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We calculate form-factor ratios between the semileptonic decays �B0 ! Dþ‘� �� and �B0
s ! Dþs ‘� �� with

lattice QCD. These ratios are a key theoretical input in a new strategy to determine the fragmentation

fractions of neutral B decays, which are needed for measurements of BRðB0
s ! �þ��Þ. We use the MILC

ensembles of gauge configurations with 2þ 1 flavors of sea-quarks at two s of approximately 0.12 fm and

0.09 fm. We use the model-independent z parametrization to extrapolate our simulation results at small

recoil toward maximum recoil. Our results for the form-factor ratios are fðsÞ0 ðM2
�Þ=fðdÞ0 ðM2

KÞ ¼
1:046ð44Þstatð15Þsyst and fðsÞ0 ðM2

�Þ=fðdÞ0 ðM2
�Þ ¼ 1:054ð47Þstatð17Þsyst. In contrast to a QCD sum-rule calcu-

lation, no significant departure from U-spin (d$ s) symmetry is observed.

DOI: 10.1103/PhysRevD.85.114502 PACS numbers: 12.38.Gc, 13.20.He

I. INTRODUCTION

Recently there has been increasing interest in the rare
decay B0

s ! �þ�� which, as a flavor-changing neutral-
current process, is forbidden at tree level in the standard
model (SM). At the loop level, it can be mediated by weak
bosons through penguin or box diagrams. With a nonper-
turbative (lattice QCD) calculation of the bag parameter
BBs

, the branching fraction has been predicted to be [1,2]

BR ðB0
s ! �þ��Þ ¼ 3:2ð2Þ � 10�9: (1.1)

Several new physics models would enhance the decay rate
[3–7], and, hence, observation of this process could poten-
tially reveal physics beyond the SM. Recently, several
experiments [8–15] have published upper limits on this
branching fraction, which we have compiled in
Fig. 1. Moreover, CDF [11] reports an excess such that
BRðB0

s ! �þ��Þ ¼ 18þ11�9 � 10�9 or a two-sided 90%

confidence interval, 4:6� 10�9 < BRðB0
s ! �þ��Þ<

39� 10�9, lying above the SM prediction, Eq. (1.1).
CMS and LHCb, however, set upper limits that restrict
the CDF region. As statistics accumulate, especially at
LHCb, a definitive measurement at the SM rate or higher
seems likely soon.
At a hadron collider, the extraction of BRðB0

s ! �þ��Þ
relies on normalization channels such as Bþu ! J=cKþ,
B0
d ! Kþ�� and B0

s ! J=c� [16], through relations of

the form

BR ðB0
s ! �þ��Þ ¼ BRðBq ! XÞ fq

fs

�X
���

N��

NX

; (1.2)

where � and N are, respectively, the detector efficiencies
and the numbers of events. The fragmentation fractions fq
(q ¼ u, d, s or �) denote the probability that a b quark
hadronizes into a Bq meson or a �b baryon. The fragmen-

tation fractions fq may depend on the environment, so

they are best measured in situ in each experiment. Thus,*ddu@illinois.edu
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improving the determination of the fragmentation ratio
fs=fd will tighten the limits and increase the significance
of measurements.

The quantity fs=fd has generally been determined
from semileptonic decays [17], an approach that LHCb
has newly refined [18]. Recently, Fleischer, Serra, and
Tuning proposed two approaches based on measuring the
ratio relative to nonleptonic decays BRð �B0

s!Dþs ��Þ=
BRð �B0!DþK�Þ [19] or BRð �B0

s ! Dþs ��Þ=BRð �B0 !
Dþ��Þ [20]. An important ingredient in both approaches
is the approximate factorization of the nonleptonic decay
amplitudes, which relies on the corrections to naive facto-
rization of the light-meson in the final-state being small and
calculable [21]. The DþK� method is favored in this re-
gard, because it receives contributions only from color-
allowed tree-diagram-like topologies which yield smaller
nonfactorizable effects [20].

The ratio BRð �B0
s!Dþs ��Þ=BRð �B0!DþK�Þ is related

to fs=fd by analogy with Eq. (1.2). Via factorization, the
amplitudes for these nonleptonic processes can be ex-
pressed as a product of the light-meson decay constant
and a semileptonic form factor for BðsÞ ! DðsÞ‘�. This
leads to a way to measure fs=fd [19,22]:

fs
fd
¼ 0:0743� �B0

�B0
s

�
�
�DK

�Ds�

NDs�

NDK

�
� 1

N aN F

; (1.3)

where � denotes lifetimes, and the number 0.0743 is a
product of ratios of well-known quantities such as the light-
meson decay constants, Cabibbo-Kobayashi-Maskawa
matrix elements and kinematic factors. The factorization is
parametrized by [19]

N a ¼
�
aðsÞ1 ðDþs ��Þ
aðdÞ1 ðDþK�Þ

�
2
; (1.4)

N F ¼
�
fðsÞ0 ðM2

�Þ
fðdÞ0 ðM2

KÞ
�
2
; (1.5)

where aðqÞ is a factor accounting for the deviation from the
naive factorization and f0ðq2Þ is a form factor for the corre-
sponding semileptonic decay.
The hadronic method relies on theoretical inputs forN a

and N F. In the limit of exact U-spin symmetry (namely
the exchange of s and d quarks throughout the process),
both reduce to 1. Fleischer, Serra, and Tuning expect the
U-spin breaking jN a � 1j ‘‘to be at most a few percent’’
[20,21]. Based on an estimate from QCD sum rules [23],
they quote either N F ¼ 1:3� 0:1 [19] or N F ¼ 1:24�
0:08 [20], the latter of which LHCb uses [22]. In either
case, the biggest limitation is from the form-factor
ratio N F.
A relation between fs=fd and BRð �B0

s!Dþs ��Þ=
BRð �B0!Dþ��Þ is derived along similar lines in [20].

In that case, the form-factor ratio becomes ½fðsÞ0 ðM2
�Þ=

fðdÞ0 ðM2
�Þ�2, i.e., with both numerator and denominator

evaluated at q2 ¼ M2
�.

In this paper, we calculate these two form-factor ratios
using lattice QCD with 2þ 1 flavors of sea-quarks. We use
the same set of MILC ensembles of gauge configurations
[24] and the same sequence of bootstrap copies for both of
the B0

s and B
0 processes, which reduces the statistical error

by correctly accounting for correlations. We include the
contributions of the first radially excited states in the fits of
correlation functions to avoid the respective systematic
errors. Such a treatment turns out to be necessary for
calculations at nonzero recoil. By fitting the correlation
functions in a simultaneous and mutually constrained man-
ner, we are able to extract the form factors at small recoil.
We then extrapolate our lattice results to the continuum
limit and to physical quark masses with the guide of chiral
perturbation theory. Finally, we use the model-independent
z parametrization [25] to extend the form factors toward
large recoil.
We finally arrive at the result

fðsÞ0 ðM2
�Þ

fðdÞ0 ðM2
KÞ
¼ 1:046ð44Þð15Þ; (1.6)

where the first error is statistical and the second reflects the
systematic errors added in quadrature. (Because of refine-
ments in the analysis, Eq. (1.6) differs slightly from our
preliminary result [26].) We do not observe a large U-spin
breaking effect. Such a small difference between the B0

s

and B0 form factors is in accord, however, with recent
lattice QCD calculations on lighter mesons like DðsÞ !
�ðKÞ‘� [27]. It is also in agreement with a result from
heavy-meson chiral perturbation theory [28].
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FIG. 1 (color online). Comparison of the (most recent) mea-
surements from CDF [8,11], DØ [9], CMS [12,14], and LHCb
[10,13,15] with the SM prediction [1,2] shown as a vertical band.
The filled bars show the measured bounds of the branching ratio
with a 95% confidence. In the fourth bar, the inner box shows the
two-sided 90%bound fromCDF [11]. Two results from theLHCb
in 2011 are distinguished as ‘‘2011a’’ [10] and ‘‘2011b’’ [13].
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The factorization analysis of BRð �B0
s ! Dþs ��Þ=

BRð �B0 ! Dþ��Þ is somewhat more complicated because
of additional topologies in the decay �B0 ! Dþ��. A
similar form-factor ratio is needed and, simply by adjusting
q2 in the denominator, we find

fðsÞ0 ðM2
�Þ

fðdÞ0 ðM2
�Þ
¼ 1:054ð47Þð17Þ: (1.7)

We discuss the implications of our results (1.6) and (1.7) in
Sec. VII. Here we only note that both yield fragmentation-
fraction ratios fs=fd in agreement with LHCb’s recent
measurement via semileptonic methods [18].

This paper is organized as follows. In Sec. II, we sum-
marize the formalism and our strategy to extract the form
factors at nonzero recoil. We provide simulation details in
Sec. III. We describe the methodology used to extract the
form factors from the two- and three-point correlation
functions with the given gauge configurations. This fitting
procedure is crucial to our analysis. In Sec. IV we describe
the chiral-continuum extrapolation using the correspond-
ing chiral perturbation theory. In Sec. V, these results are
then extrapolated to the region of small momentum trans-
fer using a model-independent parametrization. We also
compare here a related form factor, which we obtain as a
by-product, with the experimental results. In Sec. VI, we
account for the systematic errors that arise in our analysis
and present a full error budget. Finally, in Sec. VII, we
present our results, compare with previous results and
discuss prospects and connections to current and future
experiments. The Appendix specifies the functional form
of the chiral extrapolation in detail.

II. SEMILEPTONIC BðsÞ ! DðsÞ‘� FORM
FACTORS FROM LATTICE-QCD

The hadronic matrix elements of the semileptonic de-
cays BðsÞ ! DðsÞ‘� can be parametrized by

hDðp0ÞjV�jBðpÞi¼fþðq2Þ
�
ðpþp0Þ��M2

B�M2
D

q2
q�

�

þf0ðq2ÞM
2
B�M2

D

q2
q�; (2.1)

where q ¼ p� p0 is the momentum transfer and V� ¼
�c��b is the (continuum) vector current. Another parame-
trization uses velocity 4-vectors v ¼ p=M instead of
momentum p [29],

hDðp0ÞjV�jBðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD

p ¼hþðwÞðvþv0Þ�þh�ðwÞðv�v0Þ�;
(2.2)

where w ¼ v � v0 ¼ ðM2
B þM2

D � q2Þ=2MBMD describes
the recoil of the process. The h� parametrization is con-
venient for lattice QCD, both for numerical simulation [30]
and for matching lattice gauge theory to continuum QCD
[31,32].

The lattice QCD calculation of hþ in the zero-recoil
limit has been investigated using double ratios [30],

Rþ ¼ hDj �c�
0bjBihBj �b�0cjDi

hDj �c�0cjDihBj �b�0bjBi ¼ jhþð1Þj
2 (2.3)

with all states at rest. To proceed analogously at nonzero
momentum, we introduce the following single ratios:

a � hDðpÞj �c�bjBð0ÞihDð0Þj �c�0bjBð0Þi ¼
hþðwÞ � h�ðwÞ

2hþð1Þ v; (2.4)

b � hDðpÞj �c�bjBð0ÞihDðpÞj �c�0bjBð0Þi¼
hþðwÞ�h�ðwÞ

ðwþ1ÞhþðwÞ�ðw�1Þh�ðwÞv;
(2.5)

d � hDðpÞj �c�cjDð0ÞihDðpÞj �c�0cjDð0Þi ¼
v

1þ w
; (2.6)

where the last follows from vector current conservation,
hD!D� ðwÞ ¼ 0.
We can write down the equations that manifest the

relations between the ratios and the form factors

w ¼ 1þ d � d
1� d � d ; (2.7)

hþðwÞ
hþð1Þ

¼ ai
bi
� a � d; (2.8)

h�ðwÞ
hþð1Þ

¼ ai
bi
� ai

di
: (2.9)

In Eq. (2.4), we have a ratio a between matrix elements
involving a final D meson with nonzero and zero spatial
momentum. The purpose is to make use of the correlations
in the uncertainties between the two. The form factor at
zero recoil can be extracted precisely via Rþ [30], and we
find that these ratios aid calculations at nonzero recoil in a
similar way.
With h�ðwÞ in hand, one can obtain the form factors

fþðq2Þ and f0ðq2Þ,

fþðq2Þ ¼ 1

2
ffiffiffi
r
p ½ð1þ rÞhþðwÞ � ð1� rÞh�ðwÞ�; (2.10)

f0ðq2Þ ¼
ffiffiffi
r
p �

wþ 1

1þ r
hþðwÞ � w� 1

1� r
h�ðwÞ

�
; (2.11)

where r ¼ MD=MB and q2 ¼ M2
B þM2

D � 2wMBMD.
Equations (2.8) and (2.9) both contain the factor hþð1Þ,
so we write

f0ðq2Þ ¼ hþð1Þ~f0ðwðq2ÞÞ: (2.12)

In the formulas until now, we have not specified the spec-
tator mass, so they apply to both the B! D and Bs ! Ds

processes. With this notation, the desired ratio of the form
factors is then
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f
Bs!Ds

0 ðM2
�Þ

fB!D
0 ðM2

KÞ
¼ h

Bs!Dsþ ð1Þ
hB!Dþ ð1Þ

~f
Bs!Ds

0 ðwðM2
�ÞÞ

~fB!D
0 ðwðM2

KÞÞ
; (2.13)

where the first factor is obtained from the ratios RB!Dþ
and R

Bs!Dsþ and the last from the expressions in Eqs. (2.8)
and (2.9).

On the lattice, we define a vector current V� ¼
Z1=2

V4
cc
Z1=2

V4
bb

��c�
��b [30,32], where the factors ZV4

QQ
normal-

ize the flavor charge. The matching between the lattice and
the continuum physics can be bridged by the relation
V� ¼ �V�V�, where �2

V� ¼ ZV4
bc
ZV4

cb
=ZV4

bb
ZV4

cc
. The nor-

malization factors ZV4
QQ

cancel in the ratios in Eqs. (2.3),

(2.4), (2.5), and (2.6). The factor �V4 has been verified to be
very close to 1 with one-loop perturbation theory with
unimproved gluons [32]. Calculations of �V� with im-
proved gluons (as used here; cf. Sec. III) are in progress.
Given the ratio structure in Eq. (2.13), it is clear that the
(small) contributions from �V� � 1 should largely cancel.
Thus, in this analysis, we take �V� ¼ 1 and estimate the
uncertainty from this choice in Sec. VI.

III. SIMULATIONS AND FITTING
METHODOLOGY

A. Data setup and the lattice simulations

Our calculation uses four ensembles of MILC’s
(2þ 1)-flavor asqtad configurations [24] at two lattice
spacings, a � 0:12 fm, 0.09 fm, which we refer to as the
‘‘coarse’’ and ‘‘fine’’ lattices, respectively. The configura-
tions were generated with an Oða2Þ Symanzik improved
gauge action [33–36]. The coarse (fine) ensembles used
here have a lattice size of 203 � 64 (283 � 96), so in both
cases the spatial size is L � 2:4 fm. The four ensembles
have different sea-quark masses, so, for the sake of conve-
nience, we label them C020, C007, F0062, and F0124.
Details on the parameters that we use in the simulations
are summarized in Table I. The strange and light sea-
quarks are simulated using the asqtad-improved staggered
action [37–41]. The asqtad action is also used for our
strange and light valence quarks. The heavy charm and
bottom quarks are simulated using the Sheikholeslami-
Wohlert clover action [42] with the Fermilab interpretation
[43]. We simulate the B! D and Bs ! Ds decays on the
same ensembles, so that correlations reduce the statistical
uncertainty in the ratios. For the B! D decay, the valence

light-quark mass is taken to be the same as the sea-quark
mass, i.e., we stick to ‘‘full QCD’’ data with mx ¼ ml,
while for the Bs ! Ds process, we set the valence strange-
quark mass to be close to its physical value, mx ¼ ms. The
charm and bottom quarks in our calculation are tuned to
their physical values up to a tuning uncertainty. Columns
2–9 in Table I list, respectively, the approximate lattice
spacings, light/strange sea-quark masses, number of con-
figurations, the hopping parameter 	bðcÞ, the coefficient for
the clover term cSW, and the light valence-quark masses
used in the B! D and Bs ! Ds simulations. The quark
masses here are all in lattice units.
We obtain the matrix elements appearing in Sec. II from

the following three-point correlation functions:

CDV�B
3 ð0;t;T;pÞ¼X

x;y

hODð0;0Þ ��ci�
��bðt;yÞOyBðT;xÞieip�y;

(3.1)

CDV�D
3 ð0;t;T;pÞ¼X

x;y

hODð0;0Þ ��ci�
��cðt;yÞOyDðT;xÞieip�y;

(3.2)

CBV4B
3 ð0;t;T;0Þ¼X

x;y

hOBð0;0Þ ��bi�
4�bðt;yÞOyBðT;xÞi;

(3.3)

where the sum over x sets the Bmeson at rest, and the sum
over y selects the final-state D-meson momentum. The
final D meson is simulated with several small spatial
momenta which are the lowest possible values for the
finite spatial volumes: p ¼ 2�ð0; 0; 0Þ=L, 2�ð1; 0; 0Þ=L,
2�ð1; 1; 0Þ=L, 2�ð1; 1; 1Þ=L, 2�ð2; 0; 0Þ=L, and permuta-
tions. To increase statistics, data are generated at four
different source times, spaced evenly along the temporal
extent of the lattice. The zero-momentum correlation func-
tions for D! D and B! B serve as normalization, as
discussed above. The D! D correlation-function with a
nonzero final-state momentum is used to extract w via
Eqs. (2.6) and (2.7).
The analysis below also requires the two-point function

CX
2 ðt;pÞ ¼

X
x

eip�xhOyXðt; xÞOXð0; 0Þi; (3.4)

where X ¼ B or D.
We simulate the daughter meson with two different

choices for the interpolation operator OX: with a 1S-wave

TABLE I. Parameters of the MILC asqtad ensembles of configurations and the valence quarks used in this analysis.

Ensemble a (fm) aml=amh Nconfs 	c 	b cSW amxðB! DÞ amxðBs ! DsÞ
C020 �0:12 0:020=0:050 2052 0.1259 0.0918 1.525 0.020 0.0349

C007 �0:12 0:007=0:050 2110 0.1254 0.0901 1.530 0.007 0.0349

F0124 �0:09 0:00124=0:031 1996 0.1277 0.0982 1.473 0.0124 0.0261

F0062 �0:09 0:0062=0:031 1931 0.1276 0.0979 1.476 0.0062 0.0261
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smearing and without any smearing [44]. The smearing
optimizes the overlap of the operator with the ground-state
wave function of the meson, so the two choices have differ-
ent excited-state contributions but the same energies.
For the three-point correlation functions, we always use a
1S-smearing source for the extended quark propagator.

B. From correlators to form factors

In general, two- and three-point functions, such as those
in Eqs. (3.1), (3.2), (3.3), and (3.4), can be expressed as [45],

CX
2 ðt;pÞ¼

X
k¼0
ð�1ÞktjZkðpÞj2½e�EkðpÞtþe�EkðpÞðT�tÞ�;

(3.5)

CYV�X
3 ð0; t; T;pÞ ¼X

k

X
‘

ð�1Þktð�1Þ‘ðT�tÞA�
k‘ðpÞ

� e�EkðpÞte�M‘ðT�tÞ (3.6)

where EkðM‘Þ are the energy levels of YðXÞ and A�
k‘ are

coefficients of the transition X‘ ! Yk. We use four states to
fit the two-point functions in Eq. (3.5). We include the same
set of states to fit the three-point functions and the number
of states can be reduced to two (the ground and first excited
states) by using some averagingmethod (next paragraph). If
the time differences between the source (0) and vector
current (t) and that between vector current and sink
(T) in Eq. (3.6) are sufficiently large, i.e., jtj ! 1 and
jT � tj ! 1, only the lowest energy level will survive.
Then, we have (Bs ! Ds follows similarly)

Rþ  CDV4B
3 ð0; t; T; 0Þ

CBV4B
3 ð0; t; T; 0Þ

CBV4D
3 ð0; t; T; 0Þ

CDV4D
3 ð0; t; T; 0Þ ; (3.7)

ai CDViB
3 ð0;t;T;pÞ

CDV4B
3 ð0;t;T;0Þ

�jZ0ð0Þj
jZ0ðpÞj

ffiffiffiffiffiffiffiffiffiffiffiffi
E0ðpÞ
E0ð0Þ

s
e½E0ðpÞ�E0ð0Þ�t

�
; (3.8)

bi  CDViB
3 ð0; t; T;pÞ

CDV4B
3 ð0; t; T;pÞ ; (3.9)

di  CDViD
3 ð0; t; T;pÞ

CDV4D
3 ð0; t; T;pÞ ; (3.10)

where  means that the left-hand side is output of an
analysis procedure. In practice, the separations between
the current insertion and the source/sink, t and T � t, are
often not large enough to suppress the excited states com-
pletely. The factor inside the parentheses in Eq. (3.8) can-
cels the leading time dependence of the ratio of three-point
functions with different momenta; both Z0ðpÞ and E0ðpÞ
come from fitting CD

2 as suggested by Eq. (3.5). Instead of
fitting for plateaus, we extract the matrix-element ratios on
the left-hand sides of Eqs. (3.7), (3.8), (3.9), and (3.10) by
fitting the right-hand sides in a way that incorporates
excited states.

We can write the first few terms in Eq. (3.6) as [44]

CYV�X
3 ð0; t; TÞ ¼ A

�
00ðtÞ þ ð�1ÞtA�

10ðtÞ þ ð�1ÞT�tA�
01ðtÞ

þ ð�1ÞTA�
11ðtÞ þ A

�
02ðtÞ þ A

�
20ðtÞ

þ higher excitations; (3.11)

where A
�
k‘ðtÞ � A

�
k‘e
�Ekte�M‘ðT�tÞ. The terms A10, A01, A11

are the contributions from the opposite-parity states that
are introduced by the operator involving staggered quarks.
We can reduce their effects by making use of the fact that
they oscillate with either t or T. The contamination from
A10 and A01 is minor because no obvious oscillation is
visible with any of the three-point functions. Based on the
plots of the ratios calculated from different source-sink
separations T, there is no sizable contribution from A11

either. With the four source times, which are evenly dis-
tributed in the temporal interval of the lattice, we separate
two of the sinks from the sources by an even number of
time slices and the other two by a neighboring odd number.
We apply the following averaging method to further reduce
the effect from A11 [44]

�Rð0; t;TÞ¼ 1
2Rð0;t;TÞþ 1

4Rð0;t;Tþ1Þþ 1
4Rð0;tþ1;Tþ1Þ

(3.12)

where R stands for any of the correlation-function ratios
corresponding to Rþ, ai, bi, or di. With this averaging
procedure, the A11 terms are suppressed by a factor of 6–10
and the A01 and A10 terms, already small, are suppressed by
a factor of about 2. Hence, the systematic error arising from
neglecting terms A01, A10, and A11 can be safely dropped.
The foregoing analysis enables us to use a simple fitting

scheme for the ratios including only the contributions from
A00, A20, A02. At the lowest order, the functional forms for
determining ai, bi, and di are then

CDViB
3 ð0;t;T;pÞ

CDV4B
3 ð0;t;T;0Þ

jZ0ð0Þj
jZ0ðpÞj

ffiffiffiffiffiffiffiffiffiffiffiffi
E0ðpÞ
E0ð0Þ

s
e½E0ðpÞ�E0ð0Þ�t

¼ai½1þA02e
��MðT�tÞþA20e

��EðpÞt

þA0
20e
��Eð0Þt�e
t; (3.13)

CDViB
3 ð0; t; T;pÞ

CDV4B
3 ð0; t; T;pÞ ¼ bi½1þB02e

��MðT�tÞ þB20e
��EðpÞt�;

(3.14)

CDViD
3 ð0;t;T;pÞ

CDV4D
3 ð0;t;T;pÞ¼di½1þD02e

��Eð0ÞðT�tÞ þD20e
��EðpÞt�:

(3.15)

The fit parameter 
 in Eq. (3.13) allows for imperfect
cancellation of the leading t dependence. The parameters
�EðpÞ ¼ E2ðpÞ � E0ðpÞ (�M ¼ M2 �M0) denote the
splittings between the D-meson energy (B-meson mass)
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and its first radial excitation. We find that the double ratio
Rþ is soweakly affected by excited states that it suffices to fit
it to a constant in t. Adding terms to describe excited states in
Rþ leads to changes no bigger than the statistical errors. The
energy splittings �EðpÞ, �M in these expressions are also
constrained by the two-point functions, Eq. (3.5).

We employ two fit procedures to determine the ratios.
One, which we explain first, is simpler. The other is more
complicated but yields better results, as we explain below,
so we take it as our primary analysis and use the simple
method as a cross check.

C. Two-step fit

The simpler method proceeds in two steps. We first fit
the two-point functions to obtain the energies, energy
splittings, and overlaps: EðpÞ, �EðpÞ, �M, and ZðpÞ. We
use constrained curve fitting and priors [46,47]. The priors
in these fits impose no real constraint. Second, we take the

energy splittings from these two-point fits as priors when
fitting the ratios of three-point functions. The priors for the
amplitudes on the right-hand sides of Eqs. (3.13), (3.14),
and (3.15) are again taken wide enough to impose no real
constraint. Below we call this approach the ‘‘two-step fit.’’
As discussed above, we have data for smeared and local

interpolating operators. These different correlator ratios
have different excited-state contributions. To determine
the matrix-element ratios, we fit the correlation-function
ratios of the two smearing types either separately or simul-
taneously, as illustrated in Fig. 2. Although the two smear-
ing types follow rather different curves, they arrive at
consistent values of ai, bi, and di as described in
Eqs. (3.13), (3.14), and (3.15). Figure 2 shows that the
separate fit and the simultaneous fit give consistent results
for the ratio di. The other two single ratios ai, bi can be
determined in a similar way, which can be seen in the
sample fit in Fig. 3.
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FIG. 2 (color online). A sample fit of the single ratio di with the final D meson carrying momentum p ¼ 2�ð1; 0; 0Þ=L on the
ensemble C020. The left graph shows the data with 1S-smearing (1S, 1S) (filled circles, data along the bottom curve) and that with
partial smearing (1S, d) (open circles, data along the top curve) fitted separately (solid curves) and simultaneously (dashed curves). The
(1S, 1S), (1S, d), and simultaneous fits have �2=d:o:f: ¼ 1:0, 1.1 and 0.85, respectively. Fit results over the interval t 2 ½tmin; 10� are
shown in the right graph and are seen to be stable for tmin � 1.
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FIG. 3 (color online). Sample fits of the ratios ai, bi, and Rþ from the ensemble C020. The triangles and circles correspond to the
data with 1S smearing (1S, 1S) and partial smearing (1S,d), respectively. In the first two graphs, the final D meson carries a spatial
momentum p ¼ 2�ð1; 0; 0Þ=L. The dot-dashed curves indicate the best fits and they are in good agreement with the data points. The
third graph shows the fit for the double ratio Rþ. The horizontal lines in these graphs show the resulting values of ai, bi, and Rþ, as
well as the ranges included in the fits.
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D. Combined fit

Our preferred fit treats the two-point functions and three-
point-function ratios simultaneously. This approach allows
all correlation functions to influence the output energies
and overlaps, combining all information at hand, including
the correlations between the two- and various three-point
functions. We refer to this procedure as our ‘‘combined
fit,’’ in contrast with the two-step fit described above. In
particular, all correlation functions are then treated on the
same footing in the determination of the energy splittings.
Figure 4 shows the relationships between the ratios and
two-point functions, building up constraints among corre-
lation functions of zero and nonzero final momenta. The
single ratios ai also require the two-point ZðpÞ factors from
the relevant three two-point functions.

The combined fit is repeated for each value of the
momentum. The resulting single ratios ai, bi, and di and
the double ratio Rþ at the corresponding recoil are then
used to compute the form-factor ratios h�ðwÞ=hþð1Þ and

hþð1Þ. To verify the results from the two approaches, we
compare the resulting hþðwÞ of the two coarse ensembles
C007, C020 in Fig. 5. In general, they are in very good
agreement at the five values of w where we have data,
while the combined fit has slightly better precision at small
recoil.
The combined fit turns out to have other more important

advantages over the two-step fit. First, the resulting
h�ðwÞ=hþð1Þ is more stable with the combined fit than
the two-step fit, where the fitting range must be determined
carefully. This stability stems from the fact that the com-
bined fit does a better job of resolving the correlated
statistical fluctuations at zero and nonzero recoil. Second,
the combined fit helps to reduce the systematic error due to
excited states. We account for the excited-state contribu-
tion in the fit for single ratios to work around the fact that
sink-source separations cannot be taken satisfactorily
large. Although the towers of the excited states are not
the focus of this paper, the proper accounting of their
contributions is important, because they influence ratio
results. The combined fit procedure resolves the excited
states more stably than the two-step fit. Third, the resulting
form factors h�ðwÞ using the combined fit at these values
of w are more consistent with each other than those using
the two-step fit. This can be seen when one attempts to fit
the results at different recoil to a chiral effective theory.
Section IV shows that the combined fit procedure results in
a more reliable chiral extrapolation than the two-step fit,
and hence we use it throughout our analysis. That said, as
shown in Fig. 5 and Table II, the two fitting procedures give
seemingly good pointwise consistency.
Although the combined fit method helps in many as-

pects, it requires the handling of a larger data set and
correspondingly a much larger covariance matrix. We use
the jackknife method with single elimination to calculate
the covariance matrices because the data samples show a
very small autocorrelation time (less than 1). To reduce the
time searching for the minimum of �2, we take the output
of the two-step fit as the initial guess for the combined fit.
It is worth mentioning a small complication. When

fitting the single ratio ai, we need in advance both the
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FIG. 5 (color online). Comparison of hþðwÞ obtained from the two-step fit and combined fit for the two coarse ensembles C020 (left)
and C007 (right).
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FIG. 4 (color online). Diagram showing which correlators and
correlator ratios influence energies and amplitude ratios. Energy
splittings of the initial and final mesons Bð0Þ, Dð0Þ, and DðpÞ are
determined from the two-point functions (boxes) as well as the
ratios (circles). The lines connecting them indicate their com-
mon dependence on the splittings. Altogether seven correlation
functions are included in the combined fit.
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ground-state energy E0 and the wave function normaliza-
tion factor Z to suppress the time dependence of the ratio.
With the combined fit procedure, E0 and Z are refined
through the two-point functions which are part of the
combined fitting. So in the actual analysis, we take the
results of E0 and Z from the combined fit and plug them
back to suppress the time dependence of the three-point
function for ai. We need to iterate such a process a few
times until the fitting results stabilize. We find that this
iteration converges within two or three steps.

IV. CHIRAL-CONTINUUM EXTRAPOLATION

Given the light-quark masses in Table I, we extrapo-
late the results to the physical value guided by chiral
effective theory. In the case of hþðwÞ, we follow rooted
staggered chiral perturbation theory (rS�PT) [48–52].

The specific application to the case of B! Dð	Þ at zero
recoil is provided in Refs. [44,53]. The continuum �PT

for the semileptonic B! Dð	Þ form factor at nonzero
recoil has been derived at next-to-leading order (NLO)
in Ref. [54], and the generalization to rS�PT for B! D
is given in the Appendix. In the case of h�ðwÞ, the
leading correction is simply a constant that is inversely
proportional to the charm quark mass. To describe the
simulated data, we also must parametrize the recoil
dependence to quadratic order around zero recoil. The
expansion coefficients are related to the slope and cur-
vature of the form factors.

Thus, we can write the general expression for h�ðwÞ
with NLO rS�PT and higher-order analytic terms incor-
porating lattice spacing dependence as

hlatþ ðwÞ ¼ 1� �2þðw� 1Þ þ kþðw� 1Þ2 þ Xþð��Þ
m2

c

þ g2D	D�

16�2f2
logs1-loopð��; wÞ þ c0;þmx

þ c1;þð2ml þmhÞ þ ca;þa2; (4.1)

hlat� ðwÞ ¼ X�
mc

� �2�ðw� 1Þ þ k�ðw� 1Þ2 þ c0;�mx

þ c1;�ð2ml þmhÞ þ ca;�a2; (4.2)

where ��2� and 2k� are the slopes and curvatures of the
form factors, while X� are low-energy constants. In the
case of hþðwÞ, Xþ depends on the chiral scale�� in such a

way as to cancel the �� dependence of the nonanalytic

terms (‘‘chiral logs’’). These terms, denoted here as
logs1�loop, are given by the terms appearing inside the

square brackets in Eqs. (A2) and (A3) of the Appendix.
The other form factor h�ðwÞ has no nonanalyticity at
one-loop. Equations (4.1) and (4.2) also include terms
depending linearly on the valence (mx) and sea (ml and
ms) quark masses, with coefficients c0ð1Þ;�. These terms

are next-to-next-to-leading order (NNLO) in the chiral
expansion and are needed to describe the data with mx or
ml *

1
2ms. Generic lattice spacing dependence is de-

scribed by the terms with coefficients ca;�.
We treat the chiral extrapolations of the B! D and

Bs ! Ds data slightly differently. For B! D, we analyze
only full QCD data points, i.e., mx ¼ ml. Then, since the
strange sea-quark in all ensembles is tuned within several
per cent of its physical mass, mh � ms, the dependence of
the form factors on the sea- and valence-quark masses
cannot be disentangled. Therefore, we drop the parameter
c1;þ when fitting the B! D data. For our Bs ! Ds data,

on the other hand, the strange valence-quark is tuned close
to its physical mass for all the ensembles we analyze,
mx ¼ ms. As a result, we cannot disentangle the valence-
quark dependence. Therefore, we discard the parameter
c0;� when fitting the Bs ! Ds data, and estimate the tuning

error of ms a posteriori in Sec. VID.
The rS�PT expression for logs1�loopð��; wÞ contains

several low-energy constants used in rS�PT to describe
the masses and decay constant of light pseudoscalar me-
sons. The values we use for these parameters are taken
from Refs. [24,55] and given in Table III. The �PT ex-

pressions also require the DðsÞ �D	ðsÞ splitting �ðcÞ and the

TABLE II. Comparison of the results of w [from Eq. (2.7)] and hþ [from Eqs. (2.3) and (2.8)]
using 2-step fit and combined fit procedures.

momentum (2�=L) C007 (2-step) C007 (combined) C020 (2-step) C020 (combined)

(0,0,0) w 1 1 1 1

hþ 1.011(6) 1.013(4) 1.013(3) 1.013(2)

(1,0,0) w 1.0464(9) 1.0470(7) 1.0468(10) 1.0470(6)

hþ 0.956(5) 0.956(4) 0.952(3) 0.951 (3)

(1,1,0) w 1.089(2) 1.091(2) 1.089(2) 1.090(1)

hþ 0.904(6) 0.904(4) 0.903(4) 0.898(5)

(1,1,1) w 1.129(3) 1.131(3) 1.128(3) 1.131(2)

hþ 0.870(8) 0.861(6) 0.860(6) 0.852(7)

(2,0,0) w 1.156(5) 1.164(4) 1.162(5) 1.165(4)

hþ 0.851(12) 0.838(12) 0.825(8) 0.815(10)
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pion decay constant f�; we take both from Ref. [17]. To
combine data from both lattice spacings, we convert di-
mensionful quantities to r1 units, where r1 is the distance
defined via the interquark force by r21Fðr1Þ ¼ 1 [56,57].

We take r1=a from Refs. [24,55].
Unfortunately, the D	 �D� � coupling gD	D� and

similar couplings with strange mesons, which appear in
the coefficient g2D	D�=16�

2f2� of the chiral log terms, are

not known with good precision. We appeal to various
estimates of gD	D� available in the literature, including
CLEO’s measurement of the D	 width: gD	D� ¼ 0:59ð7Þ
[58]; quenched lattice QCD: gD	D� ¼ 0:67ð8Þðþ4�6Þ [59]; a
fit to various experimental data, including the D	 width:
gD	D� ¼ 0:51 (no error reported) [60]; two-flavor lattice
QCD in the static limit: gD	D� ¼ 0:516ð51Þ [61]; and

2þ 1-flavor lattice QCD in the static limit: gD	D� ¼
0:449ð51Þ [62]. In this calculation, we include gD	D� as a
parameter in the constrained fit with a prior 0:51� 0:20.
In Sec. III, we compared the two fitting procedures, two-

step fit and combined fit, with which we obtain the single
ratios ai, bi, di, and the double ratio Rþ. At each w where
we have data, hþðwÞ from the two procedures are in good
agreement (within 1�). We then fit the resulting hþðwÞ for
the coarse ensembles (C020 and C007) to Eq. (4.1) without
the analytic terms and the a2 dependence (NLO). The
results are shown in Table IV. It is apparent that the
results from the combined fit procedure are better de-
scribed by the chiral effective theory that we employ,
giving a �2=d:o:f: ¼ 0:53 for B! D (compared to 1.6
from the two-step fit). A similar observation can be found
in the case of Bs ! Ds. This indicates that the correlations
among the ratios and those among different kinematic
points are better resolved by the combined fit, and hence
we follow this procedure for the entire analysis.
The results of the chiral-continuum extrapolation of

hþðwÞ for B! D and Bs ! Ds are plotted in Fig. 6.
With the large number of configurations we have for the
four ensembles, we are able to determine the form factors
hþðwÞ with statistical errors at the level of 
0:5% at zero
recoil, increasing to 
1:5% at w ¼ 1:15. The form factor
hþðwÞ for both of the B! D and Bs ! Ds decays exhibits
a small dependence on the light-quark masses and lattice
spacings, so the extrapolated physical values are close to
the lattice data. The difference between hB!Dþ ðwÞ and

h
Bs!Dsþ ðwÞ is also small. The form factor with strange

spectator h
Bs!Dsþ ðwÞ shows a steeper slope and larger

curvature—�2þ ¼ 1:26ð09Þ and kþ ¼ 1:15ð9Þ—than its
B! D counterpart—�2þ ¼ 1:14ð10Þ and kþ ¼ 0:87ð13Þ.
The results of the chiral-continuum extrapolation of

h�ðwÞ for B! D and Bs ! Ds are plotted in Fig. 7.
Here light-quark mass (both sea and spectator) and lattice
spacing dependence are visible. We find an � 0:04
difference between the two values of h�ð1Þ at zero recoil.
From Eq. (2.11), however, this effect does not cause

TABLE III. Input parameters for the chiral extrapolation
[24,55].

rs�PT Ensemble

quantity C020 C007 F0062 F0124

r1=a 2.821123 2.738591 3.857729 3.788732

�0 6.234000 6.234000 6.381592 6.381592

r21a
2�P 0 0 0 0

r21a
2�A 0.2052872 0.2052872 0.0706188 0.0706188

r21a
2�T 0.3268607 0.3268607 0.1153820 0.1153820

r21a
2�V 0.4391099 0.4391099 0.1523710 0.1523710

r21a
2�I 0.5369975 0.5369975 0.2062070 0.2062070

r21a
2
0V �0:05 �0:05 �0:03 �0:03

r21a
2
0A �0:28 �0:30 �0:15 �0:16

TABLE IV. Chiral extrapolation of the two-step and combined
fit results on the coarse ensembles.

Form Two-step fit Combined fit

factor �2=d:o:f: p value �2=d:o:f: p value

hB!Dþ ðwÞ 11=7 0.14 3:7=7 0.81

h
Bs!Dsþ ðwÞ 11=7 0.13 5=7 0.68
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FIG. 6 (color online). Chiral-continuum extrapolation of hþðwÞ for B! D (left) and Bs ! Ds (right) decays based on the four
ensembles listed in Table I. The blue bands show only the statistical errors and the red curves are the chiral and continuum limits.
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much difference in f0. We therefore anticipate that the
U-spin symmetry breaking effect is smaller than what
was found in Ref. [23]. Such an observation is in
accord with the recent lattice calculations of fþ; f0 in the
DðsÞ ! �ðKÞ decays [27].

With the results from the chiral-continuum extrapolation
in hand, we now convert h�ðwÞ into fþðq2Þ and f0ðq2Þwith
Eqs. (2.10) and (2.11) and the physical B and D masses
[17]. To gain confidence in our procedures, let us compare
the resulting fþ with experimental measurements. The
differential decay rate of B! D is given by

d�ð �B0!D‘ ��Þ
dw

¼ G2
F

48�3
M3

DðMBþMDÞ2ðw2�1Þ3=2jVcbj2

�jGðwÞj2; (4.3)

where GF is the Fermi constant, and it is conventional to
introduce

G ðwÞ ¼ 2
ffiffiffi
r
p

1þ r
fþðwÞ: (4.4)

Experiments report the zero-recoil form factor jVcbjGð1Þ
and the relative form-factor slope �2 � �G0ð1Þ=Gð1Þ [63].
From our extrapolated data, we find Gð1Þ ¼ 1:058ð9Þstat,
which is consistent with the previous unquenched lattice
QCD result 1:074ð18Þstatð16Þsyst [64]. The measured slope

is related to parameters of our chiral extrapolation via

�2 ¼ 1

Gð1Þ
�
�2þ þ

r� 1

rþ 1
�2� þ �2

logs

�
; (4.5)

where �2
logs is the slope of the NLO logarithm at zero

recoil. In Fig. 8, we compare the slope of the B! D
form factor at w ¼ 1 with experiment. We find �2 ¼
1:25ð5Þstat, where the error is obtained from 300 bootstrap
samples. This value is in good agreement with the experi-
mental results from Belle, CLEO, and BABAR [63] and the
average of these from the Heavy Flavor Averaging Group,
�2 ¼ 1:18ð6Þ [65].

Note that a determination of GðwÞ with full error budget
is beyond the scope of this paper. A comprehensive effort

to do so is in progress [66]. Here we are merely satisfied to
see that the main ingredients of our analysis are compatible
with the available experimental data.

V. z PARAMETRIZATION

To minimize discretization effects, the final D meson
momentum p should not be taken too large, so the calcu-
lations are restricted to small recoil, w< 1:17. However,
the form-factor ratio that we are trying to compute ulti-
mately needs to be evaluated near maximum recoil,
w
 1:6, which appears to require a considerable extrapo-
lation. Fortunately, the extrapolation can be guided by
the model-independent z parametrization [25,67,68]. As
shown, for example, in Ref. [69], this strategy is effective
for extrapolating lattice QCD data.
One introduces the variable

zðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w
p � ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w
p þ ffiffiffi

2
p ; (5.1)

which maps the physical domain of the form factors into
the unit disk. The form factors can be expressed as
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FIG. 7 (color online). Chiral-continuum extrapolation of h�ðwÞ for B! D (left) and Bs ! Ds (right) decays based on the four
ensembles listed in Table I. The blue bands show only the statistical errors and the red curves are the chiral and continuum limits.
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FIG. 8 (color online). The slope of the form factor GðwÞ from
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fiðzÞ ¼ 1

PðzÞ�ðzÞ
X1
n¼0

anz
n; (5.2)

where PðzÞ and �ðzÞ are called, respectively, the Blaschke
factor and the outer function. The range of w for B! D is
1 � w � 1:589, which corresponds to 0 � z � 0:0644.
With the choice of outer functions given below, unitarity
sets a bound on the expansion coefficients,X

n

janj2 � 1: (5.3)

Because of this constraint and the restricted range of z, the
expansion in Eq. (5.2) converges, and one can parametrize
the form factors with only a few terms. In this analysis, we
truncate the expansion at the z2 term, which is enough for
our data.

Although we are primarily interested in f0, we apply the
z expansion to fþ and f0 simultaneously, incorporating the
kinematic constraint f0ð0Þ ¼ fþð0Þ. We take the outer
functions to be

�0ðzÞ¼�0ð1þzÞð1�zÞ3=2½ð1þrÞð1�zÞþ2
ffiffiffi
r
p ð1þzÞ��4;

(5.4)

�þðzÞ¼�þð1þzÞ2ð1�zÞ1=2½ð1þrÞð1�zÞþ2
ffiffiffi
r
p ð1þzÞ��5;

(5.5)

where we choose the constants �0 ¼ 0:5299 and �þ ¼
1:1213 such that it matches the same normalization as in
Ref. [67]. These exact values can be combined with the fit
results, given below, to reconstitute the form factors.

The purpose of the Blaschke factor is to remove poles
outside the physical region, i.e., at w< 1. In general,

PðzÞ ¼YNP

p¼1

zðwÞ � zðwpÞ
1� zðwÞzðwpÞ ; (5.6)

where zðwpÞ, with wp ¼ ½1þ r2 �M2
p=M

2
BðsÞ �=2r, marks

the pole position, and the product can run over states with
Mp <MBðsÞ þMDðsÞ . In the case at hand, these poles appear

at the masses of JP ¼ 1� vector (JP ¼ 0þ scalar) Bc

mesons for fþðf0Þ.
We need to put the results of the chiral-continuum

extrapolation in the z-parametrized form of Eq. (5.2). We
do so by generating synthetic data from the chiral-
continuum extrapolated curves and fitting for the corre-
sponding parameters ai in Eq. (5.2). Our chiral-continuum
fit has 11 free parameters, including ones to describe the a2

dependence in h�ðwÞ. Such terms vanish in the continuum
limit, leaving only nine physical parameters. Furthermore,
due to the small contribution from the terms of gD	D� and
c0ð1Þ;þ and due to the correlation between h�ðwÞ, we end

up with effectively six free modes in the synthetic data.
Thus, we generate the synthetic data at three evenly-spaced
values w 2 f1:0; 1:08; 1:16g in the region where we have
data. In Sec. VIB, we show that the final form-factor
ratio is not sensitive to the details of these synthetic data.
We start with trivial Blaschke factors (no poles) and fit the
B! D and Bs ! Ds form factors up to the z2 term in
Eq. (5.2). The results of these fits are shown in Fig. 9. To
examine the effect of poles on the shape of the form factor
fþ, we also try a fit with a one-pole Blaschke factor at mass
Mp ¼ MB	c ¼ 6:330 GeV, where this lowest B	c is a pre-

diction of lattice QCD [70]. This Blaschke factor affects
the extrapolated results with a deviation of about 0.3%. The
dashed lines in Fig. 9 show the extrapolation based solely
on the chiral-fit, showing that the z expansion plays an
important role in controlling the total error.
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FIG. 9 (color online). z expansion of form factors to the maximum recoil point for both B! D and Bs ! Ds. The diamonds and
circles for z � 0:02 are the synthetic data derived from the chiral-continuum extrapolation, and the solid curves and error band are the
results of the z expansion. The dashed curves show how the chiral-continuum extrapolation extends into the region where the
extrapolation may not be trustworthy. The points near z ¼ 0:06 correspond to the desired q2 ¼ M2

� and M2
K; squares (triangles)

correspond to z fits with (without) the B	c pole in the Blaschke factor.
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We perform the z-expansion fit without constraints on
a0, a1, and a2, and setting the rest to zero. In Sec. VI B, we
discuss fits with more parameters, constrained then by
Eq. (5.3). We constrain the fit with the relation f0ð0Þ ¼
fþð0Þ, by demanding jf0ð0Þ � fþð0Þj< 
 where 
 can be
chosen arbitrarily small. Once 
 is small enough, its actual
value has no effect on the fit.

To check the form factor shape obtained from the z
expansion, we can compare the B! D decay with the
latest published measurement from BABAR [71]. The com-
parison is shown in Fig. 10, using jVcbj ¼ 41:4� 10�3, as

determined from B! D‘� at nonzero recoil [71,72]. As
one can see, the shape of our form factor prefers a larger
value of jVcbj and agrees well with experiment over the full
kinematic range. As above, we note that this comparison is
made without a full treatment of the systematic errors on
GðwÞ. A thorough treatment with full error analysis, aimed
at determining jVcbj will be covered elsewhere; see
Ref. [66] for a progress report.
For completeness, we give the results of the z fit in

Table V. The correlation matrix does not include full
systematics, but with this information the reader can re-
produce the curves and error bands in Figs. 9 and 10. Note,
however, that the parameters of the nonstrange and strange
form factors are also correlated.

VI. SYSTEMATIC ERRORS

We now discuss the systematic errors in our analysis.
Owing to the similarity between the B! D and Bs ! Ds

processes, the systematic errors in the ratio of the form
factors largely cancel, by design. To assess the systematic
uncertainties, we have repeated the chiral-continuum and z
extrapolations with different choices. The values of

fðsÞ0 ðM2
�Þ, fðdÞ0 ðM2

KÞ, and fðsÞ0 ðM2
�Þ=fðdÞ0 ðM2

KÞ resulting

from these variations are listed in Table VI. We summarize
the final error budget in Table VII. As our standard analy-
sis, we use Eqs. (4.1) and (4.2) for the chiral-continuum fit,
dropping c1;� for B! D and c0;� for Bs ! Ds. We fit the
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FIG. 10 (color online). Comparison of the form factor shape of
GðwÞjVcbj with BABAR’s measurements [71].

TABLE V. Best-fit values an and correlation matrix �mn of the simultaneous 3-term z
expansion of fþ and f0, with statistical (post extrapolation) errors only. Top: B! D; bottom:
Bs ! Ds. Note that the fit parameters are correlated between the B! D and Bs ! Ds

processes.

B! D: 0.0126(7) �0:106ð28Þ 0.32(66) 0.0113(5) �0:061ð26Þ 0.03(69)

� aðþÞ0 aðþÞ1 aðþÞ2 að0Þ0 að0Þ1 að0Þ2
aðþÞ0 1.000 �0:299 �0:009 0.664 �0:306 0.045

aðþÞ1 1.000 �0:231 �0:061 0.917 �0:311
aðþÞ2 1.000 �0:014 �0:164 0.976

að0Þ0 1.000 �0:273 �0:012
að0Þ1 1.000 �0:293
að0Þ2 1.000

Bs ! Ds: 0.0119(4) �0:111ð14Þ 0.47(38) 0.0108(3) �0:066ð13Þ 0.17(41)

� aðþÞ0 aðþÞ1 aðþÞ2 að0Þ0 að0Þ1 að0Þ2
aðþÞ0 1.000 �0:050 �0:054 0.593 �0:067 0.038

aðþÞ1 1.000 �0:233 0.254 0.867 �0:307
aðþÞ2 1.000 0.014 �0:180 0.974

að0Þ0 1.000 �0:055 0.002

að0Þ1 1.000 �0:318
að0Þ2 1.000
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coupling gD	D� using a constrained fit [46] with the prior
0.51(20). We take the synthetic-data points at w ¼ 1:0,
1.08, and 1.16 and include the trivial Blaschke factor (no
poles). We use r1 ¼ 0:3117 fm to convert the necessary
physical inputs (like f�) to r1 units.

A. Chiral extrapolation

Our chiral extrapolation is based on the rS�PT formal-
ism shown in Eqs. (4.1) and (4.2) and the Appendix. The
systematic errors arising here can be divided into two

categories: the error associated with the one-loop contri-
bution itself and the error associated with the partial in-
clusion of NNLO analytic terms. Throughout our analysis,
we keep the slope �2 and curvature k, because they deter-
mine the w dependence of the form factors.
An uncertainty in the contribution from the NLO loga-

rithm stems from the uncertainty of the D	-D-� coupling
gD	D�. Although the NLO logarithms to hþðwÞ make a
small contribution when evaluated with the quark masses
for which we have data, of order 10�3 at our lightest
simulated quark mass, the logarithm affects the form factor
shape of hþðwÞ through its w dependence. Thus, the un-
certainty in gD	D� becomes more important as we extend
our calculations to large recoil. We include gD	D� in the
chiral-continuum fit with the prior 0.51(20), which de-
scribes the data well, so we do not assign an additional
error due to the uncertainty of gD	D�.
We now look at variations from fitting with and without

the NNLO analytic terms. For ease of discussion, let us
break the chiral-fitting scheme into the following different
pieces:

NLOþw ¼ 1� �2þðw� 1Þ þ kþðw� 1Þ2 þ Xþ
m2

c

þ g2D	D�

16�2f2
logs1-loopð��; wÞ; (6.1)

NLO�w ¼ 1� �2�ðw� 1Þ þ k�ðw� 1Þ2 þ X�
mc

; (6.2)

pNNLO�w;val ¼ NLO�w þ c0;�mx; (6.3)

pNNLO�w;sea ¼ NLO�w þ c1;�ð2ml þmsÞ; (6.4)

pNNLO�w;a;sea=val ¼ pNNLO�w;sea=val þ ca;�a2; (6.5)

where ‘‘pNNLO’’ stands for partial NNLO, because we
include only analytic terms. We are not aware of any full
NNLO calculations with nonzero final D meson
momentum.
As mentioned in Sec. IV, the form factor hþðwÞ shows a

weak dependence on the light sea- and valence-quark
masses, and the data are already well-described by
NLOþw , with �2=d:o:f: ¼ 0:68 and 0.83, respectively, for

hB!Dþ ðwÞ and h
Bs!Dsþ ðwÞ. Adding the pNNLOþ terms, the

hþ fits remain good. As seen in Figs. 6 and 7, the data for
h�ðwÞ exhibit a more significant dependence on the lattice
spacing and on the sea- and spectator-quark masses.
Unsurprisingly, the NLO�w fit of h�ðwÞ leads to large
�2=d:o:f: ¼ 1:7 and 1.9, respectively, for hB!D� and
hBs!Ds� . The NLO �PT correction to h�ðwÞ, denoted
X�=mc, does not depend on quark mass or lattice spacing,
so the observed dependence in the data must be described
by pNNLO terms. Moving through the pNNLO functional
forms in Eqs. (6.3), (6.4), and (6.5), we find that the

TABLE VI. Values of the form factors fðs;dÞ0 and their ratio for
several variants of the fitting procedure. The second panel shows
the results for different choices of chiral extrapolation fit func-
tion. Note that for the B! D form factor we use the fit functions
labeled ‘‘val’’ while for the Bs ! Ds form factor we use the fit
functions labeled ‘‘sea’’ in Eqs. (6.1), (6.2), (6.3), (6.4), and (6.5).
The third panel shows the results for different choices of the z
expansion. The final panel shows the results for different values
of parametric inputs: the lattice scale and light- and strange-
quark masses.

Variations fðsÞ0 ðM2
�Þ fðdÞ0 ðM2

KÞ fðsÞ0 ðM2
�Þ=fðdÞ0 ðM2

KÞ
Standard

(pNNLO�w;a;sea=val)
0.639(19) 0.612(32) 1.046(44)

NLO�w 0.636(17) 0.618(30) 1.031(42)

pNNLO�w;sea=val 0.633(18) 0.616(31) 1.030(43)

NLOþw � pNNLO�w;sea=val 0.623(18) 0.594(31) 1.051(45)

With B	c pole in fþ 0.641(19) 0.612(33) 1.049(45)

w-Range[1,1.08] 0.623(17) 0.600(31) 1.042(42)

w-Range[1,1.12] 0.631(18) 0.606(31) 1.044(43)

w-Range[1,1.20] 0.646(19) 0.618(33) 1.048(45)

w-Range[1,1.24] 0.653(19) 0.623(34) 1.049(46)

Truncated at z3 0.632(22) 0.607(36) 1.042(45)

Truncated at z4 0.632(22) 0.608(36) 1.043(46)

r1 ¼ 0:321 fm 0.638(18) 0.611(32) 1.047(44)

ms 1� shift 0.638(18) 0.611(32) 1.046(44)

ml 1� shift 0.639(18) 0.612(32) 1.046(44)

TABLE VII. The error budget of the form-factor ratio dis-
cussed in text. The first row gives the statistical error after the
chiral-continuum extrapolation. As explained in the text, varia-
tions in the chiral functional form make insignificant changes, so
we quote no extra error for these variations. An addition dis-
cretization error for heavy-quark effects is in the last row.

Source of error 
ðfðsÞ0 =fðdÞ0 Þ
Statistics � chiral-continuum 4.2%

z expansion 0.6%

Scale r1 0.1%

Mistuned ms 0.1%

Mistuned ml 0.1%

Heavy-quark (	) tuning 0.6%

Heavy-quark discretization 1.0%
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pNNLO�w;val fit of h
B!D� ðwÞ improves nicely, �2=d:o:f: ¼

0:93, but pNNLO�w;sea fit of hBs!Ds� ðwÞ less so, �2=d:o:f: ¼
1:8. These can be contrasted with the standard fits,
pNNLO�w;a;val for B! D and pNNLO�w;a;sea for Bs ! Ds,

with h� �2=d:o:f: ¼ 0:75 and 1.6, respectively. As seen in
Table VI, these less good fits all lie well within the ex-
trapolated statistical error of the standard fits. We therefore
treat these alternatives as cross checks and do not add an
additional error here.

B. z expansion

Although the z expansion provides a model-independent
parametrization of the form factors f0 and fþ, the final
results may depend on three kinds of choices made
within this framework. First, the expansion coefficients
may depend on the number and range of synthetic-data
points. Second, the shape of the form factor may be
affected by the number of poles in the Blaschke factor,
particularly for fþ. Last, the shape may be affected by the
truncation of the series in z if one does not include enough
terms.

To estimate the uncertainty from the synthetic data, we
vary the w range over which they are generated. We repeat
the z expansion with w in the intervals [1, 1.08], [1,1.12],
[1, 1.20], [1, 1.24], choosing three evenly-spaced points for
both form factors. We also try fits with more synthetic data
than underlying parameters, in which case some of the
information is spurious, leading to tiny eigenvalues
in the synthetic-data covariance matrix. We remove
the corresponding mode(s) with singular-value decomposi-

tion. Although the form factors fðd;sÞ0 ð0Þ each vary

with these alternative choices by about 1�, the ratio

fðsÞ0 ðM2
�Þ=fðdÞ0 ðM2

KÞ is negligibly affected; cf. Fig. 11. We

take the maximum deviation from 1.046, which is 0.004, as
the systematic error.

To estimate the uncertainty from the poles in the un-
physical region, we repeat the z expansion fit by including
a B	c pole in the Blaschke factor for fþ. We take MB	c ¼
6:330 GeV from a lattice QCD calculation on the MILC
ensembles [70]. Recall that fþ influences f0 near maxi-
mum recoil via the kinematic constraint f0ð0Þ ¼ fþð0Þ.
We find that the effect is rather small, as shown in Fig. 11,
leading to a difference of only 0.3% in the ratio of f0.
To estimate the uncertainty from the truncation of

higher-order terms in the z expansion, we perform the z
expansion fit by including z3 and z4 terms and incorporat-
ing the unitarity constraints on the coefficients, i.e., a2i < 1.
As can be seen in Table VI, both the form factors and their
ratios stabilize when higher-order term z3 (or further z4) is
included. This results in a 0.3% difference in the form-
factor ratio.
The total systematic error including all these effects

added in quadrature is 0.6%.

C. Scale r1 dependence

As discussed in Sec. IV, we convert our data to r1 units
with r1=a from Ref. [24]. To convert to physical units, we
must choose a value of r1 in physical units. Our choice is
based on MILC’s analysis of f�, which leads to a mass-
independent value r1 ¼ 0:3117ð6Þðþ12�31Þ fm [24]. To esti-

mate the error, we also consider an early value from
HPQCD based on the 2S-1S splitting of the � resonances,
r1 ¼ 0:321ð5Þ fm [73], and repeat the whole analysis with
this value. We find a negligible shift, 
0:1%, in the form-
factor ratio, because of the cancellation between Bs ! Ds

and B! D.

D. Light- and strange-quark mass dependence

The physical light- and strange-quark masses are deter-
mined from the analysis of light pseudoscalar meson
masses and decay constants [28,74]. To estimate the error,
we repeat the chiral-continuum extrapolation varying the
masses by�1�. We do so twice, once varying the physical
light-quark mass by 3.1% for B! D; and again varying
the physical strange-quark mass by 3.4% for Bs ! Ds. In

both cases, we find a shift on fðsÞ0 ðM2
�Þ=fðdÞ0 ðM2

KÞ less than
0.1%, which is much smaller than other errors in this
analysis.

E. Heavy-quark mass dependence

We have not generated data for a wide-enough range of
	b and 	c to determine directly the heavy-quark mass
dependence of the Bs ! Ds form factors. Since our main
focus is a U-spin breaking ratio, we rely instead on other
such ratios computed on the same ensembles, in particular,
the form factor for B! D	 at zero recoil hA1

ð1Þ [44,75]
and the ratio of leptonic decay constants fBs

=fBþ [76].

In the case of hA1
ð1Þ, which is very similar to hþð1Þ, we

find the 	-tuning error to be 0.56% of hA1
ð1Þ and 4.8% of

 0.95
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FIG. 11 (color online). Systematic error due to the z expan-
sion. The open circles show the effect of varying the synthetic
data used, and the filled square shows the effect of adding a pole
to the Blaschke factor.
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1� hA1
ð1Þ [75]. In the case of 
f ¼ fBs

=fBþ , we find the

	-tuning error to be 0.41% of 
f and 2.2% of 
f � 1 [76].

The first of these four estimates yields the largest absolute

error on fðsÞ0 =fðdÞ0 , namely, 0.6%. This error estimate is still

much smaller than the overall error in this analysis.

F. Heavy-quark mass discretization and matching

We also use our work on hA1
ð1Þ [44,75] to guide and

estimate heavy-quark discretization errors, both power-law
and radiative effects. For hA1

ð1Þ, we find a 1.0% error from

discretization effects and a 0.3% error from matching.
Since the present calculation matches only at tree level,
the corresponding errors here are order �s instead of �2

s .
For a U-spin breaking ratio such as ours, the discretization
error is further suppressed by ðms �mdÞ=�QCD. Since

ðms �mdÞ=ð�s�QCDÞ 
 1
2 , there is not much change.

From the structure of Eq. (2.11), the matching error stem-
ming from hþ is �sðm2

s �m2
dÞa2, which is negligible, but

the matching error from h� leads to an error on f0 of order
�sðh�=hþÞðms �mdÞ=�QCD � 0:5%. Taking a 1% error

for these effects seems reasonable yet does not influence
the total error budget much.

G. Finite-volume effects

The finite-volume correction to the function defined in
Eq. (A5) in the NLO formula at zero recoil is given in
Ref. [53]. Such correction was found to be very small in the
B! D	 form factor [44]. One should expect similar con-
clusion in the case of BðsÞ ! DðsÞ. Indeed, we find that the

largest effect appears at the physical light-quark masses
and the magnitude of the correction is
1:0� 10�4 which
can be safely ignored. Although the formula at nonzero
recoil is not yet available, we suspect such a correction will
cause any sizable effect at small recoil, considering the fact
that the correction at zero recoil is 2 orders of magnitude
smaller than other systematic errors. So we do not quote
any systematic error from the finite-volume effects.

H. Summary

Let us now summarize our results. Table VI lists the

values of fðsÞ0 ðM2
�Þ, fðdÞ0 ðM2

KÞ and their ratio

fðsÞ0 ðM2
�Þ=fðdÞ0 ðM2

KÞ under the variations in the analysis

explained above. The resulting error budget is given in
Table VII, based on which, we arrive at our final result
given in Eq. (1.6). The systematic error is the sum of the
listed systematic errors added in quadrature. Shifting
the argument of the denominator slightly and following
the same analysis steps, we obtain Eq. (1.7).

VII. CONCLUSION AND DISCUSSION

To conclude, we provide the first lattice QCD calculation

of the form-factor ratio fðsÞ0 ðM2
�Þ=fðdÞ0 ðM2

KÞ. Our result leads
to the factor N F ¼ 1:094ð88Þð30Þ, which is significantly

closer to unity than the sum-rule estimate [23], N SR
F ¼

1:24ð8Þ (or N SR
F ¼ 1:3ð1Þ [19]) used in previous analyses

of hadronic fs=fd [20,22]. As noted above, the lack of
significant U-spin breaking observed in this calculation is
in accord with other lattice QCD calculations of similar
form factors [27].
We now examine how our new value of N F affects the

fragmentation-fraction ratio fs=fd. LHCb measures fs=fd
via BRð �B0

s ! Dþs ��Þ=BRð �B0 ! DþK�Þ, using the sum-
rule estimate N SR

F , and finds fs=fd ¼ 0:250ð24Þstat�
ð17Þsystð17Þtheo [22]. Since N F is not correlated with any

other quantity in Eq. (1.3), we easily find that the fragmen-
tation ratio should become

fs
fd
¼ 0:283ð27Þstatð19Þsystð24Þtheo; (7.1)

where the errors have also been scaled accordingly.
Superficially, our theoretical error is slightly larger than
that obtained with the sum-rule estimate—8.5% vs 6.5%.
Our error, however, is straightforward to improve, since it
is dominated byMonte Carlo statistics, propagated through
the chiral-continuum and z extrapolations, as seen in
Table VI.
Fleischer, Serra, and Tuning have proposed a second

hadronic approach based on the ratio BRð �B0
s!Dþs ��Þ=

BRð �B0!Dþ��Þ [20]. A complication is that a
W-exchange diagram also contributes to the �B0

d ! Dþ��
decay, leading to an additional factor N E in the analog of
Eq. (1.3). It is estimated to be N E ¼ 0:966ð75Þ [22]. This
method requires a similar input of the form-factor ratio

N 0
F ¼ ½fðsÞ0 ÞðM2

�Þ=fðdÞ0 ðM2
�Þ�2. With our calculation, we

can easily extrapolate the argument of the denominator,
finding the form-factor ratio given in Eq. (1.7). As a result,
N 0

F¼1:111ð94Þð34Þ. Reference [22] uses the same sum-
rule value N SR

F ¼ 1:24ð8Þ when doing the analysis with
similar approach, finding the fragmentation-fraction ratio to
be fs=fd ¼ 0:256ð14Þð19Þð26Þ. We find that

fs
fd
¼ 0:286ð16Þstatð21Þsystð26Þlattð22ÞNE; (7.2)

where the last two errors (major sources of the theoretical
error) are shown explicitly. The last error stems from the
uncertainty inN E. The result Eq. (7.2) agrees with that of
the Dþs ��=DþK� hadronic method, Eq. (7.1), and both
agree with LHCb’s determination via a method employing
semileptonic decays, fs=fd ¼ 0:268ð8Þstatðþ24�22Þsyst [18], as
well as the Particle Data Group’s average of LEP and CDF,
fs=fd ¼ 0:288ð24Þ [17].
As a by-product of the calculation, the form-factor ratio

in Eq. (1.7) can be combined with factorization to estimate
the ratio of branching ratios,

BRð �B0
s ! Dþs ��Þ

BRð �B0 ! DþK�Þ ¼ 14:4� 1:3; (7.3)

Bs ! Ds=B! D SEMILEPTONIC . . . PHYSICAL REVIEW D 85, 114502 (2012)

114502-15



independently of experimental inputs except for quantities
like jVusjfK=jVudjf� and lifetimes. This ratio is consistent
with the measured value 16� 5 [17], assuming no corre-
lation between the two processes. Smaller experimental
error bars would provide a better test of the validity of our
calculation.

This work is based on only 4 out of 21 available MILC
asqtad ensembles of lattice-gauge configurations. Further
running on ensembles closer to the chiral and continuum
limits will reduce the length of the extrapolations and,
hence, control the growth through extrapolation of the
statistical error. At the current stage, however, the largest
error in Eq. (7.1) remains experimental statistics, stemming
from the difficulty in reconstructing D�s ! KK�.
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APPENDIX: STAGGERED CHIRAL
PERTURBATION THEORY FOR B! D‘�

AT NONZERO RECOIL

The material given in the Appendix extends the contin-
uum QCD �PT for B! D‘� [54] to staggered fermions.
The staggered theory has 16 light pseudoscalar mesons for
each meson of continuum QCD. Their degeneracy is bro-
ken at finite lattice spacing with masses given at the lead-
ing order by [24]

M2
qq0

�

¼ �0ðmq þmq0 Þ þ a2��; (A1)

where q, q0 are the staggered quarks and�0 is a continuum
low-energy constant. a2�� are the splittings of the 16
mesons in lattice units, cf. Table III. At this order in an
expansion in a2 they come in 5 multiplets, labeled P, A, T,
V, and I, with degeneracies 1, 4, 6, 4, and 1, respectively.
In full (2þ 1) QCD rooted staggered chiral perturbation

theory, we have the expression for hB!Dþ :

hNLOþ ðwÞ¼1þXþ
m2

c

þ g2D	D�

16�2f2

�
1

16

X
�

ð2Fþ��
þFþK�

Þ�1

2
Fþ�I
þ1

6
Fþ�I
þa2
0V

� M2
�V
�M2

SV

ðM2
�V
�M2

�V
ÞðM2

�V
�M2

�0V
ÞF
þ
�V

þ M2
�V
�M2

SV

ðM2
�V
�M2

�0V
ÞðM2

�V
�M2

�V
ÞF
þ
�V
þ

M2
�0V
�M2

SV

ðM2
�0V
�M2

�V
ÞðM2

�0V
�M2

�V
ÞF
þ
�0V

�
þðV!AÞ

�
: (A2)

Similarly for hðsÞþ (Bs ! Ds), we have

hðsÞ;NLOþ ðwÞ¼1þXþ
m2

c

þ g2D	D�

16�2f2

�
1

16

X
�

ðFþS�þ2FþK�
Þ�FþSIþ

2

3
Fþ�I
þa2
0V

� M2
SV
�M2

�V

ðM2
SV
�M2

�V
ÞðM2

SV
�M2

�0V
ÞF
þ
SV

þ M2
�V
�M2

SV

ðM2
�V
�M2

�0V
ÞðM2

�V
�M2

�V
ÞF
þ
�V
þ

M2
�0V
�M2

�V

ðM2
�0V
�M2

�V
ÞðM2

�0V
�M2

SV
ÞF
þ
�0V

�
þðV!AÞ

�
; (A3)

where the masses of the flavor-taste singlet mesons �I and nonsinglet mesons �VðAÞ, �0VðAÞ are given by [53]
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M2
�I
¼ 1

3ðM2
�I
þ 2M2

SI
Þ; M2

�V
¼ 1

2

�
M2

�V
þM2

SV
þ 3

4a
2
0V � Z

�
; M2

�0V
¼ 1

2

�
M2

�V
þM2

SV
þ 3

4a
2
0V þ Z

�
;

Z ¼
�
ðM2

SV
�M2

�V
Þ2 � 1

2a
2
0VðM2

SV
�M2

�V
Þ þ 9

16ða2
0VÞ2
�
1=2

; ðV ! AÞ:
(A4)

In Eqs. (A2) and (A3), Fþj is short for the function Fþðw;Mj;�
ðcÞ=MjÞ, defined by

Fþðw;m; xÞ ¼ �2
�
ðwþ 2ÞI1ðw;m; xÞ þ ðw2 � 1ÞI2ðw;m; xÞ � 3

2I3ðw;m; xÞ � 3
2I3ðw;m; 0Þ

�
; (A5)

where

Iiðw;M; xÞ ¼ �
�
M2xEiðwÞ þM2x2 ln

�
M2

�2

�
GiðwÞ þM2x2Fiðw; xÞ

�
(A6)

and the functions E, G are given by

E1ðwÞ ¼ �

wþ 1
; (A7a)

E2ðwÞ ¼ ��
ðwþ 1Þ2 ; (A7b)

E3ðwÞ ¼ �; (A7c)

G1ðwÞ ¼ �1
2ðw2 � 1Þ ½w� rðwÞ�; (A7d)

G2ðwÞ ¼ 1

2ðw2 � 1Þ2 ½w
2 þ 2� 3wrðwÞ�; (A7e)

G3ðwÞ ¼ �1; (A7f)

with

rðwÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1
p lnðwþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1

p
Þ: (A8)

The functions Fi are given by

F1ðw; xÞ ¼ 1

x2

Z �=2

0
d�

a

1þ w sin2�
f�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� 1Þ � 2½fðaÞ � a�g; (A9a)

F2ðw; xÞ ¼ 1

x2

Z �=2

0
d�

a sin2�

ð1þ w sin2�Þ2
�
� 3�

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� 1Þ þ �a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p þ 3� 4a2

1� a2
fðaÞ � 3a

�
; (A9b)

F3ðw; xÞ ¼ 1

x
f�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 1Þ � 2½fðxÞ � x�g; (A9c)

where

a ¼ x cos�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w sin2�
p ; (A10)

fðxÞ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2
p

tan�1½x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2
p

� jxj<1;

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1
p

ln½1�2xðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1
p

Þ� jxj>1;
(A11)

and x ¼ �ðcÞ=Mj where Mj is the corresponding meson mass. The DðsÞ �D	ðsÞ splittings are �ðcÞ ¼ 140:6 MeV, �ðcÞs ¼
143:9 MeV. When the continuum and chiral limits are taken, the taste splittings vanish, and the 16 lowest Mjs all tend to
the physical pion mass, which is around 135 MeV. The extrapolation to the physical pion mass switches from jxj< 1 to
jxj> 1, requiring both expressions for fðxÞ.
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