

the characters of irreducible representations �irrepðR̂Þ and
reducible representations �ðlÞðR̂Þ are given in Table I. The
resulting decomposition is11

�ð0Þ ¼ A1;

�ð1Þ ¼ A1 
 B3 
 B2;

�ð2Þ ¼ 2A1 
 A2 
 B3 
 B2: (37)

This indicates that the solutions (and also interpolators)
that transform according to the listed irreps will contain the
following partial waves:

FIG. 2. The mesh Pd (11) for d¼exþey andm1 � m2 (A�1)
is plotted in (c), while (a) and (b) show the steps how to get it.

9Note that e2i�ðM� iÞ � ðMþ iÞ is block diagonal whenM is
block diagonal, since e2i� is diagonal by construction (28).

10With the change of coordinates e0z ¼ 1ffiffi
2

p ðex þ eyÞ, e0y ¼
1ffiffi
2

p ðex � eyÞ and e0x ¼ ez our notation for C2v coincides with

the more conventional one, but we stick to our notation as it is
more appropriate for d ¼ ex þ ey. Our naming for B2;3 agrees
with [5,15] in m1 ¼ m2 limit, while B1 does not have an analog
for m1 � m2. B3 in [8] is denoted by B1.
11The decomposition agrees with [8], but there B3 is denoted by
B1.
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B3: l ¼ 1; 2; . . . B2: l ¼ 1; 2; . . .

A1: l ¼ 0; 1; 2; . . . A2: l ¼ 2; . . .
(38)

so B3 or B2 in the CMF will couple to l ¼ 1, but not to
l ¼ 0. These two representations therefore provide a rather
clean possibility to extract l ¼ 1 phase shift if partial
waves with l > 1 can be neglected. The interpolators that
transform according to irrep A1 in the CMF will couple to
both l ¼ 0 and l ¼ 1, and there is unfortunately no irre-
ducible representation that would couple only to l ¼ 0.
This will present a serious challenge for a reliable extrac-
tion of l ¼ 0 phase shift in simulations with nonzero
total momentum, as will be discussed in more detail later
on.

The mixing between the even and odd l occurs since
inversion is not an element of the group C2v (see Table I).
We emphasize that this mixing is not present for the
scattering of particles with m1 ¼ m2 and total momentum
d ¼ ex þ ey since inversion is an element of D2h: Aþ

contains only the waves l ¼ 0, 2 and l � 4, while B�
1;2;3

contains only l ¼ 1 and l � 3 [5]. This mixing is also not
present for the scattering of particles with m1 � m2 and
total momentum P ¼ 0, where Aþ

1 contains only l ¼
0; 4; . . . and T�

1 contains only l ¼ 1; 3; . . . [1].

1. Values of Zd
lm as consequences of the

symmetries for d¼exþey

The transformations R̂ 2 C2v leave the mesh Pd invari-
ant, so the sum over r 2 Pd in Zlm (30) can be replaced by

the sum over r0 ¼ R̂r

Zd
lmðq2Þ ¼

X
r

YlmðrÞ
ðr2 � q2Þs ¼

X
r0¼R̂r

jr0jlYlmðr0Þ
ðr02 � q2Þs

¼ X
r

rlYlmðRrÞ
ðr2 � q2Þs since jr0j ¼ jR̂rj ¼ jrj;

(39)

which will have important consequences for some R̂. Now
we can list the properties of Zd

lm for d ¼ ex þ ey:

(i) Zd
l�m ¼ ð�1ÞmðZd

lmÞ� which is the consequence of

the analogous relation for Ylm.

(ii) Zd
lm ¼ imðZd

lmÞ� since R̂ ¼ �ðex � eyÞ 2 C2v:

The reflection R̂ ¼ �ðex � eyÞ with respect to

the plane perpendicular to ex � ey transforms x!
y, y ! x, z! z or equivalently � ! �, ei’ / xþ
iy ! yþ ix ¼ iðx� iyÞ / ie�i’. This transforms
Ylm � fð�Þðei’Þm ! fð�Þðie�i’Þm ¼ fð�Þime�im’ ¼
imðYlmÞ� and then (39) leads to Zd

lm ¼ imðZd
lmÞ�.

Rewriting Zd
lm ¼ ReðZd

lmÞ þ iImðZd
lmÞ this leads to

ImðZd
lmÞ ¼ 0 for m ¼ 0; 4; . . . , ReðZd

lmÞ ¼ ImðZd
lmÞ

for m ¼ 1; 5; . . . , ReðZd
lmÞ ¼ 0 for m ¼ 2; 6; . . . and

ReðZd
lmÞ ¼ �ImðZd

lmÞ for l ¼ 3; 7; . . . , independent
of the value of l.
This property of Zd

lm holds for any case where the

meshPd is symmetric under R̂ ¼ �ðex � eyÞ, which
is true for all d ¼ 0, ex þ ey, ez in the case of

degenerate or nondegenerate masses.
(iii) Zd

lm ¼ 0 for l�m ¼ odd since �ðezÞ 2 C2v: The

reflection R̂ ¼ �ðezÞ with respect to the xy
plane transforms � ! �� � and ’ ! ’, while
Ylmð�� �; ’Þ ¼ ð�1Þl�mYlmð�; ’Þ so (39) leads
to Zd

lm ¼ ð�1Þl�mZd
lm.

(iv) Note that if inversion I would be in G, then Zd
lm ¼

ð�1ÞlZd
lm or Zd

lm ¼ 0 for odd l. This would de-

couple parts of M for even and odd l. In the
present case m1 � m2 and d � 0, so I is not an
element of G and Zd

lm is not zero in general for

odd l.

We verified all the above relations to be true also with the
explicit numerical evaluation of Zd

lm using the expression

in the Appendix. For example, Zd
11ðm1 � m2Þ � 0 and has

equal real and imaginary parts, while Zd
11ðm1 ¼ m2Þ ¼ 0

as required by the symmetries of D2h for the mass-
degenerate case [5].

2. The matrix Md
lm;l0m0 for d¼exþey

The above relations for Zd
lm or equivalently wlm (32)

simplify the general matrix M (31) to

TABLE I. Characters �ðR̂Þ ¼ Pdim
i¼1 DðR̂Þii of representations D for transformations R̂ 2 C2v

(with principal axis ex þ ey), that leave the mesh Pd in Fig. 2 for d ¼ ex þ ey invariant.

Representations A1;2 and B2;3 are irreducible while the representation �
l¼1 is reducible. Example

of polynomials and vectors u that transform according to these representations are given on the
right.

Represent. Dim Id C2ðex þ eyÞ �ðex � eyÞ �ðezÞ Polynom. Vector u

Irred. A1 1 1 1 1 1 1, xþ y 0, ex þ ey
Irred. A2 1 1 1 �1 �1 (l > 1) (l > 1)

Irred. B3 1 1 �1 1 �1 z ez
Irred. B2 1 1 �1 �1 1 x� y ex � ey
�l¼0 1 1 1 1 1 Y00

�l¼1 3 3 �1 1 1 Y10, Y11, Y1�1
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M ¼ Md
lm;l0m0 ¼

00

10

11

1� 1

00 10 11 1� 1

w00 0 i
ffiffiffi
3

p
w11 � ffiffiffi

3
p

w11

0 w00 þ 2w20 0 0

� ffiffiffi
3

p
w11 0 w00 � w20

ffiffiffi
6

p
w22

i
ffiffiffi
3

p
w11 0 � ffiffiffi

6
p

w22 w00 � w20

0
BBBBB@

1
CCCCCA

; (40)

since iw1�1 ¼ �iw�
11 ¼ �w11 due to Reðw11Þ ¼ Imðw11Þ,

and w2�2 ¼ w�
22 ¼ �w22 due to Reðw22Þ ¼ 0, while w00

and w20 are real.

3. Phase shift relations for d¼exþey

The phase shift relations are obtained from the determi-
nant condition (28), which gets simplified when M (40) is
written in the basis that renders it block diagonal.

3.1 Extracting the P-wave phase shift from irreps B3 or B2

The part Y10 / z already presents a separate block,
which transforms according to B3: z gets multiplied by
�1 for reflection with respect to xy plane and rotation
around ex þ ey and stays invariant for other two trans-

formations (see Table I). The determinant condition
for this 1	 1 block requires det½e2i�1ðMB3 � iÞ�
ðMB3 þ iÞ� ¼ 0 or equivalently tanð�1Þ ¼ 1=MB3 with
MB3 ¼ w00 þ 2w20, so

d ¼ ex þ ey;

B3 of C2v: tan�1ðp�Þ ¼ �3=2�q

Zd
00ð1; q2Þ þ 2ffiffi

5
p q�2Zd

20ð1; q2Þ
:

(41)

This is the final relation that allows the determination of
the P-wave phase shift �1ðp�Þ from the energy E of two
particles with total momentum P ¼ 2�

L ðex þ eyÞ when one

uses the interpolators that transform according to B3.
The eigenvectors of the remaining 3	 3 matrix

M (40) reveal that one simple eigenvector is
uB2 ¼ 1ffiffi

2
p ð�iY11 þ Y1�1Þ / x� y which transforms ac-

cording to B2 (see Table I). The corresponding eigenvalue

is MB2 ¼ w00 � w20 �
ffiffiffi
6

p
Imðw22Þ and the determinant

condition (28) for this 1	 1 block gives tanð�1Þ ¼
1=MB3 , or

d¼exþey; B2 of C2v:

tan�1ðp�Þ

¼ �3=2�q

Zd
00ð1;q2Þ� 1ffiffi

5
p q�2Zd

20ð1;q2Þ�
ffiffi
6

pffiffi
5

p q�2Im½Zd
22ð1;q2Þ�

:

(42)

This is another relation that allows determination of �1ðp�Þ
when using interpolators in irrep B2.
The phase shift relations for irreps B3 (41) and B2 (42)

agree12 with the expressions in [5,15] for the case of
m1 ¼ m2. The remaining representations, discussed bellow,
have different roles in the m1 ¼ m2 and m1 � m2 cases.

3.2 Problems and strategies for extracting the S-wave
phase shift from irrep A1

The remaining 2	 2 matrix M cannot be reduced

further and spans the space in the basis of vectors uA1

1 ¼
1ffiffi
2

p ðY11 � iY1�1Þ / xþ y and uA1

2 ¼ Y00 / 1, which are

perpendicular to the vectors uB3 ¼ Y10 and vB2 above.
The vectors xþ y and 1 both remain invariant under all

four R̂ 2 C2v and belong to A1 irreducible representation

(see Table I). The remaining 2	 2 block in the basis uA1

1;2 is

contained in

MB
ab ¼

Y00

Y11�iY1�1ffiffi
2

p

Y10

�iY11þY1�1ffiffi
2

p

Y00
Y11�iY1�1ffiffi

2
p Y10

�iY11þY1�1ffiffi
2

p

w00 i
ffiffiffi
6

p
w11 0 0

�i
ffiffiffi
6

p
w�

11 w00 � w20 þ
ffiffiffi
6

p
Imðw22Þ 0 0

0 0 w00 þ 2w20 0

0 0 0 w00 � w20 �
ffiffiffi
6

p
Imðw22Þ

0
BBBBB@

1
CCCCCA

; (43)

with a; b ¼ 0; . . . ; 3. We kept the other two 1	 1 blocks for completeness, so MB represents the desired block-diagonal
form of M in the basis uA1

1;2, u
B3 , uB2 and the superscript B’’ refers to block diagonal. The determinant condition (28) is

equivalent to determinant conditions for three separate blocks and two of those were already written in (41) and (42). The
determinant condition for 2	 2 block leads to the relation

12Note that Zd
lm in [5,15] is the complex conjugate of our Zd

lm (30).
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d¼exþey; A1 ofC2v:

½e2i�0ðp�ÞðMB
00�iÞ�ðMB

00þiÞ�½e2i�1ðp�ÞðMB
11�iÞ�ðMB

11þiÞ�
¼jM10j2ðe2i�0ðp�Þ�1Þðe2i�1ðp�Þ�1Þ: (44)

Among three phase shift relations (41), (42), and (44),
the S-wave phase shift �0 enters only in (44), so let us

discuss the problems and possible strategy for extracting
�0 from (44). Suppose we determine the energy level E
using interpolators that transform according to the repre-
sentation A1. The values of E, A, d provide the values of
MB

00;11;10ðq2Þ in (44) at corresponding q ¼ p�L=2� (14), so

the relation (44) presents one equation with two unknowns:
�0ðp�Þ and �1ðp�Þ. In order to determine �0ðp�Þ from (44)

d ¼ ex þ ey; A1 of C2v: tan�0ðp�Þ ¼ 1� tan�1ðp�Þ½w00 � w20 þ
ffiffiffi
6

p
Imðw22Þ�

w00 � tan�1ðp�Þ½w2
00 � w00w20 þ

ffiffiffi
6

p
w00Imðw22Þ � 12ðRew11Þ2�

(45)

one would need to know the value of �1ðp�Þ at a given p�
(14). The representations B3 or B2 allow determination of
�1ð~p�Þ, but the problem is that they will in general fix �1 at
some other value of ~p�, which is related to the energy ~E
measured for the case of representations B3 or B2. Since
�1ðp�Þ in (44) is needed at p�, �1ð~p�Þ cannot be simply
used if ~p� � p�.

This indicates that the reliable extraction of the S-wave
phase shift will be challenging, since there is no irreducible
representation that would contain only �0 but not �1. We
envisage several possible strategies to estimate the value of
�0, which might be used in the pioneering simulations
along these directions, but it is clear that some of these
strategies are not rigorous:

(1) If there exists a region of p� where �1ðp�Þ is known
to be negligible, the condition (44) and (45) recovers
the standard form [7,8] tanð�0Þ ¼ 1=w00 or

d ¼ ex þ ey;

A1 of C2v: tan�0ðp�Þ ¼ �3=2�q

Zd
00ð1; q2Þ

if �1ðp�Þ � �0ðp�Þ

(46)

and allows the determination of �0 for that p
� [8].

That may be, for example, possible at small p�,
where higher partial waves are generally sup-
pressed, but p� has to be away from any nearby
P-wave resonance where �1ðp�Þ ’ �=2 is not
small.

(2) If �1ðp�Þ is not negligible, and its p� dependence is
expected to be mild, then one can estimate �1ðp�Þ
needed in (44) from �1ð~p�Þ using the interpolation
between ~p� and p�. In this case �1ð~p�Þ has to be
determined for several ~p� using several representa-
tions and several total momenta P (for example, B3;2

at d ¼ ex þ ey).

(3) In the continuum limit, one expects that the energy
levels E determined using different irreducible rep-
resentations will agree for a physical state with a
given total momentum P and given l. In the past
this (near) degeneracy across different representa-
tions served to determine l (or J) of the resulting

states. In our case of interest, we expect EA1

l¼1 ¼
E
B3

l¼1 ¼ EB2

l¼1 ford ¼ ex þ ey in the continuum limit,

so the resultingp� for the l ¼ 1 statewill be the same
for all three irreps. This allows the determination of
�1ðp�Þ at the desired p� from B2;3; inserting that into

the phase shift relation for A1 (44) will finally allow
the extraction of �0ðp�Þ. In practice, the equality
between E from different representations will be
slightly spoiled by the discretization errors. This
procedure would still give a relatively reliable esti-
mate of �0ðp�Þ if �1 modestly depends on p�, i.e. if
there is no close by narrow P-wave resonance.

We expect that more a reliable extraction for the
S-wave phase shift of two particles with m1 � m2 needs
to be performed using a simulation with P ¼ 0. There
the representation A1 mixes �0 only with �4 and even
higher partial waves, which can be safely neglected. The
drawback of sticking to a single total momentum P ¼ 0
is that one needs to perform simulations at several lattice
sizes L in order to determine �0ðp�Þ as several values
of p�.

4. Quark-antiquark and meson-meson
interpolators for d¼exþey

In order to extract the phase shifts, one needs to simulate
the two-particle system on a finite lattice and determine its
energy E in the lattice frame. To create the two-particle
state, one may use the corresponding two-particle interpo-
lator or the quark-antiquark interpolator, that couples well
to the two-particle state or the resonance that appears in
this channel. The interpolators are written down in the
lattice frame, but they have to transform according to the
desired irreducible representation after the transformation
to the CMF. In this section we write down some simple
examples of such interpolators with this property, that may
be used in the lattice simulations.
For concreteness, our two-particle interpolators refer to

two pseudoscalar mesons P1P2 with masses m1 and m2,
since pseudoscalar mesons are often stable against the
strong decay and therefore their scattering is most interest-
ing phenomenologically. In the continuum, the scattering
state therefore carries JP ¼ 0þ for l ¼ 0 and JP ¼ 1� for
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l ¼ 1 in our examples. We write down examples of
interpolators for this case, but this can be generalized to
the scattering of other types of particles.

All interpolators will be expressed in terms of the cur-
rents (i ¼ x, y, z)

ViðpÞ �
X
x

eipx �qðxÞ�iq
0ðxÞ

PðpÞ � X
x

eipx �qðxÞ�5q
0ðxÞ

SðpÞ � X
x

eipx �qðxÞq0ðxÞ;

(47)

where one can replace the choices of the � matrix in the
current with any combination of � matrices and covariant
derivatives that gives the same transformation property of
the current. In this subsection we write all the momenta in
units of 2�=L.

Examples of the quark-antiquark interpolators in lattice
frame that transform according to B2, B3 and A1 in the
CMF are

O �qq
B2

¼ Vxðex þ eyÞ � Vyðex þ eyÞ;
O �qq

B3
¼ Vzðex þ eyÞ;

ðO �qq
A1
ÞI ¼ Vxðex þ eyÞ þ Vyðex þ eyÞ;

ðO �qq
A1
ÞII ¼ Sðex þ eyÞ:

More general quark-antiquark interpolators with nonzero
momentum are constructed in [30,31].

Let us consider O �qq transformations on the example of

O �qq
B3
, which becomes ðO �qq

B3
ÞCMF ¼ Vzð0Þ after the boost to

the CMF. The boost along d ¼ ex þ ey does not modify its

polarization (3). Interpolator Vzð0Þ in the CMF transforms
like ez, so according to B3 representation in Table I.

The two-particle interpolators are linear combinations
with momentum choices p1j and p2j

OP1P2

irrep ¼ X
j¼a;b;...

P1ðp1jÞP2ðp2jÞ;

ðOP1P2

irrep ÞCMF¼
X
j

P1ðp�
j ÞP2ð�p�

j Þ;

p�
j ¼p�

1j¼�p�
2j¼ �̂�1

�
p1�1

2
AP

�
R̂ðOP1P2

irrep ÞCMF;R̂
�1¼X

j

P1ðR̂p�
j ÞP2ð�R̂p�

j Þ

¼1Dirrep
�irrepðR̂ÞðOP1P2

irrep ÞCMF (48)

such that they transform according to a given irrep in the
CMF, where momenta p�

1j ¼ �p�
2j ¼ p�

j are given by (6).

Examples of interpolators with this property are

ðOP1P2

B2
ÞI ¼ P1ðexÞP2ðeyÞ � P1ðeyÞP2ðexÞ;

ðOP1P2

B2
ÞII ¼ P1ðex þ ezÞP2ðey � ezÞ

� P1ðey þ ezÞP2ðex � ezÞ þ fez $ �ezg;
ðOP1P2

B3
ÞI ¼ P1ðex þ ey þ ezÞP2ð�ezÞ

� P1ðex þ ey � ezÞP2ðezÞ;
ðOP1P2

B3
ÞII ¼ P1ðex þ ezÞP2ðey � ezÞ

þ P1ðey þ ezÞP2ðex � ezÞ � fez $ �ezg;
ðOP1P2

A1
ÞI ¼ P1ðex þ eyÞP2ð0Þ;

ðOP1P2

A1
ÞII ¼ P1ðexÞP2ðeyÞ þ P1ðeyÞP2ðexÞ;

ðOP1P2

A1
ÞIII ¼ P1ðex þ ezÞP2ðey � ezÞ

þ P1ðey þ ezÞP2ðex � ezÞ þ fez $ �ezg;
ðOP1P2

A1
ÞIV ¼ P1ðex þ ey þ ezÞP2ð�ezÞ

þ P1ðex þ ey � ezÞP2ðezÞ; (49)

and the analogous interpolators where flavors of P1 and P2

are interchanged. The interpolators were obtained using

the projection operator dimirrep

g

P
R̂�

irrepðR̂ÞTðR̂Þ and we list

all P1P2 interpolators that have p1 �
ffiffiffi
3

p
2�
L and p2 �ffiffiffi

3
p

2�
L . More general hadron-hadron interpolators are con-

sidered in [32].
The correct transformation properties of the interpola-

tors (49) can be easily demonstrated if the momenta
p1j and p2j are written as a sum of a vector parallel to d

and a vector u ? d. Let us demonstrate that ðOP1P2

B3
ÞI ¼

P1ðdþ uÞP2ð�uÞ � P1ðd� uÞP2ðuÞ with u ¼ ez ? d
transforms according to B3. The momenta of P1 in the
CMF are (6)

p1a ¼ dþ u: p�
a ¼ �̂�1ðp1a � 1

2APÞ
¼ �̂�1ðdþ u� 1

2AdÞ
¼ ��1ð1� 1

2AÞdþ u ¼ cdþ u

p1b ¼ d� u: p�
b ¼ cd� u c � ��1ð1� 1

2AÞ;

(50)

while the interpolator in the CMF is

ðOP1P2
B3

ÞICMF¼P1ðcdþuÞP2ð�cd�uÞ
�P1ðcd�uÞP2ð�cdþuÞ�Oðd;uÞ: (51)

Because of the following properties it transforms accord-
ing to the one-dimensional irrep B3

Oðd;�uÞ ¼ �Oðd;uÞ or

Oðd; R̂uÞ ¼ �irrep:ðR̂ÞOðd;uÞ
R̂Oðd;uÞR̂�1 ¼ OðR̂d; R̂uÞ ¼ Oðd; �irrepðR̂ÞuÞ

¼ �irrepðR̂ÞOðd;uÞ;

(52)
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since R̂ 2 C2v leave d ¼ ex þ ey unaffected, while R̂u ¼
�irrepðR̂Þu ¼ �u for u ¼ ez, as listed in Table I. The
procedure for treating transformations of other interpola-
tors in (49) is analogous.

B. P ¼ ð2�=LÞez and consequences of C4v symmetries

Equipped with the knowledge of how to handle the
momentum d ¼ ex þ ey, which was more general, one

can easily consider d ¼ ez, which has more symmetry
transformations.

The mesh Pd (11) in Fig. 3(c) is obtained from n 2 Z3

by the shift � 1
2Aez and the inversion is lost at this stage.

Then the lengths in ez direction are contracted due to �̂�1.

The transformations R̂ that leave this mesh invariant are
given in Table II and they form the group C4v. It has four
one-dimensional irreps A1;2, B1;2 and one two-dimensional

irrep E, where only A1 and E appear for l ¼ 0, 1 of our
interest according to (36) [8]

�ð0Þ ¼ A1 �ð1Þ ¼ A1 
 E

�ð2Þ ¼ A1 
 B1 
 B2 
 E:
(53)

So the interpolators that transform according to the listed
irreps contain the following partial waves:

E: l ¼ 1; 2; . . . A1: l ¼ 0; 1; 2; . . .

B1: l ¼ 2; . . . B2: l ¼ 2; . . .
(54)

We note that the mixing between even and odd l is not
present for the scattering of particles with m1 ¼ m2 and
total momentum d ¼ ez since inversion is an element of
D4h: A

þ
1 contains only the waves l ¼ 0, 2 and l � 4, while

E� and A�
2 contain only l ¼ 1 and l � 3 [3]. This mixing

is also not present for the scattering of particles with
m1 � m2 and total momentum P ¼ 0.

1. Values of Zd
lm as consequences

of the symmetries for d ¼ ez

By comparing to the case of d ¼ ex þ ey, we find that

some relations are still valid, some are not valid and there

are some additional ones due to the additional elements

R̂ 2 C4v:
(i) Zd

l�m ¼ ð�1ÞmðZd
lmÞ� since Yl�m ¼ ð�1ÞmY�

lm.

(ii) Zd
lm ¼ imðZd

lmÞ� since �ðex � eyÞ 2 C4v. The

consequences regarding specific values of m
are listed in the corresponding section for d ¼
ex þ ey.

(iii) Zd
lm ¼ 0 if m � 0; 4; 8; . . . since C4ðezÞ 2 C4v:

C4ðezÞ transforms � ! �, ’ ! ’þ 1
2�, so Yd

lm �
fð�Þeim’ ! fð�Þeimð’þ1

2�Þ ¼ fð�Þðei�=2Þmeim’, so
Zd
lm ¼ ðiÞmZd

lm.

(iv) Zd
lm is not zero for l�m ¼ odd in general since

�ðezÞ =2 C4v (see Fig. 3).
(v) Zd

lm is not zero for l ¼ odd in general, since

I =2 C4v: Therefore, the matrix M will not be
decomposed into sectors with even and odd l, so
�0 and �1 will again mix in some phase shift rela-
tions [8].

We verified all the above relations also with the explicit
numerical evaluation of Zd

lm using the expression in

the Appendix: in particular, Zd
10ðm1 � m2Þ � 0 as

already found in [8], while Zd
10ðm1 ¼ m2Þ ¼ 0 as re-

quired by the symmetries of D4h for the mass-
degenerate case.

2. The matrix Md
lm;l0m0 for d ¼ ez

The above relations for Zd
lm or wlm (32) simplify the

general M (31) for d ¼ ez to
13

M ¼ Md
lm;l0m0 ¼

00

10

11

1� 1

00 10 11 1� 1

w00 i
ffiffiffi
3

p
w10 0 0

�i
ffiffiffi
3

p
w10 w00 þ 2w20 0 0

0 0 w00 � w20 0

0 0 0 w00 � w20

0
BBBBB@

1
CCCCCA

; (55)

where all wl0 are real as indicated in the previous subsection.

FIG. 3. The mesh Pd (11) for d ¼ ez and m1 � m2 (A � 1) is
plotted in (c), while (a) and (b) show the steps how to get it.

13We find an additional factor
ffiffiffi
3

p
in front of w10 with respect to [8].

LUKA LESKOVEC AND SASA PRELOVSEK PHYSICAL REVIEW D 85, 114507 (2012)

114507-12



3. Phase shift relations for d¼ez

The phase shift relation are obtained from the determi-
nant condition (28) using the matrixM (55). This matrix is
already in the block-diagonal form, which cannot be re-
duced further. The determinant condition requires that
determinant for each of the block is equal to zero.

3.1 Extracting the P-wave phase shift from irrep E

The determinant condition for each of two 1	 1 blocks
leads to tanð�1Þ ¼ 1=ME with ME ¼ w00 � w20

d ¼ ez;

E of C4v: tan�1ðp�Þ ¼ �3=2�q

Zd
00ð1;q2Þ � 1ffiffi

5
p q�2Zd

20ð1; q2Þ
:

(56)

Basis vectors Y11 and Y1�1 form two-dimensional irreduc-
ible representation E (Table II) and interpolators that trans-
form according to one of those two will naturally obey the
same phase shift relation. Note that the more conventional
basis vectors x / Y11 � Y1�1 and y / Y11 þ Y1�1 will lead
to the same matrix M (55) and therefore the same phase
shift relation (56) applies for them. Our interpolators in the
E representation will transform like x or y.

The phase shift relation for irrep E (56) agree with the
expression in [16] for the case of m1 ¼ m2.

3.2 Extracting the S-wave phase shift from irrep A1

The 2	 2 block of M (55) spans the basis Y00 / 1 and

Y10 / z, which are both invariant under all R̂ 2 C2v and
therefore belong to irrep A1 (Table II). The determinant
condition (28) for this 2	 2 block requires

d ¼ ez; A1 of C4v:

½e2i�0ðp�Þðw00 � iÞ � ðw00 þ iÞ�½e2i�1ðp�Þðw00 þ 2w20 � iÞ
� ðw00 þ 2w20 þ iÞ� ¼ 3jw10j2ðe2i�0ðp�Þ � 1Þ
	 ðe2i�1ðp�Þ � 1Þ; (57)

where wij (32) depend on Zd
lmð1; q2Þ and d ¼ ez.

If we know the energy E of two particles in irrep A1 on
the lattice, the relation (57) presents one relation with two

unknowns �0ðp�Þ and �1ðp�Þ, which was already noted in
[8]. A reliable extracting of �0ðp�Þ from (57)

d ¼ ez; A1 of C4v:

tan�0ðp�Þ ¼ 1� tan�1ðp�Þ½w00 þ 2w20�
w00 � tan�1ðp�Þ½w2

00 þ 2w00w20 � 3w2
10�

is challenging since one needs the value of �1ðp�Þ at the
same p�. We proposed several strategies for estimating this
in the corresponding section on d ¼ ex þ ey and the same

strategies may be used also for d ¼ ez. The only difference
is that the one-dimensional irreps B2;3 are replaced by the

two-dimensional irrep E.

4. Quark-antiquark and meson-meson
interpolators for d¼ez

We list examples of the quark-antiquark and two pseu-
doscalar interpolators in the lattice frame (that transform
according to E or A1 in the CMF)

ðO �qq
E Þk ¼ VkðezÞ; k ¼ x; y

ðO �qq
A1
ÞI ¼ VzðezÞ

ðO �qq
A1
ÞII ¼ SðezÞ

ðOP1P2

E ÞIk ¼ P1ðez þ ekÞP2ð�ekÞ � P1ðez � ekÞP2ðekÞ;
k ¼ x; y

ðOP1P2

E ÞIIk ¼ P1ðez þ ukÞP2ð�ukÞ � P1ðez � ukÞP2ðukÞ;
uk ¼ ex þ ey; ex � ey

ðOP1P2

A1
ÞI ¼ P1ðezÞP2ð0Þ

ðOP1P2

A1
ÞII ¼ P1ðez þ exÞP2ð�exÞ þ P1ðez � exÞP2ðexÞ

þ P1ðez þ eyÞP2ð�eyÞ þ P1ðez � eyÞP2ðeyÞ
ðOP1P2

A1
ÞIII ¼ P1ðez þ ex þ eyÞP2ð�ex � eyÞ

þ P1ðez þ ex � eyÞP2ð�ex þ eyÞ
þ P1ðez � ex þ eyÞP2ðex � eyÞ
þ P1ðez � ex � eyÞP2ðex þ eyÞ (58)

and the analogous interpolators where the flavors P1 and
P2 are interchanged. The representation E is two-
dimensional, so index k in ðOEÞk carries two values.

TABLE II. Characters for transformations R 2 C2v (with principal axis ez), that leave the mesh Pd for d ¼ ez in Fig. 3 invariant. In
addition to irreps A1 and E, C4v has also A2 and B1;2 but they do not appear for l ¼ 0, 1 so we omit them. Example of simple objects

that transform according to these representations are given on the right.

Respresent. Dim Id C4ðezÞ C�1
4 ðezÞ C2ðezÞ �ðexÞ �ðeyÞ �ðex þ eyÞ �ðex � eyÞ Polynom. Vector u

Irred. A1 1 1 1 1 1 1 1, z 0, ez
Irred. E 2 2 0 �2 0 0 x, y or Y11, Y1�1 ex, ey
�l¼0 1 1 1 1 1 1 Y00

�l¼1 3 3 1 �1 1 1 Y10, Y11, Y1�1
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The interpolators (58) are expressed in terms of the
currents (47) and are constructed in analogous way as for

d ¼ ex þ ey. We list all the P1P2 interpolators where p1 �ffiffiffi
3

p
2�
L and p2 �

ffiffiffi
3

p
2�
L .

Let us consider the transformation of (58) properties on

the example of ðOP1P2

E ÞIk, which becomes ðOP1P2

Ek ÞICMF ¼
P1ðcez þ ekÞP2ð�cez � ekÞ �P1ðcez � ekÞP2ð�cez þ ekÞ
after the boost to the CMF where c ¼ ��1ð1� 1

2AÞ. The
CMF interpolator transforms like ek¼x;y, as can be under-

stood from the discussion for the d ¼ ex þ ey case, so the

CMF interpolator transforms according to the two-
dimensional irrep E (see Table II).

We note that the interpolator O �qq
E has been applied for

the study for � resonance [16] where m1 ¼ m2 ¼ m�,

while OP1P2

E has been written down14 but not employed.

IV. CONCLUSIONS

We derived the relations that allow the lattice QCD
extraction of the scattering phase shift �lðsÞ from two-
particle energy E in the finite box. We consider the
scattering of two particles with m1 � m2 and with total
momentum P � 0. The simulation of the system with
P � 0 will be important in practice as it will allow the
extraction of �lðsÞ at several values of s ¼ E2 � P2.

We find that the P-wave phase shift can be extracted
from the irreducible representation E of C4v for P ¼
ð2�=LÞez (56), or from the irreducible representations
B2;3 of C2v for P ¼ ð2�=LÞðex þ eyÞ (41) and (42). To

be more specific, these relations allow a reliable extraction
of �1ðsÞ when s is below an inelastic threshold, when
�l�2ðsÞ can be neglected and when L is large enough that
powers of e�m�L can be neglected. If these conditions are
not satisfied, one needs to generalize the phase shift rela-
tions presented here.

The reliable extraction of the S-wave phase shift from a
simulation with P � 0 will be challenging even if the
above three conditions are fulfilled. The reason is that
�0ðsÞ appears together with �1ðsÞ in the A1 representation
when P � 0 and m1 � m2. This mixing happens since the
inversion is not the symmetry of the two-particle system in
the CMF. We propose several strategies that allow an
estimate of �0ðsÞ at P � 0 in spite of this problem. We
expect that a more reliable extraction of the S-wave phase
shift for two particles withm1 � m2 needs to be performed
using a simulation with P ¼ 0 at several values of the
lattice size L; in this case �0 mixes only with �l�4 and
these can be safely neglected.

Besides the phase shift relations, we wrote down also the
quark-antiquark and meson-meson interpolators that trans-
form according to the considered irreducible representa-
tions. These can be used in actual simulations.
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APPENDIX: EVALUATION OF
Zd
lmð1; q2Þ FOR m1 � m2

In this appendix we derive a form of the generalized
function Zd

lmð1;q2Þ that is appropriate for numerical

evaluation. We consider the most general case m1 � m2,
d ¼ 2�

L P � 0 and general l and m, which has not

been considered before. Some parts of our derivation are
similar to Appendix A of [33], done for l ¼ m ¼ 0 and
m1 ¼ m2, and to Appendix B of [8], done for l ¼ 1 and
m ¼ 0.
The Zd

lmðs; q2Þ for the general case of m1 � m2 and

d ¼ 2�
L P � 0 is defined in (30)

Zd
lmðs; q2Þ �

X
r2Pd

YlmðrÞ
ðjrj2 � q2Þs ; q ¼ L

2�
p�;

YlmðrÞ � rlYlmð�;�Þ; (A1)

where the relations for the phase shift depend on Zd
lmð1; q2Þ

evaluated at s ¼ 1. Here q2 is real and can be positive or
negative (14). The sum goes over the mesh Pd defined
in (11) and plotted in Fig. 2(c) for d ¼ ex þ ey and in

Fig. 3(c) for d ¼ ez.
The sum is finite at s ¼ 1 for every l and m except for

l ¼ m ¼ 0, and we will derive the expression that con-
verges faster than (A1), and is appropriate for numerical
evaluation. We will show that sum converges only for
s > 3=2 (but not s ¼ 1) in the case of l ¼ m ¼ 0. The
divergence that appears for s ¼ 1 will be exactly equal to
the divergence that appears in the infinite volume. Since
the phase shift relations depend on the finite volume shift
with respect to the infinite volume, we will get rid of the
divergence by the analytic continuation from s > 3=2 to
s ¼ 1.
First we express 1=ðr2 � q2Þs using the definition of the

Gamma function
R1
0 dtts�1e�ta ¼ �ðsÞ=as and then split

the integral to two parts

Zd
lmðs; q2Þ ¼

1

�ðsÞ
X
r2Pd

YlmðrÞ
Z 1

0
dtts�1e�tðr2�q2Þ

¼ 1

�ðsÞ
X
r2Pd

YlmðrÞ
�Z 1

0
dtts�1e�tðr2�q2Þ

þ
Z 1

1
dtts�1e�tðr2�q2Þ

�
: (A2)

The integral in the second term is finite at s ¼ 1, it is easily
evaluated, and renders faster convergence than the original
sum

14I 2 D4h in the m1 ¼ m2 case, so OPP
E is antisymmetrized

with respect to both particles in [16].
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second term ¼ X
r2Pd

YlmðrÞ 1

�ðsÞ
Z 1

1
dtts�1e�tðr2�q2Þ

!s¼1 X
r2Pd

YlmðrÞ e
�ðr2�q2Þ

r2 � q2
: (A3)

The first term (A2) contains the sum
P

r2Pd
FðrÞ, which

is equivalent to the sum
P

n2Z3FðrðnÞÞ and we express it
using the Poisson summation formula

X
n2Z3

fðnÞ ¼ X
n2Z3

Z
d3xfðxÞei2�n�x; (A4)

leading to

first term ¼ 1

�ðsÞ
Z 1

0
dtts�1etq

2
X
n2Z3

fn;

fn �
Z

d3xYlmðrðxÞÞe�tjrðxÞj2þi2�n�x (A5)

with rðxÞ ¼ �̂�1ðx� 1
2AdÞ (11). We change the integra-

tion variable from x to r using d3x ¼ detðJÞd3r ¼ �d3r
and separate terms that depend only on r using YlmðrÞ ¼
rlYlmð�;�Þ. Applying x ¼ �̂rþ 1

2Ad (11) the term depen-

dent on A factorizes

fn � �ei�An�d
Z 1

0
r2dre�tr2rl

Z �

0
sin�d�

	
Z 2�

0
d�Ylmð�;�Þe�ik�r; (A6)

with k � �2��̂Tn. We insert the well-known relation for
e�ik�r

e�ik�r ¼ 4�
X1
l0¼0

Xl0
m0¼�l0

ð�iÞl0Yl0m0 ð�k;�kÞYl0m0 ð�;�Þ�jl0 ðkrÞ:

(A7)

The integral
R
�
0 sin�d�

R
2�
0 d�Ylmð�;�ÞY�

l0m0 ð�;�Þ ¼
�ll0�mm0 simplifies (A6) to

fn ¼ �4�ð�iÞlð�1ÞAn�dYlmð�k;�kÞ
Z 1

0
drr2e�tr2rljlðkrÞ:

(A8)

The remaining integral can be evaluated with
MATHEMATICA

fn¼�ð�iÞlð�1ÞAn�d
�
k

2t

�
l
Ylmð�k;�kÞ

�
�

t

�
3=2

e�k2=4t (A9)

and we apply ðk=2tÞlYlmð�k;�kÞ ¼ Ylmðk=2tÞ ¼
Ylmð���̂n=tÞ. Inserting this fn to (A5) we get

first term ¼ 1

�ðsÞ
Z 1

0
dtts�1etq

2
X
n2Z3

�ð�iÞlð�1ÞAn�d

	Ylm

�
���̂n

t

��
�

t

�
3=2

e�ð��̂nÞ2=t: (A10)

In the case of s ¼ 1, this integral over t is finite for all n
except for n ¼ 0. The n ¼ 0 divergence occurs only for
l ¼ m ¼ 0 since Ylmðn ¼ 0Þ / �l0�m0. The term with
n ¼ 0 is the infinite volume fn¼0 ¼

R
d3xfðxÞ analog

of
P

nfðnÞ in the Poisson’s formula (A4) and is finite
only for s > 3=2. In order to get rid of the divergence,
that cancels in the difference between the finite and
infinite volume result anyway, we split the n ¼ 0 term
in two parts

1

�ðsÞ
Z 1

0
dtts�5=2etq

2 ¼ 1

�ðsÞ
�Z 1

0
dtts�5=2ðetq2 � 1Þ

þ
Z 1

0
dtts�5=2

�
: (A11)

The first integral is finite for s ¼ 1, while the second

integral
R
1
0 t

s�5=2dt¼s>3=2 1
s�3=2 !s!1 � 2 is finite only for

s > 3=2, but we analytically continue it to s ¼ 1.
Collecting (A3) as well as convergent and divergent

piece of (A5) to get (A2), we get finally

Zd
lmð1; q2Þ ¼ �

Z 1

0
dtetq

2
X

n2Z3;n�0

ð�1ÞAn�dð�iÞl

	Ylm

�
���̂n

t

��
�

t

�
3=2

e�ð��̂nÞ2=t

þ �
Z 1

0
dtðetq2 � 1Þ

�
�

t

�
3=2 1ffiffiffiffiffiffiffi

4�
p �l0�m0

� ���l0�m0 þ
X
r2Pd

YlmðrÞ e
�ðr2�q2Þ

r2 � q2
(A12)

which is used for our numerical evaluation and converges
rapidly for l, m, d of our interest. It is applicable for
q2 > 0 and q2 < 0. We verified numerically that this Zd

lm

respects all the relations listed in the main text, that
follow from discrete symmetries at d ¼ ex þ ey or

d ¼ ez.
In the special case of m1 ¼ m2, our result agrees with

the result in [5], which was presented form1 ¼ m2 without
derivation.15 We also verified that such Zd

lm numerically

agrees with Zd
lm obtained for m1 ¼ m2 via clm as proposed

by [4].

15Note that Zd
lm in [5] is defined to be complex conjugate of

ours.
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