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The quark-mass dependence of the � in the Schwinger model, which—like the �0 in QCD—becomes

massive through the axial anomaly, is studied on the lattice with Nf ¼ 0, 1, 2. Staggered quarks are used,

with a rooted determinant for Nf ¼ 1. In the chiral limit the Schwinger mass is reproduced, which

suggests that the anomaly is being treated correctly.
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I. INTRODUCTION

Staggered fermions [1] offer a cost-effective way of
regulating QCD with four degenerate species. In nature,
the four lightest quarks, known as the u, d, s, c flavors, are
far from being degenerate; only the u and d quarks are
approximately degenerate in the sense that md �mu �
�had, where �had ¼ Oð1 GeVÞ denotes a typical hadronic
scale. Since for an integer number of degenerate dynamical
flavors the functional measure of QCD scales with the
Nf-th power of the determinant, it has been proposed [2]

to reverse this relationship, and to represent Nf ¼ 2þ 1

QCD at finite lattice spacing a (or cutoff a�1) by the
Euclidean partition function

Z ¼
Z

DUdet1=2ðDstag;mud
Þdet1=4ðDstag;ms

Þe�Sg ; (1)

where the path integral runs over all gauge backgroundsU,
and Sg denotes the gauge action. Thus the square root of

the determinant of a staggered field with the isospin aver-
aged light quark mass mud ¼ ðmu þmdÞ=2 and the fourth
root of the determinant of a field with the strange quark
massms are utilized to define the regulated version of QCD
which is used in several state-of-the-art studies of phenom-
enologically relevant quantities (see e.g. [3]).

In recent years, the setup (1) has been criticized [4–6],
because there is no field-theoretic proof that its continuum
limit is really QCD, or put differently, that the lattice
theory (1) is in the correct1 universality class. The issue
is more involved than (1) would suggest, since in practice
one needs the generating functional Z½ ��;�� rather than the
partition function, and the manner in which a given stag-
gered field is reduced to a single ‘‘taste’’ (the modern word
for a single species within a staggered field) in the valence
sector differs from the rooting recipe (1) that is applied in
the sea sector of the theory. Accordingly, the question is

whether these two reduction mechanisms work in concert,
to define a valid discretization of QCD.
As much of the criticism focuses on the axial anomaly

and the special role played by the �0 in QCD [5,6], a
detailed investigation of this state seems particularly desir-
able. The �0 requires disconnected contributions, and this
poses a technical challenge. However, since the underlying
physics is common to a broad class of vectorlike gauge
theories, there is no need to attack the problem in QCD. In
this article the flavor-singlet state is studied in the gener-
alized Schwinger model (GSM) (QED in two dimensions
[2D], with Nf ¼ 0, 1, 2 massive flavors) [23], which is

much easier to simulate. In 2D a staggered field contains
only two species. Hence, a square root is required for
Nf ¼ 1, while the Nf ¼ 2 continuum limit is supposed

to be correct by definition. The point is that the conceptual
issues match those of QCD. The � in this model plays the
same role as the �0 in QCD with three dynamical flavors,
since its mass is predominantly due to the (global) axial
anomaly. In the chiral limit of the Nf ¼ 1 theory it is

known as the Schwinger particle.

II. SIMULATION SETUP

The goal is to perform � spectroscopy with (rooted)
staggered quarks in the massive Schwinger model (Nf ¼
0, 1, 2) at several values of the coupling, such that the
continuum limit (a ! 0) can be taken. In the Nf ¼ 1 case

we wish to perform, in the second step, a chiral extrapola-
tion to compare to the analytic prediction M2

� ¼ e2=� at

m ¼ 0 by Schwinger [23].
Because of the super-renormalizability of the Schwinger

model [23], a convenient choice of scale is through the
dimensionful coupling e in � ¼ 1=ðaeÞ2. With this choice
it is then straightforward to select the spatial extent
L1 � L, the temporal extent L2 � T and the coupling �
such that eL is fixed (modulo cutoff effects). Moreover,
due to the predictions of the eta mass in the chiral limit
(M2

� ¼ Nfe
2=� for Nf ¼ 1, 2; see [23]) and of the pion

mass as a function of the quark mass (M� ¼ 2:008e1=3m2=3

for Nf ¼ 2; see [24]), one knows limm!0M�L beforehand,

and one may choose the quark masses, at least for

1In addition to the summary talks [7–10], the interested reader
is referred to the Schwinger model condensate tests of [11–13],
the eigenvalue based arguments of [12,14–17], the analysis in
rooted staggered chiral perturbation theory [18,19], the
renormalization-group based arguments of [20,21], and the
analysis of the ’t Hooft vertex [22].
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Nf ¼ 2, such that M�L assumes predefined values (again,

modulo cutoff effects). The parameters of the square latti-
ces used in this article are shown in Table I. Most of them
yield eL ¼ eT ¼ 17:89, but at one coupling (with five
quark masses) dedicated finite-volume scaling studies are
performed (see below).

The covariant derivative in Dstag;m (and in the staggered

2-hop operators described below) uses 3 steps of APE
smearing with � ¼ 0:5 and back projection to Uð1Þ.
A great simplification is that reweighting techniques
prove effective in 2D [25]. The plan is thus to generate
substantial numbers of quenched lattices, and to include
the determinant factor into the observable. Using standard
LAPACK routines, logðdetðDstag;mÞÞ may be calculated via a

Cholesky factorization Dy
stag;mDstag;m ¼ RyR by summing

logs of the diagonal elements of R. With R in hand, D�1
stag;m

may be computed through two solve-for operations.
Alternatively, one may use the LU decomposition with
pivoting to compute the determinant and the inverse.

III. TOPOLOGICAL CHARGE DECORRELATION

Since the disconnected part of the � correlator (for
Nf ¼ 1, 2) is sensitive to the global topological charge q

of the gauge background U [26,27], it is crucial to achieve
excellent ergodicity with respect to q.

In the Schwinger model the electric flux of a gauge
configuration is quantized; with toroidal boundary condi-
tions (and ignoring a subset of configurations with measure
zero) the quantity

q½U� ¼ 1

4�

Z
d2x"��F��ðxÞ ¼ 1

2�

Z
d2xF12ðxÞ (2)

takes on integer values. Field configurations with constant
flux are known as instantons. They minimize the action in a
given charge sector, but unlike in QCD they are completely
delocalized. Such one-instanton configurations can be
directly put on the lattice. Specifically [28]

U1ðxÞ ¼ expð�2�ix2=½L1L2�Þ;
U2ðxÞ ¼ expðþ2�ix1=L1 � �x2;L2

Þ; (3)

is an implementation in pseudo-Coulomb gauge (where
all links in the time direction are one, except those at
x2 ¼ L2). An anti-instanton follows by reversing the signs
in the exponent.
It is thus natural to realize a topology-changing update by

multiplying a given configuration, link by link, with (3) or
its conjugate (equal probability), the result being subject to
a Metropolis accept-reject step. This way detailed balance
is maintained by construction. With dynamical fermions,
one would calculate detNf ðD½Unew�Þ=detNf ðD½Uold�Þ and
include it into the decision. Upon combining this global
update with a standard procedure [29,30], one has a
simulation algorithm of a two-dimensional2 Uð1Þ gauge
theory which may take large steps3 in configuration space.
To further improve the symmetry of the overall charge
distribution, one may perform, once in a while, a
P-transformation of the gauge field, i.e. apply the trans-
formation [31]

U�ðx; tÞ ! U�ð�x� �̂; tÞy ð� ¼ 1; . . . ; d� 1Þ;
U�ðx; tÞ ! U�ð�x; tÞ ð� ¼ dÞ (4)

which leaves the gauge action invariant but reverses the
topological charge.
In this paper, anNf ¼ 0 gauge update consists of 4 over-

relaxation sweeps [30] per Metropolis sweep [29] (each
Metropolis update applies 4 successive hits on a
given link), and all of this is repeated L=ð4aÞ times.
In total, two adjacent configurations are separated as,

TABLE I. Overview of the eL ¼ 17:89 simulations (top). The entries in the M�L (for m ¼ 0)
andM�L columns quote the predictions forNf ¼ 2 [23,24]. ForNf ¼ 1 only the former exists and

is smaller by a factor
ffiffiffi
2

p
. To test for finite-volume effects, the � ¼ 3:2 runs are repeated at eL ¼

13:42, 22.36 (bottom). Simulations are performed at Nf ¼ 0, with reweighting to Nf ¼ 1, 2.

#confs denotes the number of guage field configurations used.

� L=a am M�L M�L #confs

1.8 24 0:032 � f1; 2; 3; 4; 5g 14.27 f4:40; 6:99; 9:16; 11:10; 12:88g 5 � 80000
3.2 32 0:024 � f1; 2; 3; 4; 5g 14.27 f4:40; 6:99; 9:16; 11:10; 12:88g 5 � 40000
7.2 48 0:016 � f1; 2; 3; 4; 5g 14.27 f4:40; 6:99; 9:16; 11:10; 12:88g 5 � 20000
12.8 64 0:012 � f1; 2; 3; 4; 5g 14.27 f4:40; 6:99; 9:16; 11:10; 12:88g 5 � 10000
3.2 24 0:024 � f1; 2; 3; 4; 5g 10.70 f3:30; 5:24; 6:87; 8:32; 9:66g 5 � 40000
3.2 40 0:024 � f1; 2; 3; 4; 5g 17.84 f5:51; 8:74; 11:45; 13:87; 16:10g 5 � 40000

2In fact, this idea may be used in the Uð1Þ theory in four
dimensions (4D) too, by just combining two such planar instan-
tons (e.g. in the 12 and 34-planes, see [28] for details), albeit
with the proviso that q then changes only by �2 units.

3To avoid any correlation between adjacent configurations, on
average a total drift by ð�topVÞ1=2 ¼ hq2i1=2 units must be
realized, tantamount to a successful completion of approxi-
mately �topV ¼ hq2i changes of q.
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for n ¼ 1:L=4
perform 2 overrelaxation sweeps;
perform 1 instanton=anti�instanton update;
perform 2 overrelaxation sweeps;
perform 1 Metroplis sweep with 4 hits per link

end;
perform; with probability 0:5; a P� transformation:

Figure 1 shows a part of the pertinent Monte Carlo history
of the plaquette action and of the topological charge on
the finest lattice (� ¼ 12:8). The Wilson action per site
is defined as swilðxÞ ¼ 1� ReU12ðxÞ ¼ 1� cosð	12Þ with
U12ðxÞ ¼ U1ðxÞU2ðxþ e1ÞUy

1 ðxþ e2ÞUy
2 ðxÞ ¼ expði	12Þ

denoting the plaquette. For the topological charge two field-
theoretic definitions4 are used, qð3Þnai ¼

P
sinð	ð3Þ12 Þ=ð2�Þ 2

R (‘‘naive’’) and qð3Þgeo ¼ P
	ð3Þ12 =ð2�Þ 2 Z (‘‘geometric’’),

where 	ð3Þ12 denotes the plaquette angle after 3 smearing
steps. The algorithm is seen to tunnel well.

IV. STAGGERED SPECTROSCOPY
WITH ALL-TO-ALL TECHNOLOGY

In weak coupling perturbation theory, staggered fermi-
ons have been proven to be sensitive to the axial anomaly
[32,33]. Still, it seems worth demonstrating that this sensi-
tivity carries over, at the nonperturbative level, to the
asymptotic states of the theory, and leads to a nonvanishing
mass of the combined taste-and-flavor singlet pseudoscalar
meson in the chiral limit.

The remnant staggered form of the continuum index
theorem has been investigated in a classic paper [28]. A

direct check of the mass excess of the � (�0) in Nf ¼ 2

(Nf ¼ 3) QCD with rooted staggered quarks and standard

taste assignment has been attempted [34–37], but unfortu-
nately in the disconnected contributions the signal dies
quickly in the noise [38–43]. Encouraged by [26,27], we
now attack the same goal in the much simpler Schwinger
model.
With a single staggered field, we expect to find 4 pseu-

doscalar bosons. The lightest (
5 � �5, to be dubbed �0)
becomes massless (on an infinitely large lattice) in the limit
m ! 0, the next two (
5 � �1 and 
5 � �1�5, to be dubbed
��) become massless up to cutoff effects, while the last
one (
5 � 1, to be dubbed �) is supposed to be well-
separated and stay massive in the chiral limit. In standard
terminology, the �0 is taste pseudoscalar, the �� are taste
(axial)vector (in 2D there is no distinction), while the � is
taste scalar (or taste singlet); see [3] for details.
Staggered spectroscopy is performed by constructing

dedicated correlators which project to a specific spinor-
taste combination. In phenomenological applications it is
common practice to use a source at a single lattice point as
a ‘‘broad band emitter’’ which couples to all spinor-taste
combinations, and to apply the projection only at the sink.
In this work, we use an all-to-all propagator technique, and
shall apply spinor-taste projection independently at the
source and the sink. In explicit terms, for the 
5 � �5

‘‘Goldstone’’ state we use the operator �55 ¼ ð�1Þx1þx2 ,
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FIG. 1. Part of the Nf ¼ 0 Monte Carlo histories of the action swil (left panel) and of the 3-fold smeared field-theoretic topological

charges qð3Þnai, q
ð3Þ
geo (right panel) on the 642 lattices at � ¼ 12:8.

4For qðnÞnai normally a renormalization factor Z ¼ 1þOða2Þ is
introduced, but with smearing this factor is so close to 1 that it
seems permissible to drop it [in line with neglecting other Oða2Þ
effects].
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which is a pointlike operator. By contrast, the operator
�50 ’ ð
5 � 1Þ is defined by [28]

�50 ¼ i

2
ð�1�2 � �2�1Þ; where (5)

��ðx; yÞ ¼ 1
2��ðxÞ½U�ðxÞ�xþ�̂;y þUy

�ðx� �̂Þ�x��̂;y�;
(6)

with ��ðxÞ ¼
P

�<�ð�1Þ�, and is thus a 2-hop operator (it
would be 4-hop in 4D).

The operator (5) is supposed to be sensitive to the
topological charge of the gauge background U, and to
test our implementation we routinely determine the fermi-
onic charge5

qstag½U� ¼ m

2
trðG�50Þ; (7)

where G denotes the Green’s function of the massive
staggered operator. A scatter plot of (7) (y-axis) versus
the gluonic charge qgeo½U� (x-axis) is shown in Fig. 2. We

also checked that the operator �50�55 ’ 1 � �5 is not sen-
sitive to the topological charge.

With these projections it is straightforward to construct
the connected �0 and � correlators

C�ðtÞ ¼ 1

L2

X
x;y;x2�y2¼tðmodTÞ

Gðx; yÞ�55ðyÞGðy; xÞ�55ðxÞ; (8)

C�ðtÞ¼ 1

L2

X
x;y;x2�y2¼tðmodTÞ

Gðx;y0Þ�50ðy0;yÞGðy;x0Þ�50ðx0;xÞ;

(9)

where �ðx0; xÞ�55ðxÞ ¼ �55ðx0; xÞ is used, and the primed
positions are implicitly summed over. For the combined
taste-and-flavor singlet state there is also the disconnected
contribution

D�ðtÞ¼ 1

L2

X
x;y;x2�y2¼tðmodTÞ

Gðx;x0Þ�50ðx0;xÞGðy;y0Þ�50ðy0;yÞ;

(10)

and for staggered fermions it must be combined with (9) in
the form [34]

F�ðtÞ �
Nf

Nt

C�ðtÞ �
N2

f

N2
t

D�ðtÞ (11)

to obtain the full 2-point function of the � state. Here Nt ¼
2d=2 denotes the number of tastes of a staggered field in d
spacetime dimensions. Since C�ðtÞ and F�ðtÞ fall off ex-
ponentially,6 at large t, with masses Mconn

� and Mfull
� ,

respectively, (where only the latter one is physical),
it follows that the ratio of the disconnected over the con-
nected correlator takes the form

R�ðtÞ �
D�ðtÞ
C�ðtÞ !

Nt

Nf

� const
e�M�

fullt þ e�M�
fullðT�tÞ

e�Mconn
� t þ e�Mconn

� ðT�tÞ

’ Nt

Nf

� conste��M�t; (12)
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FIG. 2 (color online). Left panel: Correlation between the topological charges qð3Þgeo and qð3Þstag, based on the �50 operator (5), with 3
smearings. Right panel: Overall topological charge distribution for Nf ¼ 0, and after reweighting to Nf ¼ 1, 2. Either plot refers to the

intermediate mass run at � ¼ 7:2.

5For qðnÞstag the statement in footnote 3 applies likewise (cf.
Fig. 2 to see how close to 1 the Z-factor is).

6Strictly speaking, there is no transfer matrix argument ensur-
ing this for the case of interest. For C�ðtÞ one may be able to
construct a transfer matrix in the partially quenched sense [44].
For F�ðtÞ, a transfer matrix exits only for Nf ¼ 2. For Nf ¼ 1,
there is no such argument (because of the rooted determinant),
but our data are consistent with D�ðtÞ being the difference of two
exponentials for Nf ¼ 0, 1, 2 alike. In other words, regardless of
Nf the disconnected piece seems to have precisely the form
needed to make (11) a single exponential at t ! 1.
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where �M� � Mfull
� �Mconn

� , and the simplification ap-

plies for a � t � T. In other words, the prediction is that
in 2D the ratio (12) levels off at 2 for Nf ¼ 1, and at 1 for

Nf ¼ 2.

V. TELLING GOLDSTONE BOSONS
FROM NON-GOLDSTONE BOSONS

With the lattices of Table I in hand it is advisable to first
check how well the different topological charges agree,
how well the overall distribution is sampled, and whether
the disconnected piece D�ðtÞ is indeed sensitive to the

overall charge of the background U.
The correlation between any pair of the three topological

charges considered is very good; for the larger two � even
the Z-factor inherent in qrennai and qrenstag is extremely close to

1, as can be inferred from Fig. 2. For Nf ¼ 0 the overall

topological charge distribution is nicely sampled and close
to a Gaussian. Under reweighting toNf ¼ 1 orNf ¼ 2 tiny

asymmetries seem to get considerably enhanced. A feature
relevant in what follows is that the dynamical distributions
are narrower than the quenched one; with observables
which are sensitive to topology it is useful to have the tails
‘‘oversampled’’ and to reduce their weight in the analysis.

After these checks have been carried out success-
fully, it is straightforward to determine the pion mass
aM� for all couplings and quark masses. To this
aim we consider the effective mass

aM�ðtÞ ¼ 1
2 logð½Cðt� 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðt� 1Þ2 � CðT=2Þ2

q
�=

½Cðtþ 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðtþ 1Þ2 � CðT=2Þ2

q
�Þ;

with C � C�, which is designed to compensate for
the influence of the periodic boundary conditions. A
typical example is shown in Fig. 3. A nice plateau is

observed; albeit with tiny oscillations7 which grow
towards the center of the box. Under reweighting to
Nf ¼ 1 or Nf ¼ 2 this effect gets enhanced. For the

connected piece of the eta (which is an unphysical
state) similar results are obtained. Throughout, the
difference between these two masses is tiny.
Turning to the disconnected piece D�ðtÞ, we first con-

sider its correlation with the topological charge of the
background. Example results are presented in Fig. 4. For
these t the subensemble average hD�ðtÞiq seems to be a

linear function of q2 [which, from a glimpse at (10) and the
definition of qstag½U� is plausible]. The issue most relevant

is whether reasonable results for the disconnected-over-
connected ratio (12) are obtained. Typical results are pre-
sented in Fig. 5. We obtain a rather clear signal up to about
t ¼ T=4 and find a qualitatively different behavior for the
three Nf shown. In the quenched case the pattern is con-

sistent with a linear rise (with a slope which clearly de-
pends on the quark mass). After reweighting to Nf ¼ 1 or

Nf ¼ 2 the behavior is consistent with the prediction (12).

A typical problem with the disconnected piece is that at
large t the data may go astray without the statistical error
giving a hint of this (we tried several jackknife blocksizes).
Still, we can extract the mass gap a�M� from a fit to (12)

at intermediate t, i.e. before the noise prevails. The results
such obtained are collected in Table II, along with the aM�

values determined previously.
The lower part of Table II contains the results of a finite-

volume scaling study at � ¼ 3:2 (since finite-volume
effects relate to infrared physics the restriction to one �
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FIG. 3 (color online). aMeffðtÞ of C�ðtÞ (left panel) and C�ðtÞ (right panel), at � ¼ 7:2 for the intermediate quark mass.

7This may signal the presence of a parity partner [3] on odd
time slices. In our analysis we use M�ðT=2� 1Þ which, in turn,
is based on the correlator C�ðtÞ on the even time slices t ¼
T=2� 2, T=2.
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is permissible). It seems that in the extra-small volume the
pion mass is affected for the lightest two quark-mass
values. In the standard volume only the lightest quark-
mass data suffer from small finite-volume artefacts. In
case of the mass gap a�M� no finite-volume effects are

found for Nf ¼ 1, while for Nf ¼ 2 the quality of the data

is less convincing, which likely indicates the limitations of
the reweighting method (fortunately, we are mostly inter-
ested in a�M� for Nf ¼ 1).

The next step is a continuum extrapolation of the meson
masses obtained. We do this both for M�=e in the Nf ¼ 2

theory (to test the prediction by Smilga [24], see above)
and for the main object of interest �M�=e in the Nf ¼ 1

theory. As mentioned in Sec. II the simulations were
carried out at fixed physical quark masses (i.e. m=e),

such that the data of Table II can be continuum extrapo-
lated without interpolation in m. These extrapolations are
shown in Fig. 6. It seems that all four lattice spacings are in
the Symanzik scaling regime; we obtain acceptable linear
fits with 2 degrees of freedom.
With these continuum results forM�=e (forNf ¼ 2) and

�M�=e (for Nf ¼ 1) in hand, it is interesting to consider

their quark-mass dependence. In the left panel of Fig. 7 we
plot ðM�=eÞ3 as a function of ðm=eÞ2. Here, the lightest
pion mass has been adjusted by the finite-volume correction
factor 0:138=0:154 ¼ 0:896 (taken from Table II). Using a
1-parameter ansatz fits the data with �2=d:o:f ¼ 1:13 (d.o.f.
being degrees of freedom) and a slope parameter of 8.221
(63). This is in reasonable agreement with Smilga’s predic-
tion that this parameter should be 2:0083 ¼ 8:096 [24].
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FIG. 4. Correlation between the disconnected D�ðtÞ and the squared topological charge qð3Þgeo for t ¼ T=4 (left panel) and t ¼ T=2
(right panel). Data are from the intermediate quark-mass run at � ¼ 7:2.
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Last but not least let us consider the quark-mass depen-
dence of the mass gap �M�=e in the Nf ¼ 1 theory, as

shown in the right panel of Fig. 7. Being unaware of an
analytic prediction, it is not entirely clear which powers
of �M�=e and m=e one should choose to display

the data, and we opt for staying without additional
powers. Fortunately, in this representation the quark-mass
dependence seems mild, and both a linear and a quadratic
fit with 1 degree of freedom describe the data convincingly.

Taking half of the spread as the systematic error, these fits
predict�M�=e ¼ 0:591ð25Þð37Þ in the chiral limit,8 which

is in perfect agreement with Schwinger’s analytic result
M�=e ¼ �M�=e ¼ 1=

ffiffiffiffi
�

p ¼ 0:56419 [23].

VI. SUMMARY

Triggered by the criticism of [4–6] the validity of the
‘‘rooting trick’’ in studies with staggered quarks has been
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FIG. 6 (color online). Continuum extrapolation of M�=e (Nf ¼ 2, left panel) and �M�=e (Nf ¼ 1, right panel) versus a2.

TABLE II. Measured aM� (Goldstone boson) and a�M� (excess of the taste-and-flavor singlet pseudoscalar state) for all �, L=a,
Nf, and m. The quark masses are given in Table I.

aM� a�M�

� L=a Nf m1 m2 m3 m4 m5 m1 m2 m3 m4 m5

1.8 24 0 0.279(01) 0.368(01) 0.444(01) 0.513(01) 0.579(01) . . . . . . . . . . . . . . .
1 0.220(01) 0.318(01) 0.402(01) 0.478(01) 0.550(01) 0.39(02) 0.36(07) 0.33(03) 0.31(04) 0.30(05)

2 0.199(06) 0.292(02) 0.374(02) 0.454(01) 0.530(01) 0.83(42) 1.05(60) 0.63(08) 0.57(14) 0.53(21)

3.2 32 0 0.215(01) 0.281(01) 0.337(01) 0.389(01) 0.439(01) . . . . . . . . . . . . . . .
1 0.166(01) 0.240(01) 0.304(01) 0.362(01) 0.417(01) 0.28(02) 0.22(01) 0.21(01) 0.21(01) 0.18(01)

2 0.154(07) 0.217(04) 0.283(01) 0.342(01) 0.400(01) 1.41(97) 0.48(02) 0.39(06) 0.36(02) 0.40(06)

7.2 48 0 0.142(01) 0.186(01) 0.224(01) 0.260(01) 0.294(01) . . . . . . . . . . . . . . .
1 0.111(02) 0.159(01) 0.203(01) 0.242(01) 0.279(01) 0.17(02) 0.14(01) 0.12(01) 0.11(01) 0.12(03)

2 0.091(16) 0.137(06) 0.188(02) 0.230(01) 0.269(01) 0.45(07) 0.29(02) 0.28(01) 0.24(02) 0.22(02)

12.8 64 0 0.107(01) 0.140(01) 0.169(01) 0.196(01) 0.221(01) . . . . . . . . . . . . . . .
1 0.087(02) 0.123(01) 0.153(01) 0.183(01) 0.210(01) 0.14(02) 0.12(01) 0.10(02) 0.09(01) 0.09(02)

2 0.086(07) 0.114(02) 0.143(02) 0.175(01) 0.201(02) 0.32(05) 0.24(04) 0.23(02) 0.19(01) 0.17(02)

3.2 24 0 0.231(01) 0.285(01) 0.338(01) 0.390(01) 0.439(01) . . . . . . . . . . . . . . .
1 0.182(01) 0.246(01) 0.306(01) 0.363(01) 0.416(01) 0.26(01) 0.23(01) 0.21(01) 0.19(01) 0.18(01)

2 0.173(02) 0.229(01) 0.288(01) 0.346(01) 0.400(01) 2.12(1.56) 0.64(16) 0.47(02) 0.37(04) 0.33(05)

3.2 40 0 0.214(01) 0.280(01) 0.337(01) 0.389(01) 0.439(01) . . . . . . . . . . . . . . .
1 0.158(02) 0.241(01) 0.302(01) 0.363(01) 0.417(01) 0.28(13) 0.26(03) 0.21(02) 0.18(03) 0.21(04)

2 0.138(04) 0.220(04) 0.276(05) 0.347(02) 0.402(01) 2.75(2.72) 1.23(83) 0.41(25) 0.38(12) 0.36(04)

8Here we assume that the unphysical mass Mconn
� that belongs to C�ðtÞ vanishes in the combined continuum and chiral limit. Given

that our data are consistent with aM� � aMconn
� being a cutoff effect (cf. Fig. 3), this seems to be the case. The alternative of

extrapolating the physical M� seems more susceptible to the choice of the powers on M�=e and m=e, which results in a larger
uncertainty of the extrapolated result.
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the subject of an intense debate in the lattice community.
Several review talks at major conferences [7–10] presented
a wealth of numerical and analytical evidence in favor of
the procedure, but so far the ‘‘experimentum crucis,’’ i.e. a
direct test of �0-phenomenology in QCD with rooted
staggered quarks remained elusive, due to noise issues
[34–37].

This paper is based on the observation that there is no
strict need to investigate the topic in QCD, since the con-
ceptual issue is one-to-one matched in the massive
Schwinger model with 1 flavor, which is much simpler to
simulate. We demonstrated that in this case it is possible to
obtain conclusive results for the disconnected-over-
connected ratio (12). As shown in Fig. 5 the prediction
(12) with Nf ¼ 1 and Nt ¼ 2 is beautifully confirmed. In

consequence the mass gap�M� or the physical massM� in

the 1-flavor theory can be determined with sufficient pre-
cision, so that a combined continuum and chiral extrapola-

tion is possible. The result is in perfect agreement with the
analytical prediction M� ¼ e=

ffiffiffiffi
�

p
by Schwinger [23].

It seems this is the first ad oculos demonstration that the
staggered setup—with the rooting trick in the functional
measure—treats the contribution of the axial anomaly to
the particle spectrum correctly. With this result, and in
view of [34–37], one may predict that the outcome of a
similar study in QCDwill be identical, once sufficient CPU
power is available.
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[7] S. Dürr, Proc. Sci., LAT2005 (2006) 021 [arXiv:hep-lat/

0509026].
[8] S. R. Sharpe, Proc. Sci., LAT2006 (2006) 022 [arXiv:hep-

lat/0610094].
[9] A. S. Kronfeld, Proc. Sci., LAT2007 (2007) 016

[arXiv:0711.0699].

[10] M. Golterman, Proc. Sci., CONFINEMENT8 (2008) 014

[arXiv:0812.3110].
[11] V. Azcoiti, G. Di Carlo, A. Galante, A. F. Grillo, and

V. Laliena, Phys. Rev. D 50, 6994 (1994).
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