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The Nambu–Jona-Lasinio–jet model provides a framework for calculating fragmentation functions

without the introduction of ad hoc parameters. We develop the Nambu–Jona-Lasinio–jet model to

investigate dihadron fragmentation functions (DFFs) of the form Dh1 ;h2
q ðz1; z2Þ. Here we studied DFFs

for q ! f�þ��g, f�þK�g and fKþK�g with q ¼ u, d, s. The driving terms, which represent the

probability of one of the hadrons being emitted in the first emission step of the quark-jet hadronization

picture, dominate the solutions of the DFFs where either z1 or z2 is large, and z1 (z2) is the light-cone

momentum fraction of the emitted hadron, h1 (h2). The higher order terms, which represent the

probability of neither of the hadrons being emitted in the first emission step of the quark-jet, become

more significant as z1 (z2) is lowered. Finally, we present a sample result for QCD evolution of DFFs, that

significantly modify the model solutions when evolved to typical experimental scale of 4 GeV2.
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I. INTRODUCTION

Deep inelastic scattering (DIS) has proven to be an
invaluable source of information about the structure of
the nucleon [1]. Initially it provided critical information
on the relative distribution of momentum between valence
and sea quarks and the gluons. As the experimental capa-
bilities have grown so have our ambitions and over the past
decade semi-inclusive deep-inelastic scattering (SIDIS)
has helped (along with Drell-Yan) to expand our knowl-
edge of quark flavor structure [2–10]. With several new
experimental facilities with 100% duty factor under con-
struction, SIDIS will become even more important. For
example, we may finally be able to pin down the elusive
s� �s asymmetry [8,11–13]. Another area of great current
excitement concerns the distribution of the spin of the
proton [14–34]. There polarized SIDIS is potentially ex-
tremely valuable through the study of TMDs [35–44],
which will complement work on GPDs [18,45–50].

For these studies to achieve their full potential it is vital
that we develop the deepest understanding of the fragmen-
tation functions [51], especially their flavor dependence,
and ultimately their dependence on spin and transverse
momentum. Fragmentation functions are an important
theoretical tool in the investigation of scattering reactions,
for example in the separation of the flavor dependence of
parton distribution functions (PDFs). Experimental extrac-
tions of fragmentation functions from deep-inelastic scat-
tering data [52,53] have increased theoretical activity in
this area. Yet the phenomenological extraction of even
favored fragmentation functions suffers from significant
uncertainty while the situation for the unfavored is worse.
This in turn affects the systematic errors associated with
the extraction of the flavor dependence of parton distribu-

tion functions through SIDIS. These considerations have
led us to develop and study the Nambu–Jona-Lasinio
(NJL)-jet model [54–57]. This model builds on the field-
Feynman quark-jet model (FFQJM) [58], by using an
effective chiral quark model to provide a framework in
which calculations of both quark distribution and fragmen-
tation functions can be performed without introducing
ad hoc parameters. Pion fragmentation functions in the
NJL-jet model were calculated in Ref. [54]. The NJL-jet
model was then extended to include strange quark contri-
butions and kaon fragmentation functions were obtained
[55]. Further extensions of the model are the inclusion of
vector meson, nucleon and antinucleon fragmentation
channels [56], and the inclusion of transverse momentum
dependence [57].
Dihadron fragmentation functions (DFFs) represent the

probability of producing two hadrons in the decay chain of
a fragmenting quark. Some recent work in the area of DFFs
include Refs. [59,60]. In Ref. [59], parameters for a spec-
tator model are fitted to output from the PYTHIA event
generator [61] tuned for HERMES [62] for dihadron frag-
mentation functions with a dependence on the sum of the
light-cone momentum fractions of the two produced had-
rons and their invariant mass squared. DFFs for large
invariant mass are studied in Ref. [60]. The dihadron frag-
mentation functions’ evolution equations are derived in
Ref. [63] from factorization of the cross section for the

production of two hadrons in eþe� annihilation in the MS
factorization scheme. Evolution equations for nonsinglet
quark DFFs are studied in Ref. [64], while the singlet quark
and gluon DFF evolution equations are studied in Ref. [65].
In Refs. [64,65] the ratio of the dihadron and single hadron
fragmentation functions are examined, as this ratio is useful
when considering experimental measurements. The choice
of initial conditions is studied in Ref. [66], primarily by
considering the two-body correlation function.*http://www.physics.adelaide.edu.au/cssm
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Depending on the polarization of the fragmenting
quark, special types of DFFs known as interference
fragmentation functions (IFFs) can be constructed. The
chiral-odd IFFs can be related to transversity [67–71].
Transversity is one area of current interest that requires
knowledge of the fragmentation functions of quarks
[29]. Out of the three leading-twist distribution func-
tions that describe the quark structure of hadrons, it is
the least well known, the other two being the unpolar-
ized and helicity distributions. Recent work [72–74]
suggests that DFFs may be useful in extracting trans-
versity distributions by considering the SIDIS produc-
tion of two hadrons with small invariant mass. Though
transversity will not be the focus of this paper, it is
presented as one possible motivation for further inves-
tigation into DFFs.

In this work we extend the latest version of the NJL-jet
model, presented in Refs. [55,56], to investigate dihadron
fragmentation functions. In Sec. II we present a summary
of fragmentation functions in the NJL-jet model, as set out
in the aforementioned papers, with a focus on those parts
that are relevant to understanding the dihadron fragmenta-
tion functions. Section III outlines the extension of the
NJL-jet model to be used in investigating DFFs, while
results at the model scale for the DFFs are presented in
Sec. IV. In Sec. V we briefly discuss the QCD evolution

equations for DFFs and present sample evolution results
for our model.

II. QUARK FRAGMENTATION FUNCTIONS

This section provides a quick overview of the calcula-
tion of the quark fragmentation functions in the NJL-jet
model [54–56], focusing on the aspects important to
obtaining dihadron fragmentation functions within the
model. Here we employ the SUð3Þ NJL effective quark
model [75–79] using light-cone (LC) coordinates [55]. In
the NJL model we include only the four-point quark inter-
action in the Lagrangian, with up, down, and strange
quarks, and no additional free parameters. We employ
Lepage-Brodsky (LB) ‘‘invariant mass’’ cutoff regulariza-
tion for the loop integrals (see Ref. [55] for a detailed
description as applied to the NJL-jet model).
The quark fragmentation function Dh

qðzÞ is the probabil-
ity for a quark of type q to emit a hadron of type h carrying
fraction z of its light-cone momentum h (here meson
m ¼ q �Q). We denote the elementary quark fragmentation
function, corresponding to the situation where the detected
hadron is the only emitted hadron, by dhqðzÞ. The corre-

sponding cut diagram for the elementary quark frag-
mentation function is shown in Fig. 1. The elementary
fragmentation function depicted in Fig. 1 can be written as

dmq ðzÞ ¼ Nc

Cm
q

2
g2mqQ

z

2

Z d4k

ð2�Þ4 Tr½S1ðkÞ�þS1ðkÞ�5ðk=� p=þM2Þ�5� � �ðk� � p�=zÞ2��ððp� kÞ2 �M2
2Þ

¼ Cm
q

2
g2mqQz

Z d2p?
ð2�Þ3

p2
? þ ððz� 1ÞM1 þM2Þ2

ðp2
? þ zðz� 1ÞM2

1 þ zM2
2 þ ð1� zÞm2

mÞ2
; (1)

whereCm
q is the corresponding flavor factor and gmqQ is the

quark-meson coupling. The massesM1,M2 andmm are the
masses of the fragmenting quark, the remnant quark and
the produced hadron (here the hadron is a meson),
respectively.

If a sharp cutoff in the transverse momentum, P2
?, is

assumed, the integration in Eq. (1) can be evaluated
analytically [Eq. (2)].

dmq ðzÞ ¼
Cm
q

2

g2mqQ

8�2
z

�
A=B� 1

B=P2
? þ 1

þ lnð1þ P2
?=BÞ

�
; (2)

where

A � ððz� 1ÞM1 þM2Þ2; (3)

B � zðz� 1ÞM2
1 þ zM2

2 þ ð1� zÞm2
m: (4)

The Lepage-Brodsky ‘‘invariant mass’’ cutoff regulari-
zation method (Refs. [54,80] describe this when applied to
the NJL-jet model) is employed to regularize the loop
integrals. The loop integrals are regularized by setting a
cutoff on the invariant mass, M12, such that

M12 � �12 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þm2
m

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þM2
2

q
; (5)

where �12 is the maximum invariant mass. Here the
3-momentum cutoff, denoted by �3, is fixed by reproduc-
ing the value of the experimentally measured pion decay
constant. In Lepage-Brodsky regularization, P2

? is given by

P2
? ¼ zð1� zÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þm2
m

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þM2
2

q
Þ

� ð1� zÞm2
m � zM2

2: (6)

FIG. 1 (color online). Cut diagram for quark fragmentation
function. Solid lines represent quarks and the double dashed
lines a meson.
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The value of the 3-momentum cutoff used in this work,
�3 ¼ 0:67GeV, was obtained in Ref. [80] by choosing
the constituent light quark mass M ¼ 0:3GeV and using
pion decay f� ¼ 0:093. The corresponding constituent
strange quark mass, Ms ¼ 0:537GeV, was obtained by
reproducing the pion and kaon masses, m� ¼ 0:14GeV
and mK ¼ 0:495GeV. The calculated values of the quark-
meson couplings are g�qQ ¼ 3:15 and gKqQ ¼ 3:3876.

The elementary quark fragmentation function, inte-
grated over the light-cone momentum fraction z, represents
the total probability of a quark splitting into a hadron of a
given type plus another quark. In construction of the NJL-
jet model we are interested in processes where a hadron is
produced at each step. Thus we construct the renormalized

elementary fragmentation functions, d̂mq ðzÞ, such that the

total probability of emitting a hadron (summed over all
possible hadron types m0 that the quark q can emit in the
elementary splitting process) is one:

d̂ m
q ðzÞ ¼

dmq ðzÞP
m0
R
1
0 d

m0
q ðzÞ : (7)

In a quark-jet-model, the total fragmentation function,
Dm

q ðzÞ, is described by successive elementary splittings of a

quark into hadrons. This process is shown diagrammati-
cally in Fig. 2. The initial quark q fragments into a meson,
m ¼ q �Q, with light-cone momentum fraction z of the
initial quark’s momentum, and a quark, Q, with light-
cone momentum fraction 1� z. The emitted quarkQ frag-
ments as well, and the process repeats, forming a cascade
of hadrons. It is important to note that within the model the
emitted hadrons do not interact with the other hadrons
produced in the quark jet. An integral equation for the
quark cascade process shown in Fig. 2 was derived in the
quark-jet model of Ref. [58]. The integral equation for
the total fragmentation function is

Dm
q ðzÞ ¼ d̂mq ðzÞ þ

X
Q

Z 1

z

dy

y
d̂Qq ðzyÞD

m
QðyÞ; (8)

where d̂Qq ðzÞ ¼ d̂mq ð1� zÞjm¼q �Q.

The probabilistic interpretation of Eq. (8) can be clari-
fied by multiplying both sides by a factor of dz. The term
on the left-hand side is the probability for the quark q to
emit meson m with light-cone momentum fraction z. On
the right-hand side, the first term is the driving function,
which represents the probability of creating a meson m
carrying momentum fraction z to zþ dz from the first
emission step and the second term represents the probabil-

ity of creating the meson, m, further in the quark decay
chain. The above equation is solved by uniformly discretiz-
ing z and y in the interval ½0; 1� and approximating the
integrals as sums over these discrete values of z and y.

Then Dm
q ðzÞ and d̂mq ðzÞ can be expressed as vectors ~Dm

q and

~f of values at the discretization points of z; and the inte-
grand of the second term, without Dm

q ðyÞ, can be written

as a matrix g over the values of the discretization points of
z and y:

~Dm
q ¼ ~fþ g � ~Dm

q ðI � gÞ � ~Dm
q ¼ ~f ~Dm

q ¼ ðI � gÞ�1 ~f;

(9)

where I is the unit matrix.
Here it is important to use an appropriate number of

discretization points to avoid large numerical errors when
solving for Dm

q ðzÞ. The number of points used was

increased until there was sufficient convergence of the
solutions of the fragmentation functions. The resulting
solutions for the fragmentation functions of u, d and s
quarks to �þ and Kþ are presented in Ref. [56]. The
fragmentation functions of u, d and s quarks to �þ are
also shown here in Fig. 3, as well as the driving function of

the u to �þ, d̂�
þ

u , which is labeled as Df:u (the notation
Df:q will be adopted in Sec. IVA as well).

III. DIHADRON FRAGMENTATION FUNCTIONS

We now consider a semi-inclusive process in which two
hadrons are detected in the final state. This requires a new
fragmentation function, known as the dihadron fragmenta-
tion function, that describes the probability of this process.
DFFs may be useful in the extraction of transversity
distributions [72], which are the least well known of the
three leading-twist distribution functions that describe
the quark structure of hadrons, the other two being the
unpolarized and helicity distribution functions. We now
extend the NJL-jet model to describe the DFFs. Dihadron

q

h 1
(z

1
)

h 2
(z

2
)

FIG. 2 (color online). Quark cascade
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FIG. 3 (color online). Fragmentation functions of u (black
solid line), d (blue dashed line) and s (red dot-dashed line)
quarks to �þ as a function of the light-cone momentum fraction
z. Driving function of the u (purple dotted line) to �þ is labeled
as Df:u.
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fragmentation functions, Dh1;h2
q ðz1; z2Þ, correspond to the

probability of a quark q producing two hadrons, h1 and h2,
that carry its light-cone momentum fractions z1 and z2,
respectively. An illustration of how a quark cascade can
produce two observed hadrons, h1 and h2, in the NJL-jet
model is shown in Fig. 2.

The integral equation for the dihadron fragmentation

function Dh1;h2
q ðz1; z2Þ has been constructed by Field and

Feynman in the quark-jet model [Eqs. (2.43a)–(2.43d) of

Ref. [58]], which is shown in Eq. (10). Here d̂hqðzÞ and

d̂Qq ð�Þ are the elementary splitting functions of the quark q

to the corresponding hadron h and quark Q. On the left-
hand side of Eq. (10) is the term representing the proba-
bility for the quark q to emit hadrons h1 and h2 with light-
cone momentum fractions z1 and z2, respectively. The first
term on the right-hand side of Eq. (10) corresponds to the
probability of producing hadron h1 from the quark q at the
first step in the cascade, followed by hadron h2 produced
either directly afterwards or further down in the quark

decay chain, while the second term is similar to the first
one, except for h1 $ h2 . The third term corresponds to the
probability of having both h1 and h2 produced after the first
hadron emission.

Dh1;h2
q ðz1; z2Þ ¼ d̂h1q ðz1Þ

Dh2
q1ð z2

1�z1
Þ

1� z1
þ d̂h2q ðz2Þ

Dh1
q2ð z1

1�z2
Þ

1� z2

þX
Q

Z 1

z1þz2

d�

�2
d̂Qq ð�ÞDh1;h2

Q ðz1
�
;
z2
�
Þ;

(10)

q ! h1 þ q1; q ! h2 þ q2: (11)

In the integral term we perform a change of integration
variables to �1 ¼ z1=� and �2 ¼ z2=�, so that the argu-

ments ofDh1;h2
Q ð�1; �2Þ will correspond to �1 and �2 at grid

point values when uniformly discretized:

Z 1

z1þz2

d�

�2
d̂Qq ð�ÞDh1;h2

Q ðz1
�
;
z2
�
Þ ¼

Z z1
z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2

Z 1

z1þz2

d�
�ð�1 � z1=�Þ

�

�ð�2 � z2=�Þ
�

d̂Qq ð�ÞDh1;h2
Q ð�1; �2Þ

¼
Z z1

z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2

Z 1

z1þz2

d��ðz1 � �1�Þ�ðz2 � �2�Þd̂Qq ð�ÞDh1;h2
Q ð�1; �2Þ

¼
Z z1

z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2�ðz2�1 � z1�2Þd̂Qq ðz1=�1ÞDh1;h2
Q ð�1; �2Þ (12)

Then the equation for the dihadron fragmentation functions takes the following form:

Dh1;h2
q ðz1; z2Þ ¼ d̂h1q ðz1Þ

Dh2
q1ð z2

1�z1
Þ

1� z1
þ d̂h2q ðz2Þ

Dh1
q2ð z1

1�z2
Þ

1� z2
þX

Q

Z z1
z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2�ðz2�1 � z1�2Þd̂Qq ðz1=�1ÞDh1;h2
Q ð�1; �2Þ:

(13)

To solve the above equation for the dihadron fragmen-

tation function Dh1;h2
q ðz1; z2Þ, we discretize z1, z2, �1, and

�2 uniformly in the interval ½0; 1� and approximate the
integrals as sums over the discretized values of these
variables. The fragmentation functions are written in ma-
trix form, where the elements of the matrices are their
values at the corresponding uniformly discrete values of
the arguments. We used Mathematica to solve for both the
single hadron and dihadron fragmentation functions. The
number of discretization points used for the single hadron
fragmentation functions was 500, while the number of the
discretization points afforded for the dihadron fragmenta-
tion functions was 200. These values for the numbers of
discretization points produced convergence of the solu-
tions within typically 5%, while allowing for a reasonable
computational time and computer memory size required by
the problem. Several techniques were used to lower
the memory use of the program, including the use of the
sparse arrays in Mathematica. To calculate the third term of

Eq. (13), the integrals over �1 were converted to a sum
over its uniformly discrete values. The delta function was
used to eliminate the integration over �2. The values of �2

that are selected by the delta function may not match
any of its uniformly discretized values. To account for
this, the values of the DFFs at the selected �2 were obtained
using linear interpolation from neighboring discrete
values.
The advantage of the approach presented here is that

there is a single underlying effective quark model descrip-
tion at the microscopic level for both parton distribution
functions and fragmentation functions, with no fitted pa-
rameters to fragmentation data. Moreover, recent develop-
ments of the model for the single quark fragmentations
allow us to extend the model using Monte Carlo techniques
to describe the production of hadronic resonances and the
inclusion of transverse momenta [56,57]. In the future, this
and other extensions of the model can also be incorporated
for the DFFs.
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IV. RESULTS

In this section we investigate various features of the
DFFs obtained as solutions of Eq. (13). Section IVA in-
vestigates the contribution of the integral term versus
that of the driving term to the solution of DFF. The impact

of the inclusion of the strange quark on D�þ��
u and D�þ��

u

is studied in Sec. IVB. In Sec. IVC, we consider

D�þK�
q ðz1; z2Þ and fix either z1 or z2, to study the depen-

dence of this DFF on each of the variables.

A. Contribution of the integral term

In Eq. (13), the sum of the first two terms is considered
to be the driving function of the dihadron fragmentation
function, and they describe the probability of emitting one
of the detected hadrons in the first emission step. The last
term in Eq. (13) corresponds to the probability of emitting
both detected hadrons after the emission of a hadron in
the first step. We now consider the contribution of this
last term to the solution for DFF by comparing them
with the corresponding driving functions for three
combinations of observed pions and kaons: �þ��,
�þK� and KþK�.

The DFFs for the produced hadrons �þ��, �þK� and
KþK� as functions of z2 with z1 ¼ 0:5 are shown in Fig. 4.
The plots in the figures show that the favored DFFs, where
the initial quark can produce either of the detected hadrons
from the initial quark, are almost equal to the driving
function, with the integral term giving only a very small
contribution. The unfavored DFFs, where neither of the
hadrons can be directly produced by the initial quark, are
generated entirely by the integral term.

In Figs. 4 and 5, the solution of the DFF for the up quark
is shown by the orange circle points and the driving func-
tion is shown as a solid gray line. The green diamond
points and dotted black line show the DFF and the driving
function for the down quark, respectively. The DFF and the
driving function for the strange quark are shown by the
blue square points and the dot-dashed red line, respec-
tively. In each of the figures, the number in the brackets
in the corresponding legend indicate the scaling factor used
in depicting the curve on the plot. This notation for the
scaling factor is also used in Sec. IVB and Sec. IVC.

In Fig. 5, the results for the DFFs and driving functions
for the �þ��, �þK� and KþK� are presented for the
fixed value of z1 ¼ 0:1. Here the integral term contribution
to the up quark DFFs become visible as the value of z1 is
lowered because the driving function’s contribution to the
DFF becomes less significant. The driving function’s
contribution for the down (! �þ��) and strange quark
(! �þK� and KþK�) DFFs are still very dominant, so
there is no noticeable contribution from the integral term
here. It is worth noting that the integral term contributions
to both favored and unfavored DFFs are of the same
magnitude, but the contributions to the favored DFFs are

only noticeable when the driving function is not dominat-
ing the solution. We note also that the integral equations of

D�þ��
u and D�þ��

d are symmetric in z1 $ z2, such that the

integral equation of q ¼ u for fixed z1 equals the integral

FIG. 4 (color online). Dihadron fragmentation functions for
z1 ¼ 0:5 for (a) h1 ¼ �þ; h2 ¼ ��, (b) h1 ¼ �þ; h2 ¼ K� and
(c) h1 ¼ Kþ; h2 ¼ K�. The DFFs and driving functions of the
up, down and strange quarks are shown by the orange circle
points and solid gray line, green diamond points and dotted black
line, and the blue square points and the dot-dashed red line,
respectively. Driving functions for fragmenting quark q are
also labeled in the legend as Df:q. The number in the brackets
in the legend indicates the scaling factor used in depicting the
curve
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equation of q ¼ d for fixed z2 (D�þ��
u ðz1; z2Þ ¼

D�þ��
d ðz2; z1Þ). In Sec. IVC, we will use the same fixed

values for z1 and z2 when examining D�þK�
q , as this flavor

symmetry is absent there.

B. Impact of including the strange quark on the D�þ��
q

We now study the impact of the inclusion of the strange

quark on D�þ��
u and D�þ��

d . In Eq. (13) the integral term

contains a sum over Q that runs over the flavors of the
quarks considered in the model, thus the inclusion of the
strange quark couples the DFFs for the u and d quarks to
those of the s quark. Also, the inclusion of the strange
quark affects the single hadron fragmentations of the
driving terms, as in their respective integral equations
there is a sum over Q as well [Eq. (8)]. This potentially
can have a large effect, as in Sec. IVA it was shown that the
driving functions give most of the contribution to the
favored DFFs.

The solution of D�þ��
q for z1 fixed at 0:1 and 0:5 are

shown in Fig. 6. Here, the dashed blue line and the red
dot-dashed line represent the results for up quark DFF
with and without the strange quark [denoted by (s) and

FIG. 5 (color online). Dihadron fragmentation functions for
z1 ¼ 0:1 for (a) h1 ¼ �þ; h2 ¼ ��, (b) h1 ¼ �þ; h2 ¼ K� and
(c) h1 ¼ Kþ; h2 ¼ K�. The DFFs and driving functions of the
up, down and strange quarks are shown by the orange circle
points and solid gray line, green diamond points and dotted black
line, and the blue square points and the dot-dashed red line,
respectively. Driving functions for fragmenting quark q are also
labeled in the legend as Df:q. The number in the brackets in the
legend indicates the scaling factor used in depicting the curve.

FIG. 6 (color online). Comparison of strange quark contribu-
tion of �þ�� dihadron fragmentation functions for (a) z1 ¼ 0:1
and (b) z1 ¼ 0:5. The dashed blue line and the red dot-dashed
line represent the results for up quark DFF with and without the
strange quark [denoted by (s) and (no s) in the captions],
respectively. Similarly, the purple dotted line and the black solid
line represent the results for the down quark DFF with and
without the strange quark, respectively. The number in the
brackets in the legend indicates the scaling factor used in
depicting the curve.
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(no s) in the captions], respectively. Similarly, the purple
dotted line and the black solid line represent the results for
the down quark DFF with and without the strange quark,
respectively.

The shapes of the dihadron fragmentation functions
remain the same for both the u and d quark DFFs, with
the down quark DFF being the larger in magnitude com-
pared to the up quark DFF for low z1 and vice versa when
z1 is increased. The main change is the considerable re-
duction in the magnitude of DFFs when the strange quark
is included, caused by the availability of the kaon emission
channels. Thus the inclusion of the strange quark in our
model proves to be very important in describing the light
quark DFFs.

C. Study of D�þK�
q

In this section, we examine the plots of D�þK�
q , where

either z1 or z2 is fixed. These particular DFFs were chosen
since q ! �þK� is a favored fragmentation channel to
one of the hadrons both for a light and a strange quark q.
This produces more interesting results to examine than if

we had chosen D�þ��
q , as those DFFs are symmetric in

q ¼ u and q ¼ d; thus the DFF for q ¼ u at fixed z1 is the
same as that for the DFF for q ¼ d at fixed z2, etc. The
results for fixed values of z1 and z2 are shown on the plots
in Figs. 7 and 8. The up quark DFFs are represented by
dotted red lines, while the down quark DFFs are repre-
sented by dashed blue lines and the strange quark DFFs are
represented by solid black lines.
We first examine the DFFs for z1 ¼ 0:1 [Fig. 7(a)] and

z2 ¼ 0:1 [Fig. 7(b)]. Since the hadron corresponding to the
fixed light-cone momentum fraction only has a small
amount of the fragmenting quark’s momentum, most of
the momentum is attributed to the favored fragmentation
channel of the other hadron. For Figs. 7(a) and 7(b), this
corresponds to the strange and up quark’s fragmentations
to the K� and �þ, respectively. The down quark is unfa-
vored for both hadrons and thus receives very little con-
tribution to its DFF in both plots.
After increasing the fixed value of z1 [Fig. 8(a)] and z2

[Fig. 8(b)] to 0:5, the strange quark DFFs are the largest for
both. The strange quark is the only initial quark that can
produce both hadrons in the first two steps of the cascade,
whereas both the up and down quarks require multiple

FIG. 8 (color online). �þK� dihadron fragmentation func-
tions for (a) z1 ¼ 0:5 and (b) z2 ¼ 0:5. The up, down and strange
quark DFFs are represented by dotted red lines, dashed blue lines
and solid black lines, respectively. The number in the brackets in
the legend indicates the scaling factor used in depicting the
curve.

FIG. 7 (color online). �þK� dihadron fragmentation func-
tions for (a) z1 ¼ 0:1 and (b) z2 ¼ 0:1. The up, down and strange
quark DFFs are represented by dotted red lines, dashed blue lines
and solid black lines, respectively. The number in the brackets in
the legend indicates the scaling factor used in depicting the
curve.
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decays to produce both hadrons. The up quark’s solutions
are the second largest since it can produce the�þ hadron in
the first emission step, while the down quark’s solutions are
low for both plots, as it can’t produce either of the hadrons
in the first emission step.

V. EVOLUTION OF THE DFFS

The results for the dihadron fragmentation functions in
the NJL-jet model presented in Sec. IV are all at the
model scale of 0:2GeV2. The model scale was obtained
in Ref. [55] such that after NLO evolution the model-
calculated u quark valence distribution function in
the �þ matched those experimentally measured in
Refs. [81,82]. To compare our results to experiment or
results from other models, we need to evolve the dihadron

fragmentation functions to an appropriate momentum
scale. In Ref. [63], the dihadron fragmentation func-
tions’ evolution equations are derived from factorization
of the cross-section for the production of two hadrons

in eþe� annihilation in the MS factorization scheme.
Using JetCalculus, Ref. [83] deduces the evolution
equations for DFFs with an explicit dependence on
the invariant mass of the hadron pairs, Mh. The DFFs
with a dependence on the invariant mass are addressed
as extended dihadron fragmentation functions (extDFF).
The extDFFs are important as they will relate to ex-
perimental results that include the dependence on in-
variant mass spectra.
The leading order (LO) evolution equation for DFF from

Ref. [83] is presented in Eq. (14).

d

dlnQ2 D
h1h2
i ðz1; z2; Q2Þ ¼ �sðQ2Þ

2�
�

Z 1

z1þz2

du

u2
Dh1h2

j ðz1
u
;
z2
u
;Q2ÞPjiðuÞ þ �sðQ2Þ

2�

�
Z 1�z2

z1

du

uð1� uÞD
h1
j ðz1

u
;Q2ÞDh2

k ð z2
1� u

;Q2ÞP̂i
jkðuÞ; (14)

where Q2 is the momentum scale, �sðQ2Þ is the strong
coupling at that momentum scale.

On the left-hand side of Eq. (14), the rate that the DFFs
change with respect to lnQ2 is represented. The first term
on the right-hand side represents the effect of the parton i
emitting a parton j with light-cone momentum fraction u,
with probability PjiðuÞ that it produces the two detected

hadrons, h1 and h2, while the second term represents the
effect of two partons, j and k, being emitted by iwith light-
cone momentum fractions u and 1� u, respectively, with

probability P̂i
jkðuÞ; and each of these partons producing one

of the detected hadrons.
We developed a computer code to perform the QCD

evolution of the dihadron fragmentation functions accord-
ing to Eq. (14), where the DFFs were separated into non-
singlet, singlet and gluon dihadron fragmentation
functions. The code is based on the single hadron frag-
mentation function evolution program by the authors of
Refs. [84–87]. The details on the evolution method em-
ployed, along with the full set of the results, will be
presented in our upcoming paper [88]. As an example,
here we present the results for LO evolution of

D�þ��
u ðz1; z2Þ from our model scale of 0:2GeV2 to the

typical experimental scale of 4GeV2. The results for the
evolved DFFs are presented in Figs. 9(a) and 9(b) corre-
sponding to the solutions at z1 ¼ 0:5 and z2 ¼ 0:5, respec-
tively. The dotted red line represents the solution at the
model scale (0:2GeV2) and the solid black line represents
the solution at the final scale Q2 ¼ 4GeV2. Both Figs. 9(a)
and 9(b) show a shift in the peak of the model results
towards the lower z region after the evolution, similar to
the single hadron evolution.

VI. CONCLUSIONS AND OUTLOOKS

In this paper we have presented results for dihadron
fragmentation functions calculated within the NJL-jet
model. DFFs were obtained as numerical solutions of the
corresponding integral equations derived using the quark-
jet description of the hadronization process. In Sec. IVA,
we showed that the integral term, that represents the effects
of initial undetected hadron emission, has a very small
effect on the DFFs, except when the driving function was
zero or when z1 was low. For driving functions equal to
zero, the corresponding DFFs were generated entirely by
the integral term and when z1 was lowered to 0:1, the
relative contribution of the driving function to the DFF
was also lowered for most values of z2. For the u ! �þ��

DFF, the peak value of z2D
h1h2
q ðz1; z2Þ at z1 ¼ 0:5 was

almost ten times the peak value at z1 ¼ 0:1. Because of
the lower value of the DFF at low z1, the integral term
contribution becomes a more significant part of the DFF,
reducing the relative contribution of the driving function.
This effect occurs when the fragmenting quark is the
favored quark for the hadron that receives a small light-
cone momentum fraction, but is unfavored for the hadron
that has access to most of the light-cone momentum of the
fragmenting quark. One example where this effect is par-
ticularly visible is in Fig. 5(c), where the u ! KþK� DFF
is mostly composed of the integral term at low z2 and the
driving function at higher z2. In all three results with low z1
(Fig. 5), the effect is seen for the up quark DFF, which is
the favored quark for the hadrons h1 ¼ �þ and h1 ¼ Kþ,
but is unfavored for hadrons h2 ¼ �� and h2 ¼ K�.
In Sec. IVB we showed that the strange quark’s inclu-

sion has a significant impact on the DFFs. The main change
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to the DFFs when the strange quark is included is a con-
siderable reduction in magnitude, similar to the single
hadron fragmentation functions [55], caused by the avail-
ability of the kaon emission channels. The comparison
plots for the �þ�� dihadron fragmentation functions
were shown in Fig. 6, where the results are similar for
the �þ�þ and �þ�0 DFFs.

We examined D�þK�
q ðz1; z2Þ, where either z1 or z2 is

fixed (Figs. 7 and 8), in Sec. IVC. The �þK� DFFs were
chosen as they are favored both for a light quark and a
strange quark. At low values of z1 and z2, the strange quark

and up quark DFFs, respectively, are dominant. The
strange quark DFF is dominant for low z1 because the
�þ has a small fraction of the light-cone momentum of
the initial quark, leaving most of the initial momentum
available to the strange quark’s favored fragmentation to
K�. Similarly, the up quark is dominant for low z2 because
the K� has a small light-cone momentum fraction, allow-
ing the �þ to access most of the momentum for its favored
fragmentation. Increasing the fixed value of either z1 or z2
to 0:5 in the �þK� DFF shows that the strange quark DFF
is dominant. This can be easily interpreted within the
model, as only the strange quark can produce both the
K� then the �þ in the first two steps of the decay chain,
whereas the up and down quarks both require at least three
steps in the decay chain to produce both hadrons.
Finally, in Sec. V we discuss the QCD evolution of the

dihadron fragmentation functions, which is essential in
comparing our model calculations with experimental ex-
tractions, as well as Monte Carlo simulations or other
analytical results. The evolution equations are presented
and the method for the numerical solutions is briefly dis-

cussed. As an example, the results for D�þ��
u presented in

Fig. 9, show the significant modification of the DFFs with
evolution. The details for solving the evolution equations
and the complete set of results for evolved DFFs will be
presented in our upcoming paper [88]. A comparison be-
tween our results and others will also be presented in that
work.
Future work to extend the NJL-jet model for DFFs

include the inclusion of hadronic resonances and their
decays, as well as the inclusion of the transverse momen-
tum dependence. These have been accomplished in the
single hadron fragmentations [56,57] using a Monte
Carlo framework. These extensions for the DFFs are cer-
tainly possible, but lay beyond the scope of the current
work and are left for the future.
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[88] A. Casey, I. C. Cloët, H. H. Matevosyan, and A.W.
Thomas (unpublished).

CALCULATING DIHADRON FRAGMENTATION FUNCTIONS . . . PHYSICAL REVIEW D 85, 114049 (2012)

114049-11

http://dx.doi.org/10.1103/PhysRevD.70.094032
http://dx.doi.org/10.1103/PhysRevD.70.094032
http://dx.doi.org/10.1103/PhysRevD.77.014035
http://dx.doi.org/10.1103/PhysRevD.77.014035
http://dx.doi.org/10.1103/PhysRevLett.107.012001
http://dx.doi.org/10.1103/PhysRevLett.107.012001
http://arXiv.org/abs/1106.5897
http://arXiv.org/abs/1202.0323
http://dx.doi.org/10.1103/PhysRevD.85.114023
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.124.246
http://dx.doi.org/10.1103/PhysRev.124.246
http://dx.doi.org/10.1016/0375-9474(93)90266-Z
http://dx.doi.org/10.1016/0375-9474(93)90266-Z
http://dx.doi.org/10.1016/0375-9474(90)90123-4
http://dx.doi.org/10.1016/0375-9474(90)90123-4
http://dx.doi.org/10.1103/RevModPhys.64.649
http://dx.doi.org/10.1016/S0375-9474(99)00130-X
http://dx.doi.org/10.1016/S0375-9474(99)00130-X
http://dx.doi.org/10.1103/PhysRevD.45.2349
http://dx.doi.org/10.1103/PhysRevC.72.065203
http://dx.doi.org/10.1103/PhysRevC.72.065203
http://dx.doi.org/10.1016/j.physletb.2007.04.065
http://dx.doi.org/10.1016/j.physletb.2007.04.065
http://dx.doi.org/10.1016/0010-4655(96)00013-6
http://dx.doi.org/10.1016/0010-4655(96)00013-6
http://arXiv.org/abs/hep-ph/9610521
http://arXiv.org/abs/hep-ph/9610521
http://dx.doi.org/10.1016/S0010-4655(97)00129-X
http://dx.doi.org/10.1016/S0010-4655(97)00129-X
http://dx.doi.org/10.1016/j.cpc.2011.12.022
http://dx.doi.org/10.1016/j.cpc.2011.12.022

