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In this work we present a general derivation of relativistic fluid dynamics from the Boltzmann equation

using the method of moments. The main difference between our approach and the traditional 14-moment

approximation is that we will not close the fluid-dynamical equations of motion by truncating the

expansion of the distribution function. Instead, we keep all terms in the moment expansion. The reduction

of the degrees of freedom is done by identifying the microscopic time scales of the Boltzmann equation

and considering only the slowest ones. In addition, the equations of motion for the dissipative quantities

are truncated according to a systematic power-counting scheme in Knudsen and inverse Reynolds number.

We conclude that the equations of motion can be closed in terms of only 14 dynamical variables, as long as

we only keep terms of second order in Knudsen and/or inverse Reynolds number. We show that, even

though the equations of motion are closed in terms of these 14 fields, the transport coefficients carry

information about all the moments of the distribution function. In this way, we can show that the particle-

diffusion and shear-viscosity coefficients agree with the values given by the Chapman-Enskog expansion.
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I. INTRODUCTION

Relativistic fluid dynamics is an effective theory to
describe the long-distance, longtime dynamics of macro-
scopic systems, with important applications in relativistic
heavy-ion collisions and astrophysics [1]. Relativistic fluid
dynamics describes the conservation of (net) particle num-
ber and energy momentum,

@�N
� ¼ 0; @�T

�� ¼ 0: (1)

In general, these five equations contain 14 unknown fields,
the four components of the particle 4-current N�, and the
ten components of the (symmetric) energy-momentum
tensor T��. Thus, these equations are not closed and one
needs to specify nine additional equations of motion to
solve them. The coefficients in the equations of motion
(equation of state, transport coefficients, etc.) must be
determined by matching fluid dynamics to the underlying
microscopic theory. In the case of dilute gases, this is the
Boltzmann equation.

There are two widespread methods to provide additional
equations of motion from the Boltzmann equation: the
Chapman-Enskog expansion and the method of moments.
In the Chapman-Enskog expansion [2], the corrections to
the single-particle distribution function in local equilib-
rium are assumed to be functions of the five traditional
fluid-dynamical variables, temperature, chemical potential,
and the three components of the fluid-velocity field, as well
as gradients thereof. The corrections are systematically
arranged in terms of an expansion in powers of the
Knudsen number, given by the ratio of the mean-free
path of the particles and a characteristic macroscopic

length scale. As is well known, the first-order truncation
of the expansion leads to Navier-Stokes theory. Keeping
second- and higher-order terms one obtains the Burnett and
super-Burnett equations, respectively [3]. However, it has
been shown that the Burnett equations suffer from the so-
called Bobylev instability [4]. In the relativistic case, even
the first-order equations, i.e., the relativistic generalization
of the Navier-Stokes equations, are unstable [5].
Therefore, the relativistic extension of Chapman-

Enskog theory should not be applied to derive the
equations of relativistic fluid dynamics from kinetic theory.
On the other hand, the method of moments [6] avoids the
above mentioned problems. The method of moments was
first developed by Grad [7] for nonrelativistic systems. In
Grad’s original work, the single-particle distribution func-
tion is expanded around its local equilibrium value in terms
of a complete set of Hermite polynomials [8]. This expan-
sion is truncated and the distribution function is finally
expressed in terms of 13 fluid-dynamical variables: the
velocity field, the temperature, the chemical potential, the
heat-conduction current, and the shear-stress tensor. In this
case the heat-conduction current and shear-stress tensor
become independent dynamical variables that satisfy par-
tial differential equations that describe their relaxation
towards their respective Navier-Stokes values. Grad’s
method is usually considered to be independent of the
Chapman-Enskog expansion. However, we emphasize
that Burnett-type equations can be obtained as the solution
of Grad’s equations in the longtime limit [9,10].
Nevertheless, Grad’s method has one major drawback:

unlike the Chapman-Enskog expansion it lacks a small
parameter, such as the Knudsen number, in which one
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can do power counting and thus systematically improve the
approximation [11]. This deficiency, together with the bad
performance of Grad’s method in comparison to micro-
scopic calculations [12], have led researchers to abandon
this approach for some time. However, recently a lot of
effort has been made to reformulate the method of mo-
ments into a more reliable tool to describe nonequilibrium
phenomena for large Knudsen numbers [12]. For instance,
in Ref. [13] Grad’s equations were regularized to have a
wider domain of validity in Knudsen number and then
shown to be in good agreement with microscopic calcu-
lations. Such approaches, however, were only formulated
for nonrelativistic systems.

The generalization of Grad’s method of moments to
relativistic systems has been pursued by several authors
[14]. The most widely employed approach is due to Israel
and Stewart [15,16]. Here, the distribution function is
expanded around its local equilibrium value in terms of a
series of (reducible) Lorentz tensors formed of particle
4-momentum k�, i.e., 1; k�; k�k�; . . . . In Israel and
Stewart’s 14-moment approximation one truncates the ex-
pansion at second order in momentum, i.e., one only keeps
the tensors 1, k�, and k�k�, with 14 unknown coefficients
(the trace of k�k� is equal to m2, the rest mass of the
particles) to describe the distribution function. The coef-
ficients of the truncated expansion can then be uniquely
related to the 14 components of the particle 4-current,
N�, and the energy-momentum tensor, T��, the so-called
matching procedure. While particle and energy-
momentum conservation (1) are obtained from the zeroth
and the first moment of the Boltzmann equation, the addi-
tional nine equations of motion follow from the second
moment of the Boltzmann equation. However, Israel and
Stewart’s theory shares the same problems of Grad’s
original approach: it lacks a parameter in which one can
do systematic power counting of corrections to the local
equilibrium distribution function.

It was recently confirmed that, at least for some
special problems, the Israel-Stewart equations [15,16] are
not in good agreement with the numerical solution of
the Boltzmann equation [17,18]. Initial attempts to im-
prove Israel and Stewart’s theory were already made in
Refs. [19–22], but Israel and Stewart’s 14-moment ap-
proximation was still used. In this paper we demonstrate
that Israel-Stewart theory, as well as all previous attempts
to improve it, are actually incomplete. The reason is that
the 14-moment approximation neglects infinitely many
terms of first order in the Knudsen number. In our approach
all terms of the moment expansion are included and the
exact equations of motion for these moments are derived.
These exact equations still contain the degrees of freedom
and microscopic time scales of the Boltzmann equation.
We prove that, in order to derive a causal dynamical
equation for a given dissipative current, it is necessary to
resolve at least the slowest corresponding microscopic

time scale arising from the Boltzmann equation, in agree-
ment with the results of Ref. [10]. Unlike in Israel-Stewart
theory, the truncation of the resulting equations of
motion in terms of only 14 dynamical variables is then
implemented by a systematic power-counting scheme in
Knudsen number, Kn, and in the ratios, R�1

� � j�j=P0,

R�1
n � jn�j=n0, R�1

� � j���j=P0, where � is the bulk
viscous pressure, n� is the particle-diffusion current, ���

is the shear-stress tensor, and P0 and n0 are the pressure
and the particle density in local equilibrium, respectively.
The ratio R�1

� is related to the inverse Reynolds number
in nonrelativistic situations. We shall in somewhat loose
terminology refer to all of them as ‘‘inverse Reynolds
numbers’’ in the following. The resulting fluid-dynamical
equations and coefficients are different from the ones
obtained via the 14-moment approximation. We calculate
the numerical values of the coefficients for a massless
classical gas. We show that our values for the heat-
conductivity and shear-viscosity coefficient agree with
the ones calculated via Chapman-Enskog theory [6].
This paper is organized as follows. In Sec. II we review

how fluid-dynamical variables are extracted from the
Boltzmann equation. In Sec. III we demonstrate how to
expand the single-particle distribution function in terms
of a complete, orthogonal basis in momentum space. In
contrast to Israel and Stewart’s nonorthogonal basis
1; k�; k�k�; . . . , our approach uses irreducible tensors in
4-momentum k�, and is thus orthogonal. The coefficients
of the irreducible tensors in the expansion of the single-
particle distribution function are orthogonal polynomials
in the rest-frame energy and moments of the correction
to the equilibrium distribution function. Section IV derives
an infinite set of equations for these moments, which is
still completely equivalent to the Boltzmann equation. In
Sec. V we introduce our power-counting scheme in terms
of Knudsen and inverse Reynolds numbers. Then, by di-
agonalizing the linear part of the set of moment equations,
we demonstrate how to identify the slowest microscopic
time scale of the Boltzmann equation for each dissipative
current. We shall derive dynamical equations for the slow-
est modes, but approximate faster modes by their asymp-
totic solution for long times. This will then lead, in Sec. VI,
to the complete set of fluid-dynamical equations that
contains all terms up to second order in Knudsen and
inverse Reynolds numbers, i.e., OðKn2;R�1

i R�1
j ;KnR�1

i Þ.
In Sec. VII we first demonstrate the validity of our ap-
proach by restricting the calculation to the 14-moment
approximation and recovering the results of Ref. [21] for
the transport coefficients for the case of an ultrarelativistic,
classical gas with constant cross section. We then show
how to successively improve the expression for the trans-
port coefficients by extending the number of moments to
14þ 9� n. We explicitly study the cases n ¼ 1, 2, and 3.
We end this work with a discussion and conclusions in
Sec. VIII. Various appendices contain intermediate steps of
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our calculations. We use natural units ℏ ¼ c ¼ kB ¼ 1.
The metric tensor is g�� ¼ diagðþ;�;�;�Þ.

II. FLUID-DYNAMICALVARIABLES
FROM THE BOLTZMANN EQUATION

We start with the relativistic Boltzmann equation,

k�@�fk ¼ C½f�; (2)

where k� ¼ ðk0;kÞ, with k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and m being the

mass of the particles. For the collision term, we consider
only elastic two-to-two collisions with incoming momenta
k, k0, and outgoing momenta p, p0,

C½f�¼ 1

�

Z
dK0dPdP0Wkk0!pp0ðfpfp0 ~fk ~fk0 �fkfk0 ~fp ~fp0 Þ;

(3)

where � is a symmetry factor ( ¼ 2 for identical particles),
Wkk0!pp0 is the Lorentz-invariant transition rate, and dK �
gd3k=½ð2�Þ3k0� is the Lorentz-invariant momentum-space
volume, with g being the number of internal degrees of

freedom.We introduced the notation ~fk � 1� afk, where
a ¼ 1 (a ¼ �1) for fermions (bosons) and a ¼ 0 for a
classical gas.

In kinetic theory, the conserved particle current N�

and the energy-momentum tensor T�� are expressed as
moments of the single-particle distribution function,

N� ¼ hk�i; T�� ¼ hk�k�i; (4)

where we adopted the following notation:

h� � �i �
Z

dKð� � �Þfk: (5)

The particle current and the energy-momentum tensor can
be tensor-decomposed with respect to the fluid 4-velocity
u�. To this end, we have to specify the rest frame of the
fluid. From a mathematical point of view, the velocity can
be defined in numerous ways. From the physical perspec-
tive, there are, however, two natural choices. The Landau
frame[23] in which the velocity is defined by the flow of
the total energy

u�T
�� � "u�; (6)

and the Eckart frame [24] in which the velocity is specified
by the flow of particles,

N� � nu�: (7)

In other words, in the Landau picture the velocity field is
fixed to always eliminate any diffusion of energy while in
the Eckart picture it is defined to eliminate any diffusion of
particles. Note that if the system has more than one type of
particle (or conserved charge), the Eckart frame must be
defined by choosing one of these particle types (or charge
types). We remark that other definitions of the velocity
field were investigated by Stewart in Ref. [16].

In this paper, we work in the Landau frame [23]. Next,
we divide the momentum of the particles k� into two parts:
one parallel and one orthogonal to u�,

k� ¼ Eku
� þ kh�i; (8)

where we defined the scalar Ek � u�k
� � u � k and used

the notation Ah�i ¼ ��
� A�, with��� ¼ g�� � u�u� being

the projection operator onto the 3-space orthogonal to u�.
Then, the tensor decomposition of N� and T�� reads

N� ¼ nu� þ n�;

T�� ¼ "u�u� � ���ðP0 þ�Þ þ ���; (9)

where the particle density n, the particle-diffusion current
n�, the energy density ", the shear-stress tensor ���, and
the sum of thermodynamic pressure, P0, and bulk viscous
pressure, �, are defined by

n � hEki; n� � hkh�ii; " � hE2
ki;

��� � hkh�k�ii; P0 þ� � �1
3h���k�k�i; (10)

where Ah��i � �
��
��A

�� and �
��
�� � ½��

���
� þ ��

��
�
� �

ð2=3Þ�������=2 denotes a projector onto that part of a

rank-2 tensor, which is symmetric, orthogonal to u�, and
traceless.
Next, we introduce the local-equilibrium distribution

function as f0k ¼ ½expð�0Ek � �0Þ þ a��1, where �0

and �0 are the inverse temperature and the ratio of the
chemical potential to temperature, respectively. The fluid
4-velocity has already been defined. The values of �0 and
�0 are defined in terms of a fictitious equilibrium state,
constructed from n and ". First, we introduce the thermo-
dynamic entropy density in thermodynamic equilibrium,

s0 � s0ðn; "Þ: (11)

Then, �0 and �0 are defined by the following thermo-
dynamic relations:

�0 ¼ @s0
@"

��������n
; �0 ¼ @s0

@n

��������"
; (12)

while the thermodynamic pressure P0 is extracted using
Euler’s relation,

�0P0 ¼ s0 þ �0n� �0": (13)

In practice, this prescription leads to the following match-
ing conditions:

n � n0 ¼ hEki0; " � "0 ¼ hE2
ki0; (14)

where

h� � �i0 �
Z

dKð� � �Þf0k: (15)

Note that this definition of the thermodynamic variables is
not unique and other possibilities in constructing such an
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equilibrium state were discussed in Ref. [16] and, recently,
in Refs. [25].

The separation between thermodynamic pressure
and bulk viscous pressure is achieved as P0 ¼
�h���k�k�i0=3 and � ¼ �h���k�k�i�=3, where

h� � �i� ¼ h� � �i � h� � �i0: (16)

The fluid-dynamical conservation laws (1) are equations
of motion for n, ", and u�; hence, one needs nine addi-
tional equations to determine the dissipative corrections�,
n�, and ���. In the following, we shall use the method of
moments to derive these equations.

III. EXPANSION OF THE SINGLE-PARTICLE
DISTRIBUTION FUNCTION IN TERMS OF

IRREDUCIBLE TENSORS

In this section, we expand the single-particle distribution
fk in terms of irreducible tensors. It is convenient to
factorize the local-equilibrium distribution function f0k
from fk,

fk ¼ f0kð1þ ~f0k�kÞ; (17)

where �k represents the deviation from local equilibrium
and is a function of x� and k�, which is ultimately deter-
mined by the solution of the Boltzmann equation (2).

The next step is to expand �k in terms of a complete
basis of tensors formed of k� and Ek. As mentioned in the
introduction, Israel and Stewart chose the following basis
to expand�k: 1, k

�, k�k�, k�k�k�; . . . , and then truncated
the expansion after the second-rank tensor k�k�, that is
�k ¼ 	k þ 	�kk� þ 	��

k k�k�, where 	k, 	
�
k , 	

��
k are the

expansion coefficients [15]. Note that these tensors are not
irreducible with respect to Lorentz transformations �

�
�

that leave the fluid 4-velocity u� invariant, �
�
� u� ¼ u�.

As a consequence, they are also not orthogonal, see
Chapter VI, Sec. 2a of Ref. [6]. Therefore, the expansion
coefficients cannot be straightforwardly obtained: in a
nonorthogonal basis, this requires in general the inversion
of an infinite-dimensional matrix. Also, this implies that
the exact form of the expansion coefficients cannot be
obtained once the expansion is truncated. Therefore, the
approach of Israel and Stewart does not provide the com-
plete expressions for the expansion coefficients.

In order to avoid such problems, we expand�k using the
irreducible tensors,

1; kh�i; kh�k�i; kh�k�k�i; . . . ; (18)

as a basis. It should be emphasized that these tensors form a
complete and orthogonal set, analogous to the spherical
harmonics [26]. These irreducible tensors are defined by
using the symmetrized and, for m> 1 traceless, projection
orthogonal to u� as

Ah�1����mi � ��1����m
�1����m

A�1����m; (19)

where the projectors �
�1����m
�1����m

are defined in Ref. [6], see
Appendix F for details. In order to obtain the irreducible
tensors (18), we apply the projection (19) to A�1����m �
k�1 � � � k�m . The tensors (18) satisfy an orthogonality
condition,

Z
dKFkk

h�1 � � � k�mikh�1
� � � k�ni

¼ m!�mn

ð2mþ 1Þ!! �
�1����m
�1����m

Z
dKFkð���k�k�Þm; (20)

where n, m ¼ 0; 1; 2; . . . , Fk is an arbitrary function of Ek

and �mn denotes the Kronecker delta. Using the basis (18),
�k can be expanded as

�k ¼ X1
‘¼0

�
h�1����‘i
k kh�1

� � � k�‘i: (21)

The index ‘ indicates the rank of the tensor �
h�1����‘i
k and

‘ ¼ 0 corresponds to the scalar �. The coefficients

�h�1����‘i
k are complicated functions of Ek and are further

expanded in terms of an orthogonal basis of functions Pð‘Þ
kn,

�
h�1����‘i
k ¼ XN‘

n¼0

c
h�1����‘i
n Pð‘Þ

kn; (22)

where N‘ is the number of functions Pð‘Þ
kn considered to

describe the ‘th rank tensor �h�1����‘i
k . In principle, N‘

should be infinite; however, in practice, the expansion
(22) must be truncated and N‘ characterizes the truncation

order. The function Pð‘Þ
kn are chosen to be polynomials of

order n in energy, Ek,

Pð‘Þ
kn ¼

Xn
r¼0

að‘Þnr Er
k; (23)

which are constructed to satisfy the orthonormality
condition

Z
dK!ð‘ÞPð‘Þ

kmP
ð‘Þ
kn ¼ �mn; (24)

where !ð‘Þ is defined as

!ð‘Þ � Wð‘Þ

ð2‘þ 1Þ!! ð�
��k�k�Þ‘f0k ~f0k: (25)

The coefficients að‘Þnr and the normalization constants Wð‘Þ
can be found via Gram-Schmidt orthogonalization using
the orthonormality condition (24), see Appendix E for
details. We note that, in the limit of massless, classical

particles, the polynomials Pð‘Þ
kn correspond to the associated

Laguerre polynomials.
Since the expansion (21) employs an orthogonal basis,

the expansion coefficients in Eq. (22) can be immediately
determined using Eqs. (20) and (24). For n � N‘ they are
given by
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c
h�1����‘i
n ¼ Wð‘Þ

‘!
hPð‘Þ

knk
h�1 � � � k�‘ii�: (26)

For the sake of later convenience, these expansion coef-
ficients are reexpressed as linear combinations of irreduc-
ible moments of �fk � fk � f0k,



�1����‘
n � hEn

kk
h�1 � � � k�‘ii�; (27)

such that

�h�1����‘i
k ¼ XN‘

n¼0

H ð‘Þ
kn


�1����‘
n ; (28)

where we defined the energy-dependent coefficients

H ð‘Þ
kn �

Wð‘Þ

‘!

XN‘

m¼n

að‘ÞmnP
ð‘Þ
km: (29)

Consequently, the distribution function itself can be ex-
pressed as a series in the irreducible moments (27) of �fk,

fk¼f0kþf0k ~f0k
X1
‘¼0

XN‘

n¼0

H ð‘Þ
kn


�1����‘
n kh�1

���k�‘i: (30)

We remark that our choice of matching conditions and the
definition of the velocity field imply that


1 ¼ 
2 ¼ 
�
1 ¼ 0: (31)

Note that, if we were working in the Eckart frame a differ-
ent set of moments would vanish,


1 ¼ 
2 ¼ 

�
0 ¼ 0: (32)

IV. GENERAL EQUATIONS OF MOTION

The time-evolution equations for the moments 
�1����‘
r

can be obtained directly from the Boltzmann equation by
applying the comoving derivative to the definition (27),
together with the symmetrized traceless projection,

_

h�1����‘i
r ¼ �

�1����‘
�1����‘

d

d�

Z
dKEr

kk
h�1 � � � k�‘i�fk; (33)

where _A � u�@�A � dA=d� and _

h�1����‘i
r � �

�1����‘
�1����‘

_
�1����‘
r . Using the Boltzmann equation (2) in the form

� _fk ¼ � _f0k � E�1
k k�r�f0k � E�1

k k�r��fk

þ E�1
k C½f�; (34)

where r� ¼ ��
�@�, and substituting this expression into

Eq. (33), one can obtain the exact equations for the comov-
ing derivatives of 
�1����l

r .
Using the power-counting scheme developed in Sec. V,

we will show that, in order to derive the equations of
motion for relativistic fluid dynamics, it is sufficient to
know the time-evolution equations for the moments (27)
up to rank 2, i.e., for 
r, 


�
r , and 


��
r . Similar equations

could also be derived for higher-rank irreducible moments,
if needed. Thus, using Eqs. (33) and (34), we obtain

_
r � Cr�1 ¼ �ð0Þ
r �� G2r

D20

��þ G2r

D20

����� þ G3r

D20

@�n
�

þ ðr� 1Þ
��
r�2�� þ r


�
r�1 _u� �r�


�
r�1

� 1

3
½ðrþ 2Þ
r � ðr� 1Þm2
r�2��; (35)

_

h�i
r � C

h�i
r�1 ¼ �ð1Þ

r I� þ 
�
r!

�
� þ 1

3
½ðr� 1Þm2


�
r�2 � ðrþ 3Þ
�

r ��� �
�
�r�


��
r�1 þ r


��
r�1 _u� þ

1

5
½ð2r� 2Þm2
�

r�2

� ð2rþ 3Þ
�
r ��

� þ 1

3
½m2r
r�1 � ðrþ 3Þ
rþ1� _u� þ �0Jrþ2;1

"0 þ P0

ð� _u� �r��þ ��
� @��

��Þ

� 1

3
r�ðm2
r�1 � 
rþ1Þ þ ðr� 1Þ
���

r�2��; (36)

_

h��i
r � C

h��i
r�1 ¼ 2�ð2Þ

r �� � 2
7½ð2rþ 5Þ
�h�

r �m22ðr� 1Þ
�h�
r�2��i

� þ 2

�h�
r !�i

� þ 2
15½ðrþ 4Þ
rþ2 � ð2rþ 3Þm2
r

þ ðr� 1Þm4
r�2��� þ 2
5rh�ð
�i

rþ1 �m2
�i
r�1Þ � 2

5½ðrþ 5Þ
h�
rþ1 � rm2
h�

r�1� _u�i
� 1

3½ðrþ 4Þ
��
r �m2ðr� 1Þ
��

r�2��þ ðr� 1Þ
���

r�2 �
 � �

��
��r�


���
r�1 þ r


���
r�1 _u�; (37)

where we introduced the generalized irreducible collision
terms

Ch�1����‘i
r ¼

Z
dKEr

kk
h�1 � � � k�‘iC½f�: (38)

We further defined the shear tensor �� � rh�u�i, the
expansion scalar � � r�u

�, the vorticity tensor !�� �
ðr�u� �r�u�Þ=2 and introduced I� ¼ r��0. All co-

moving derivatives of �0 and �0 that appeared during
the derivation of the above equations were replaced using
the exact equations obtained from the conservation laws of
particle number, energy, and momentum,

_�0 ¼ 1

D20

f�J30ðn0�þ @�n
�Þ

þ J20½ð"0 þ P0 þ�Þ�� ������g; (39)
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_�0 ¼ 1

D20

f�J20ðn0�þ @�n
�Þ

þ J10½ð"0 þ P0 þ�Þ�� ������g; (40)

_u � ¼ 1

"0 þ P0

ðr�P0 �� _u� þr�����
�@��

��Þ:
(41)

The coefficients �ð0Þ
r , �ð1Þ

r , and �ð2Þ
r are functions of tem-

perature and chemical potential and have the general form,

�ð0Þ
r ¼ ð1� rÞIr1 � Ir0 � 1

D20

½G2rð"0 þ P0Þ �G3rn0�;
(42)

�ð1Þ
r ¼ Jrþ1;1 � n0

"0 þ P0

Jrþ2;1; (43)

�ð2Þ
r ¼ Irþ2;1 þ ðr� 1ÞIrþ2;2; (44)

where we defined the thermodynamic functions

Inqð�0; �0Þ ¼ 1

ð2qþ 1Þ!! hE
n�2q
k ð����k�k�Þqi0;

Jnq ¼ @Inq
@�0

���������0

; (45)

Gnm ¼ Jn0Jm0 � Jn�1;0Jmþ1;0;

Dnq ¼ Jnþ1;qJn�1;q � J2nq: (46)

The dissipative quantities appearing in the conservation
laws can be (exactly) identified with the moments


0 ¼ � 3

m2
�; 


�
0 ¼ n�; 


��
0 ¼ ���: (47)

We note that the derivation of these general equations of
motion is independent of the form of the expansion of the
single-particle distribution we introduced in the previous
section.

V. POWER COUNTING AND THE REDUCTION
OF DYNAMICALVARIABLES

So far, we have derived a general expansion of the
distribution function in terms of the irreducible moments
of �fk, as well as exact equations of motion for these
moments. There is an infinite number of equations (labeled
by the index r), and the equations for the moments up to
rank 2, Eqs. (35)–(37), contain moments of rank higher
than two. In general, one would have to solve this infinite
set of coupled equations in order to determine the time
evolution of the system. However, in the fluid-dynamical
limit, it is expected that the macroscopic dynamics of a
given system simplifies, and therefore it can be described
by the conserved currents N� and T�� alone.

From the kinetic point of view, it is usually assumed that
the validity of the fluid-dynamical limit can be quantified
by the Knudsen number,

Kn � ‘micr

Lmacr

; (48)

where ‘micr and Lmacr are typical microscopic and macro-
scopic length or time scales of the system, respectively.
The relevant macroscopic scales are usually estimated
from the gradients of fluid-dynamical quantities, while
the microscopic scales are of the order of the mean-free
path or time between collisions. It is generally assumed
that when there is a clear separation of the microscopic and
macroscopic scales, i.e., when Kn � 1, the microscopic
details can be safely integrated out and the dynamics of the
system can be described using only a few macroscopic
fields.
Furthermore, we also expect fluid dynamics to be valid

near local thermal equilibrium, i.e., when �fk � f0k. We
can quantify the deviation from equilibrium in terms of the
macroscopic variables by defining a set of ratios of dis-
sipative quantities to the equilibrium pressure or density.
These can be understood as generalizations of the inverse
Reynolds number and will be denoted as

R�1
� � j�j

P0

; R�1
n � jn�j

n0
; R�1

� � j���j
P0

: (49)

Since the nonequilibrium moments are integrals of �fk
while the equilibrium pressure and particle density are
integrals over the equilibrium distribution function f0k,
these ratios quantify the deviations from equilibrium.
With this in mind, it is clear that these two measures, the

Knudsen number and the inverse Reynolds number, can be
used to quantify the proximity of the system to the fluid-
dynamical limit. In general, these two measures are inde-
pendent of each other, e.g. a system can be initialized in
such way that the Knudsen number is large, but the inverse
Reynolds number is small or vice versa. When deriving
transient fluid dynamics, one should not a priori assume
that Kn� R�1

i ; while the Reynolds and Knudsen numbers
are certainly related, their relation is in principle dynamical
and is precisely what we aim to find. Only for asymptoti-
cally long times, the solutions of the dynamical equations
yield Kn� R�1

i , as will be discussed in more detail below.
In the traditional 14-moment approximation introduced

by Israel and Stewart [15], the fluid-dynamical limit is
implemented by a truncation of the expansion of the dis-
tribution function, which corresponds neither to a trunca-
tion in Knudsen nor in inverse Reynolds number. In this
sense, the domain of validity of the equations of motion
obtained via the traditional 14-moment approximation is
not clear, because it is not possible to determine the order
of the terms that were neglected. In order to obtain a closed
set of macroscopic equations with a clear domain of va-
lidity in both Kn and R�1

i , another truncation procedure is
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necessary. The derivation of this is the main purpose of this
section.

First, we rewrite the collision terms C
h�1����‘i
r�1 by linear-

izing the collision operator C½f� in the deviations from the
equilibrium distribution functions. We then use the mo-
ment expansion (30) to obtain

Ch�1...�‘i
r�1 ¼ �XN‘

n¼0

Að‘Þ
rn 


�1����‘
n þ ðterms nonlinear in�fÞ;

(50)

where

Að‘Þ
rn ¼ 1

�ð2‘þ 1Þ
Z

dKdK0dPdP0Wkk0!pp0f0kf0k0 ~f0p ~f0p0Er�1
k kh�1 � � � k�‘iðH ð‘Þ

knkh�1
� � � k�‘i

þH ð‘Þ
k0nk

0
h�1

� � � k0�‘i �H ð‘Þ
pnph�1

� � �p�‘i �H ð‘Þ
p0np

0
h�1

� � �p0
�‘iÞ: (51)

The details of the derivation are relegated to Appendix A.
The coefficient Að‘Þ

rn is the (rn) element of an ðN‘ þ 1Þ �
ðN‘ þ 1Þ matrix Að‘Þ and contains all the information
of the underlying microscopic theory. We remark that, for
‘ ¼ 0, the second and third rows and columns (r, n ¼ 1, 2)
and, for ‘ ¼ 1, the second row and column (r, n ¼ 1) are
zero, because the moments 
1, 
2, and 


�
1 vanish due to the

definition of the velocity field and the matching conditions,
Eqs. ((6) and (14). Therefore, in order to invert Að‘Þ, for
‘ ¼ 0, we have to exclude the second and
third rows and columns and, for ‘ ¼ 1, the second row
and column.

As already mentioned, fluid dynamics is expected to
emerge when the microscopic degrees of freedom are
integrated out, and the system can be described solely
by the conserved currents. The exact equations of motion
(35)–(37) contain infinitely many degrees of freedom,
given by the irreducible moments of the distribution func-
tion, and also infinitely many microscopic time scales,

related to the coefficients Að‘Þ
rn . The slowest microscopic

time scale should dominate the dynamics at long times,
i.e., in the transient fluid-dynamical limit. In order to
extract the relevant relaxation scales, we have to determine
the normal modes of Eqs. (35)–(37), i.e., we diagonalize
the part that is linear in the irreducible moments 
�1����‘

r .
These are the linear terms on the left-hand sides arising
from Eq. (50) and the first terms on the right-hand sides.
The nonlinear terms from Eq. (50) as well as the remaining
terms on the right-hand sides, which are nonlinear in the
moments or are gradients of moments, are not considered
in the diagonalization procedure. Identifying and separat-
ing the microscopic time scales of the Boltzmann equation
is also the basic step for obtaining general relations be-
tween the irreducible moments and the dissipative currents
and, as we shall see, closing the equations of motion in
terms of N� and T��.

For this purpose, we shall introduce the matrix �ð‘Þ that
diagonalizes Að‘Þ,

ð��1Þð‘ÞAð‘Þ�ð‘Þ ¼ diagð�ð‘Þ
0 ; . . . ; �ð‘Þ

j ; . . .Þ; (52)

where �ð‘Þ
j are the eigenvalues of Að‘Þ. Above, ð��1Þð‘Þ is

defined as the matrix inverse of�ð‘Þ. We further define the
tensors X�1����‘

i as

X�1����‘

i � XN‘

j¼0

ð��1Þð‘Þij 

�1����‘

j : (53)

These are the eigenmodes of the linearized Boltzmann

equation. Multiplying Eq. (50) with ð��1Þð‘Þ from the
left and using Eqs. (52) and (53) we obtain

XN‘

j¼0

ð��1Þð‘Þij C
h�1����‘i
j�1 ¼ ��ð‘Þ

i X�1����‘

i

þ ðterms nonlinear in�fÞ; (54)

where we do not sum over the index i on the right-hand side
of the equation. Then we multiply Eqs. (35)–(37) with

ð��1Þð‘Þir and sum over r. Using Eq. (54), we obtain the
equations of motion for the variables X

�1����‘

i ,

_Xiþ�ð0Þ
i Xi¼�ð0Þ

i �þðhigher-order termsÞ;
_X
h�i
i þ�ð1Þ

i X
�
i ¼�ð1Þ

i I�þðhigher-order termsÞ;
_Xh��i
i þ�ð2Þ

i X��
i ¼�ð2Þ

i ��þðhigher-order termsÞ; (55)

where we introduced the coefficients

�ð0Þ
i ¼ XN0

j¼0;�1;2

ð��1Þð0Þij �
ð0Þ
j ; �ð1Þ

i ¼ XN1

j¼0;�1

ð��1Þð1Þij �
ð1Þ
j ;

�ð2Þ
i ¼ 2

XN2

j¼0

ð��1Þð2Þij �
ð2Þ
j : (56)

With ‘‘higher-order terms’’ in Eqs. (55) we refer to the
terms nonlinear in �f from Eq. (54) as well as to the
nonlinear and gradient terms on the right-hand sides of
Eqs. (35)–(37). As expected, the equations of motion for
the tensors X�1����‘

i decouple in the linear regime. Without
loss of generality, we order the tensors X�1����‘

r according

to increasing �ð‘Þ
r , e.g., in such a way that �ð‘Þ

r < �ð‘Þ
rþ1,8 ‘.
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By diagonalizing Eqs. (35)–(37) we were able to iden-
tify the microscopic time scales of the Boltzmann equation

given by the inverse of the coefficients �ð‘Þ
r . It is clear that,

if the nonlinear terms in Eqs. (55) are small enough, each
tensor X�1����‘

r relaxes independently to its respective
asymptotic value, given by the first term on the right-
hand sides of Eqs. (55) [divided by the corresponding

�ð‘Þ
r ], on a time scale �1=�ð‘Þ

r . We will refer to these
asymptotic solutions as Navier-Stokes values. By neglect-

ing all these relaxation scales, i.e., taking the limit �ð‘Þ
r !

1 with �ð‘Þ
r =�ð‘Þ

r fixed, all irreducible moments 
�1����‘
r

become proportional to gradients of �0, �0, and u�, and
we obtain a Chapman-Enskog-type solution, which at first
order in the Knudsen number results in the relativistic
Navier-Stokes equations of fluid dynamics. As already
mentioned in the introduction, this type of solution is
unstable and acausal, hence it cannot serve as a proper
description of relativistic fluids.

The solution for this problem was also mentioned in the
Introduction. To obtain causal and stable equations one
must take into account the characteristic times within
which the bulk viscous pressure, the particle-diffusion
current, and the shear-stress tensor relax towards their
asymptotic Navier-Stokes values. As shown in Ref. [10],
in the fluid-dynamical limit these are given by the slowest
microscopic time scales of the underlying microscopic
theory, i.e., the fast relaxation scales are not expected to
contribute.

In practice, this is implemented by assuming that only
the slowest modes with rank 2 and smaller, X0, X

�
0 , and

X
��
0 , remain in the transient regime and satisfy the partial

differential equations (55),

_X0þ�ð0Þ
0 X0¼�ð0Þ

0 �þðhigher-order termsÞ;
_Xh�i
0 þ�ð1Þ

0 X�
0 ¼�ð1Þ

0 I�þðhigher-order termsÞ;
_X
h��i
0 þ�ð2Þ

0 X
��
0 ¼�ð2Þ

0 ��þðhigher-order termsÞ; (57)

while the modes described by faster relaxation scales,
i.e., Xr, X

�
r , and X��

r , for any r larger than 0, will be
approximated by their asymptotic solution, constructed

by iterating their respective OðKnÞ solutions, �ð0Þ
r �=�ð0Þ

r ,

�ð1Þ
r I�=�ð1Þ

r , and�ð2Þ
r ��=�ð2Þ

r . Up to first order in Knudsen
number, this leads to

Xr ’ �ð0Þ
r

�ð0Þ
r

�þ ðhigher-order termsÞ;

X�
r ’ �ð1Þ

r

�ð1Þ
r

I� þ ðhigher-order termsÞ;

X
��
r ’ �ð2Þ

r

�ð2Þ
r

�� þ ðhigher-order termsÞ; (58)

where the terms denoted as (higher-order terms) can be
organized in powers of the Knudsen number and the slow
modes,X0,X

�
0 , and X

��
0 , which cannot be approximated by

their asymptotic solution. Note that, while this approxima-
tion is similar to the Chapman-Enskog expansion,
Eqs. (57) go beyond the Chapman-Enskog expansion by
including the transient dynamics.
Note that, for r 	 1, Xr, X

�
r , and X

��
r are of first order in

Knudsen number, OðKnÞ. The reason is that the gradient

terms �, I�, and�� are proportional to L�1
macr, while 1=�

ð‘Þ
r

is proportional to ‘micr. The coefficients �ð‘Þ
r are simply

functions of the thermodynamic variables �0, �0, and thus
of order Oð1Þ.
Furthermore, in order to obtain the traditional equations

of fluid dynamics given in terms of the conserved currents,

there should not appear any tensor X
���...
r with rank higher

than 2. Neglecting such tensors can be justified by proving
that they have asymptotic solutions that are at least
OðKn2;KnR�1

i Þ, i.e., beyond the order we consider here.
Equations (58) enable us to approximate the irreducible

moments that do not appear in the conserved currents in
terms of those that do occur, namely, the particle-
diffusion current, the bulk viscous pressure, and the
shear-stress tensor. We now show how to do this. We first
invert Eq. (53),



�1����‘

i ¼ XN‘

j¼0

�ð‘Þ
ij X

�1����‘

j ; (59)

then, using Eqs. (58), we obtain


i ’ �ð0Þ
i0 X0 þ

XN0

j¼3

�ð0Þ
ij

�ð0Þ
j

�ð0Þ
j

� ¼ �ð0Þ
i0 X0 þOðKnÞ;



�
i ’ �ð1Þ

i0 X
�
0 þXN1

j¼2

�ð1Þ
ij

�ð1Þ
j

�ð1Þ
j

I� ¼ �ð1Þ
i0 X

�
0 þOðKnÞ;



��
i ’ �ð2Þ

i0 X
��
0 þXN2

j¼1

�ð2Þ
ij

�ð2Þ
j

�ð2Þ
j

�� ¼ �ð2Þ
i0 X

��
0 þOðKnÞ:

(60)

Here, we indicated that the contribution from the modes
Xr, X

�
r , and X��

r for r 	 1 is of order OðKnÞ.
Taking i ¼ 0 in the above equations and, without loss of

generality, setting �ð‘Þ
00 ¼ 1, we obtain from Eqs. (47) the

relations

X0 ’ � 3

m2
��XN0

j¼3

�ð0Þ
0j

�ð0Þ
j

�ð0Þ
j

�;

X�
0 ’ n� �XN1

j¼2

�ð1Þ
0j

�ð1Þ
j

�ð1Þ
j

I�;

X��
0 ’ ��� �XN2

j¼1

�ð2Þ
0j

�ð2Þ
j

�ð2Þ
j

��: (61)
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Substituting Eqs. (61) into Eqs. (60),

m2

3

i ’ ��ð0Þ

i0 �� ð�i ��ð0Þ
i0 �0Þ� ¼ ��ð0Þ

i0 �þOðKnÞ;


�
i ’ �ð1Þ

i0 n
� þ ð�i ��ð1Þ

i0 �0ÞI� ¼ �ð1Þ
i0 n

� þOðKnÞ;

��
i ’ �ð2Þ

i0 �
�� þ 2ð�i ��ð2Þ

i0 �0Þ��

¼ �ð2Þ
i0 �

�� þOðKnÞ;

������
i ’ OðKn2;KnR�1

i Þ: (62)

To obtain Eqs. (62), we further used that X�1����‘
r �

OðKn2;KnR�1
i Þ for ‘ 	 3, and defined the transport

coefficients

�i ¼ m2

3

XN0

r¼0;�1;2

�ð0Þir �
ð0Þ
r ; �i ¼

XN1

r¼0;�1

�ð1Þir �
ð1Þ
r ;

�i ¼
XN2

r¼0

�ð2Þir �
ð2Þ
r ; (63)

where we introduced the inverse of Að‘Þ, �ð‘Þ � ðA�1Þð‘Þ
and used the relation,

�ð‘Þin ¼ XN‘

m¼0

�ð‘Þ
im

1

�ð‘Þ
m

ð��1Þð‘Þmn: (64)

In the next subsection, we shall identify the coefficients
�0, �0, and �0 as the bulk-viscosity, particle-diffusion, and
shear-viscosity coefficients, respectively.

So far we have proved that, by taking into account only
the slowest relaxation time scales, all irreducible moments



������
i of the deviation of the single-particle distribution

function from the equilibrium one can be related, up to first
order in Knudsen number, OðKnÞ, to the dissipative cur-
rents,�, n�, and ���. This demonstrates that in this limit,
it is possible to reduce the number of dynamical variables
in Eqs. (35)–(37) to quantities appearing in the conserved
currents. This will be explicitly shown in the next section.

We remark that similar relations between the irreducible
moments and the dissipative currents can also be obtained
with the 14-moment approximation, but with a different set
of proportionality coefficients. However, in the traditional
14-moment approximation such relations are obtained by
explicitly truncating the moment expansion (30) and, as a
result, they are not of a definite order in powers of Knudsen
number. This is the reason why the 14-moment approxi-
mation does not give rise to equations of motion with a
definite domain of validity in Knudsen and inverse
Reynolds numbers.

Note, however, that the relations (62) are only valid for

the moments 

������
r with positive r. This is not a problem

since similar relations can also be obtained for the irreduc-
ible moments with negative r. We expect the expansion
(30) to be complete and, therefore, any moment that does
not appear in this expansion must be linearly related to

those that do appear. This means that, using the moment
expansion, Eq. (30), it is possible to express the moments
with negative r in terms of the ones with positive r.
Substituting Eq. (30) into Eq. (27) and using Eq. (20),
we obtain


�1����‘�r ¼ XN‘

n¼0

F ð‘Þ
rn 


�1����‘
n ; (65)

where we defined the following thermodynamic integral:

F ð‘Þ
rn ¼ ‘!

ð2‘þ 1Þ!!
Z

dKf0k ~f0kE
�r
k H ð‘Þ

knð���k�k�Þ‘:
(66)

Therefore, Eqs. (62) lead to


�r ¼� 3

m2
�ð0Þ
r �þOðKnÞ; 


��r ¼ �ð1Þ
r n�þOðKnÞ;


���r ¼ �ð2Þ
r ���þOðKnÞ; 
������r ¼OðKn3Þ; (67)

where we introduced the coefficients

�ð0Þ
r ¼ XN0

n¼0;�1;2

F ð0Þ
rn�

ð0Þ
n0 ; �ð1Þ

r ¼ XN1

n¼0;�1

F ð1Þ
rn�

ð1Þ
n0 ;

�ð2Þ
r ¼ XN2

n¼0

F ð2Þ
rn�

ð2Þ
n0 : (68)

VI. COMPLETE FLUID-DYNAMICAL
EQUATIONS TO SECOND ORDER

Now we are ready to close Eqs. (35)–(37) in terms of the
dissipative currents appearing in N� and T�� and derive
the fluid-dynamical equations of motion. For this purpose,

it is convenient to use the inverse ofAð‘Þ, �ð‘Þ ¼ ðA�1Þð‘Þ,
which naturally satisfies �ð‘ÞAð‘Þ ¼ 1. Hence, it is
straightforward to rewrite Eq. (50) as

XN‘

j¼0

�ð‘Þij C
h�1����‘i
j�1 ¼ �


�1����‘

i þ ðterms nonlinear in�fÞ:

(69)

Then we multiply Eqs. (35)–(37) by �ð‘Þnr , sum over r, and
substitute Eq. (69). Next, we use Eqs. (62) and (67) to
replace all irreducible moments 
�1����‘

i appearing in the
equations by the fluid-dynamical variables. Additionally,
all covariant time derivatives of �0, �0, and u� are re-
placed by spatial gradients of fluid-dynamical variables
using the conservation laws in the form shown in
Eqs. (39)–(41). The resulting equations of motion are
formally given as

�� _�þ� ¼ ���þ J þKþR;

�n _n
h�i þ n� ¼ �I� þ J � þK� þR�;

�� _�h��i þ ��� ¼ 2��� þ J �� þK�� þR��: (70)
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We remark that in order to derive these equations of
motion, it is necessary to use Eq. (52) in the following
form:

XN‘

j¼0

�ð‘Þij �
ð‘Þ
jm ¼ �ð‘Þ

im

1

�ð‘Þ
m

: (71)

In the above equations of motion all nonlinear terms and
couplings to other currents were collected in the tensors J ,
K, R, J �, K�, R�, J ��, K��, and R��. The tensors
J , J �, and J �� contain all terms of first order in Knudsen
and inverse Reynolds numbers,

J ¼ �‘�nr � n� ��nn � F� ������ ��nn � I þ ����
����;

J � ¼ �n�!
�� � �nnn

��� ‘n�r��þ ‘n��
��r��

�
� þ �n��F� � �n��

��F�

� �nnn�
�� þ �n��I� � �n��

��I�;

J �� ¼ 2�
h�
� !�i� � ����

���� ����
�h��i

� þ ������ � ��nn
h�F�i þ ‘�nrh�n�i þ ��nn

h�I�i; (72)

where we defined F� ¼ r�P0. In principle, one could replace this quantity by the acceleration _u� using
Eq. (41). The tensors K, K�, and K�� contain all terms of second order in Knudsen number,

K ¼ ~�1!��!
�� þ ~�2��

�� þ ~�3�
2 þ ~�4I � Iþ ~�5F � Fþ ~�6I � Fþ ~�7r � I þ ~�8r � F;

K� ¼ ~�1
��I� þ ~�2

��F� þ ~�3I
��þ ~�4F

��þ ~�5!
��I� þ ~�6�

�
� @�

�� þ ~�7r��;

K�� ¼ ~�1!
h�
� !�i� þ ~�2�

�� þ ~�3
�h��i

� þ ~�4
h�
� !�i� þ ~�5I

h�I�i þ ~�6F
h�F�i

þ ~�7I
h�F�i þ ~�8rh�I�i þ ~�9rh�F�i: (73)

It is important to remark that among the terms ofOðKn2Þ is
a term !h�

� !�i�. Such a term was believed not to exist in a
derivation of fluid dynamics from the Boltzmann equation
and was therefore speculated to be of quantum nature [27].
From our derivation of fluid dynamics, one can see that this
is not the case: it simply emerges from a proper truncation
of the single-particle distribution function. The tensors R,
R�, and R�� contain all terms of second order in inverse
Reynolds number,

R ¼ ’1�
2 þ ’2n � nþ ’3����

��;

R� ¼ ’4n��
�� þ ’5�n�;

R�� ¼ ’6���� þ ’7�
�h���i

� þ ’8n
h�n�i: (74)

In Eq. (70), terms of order OðKn3Þ, OðR�1
i R�1

j R�1
k Þ,

OðKn2R�1
i Þ, and OðKnR�1

i R�1
j Þ were omitted.

Note that we have obtained equations of motion that are
closed in terms of 14 dynamical variables. We remark that
this was accomplished without making use of the
14-moment approximation. This means that the reduction
of degrees of freedom was not obtained by a direct trunca-
tion of the moment expansion, but by a separation of the
microscopic time scales and the power-counting scheme
itself. The information about all other moments are ac-
tually included in the transport coefficients; as will be
shown later. If we also neglect the terms of second order
in inverse Reynolds number we recover the equations of
motion that are of the same form as those derived via the
14-moment approximation [21]. However, even in this
case, the coefficients in Eqs. (72) and relaxation times

are not the same as those calculated from the 14-moment
approximation of Israel and Stewart.
The resulting equations of motion (70) contain a large

number of transport coefficients. In particular, the viscosity
coefficients and relaxation times of the dissipative currents
were found to be

�� ¼ 1

�ð0Þ
0

; �n ¼ 1

�ð1Þ
0

; �� ¼ 1

�ð2Þ
0

;

� ¼ m2

3

XN0

r¼0;�1;2

�ð0Þ0r �
ð0Þ
r ; � ¼ XN1

r¼0;�1

�ð1Þ0r �
ð1Þ
r ;

� ¼ XN2

r¼0

�ð2Þ0r �
ð2Þ
r : (75)

Note that in general these transport coefficients depend not
only on one moment of the distribution function but on all
moments of corresponding rank ‘. As in Chapman-Enskog
theory, the viscosity coefficients can only be obtained by

inverting Að‘Þ. However, to obtain the transient dynamics
of the fluid, characterized by the relaxation times, it is also

necessary to find the eigenvalues and eigenvectors ofAð‘Þ.
In practice, the expansion (22) is always truncated at

some point and the matrices Að‘Þ, �ð‘Þ, and �ð‘Þ will
actually be finite. The truncation of this expansion was
already introduced as an upper limit,N‘, in the correspond-
ing summations. In principle, one should only truncate the
expansion (22) when the values of all relevant transport
coefficients have converged. Note that different transport
coefficients may require a different number of moments to
converge.
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VII. APPLICATIONS

In this section, we compute the transport coefficients for
several cases. First, we considered the lowest possible
truncation scheme for Eq. (22) with N0 ¼ 2, N1 ¼ 1, and
N2 ¼ 0. In this case, the distribution function is expanded
in terms of 14 moments and is actually equivalent to the
one obtained via Israel-Stewart’s 14-moment ansatz.
Second, we consider the next simplest case and take
N0 ¼ 3, N1 ¼ 2, and N2 ¼ 1. Then, the distribution func-
tion is characterized by 23 moments, and consequently we
shall refer to this case as 23-moment approximation.
Finally, we include 32 and 41 moments and verify that
the numerical values for the transport coefficients converge.

We also compute the transport coefficients of the terms
appearing in J , J �, and J �� that are displayed in
Appendix C. These transport coefficients were also calcu-
lated in previous derivations of fluid dynamics from the
Boltzmann equation. We shall explicitly point out the
corrections to the previous results introduced by our novel
approach. Note, however, that we are using a linear ap-
proximation to the collision term. Nonlinear contributions
could in principle also enter the transport coefficients in the
equations of motion (70), but will not be calculated here.
Such an investigation will be left for future work. For this
reason we also do not compute any coefficient of the terms
ofOðR�1

i R�1
j Þ, i.e., enteringR,R�, andR��, since all of

them originate exclusively from nonlinear contributions to
the collision term.

A. 14-moment approximation

The 14-moment approximation is recovered by truncat-
ing Eq. (22) at N0 ¼ 2, N1 ¼ 1, and N2 ¼ 0. For this

specific truncation Að‘Þ is nothing but a number [because

for Að0Þ we have to exclude the second and third rows

and columns and for Að1Þ the second row and column],
and thus

�ð‘Þ ¼ 1

Að‘Þ ; �ð‘Þ ¼ 1; �ð‘Þ ¼ Að‘Þ: (76)

Then, the equations of motion and transport coefficients
reduce to those derived in Ref. [21].

For a classical gas of hard spheres with total cross

section , in the massless limit, the integrals Að1Þ ¼
Að1Þ

00 and Að2Þ ¼ Að2Þ
00 can be computed and have the

simple form

A ð1Þ ¼ 4

9�mfp

; (77)

A ð2Þ ¼ 3

5�mfp

; (78)

where we defined the mean free path �mfp ¼ 1=ðn0Þ. The
details of this calculation are shown in Appendix B. The

coefficients in the ultrarelativistic limit, m�0 ! 0, can
then be calculated analytically. The coefficients of order
OðKnR�1

i Þ are collected for the shear stress and particle
diffusion in Tables I and II. Note that, in this limit, the bulk
viscous pressure vanishes, and thus we do not need to

compute Að0Þ
00 .

B. Next correction: 23-moment
approximation and beyond

In order to better understand our formulas, Eqs. (75),
we would like to compute the first correction to the
expressions in Tables I and II. For this purpose, we con-

sider N0 ¼ 3, N1 ¼ 2, and N2 ¼ 1. Then, Að‘Þ, �ð‘Þ, and
�ð‘Þ are, after removing trivial rows and columns, 2� 2
matrices that can be computed from the collision integral

Eq. (51). We obtain the elements of Að1;2Þ, its inverse

�ð1;2Þ, and �ð1;2Þ as

Að1Þ ¼ 1

3�mfp

2 �2
0=30

�4��2
0 1

 !
;

Að2Þ ¼ 1

�mfp

9=10 ��0=20

4=ð3�0Þ 1=3

 !
; (79)

�ð1Þ ¼ 3

8
�mfp

15=4 ��2
0=8

15��2
0 15=2

 !
;

�ð2Þ ¼ 1

11
�mfp

10 3�0=2

�40��1
0 27

 !
; (80)

�ð1Þ ¼ 1 1

�ð15þ ffiffiffiffiffiffiffiffi
105

p Þ��2
0 ð�15þ ffiffiffiffiffiffiffiffi

105
p Þ��2

0

 !
;

�ð2Þ ¼ 1 1

8��1
0 10=3��1

0

 !
; (81)

see Appendix B for details. The eigenvectors of Að1Þ and
Að2Þ are

TABLE I. The coefficients for the particle diffusion for a
classical gas with constant cross section in the ultrarelativistic
limit, in the 14-moment approximation.

� �n½�mfp� �nn½�n� �nn½�n� �n�½�n� ‘n�½�n� �n�½�n�
3=ð16Þ 9=4 1 3=5 �0=20 �0=20 0

TABLE II. The coefficients for the shear stress for a classical
gas with constant cross section in the ultrarelativistic limit, in the
14-moment approximation.

� ��½�mfp� ���½��� ��n½��� ���½��� ‘�n½��� ��n½���
4=ð3�0Þ 5=3 10=7 0 4=3 0 0
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�ð1Þ
0 ¼ 1

2�mfp

�
1�

ffiffiffiffiffiffiffiffi
7

135

s �
; �ð1Þ

1 ¼ 1

2�mfp

�
1þ

ffiffiffiffiffiffiffiffi
7

135

s �
; (82)

�ð2Þ
0 ¼ 1

2�mfp

; �ð2Þ
1 ¼ 11

15�mfp

: (83)

Using the formulas derived in this paper, Eqs. (75), we
calculate the corrected values for the particle-number dif-
fusion coefficient and diffusion-relaxation time and for the
shear-viscosity and shear-relaxation time,

� ¼ 21

128
n0�mfp ’ 0:164n0�mfp; (84)

�n ¼ 90

45� ffiffiffiffiffiffiffiffi
105

p �mfp ’ 2:5897�mfp; (85)

� ¼ 14

11
P0�mfp ’ 1:2727P0�mfp; (86)

�� ¼ 2�mfp; (87)

where we used that, in the massless and classical limits,

�ð1Þ
0 ¼ 1

12
n0; �ð1Þ

2 ¼ � 1

�0

P0;

�ð2Þ
0 ¼ 4

5
P0; �ð2Þ

1 ¼ 4

�0

P0: (88)

As before, the coefficients in the ultrarelativistic limit,
m�0 ! 0, can then be calculated analytically. The coef-
ficients of order OðKnR�1

i Þ are collected for the shear-
stress and particle diffusion in Tables III and IV.

To obtain these expressions we used the results from
Appendix D and that, in the massless/classical limits,
D20 ¼ 3P2

0. Note that most of the transport coefficients

were corrected by the inclusion of more moments in the
computation. The coefficients related to the shear-stress
tensor were less affected by the additional moments, when
compared to the particle-diffusion coefficients. This might
explain the poor agreement between the Israel-Stewart
theory and numerical solutions of the Boltzmann equation
in Refs. [18] regarding heat flow and fugacity.
We further checked the convergence of this approach by

taking 32 and 41 moments. In this case, the matrices

Að1;2Þ, �ð1;2Þ, and �ð1;2Þ were computed numerically.
There is a clear tendency of convergence as we increase
the number of moments. For the particular case of classical
particles with constant cross sections, 32 moments seems
sufficient. See Tables V and VI for the results.

VIII. DISCUSSION AND CONCLUSIONS

A. Knudsen number and the
reduction of dynamical variables

It is important to mention that the terms K, K�, and
K��, which are of second order in Knudsen number, lead
to several problems. The terms that contain second-order
spatial derivatives of u�, �0, and P0, e.g., r�I

�, r�F
�,

rh�I�i, rh�F�i, ��
�@�

��, and r��, are especially prob-
lematic since they change the boundary conditions of the
equations. In relativistic systems these derivatives, even
though they are spacelike, also contain time derivatives and
thus require initial values. This means that, by including
them, one would have to specify not only the initial spatial

TABLE III. The coefficients for the particle diffusion for a classical gas with constant cross
section in the ultrarelativistic limit, in the 23-moment approximation.

� �n½�mfp� �nn½�n� �nn½�n� �n�½�n� ‘n�½�n� �n�½�n�
21=ð128Þ 2.59 1.00 0.96 0:054�0 0:118�0 0:0295�0=P0

TABLE IV. The coefficients for the shear stress for a classical gas with constant cross section
in the ultrarelativistic limit, in the 23-moment approximation.

� ��½�mfp� ���½��� ��n½��� ���½��� ‘�n½��� ��n½���
14=ð11�0Þ 2 134=77 0:344��1

0 4=3 �0:689��1
0 �0:689=n0

TABLE V. The coefficients for the particle diffusion for a classical gas with constant cross
section in the ultrarelativistic limit, in the 14, 23, 32, and 41-moment approximation.

Number of moments � �n½�mfp� �nn½�n� �nn½�n� �n�½�n� ‘n�½�n� �n�½�n�
14 3=ð16Þ 9=4 1 3=5 �0=20 �0=20 0

23 21=ð128Þ 2.59 1.0 0.96 0:054�0 0:118�0 0:0295�0=P0

32 0:1605= 2.57 1.0 0.93 0:052�0 0:119�0 0:0297�0=P0

41 0:1596= 2.57 1.0 0.92 0:052�0 0:119�0 0:0297�0=P0
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distribution of the fluid-dynamical variables but also the
spatial distribution of their time derivatives. In practice,
this implies that we would be increasing the number of
fluid-dynamical degrees of freedom.

There is an even more serious problem. By including
terms of order higher than one in Knudsen number, the
transport equations become parabolic. In a relativistic
theory, this comes with disastrous consequences since the
solutions are acausal and consequently unstable [5]. For
this reason, if one wants to include terms of higher order in
Knudsen number, it is mandatory to include also second-
order comoving time derivatives of the dissipative quanti-
ties. Or, equivalently, one could promote the moments 
3,

�
2 , 


��
1 or further ones to dynamical variables. For this

reason we do not compute the transport coefficients for
these higher-order terms in this paper.

In practice, a way around this would be to replace e.g.

the �h��i
� term in K�� using the asymptotic (Navier-

Stokes) solution by ð1=2�Þ��h��i
� , and thus effectively

rendering it a term contributing to J ��. This should be a
reasonable approximation if one is sufficiently close to the
asymptotic solution. This would then change the coeffi-
cient of the respective term in J ��. In principle, this could
be done to all terms in K, K�, and K��, except for the
ones containing exclusively powers and/or gradients of F�

and !��. In the same spirit, using the asymptotic solutions
one could also shuffle some of the terms in J , J �, and
J �� (those not containing F�, !��, and gradients of
dissipative currents) into terms contributing to R, R�,
and R�� (or vice versa). How this changes the actual
transient dynamics remains to be investigated in the future.

B. Navier-Stokes limit

Note that one of the main features of transient theories of
fluid dynamics is the relaxation of the dissipative currents
towards their Navier-Stokes values, on time scales given
by the transport coefficients ��, �n, and ��. From the
Boltzmann equation, Navier-Stokes theory is obtained by
means of the Chapman-Enskog expansion that describes an
asymptotic solution of the single-particle distribution func-
tion. It is already clear from the previous section that the
equations of motion derived in this paper approach Navier-
Stokes-type solutions at asymptotically long times, in
which the dissipative currents are solely expressed in terms
of gradients of fluid-dynamical variables.

It is interesting to investigate, however, if our equations
approach the correct Navier-Stokes theory, i.e., if the vis-
cosity coefficients obtained via our method are equivalent
to the ones obtained via Chapman-Enskog theory. It should
be noted that this is not the case for Grad’s and Israel and
Stewart’s theories [6,15,21]. The viscosity coefficients
computed by these theories do not coincide with those
extracted from the Chapman-Enskog theory. We remark
that, after taking into account the first corrections to the
shear-viscosity coefficient, see Eq. (86) and Table VI, our
result approached the solution obtained using Chapman-
Enskog theory, �NS ¼ 1:2654=ð�0Þ [6]. In principle
there is no reason for the method of moments to attain a
different Navier-Stokes limit than Chapman-Enskog the-
ory. We can show that, if the same basis of irreducible

tensors kh�1 � � � k�‘i and polynomials Pð‘Þ
nk is used in both

calculations, they both yield the same result, even order
by order.

C. ‘‘Nonhydrodynamic’’ modes and the
microscopic origin of the relaxation time

One of the features of the theory derived in this paper
(and also of Grad’s and Israel-Stewart’s theories) is the
appearance of so-called nonhydrodynamics modes, i.e.,
modes that do not vanish in the limit of zero wave number.
Such modes do not exist in Navier-Stokes theory or its
extensions via the Chapman-Enskog expansion. For this
reason, these modes are usually not associated with fluid-
dynamical behavior, hence the label ‘‘nonhydrodynamic’’.
The nonhydrodynamic modes describe the relaxation

of the dissipative currents towards their respective
Navier-Stokes solutions and can be directly related to the
respective relaxation times. For the case of the shear non-

hydrodynamic mode, !nonhydro
shear ðkÞ, it can be shown that in

the limit of k ! 0 the mode is given by !nonhydro
shear ð0Þ ¼

�i=�� [5]. In Chapman-Enskog theory the transient dy-
namics of the system is neglected, e.g., it is assumed that in
the absence of spacelike gradients, timelike gradients van-
ish as well, and it is natural that such modes do not exist.
The appearance of nonhydrodynamic modes in a fluid-

dynamical theory seems to counteract the prevalent belief
that fluid dynamics effectively describes the asymptotic
longtime and long-distance behavior of the microscopic
theory. Recently, a microscopic formula for the relaxation
time of dissipative currents was obtained in the framework

TABLE VI. The coefficients for the shear stress for a classical gas with constant cross section in the ultrarelativistic limit, in the 14,
23, 32, and 41-moment approximation.

Number of moments � ��½�mfp� ���½��� ��n½��� ���½��� ‘�n½��� ��n½���
14 4=ð3�0Þ 5=3 10=7 0 4=3 0 0

23 14=ð11�0Þ 2 134=77 0:344��1
0 4=3 �0:689=�0 �0:689=n0

32 1:268=ð�0Þ 2 1.69 0:254��1
0 4=3 �0:687=�0 �0:687=n0

41 1:267=ð�0Þ 2 1.69 0:244��1
0 4=3 �0:685=�0 �0:685=n0
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of linear response theory [10]. In that paper, the relaxation
time was shown to be intrinsically related to the slowest
microscopic time scale of the system, i.e., to the singularity
of the retarded Green’s function closest to the origin in the
complex-plane. Thus, the nonhydrodynamic modes in
Israel and Stewart’s theory and in the equations derived
in this paper belong to a description at long, but not
asymptotically long, times.

This means that the theory derived in this paper (as well
as Israel and Stewart’s theory) attempts to describe the
dynamics of the dissipative currents at time scales of the
order of the (slowest) microscopic times scale (which is of
the order of the mean free path). Such findings challenge
the point of view that a fluid-dynamical description can
only be formulated around zero frequency and wave num-
ber and that the inclusion of relaxation times can only be
understood as a regularization method to control the in-
stabilities of the gradient expansion. In fact, the relaxation
times correspond to microscopic time scales, independent
of any macroscopic scale related to the gradients of fluid-
dynamical variables. Note that the expressions presented in
Ref. [10] and in this paper for � and �� are equivalent.

D. Conclusions

In this work we have presented a general and consis-
tent derivation of relativistic fluid dynamics from the
Boltzmann equation using the method of moments. First,
a general expansion of the single-particle distribution func-
tion in terms of its moments was introduced in Sec. III. We
constructed an orthonormal basis that allowed us to expand
and obtain exact relations between the expansion parame-
ters and irreducible moments of the deviations of the
distribution function from equilibrium. We then proceeded
to derive exact equations for these moments.

The main difference of our approach to previous work is
that we did not close the fluid-dynamical equations of
motion by truncating the expansion of the distribution
function. Instead, we kept all terms in the moment expan-
sion and truncated the exact equations of motion according
to a power-counting scheme in Knudsen and inverse
Reynolds number. Contrary to many calculations, we did
not assume that the inverse Reynolds andKnudsen numbers
are of the same order. As a matter of fact, in order to obtain
relaxation-type equations, we had to explicitly include the
slowest microscopic time scales, which are shown to be the
characteristic times within which dissipative currents relax
towards their asymptotic Navier-Stokes solutions. Thus,
Navier-Stokes theory, or the Chapman-Enskog expansion,
is already included in our formulation as an asymptotic limit
of the dynamical equations derived in this paper.

We concluded that the equations of motion can be closed
in terms of only 14 dynamical variables, as long as we only
keep terms of second order in Knudsen and/or inverse
Reynolds number. Even though the equations of motion
are closed in terms of these 14 fields, the transport

coefficients carry information about all moments of the
distribution function (all the different relaxation scales of
the irreducible moments). The bulk-viscosity, particle-
diffusion, and shear-viscosity coefficients agree with the
values obtained via Chapman-Enskog theory.
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group at Jyväskylä University where this work was com-
pleted. The authors thank T. Koide for enlightening dis-
cussions. This work was supported by the Helmholtz
International Center for FAIR within the framework of
the LOEWE program launched by the State of Hesse.
The work of H.N. was supported by the Extreme Matter
Institute (EMMI) and the Academy of Finland, Project
No. 133005. E.M. was supported by Hungarian National
Development Agency OTKA/NFÜ 81655.

APPENDIX A: DERIVATION
OF THE COLLISION TERMS

In this appendix, we derive Eqs. (50) and (51). The first
step is to linearize the collision operator,

C½f�¼ 1

�

Z
dK0dPdP0Wkk0!pp0ðfpfp0 ~fk ~fk0 �fkfk0 ~fp ~fp0 Þ;

(A1)

in the deviations from the equilibrium distribution func-
tions. In the main text, the deviations from the local-
equilibrium distribution function were parametrized as

�fp ¼ fp � f0p ¼ f0p ~f0p�p: (A2)

Then, only keeping terms of first order in �, we can prove
that

fpfp0 ¼ f0pf0p0 ð1þ ~f0p0�p0 þ ~f0p�pÞ þOð�2Þ; (A3)

~fp ~fp0 ¼ ~f0p ~f0p0 ð1�af0p0�p0 �af0p�pÞþOð�2Þ: (A4)

Substituting Eqs. (A3) and (A4) into Eq. (A1), we obtain,

C½f� ¼ 1

�

Z
dK0dPdP0Wkk0!pp0f0kf0k0 ~f0p ~f0p0

� ð�p þ�p0 ��k ��k0 Þ þOð�2Þ; (A5)

where we also used the equalities

~f 0p ¼ f0p expð�0Ep � �0Þ; (A6)

f0pf0p0 ~f0k ~f0k0 ¼ f0kf0k0 ~f0p ~f0p0 : (A7)

Inserting Eq. (A5) in the expression for the irreducible
collision term (38), we obtain
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Ch�1����‘i
r�1 ¼ 1

�

Z
dKdK0dPdP0Wkk0!pp0f0kf0k0 ~f0p ~f0p0Er�1

k kh�1 � � � k�‘ið�p þ�p0 ��k ��k0 Þ þOð�2Þ: (A8)

The next step is to substitute the moment expansion of the single-particle distribution function, Eqs. (21) and (28), into
Eq. (A8), expressing it in the following form:

C
h�1����‘i
r�1 ¼ � X1

m¼0

XNm

n¼0

ðArnÞ�1����‘
�1����m


�1����m
n þOð�2Þ; (A9)

where we defined the tensor

ðArnÞ�1����‘
�1����m

� 1

�

Z
dKdK0dPdP0Wkk0!pp0f0kf0k0 ~f0p ~f0p0Er�1

k kh�1 � � � k�‘iðH ðmÞ
kn kh�1

� � � k�mi

þH ðmÞ
k0nk

0
h�1

� � � k0�mi �H ðmÞ
pn ph�1

� � �p�mi �H ðmÞ
p0np

0
h�1

� � �p0
�miÞ: (A10)

The integral ðArnÞ�1����‘
�1����m

is a tensor of rank mþ ‘, which
is symmetric under permutations of �-type indices and
symmetric under permutations of �-type indices, and
which depends only on equilibrium distribution functions.
The latter contain only the fluid 4-velocity u�. Therefore,
ðArnÞ�1����‘

�1����m must be constructed from tensor structures
made of u� and the metric tensor g��. Also, ðArnÞ�1����‘

�1����m

was constructed to be orthogonal to u� and to satisfy the
following property,

��1����‘
�1����‘

��1����m

�1����m
ðArnÞ�1����‘

�1����m
¼ ðArnÞ�1����‘

�1����m
: (A11)

Since ðArnÞ�1����‘
�1����m

is orthogonal to u�, it can only be
constructed from combinations of projection operators,
���. This already constrains mþ ‘ to be an even number,
since it is impossible to construct odd-ranked tensors solely
from���s. This means that both ‘ andm are either even or
odd. Therefore, the following type of terms could appear in
ðArnÞ�1����‘

�1����m :
(i) Terms where all�-type indices pair up on projectors

��i�j and all �-type indices on projectors��p�q
, e.g.

��1�2 �����i�j �����‘�1�‘��1�2
�����p�q

�����m�1�m
:

(A12)

All possible permutations of the �-type indices
among themselves and �-type indices among them-
selves are allowed.

(ii) Terms where at least one �-type index pairs with a
�-type index on a projector, e.g.

��1
�1
��2�3 � � ���i�j � � ���‘�1�‘

� ��2�3
� � ���p�q

� � ���m�1�m
: (A13)

Again, all possible permutations of the �-type and
�-type indices are allowed. If there is an odd num-
ber of projectors of the type �

�i
�p
, both ‘ andmmust

be odd. If there is an even number, both ‘ and m
must be even, too. Without loss of generality, sup-
pose that ‘ > m. For ‘þm to be even, ‘ must be
mþ 2, mþ 4; . . . . Then one could pair all �-type
indices with �-type indices on projectors of the

form ��i
�p
, with some projectors left over that carry

only �-type indices, e.g. ��j�k .
(iii) If ‘ ¼ m, all �-type indices could be paired up

with �-type indices on projectors of the form �
�i
�p
,

with no leftover projectors like what was explained
at the end of (ii),

�
�1
�1

� � ���‘
�‘
: (A14)

Again, all permutations of the �-type indices
among themselves and �-type indices among them-
selves are allowed.

Note that terms of the type (i) and (ii) by themselves do
not satisfy the property (A11). This happens because any
term that contains at least one projector of the type ��i�j

or ��p�q
vanishes when contracted with ��1����‘

�1����‘�
�1����m

�1����m
.

Therefore, ðArnÞ�1����‘
�1����m

cannot be solely constructed
from terms of type (i) and (ii), because otherwise it
would vanish trivially, and property (A11) would not be
satisfied. There must at least be one term of type (iii).
However, this implies that m ¼ ‘. This does not imply
that terms of type (i) and (ii) do not appear; they do occur,
but in such a way that Eq. (A11) is satisfied. In summary,
ðArnÞ�1����‘

�1����m
has the form

ðArnÞ�1����‘
�1����m

¼ �‘mfAð‘Þ
rn�

ð�1

ð�1
� � ���‘Þ

�‘Þ
þ ½terms of type ðiÞ and ðiiÞ�g; (A15)

where the parentheses denote the symmetrization
of all Lorentz indices. Contracting Eq. (A15) with
��1����‘

�1����‘
��1����‘

�1����‘
and using Eq. (A11), we prove that

ðArnÞ�1����‘

�1����m
¼ �‘mA

ð‘Þ
rn�

�1����‘

�1����‘
: (A16)

Finally, substituting Eq. (A16) into Eq. (A9) we derive
Eq. (50), introduced in the main text of the paper,

Ch�1����‘i
r�1 ¼ �XN‘

n¼0

Að‘Þ
rn 


�1����‘
n : (A17)

The coefficients Að‘Þ
rn can be obtained from the following

projection of ðArnÞ�1����‘
�1����‘

:
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Að‘Þ
rn ¼ 1

�
�1����‘
�1����‘

��1����‘
�1����‘

ðArnÞ�1����‘
�1����‘

;

¼ 1

�ð2‘þ 1Þ
Z

dKdK0dPdP0Wkk0!pp0f0kf0k0 ~f0p ~f0p0Er�1
k kh�1 � � � k�‘iðH ð‘Þ

knkh�1
� � � k�‘i

þH ð‘Þ
k0nk

0
h�1

� � � k0�‘i �H ð‘Þ
pnph�1

� � �p�‘i �H ð‘Þ
p0np

0
h�1

� � �p0
�‘iÞ; (A18)

where we used that ��1����‘
�1����‘

¼ 2‘þ 1.

APPEMDIX B: CALCULATION OF THE COLLISION INTEGRALS

In this appendix, we calculate the collision integrals, Eq. (51), for a classical gas, i.e., ~f0k ¼ 1, of hard spheres in the
ultrarelativistic limit, m�0 � 1. Then, Eq. (51) becomes

Að‘Þ
rn ¼ 1

�ð2‘þ 1Þ
Z

dKdK0dPdP0Wkk0!pp0f0kf0k0Er�1
k kh�1 � � � k�‘iðH ð‘Þ

knkh�1
� � � k�‘i

þH ð‘Þ
k0nk

0
h�1

� � � k0�‘i �H ð‘Þ
pnph�1

� � �p�‘i �H ð‘Þ
p0np

0
h�1

� � �p0
�‘iÞ: (B1)

The functions H ð‘Þ
kn were defined in the main text, see Eq. (29). The transition rate Wkk0!pp0 is written in terms of the

differential cross section ðs;�Þ as
Wkk0!pp0 ¼ sðs;�sÞð2�Þ6�ð4Þðk� þ k0� � p� � p0�Þ: (B2)

The variable s and �s are defined as

s ¼ ðkþ k0Þ2; cos�s ¼ ðk� k0Þ � ðp� p0Þ
ðk� k0Þ2 : (B3)

We further define the total cross section as the integral

TðsÞ ¼ 2�

�

Z
d�s sin�sðs;�sÞ: (B4)

In order to calculate Að‘Þ
rn it is convenient to first define the tensors Xn

���1����m

Xn
���1����m

¼ 1

�

Z
dKdK0dPdP0Wkk0!pp0f0kf0k0En

kk�k�ðk�1
� � � k�m

þ k0�1
� � � k0�m

� p�1
� � �p�m

� p0
�1
� � �p0

�m
Þ: (B5)

The collision integralsAð‘Þ
rn can always be expressed as linear combinations of contractions/projections of Xn

���1����m
. For

the purpose of this paper, we shall only need Xn
���1����m

for m ¼ 2 and 3. For now we concentrate on calculating these
integrals. We separate Xn

���1����m
as

Xn
���1����m

¼ An
���1����m

þ Bn
���1����m

; (B6)

with

An
���1����m

¼ 1

�

Z
dKdK0dPdP0Wkk0!pp0f0kf0k0En

kk�k�ðk�1
� � � k�m

þ k0�1
� � � k0�m

Þ;

Bn
���1����m

¼ � 1

�

Z
dKdK0dPdP0Wkk0!pp0f0kf0k0En

kk�k�ðp�1
� � �p�m

þ p0
�1
� � �p0

�m
Þ: (B7)

The dPdP0 integration in the first tensor, An
���1����m

, can be immediately performed and written in terms of the total cross
section, TðsÞ, as

An
���1����m

¼
Z

dKdK0f0kf0k0En
kk�k�ðk�1

� � � k�m
þ k0�1

� � � k0�m
Þ s
2
TðsÞ: (B8)

The calculation of the second tensor, Bn
���1...�m

, is cumbersome. First, we write it in the general form

Bn
���1����m

¼ �
Z

dKdK0f0kf0k0En
kk�k���1����m

; (B9)

where we introduced the tensor
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��1����m
¼ 2

�

Z
dPdP0Wkk0!pp0p�1

� � �p�m
: (B10)

The integral ��1����m
is an mth rank tensor. Strictly

speaking, for isotropic cross sections, this tensor can
only depend on the normalized total momentum of the
collision ~P

�
T � s�1=2ðk� þ k0�Þ � s�1=2P

�
T . Thus, the ten-

sor structure of ��1����m
must be constructed by combina-

tions of ~P
�
T and the projection operator orthogonal to ~P

�
T ,

���
P ¼ g�� � ~P�

T
~P�
T . In general,

��1����m
¼ X½m=2�

q¼0

ð�1ÞqamqCmqC
q
�1����m

; (B11)

where we defined

amq ¼ m!

ðm� 2qÞ!2q! ð2q� 1Þ!!;

Cq
�1����m

¼ �ð�1�2

P � � ���2q�1�2q

P
~P
�2qþ1

T � � � ~P�mÞ
T ;

Cmq ¼ 2

�ð2qþ 1Þ!!
Z

dPdP0Wkk0!pp0

� ð ~P�
T p�Þm�2qð����

P p�p�Þq: (B12)

The parentheses denote the symmetrization of the tensor.
For example,

��1�2
¼ C20 ~PT�1

~PT�2
� C21�P�1�2

;

��1�2�3
¼ C30 ~PT�1

~PT�2
~PT�3

� C31ð�P�1�2
~PT�3

þ �P�1�3
~PT�2

þ�P�2�3
~PT�1

Þ: (B13)

The integrals Cnq are scalars and can be computed in
any frame. It is most convenient to calculate them in the
center-of-momentum frame, where ~P�

T ¼ ð1; 0; 0; 0Þ and
���

P ¼ diagð0;�1;�1;�1Þ. Then, it is straightforward
to prove that

Cnq ¼ TðsÞ
2nð2qþ 1Þ!! s

ðn�2qþ1Þ=2ðs� 4m2Þð2qþ1Þ=2

¼
m!0

TðsÞ
2nð2qþ 1Þ!! s

ðnþ2Þ=2: (B14)

In the massless limit, the tensors Xn
���1�2

and Xn
���1�2�3

become

Xn
���1�2

¼
Z

dKdK0f0kf0k0En
kk�k�TðsÞk�k0�

�
k�1

k�2
þ k0�1

k0�2
� 2

3
PT�1

PT�2
þ 1

6
sg�1�2

�
;

Xn
���1�2�3

¼
Z

dKdK0f0kf0k0En
kk�k�TðsÞk�k0�

�
k�1

k�2
k�3

þ k0�1
k0�2

k0�3
� 1

2
PT�1

PT�2
PT�3

þ 1

6
k�k0�ðg�1�2

PT�3
þ g�1�3

PT�2
þ g�2�3

PT�1
Þ
�
; (B15)

where we used that, in the massless limit, s ¼ 2k�k0�.

1. Particle-diffusion current

For the collision integrals related to the particle-number
diffusion current, we need the following two contractions:

���1u�u�2Xn
���1�2

¼�TðI10Inþ5;1�4I21Inþ4;1

�I31Inþ3;1Þ;
���1u�u�2u�3Xn

���1�2�3
¼�T

2
ð3I10Inþ6;1�11I21Inþ5;1

�5I31Inþ4;1�3I41Inþ3;1Þ:
(B16)

To obtain the above relations, we used Eq. (20) and the
definitions (45). In the massless and classical limits the
integrals Inq ¼ Jnq can be calculated analytically

Inq ¼ g
e�0

ð2qþ 1Þ!!
1

2�2

ðnþ 1Þ!
�nþ2

0

¼ ðnþ 1Þ!
ð2qþ 1Þ!!

P0

2�n�2
0

:

(B17)

Then,

���1u�u�2X�2
���1�2

¼ 4

3
n0T

P0

�0

;

���1u�u�2X0
���1�2

¼ �24n0T

P0

�3
0

;

���1u�u�2u�3X�2
���1�2�3

¼ 12n0T

P0

�2
0

;

���1u�u�2u�3X0
���1�2�3

¼ �280n0T

P0

�4
0

: (B18)

As a consistency check, we confirmed that
���1u�u�2X�1

���1�2
¼ ���1u�u�2u�3X�1

���1�2�3
¼ 0.

The components of Að1Þ change according to the
number of moments included. In the 14-moment approxi-
mation, using Eqs. (23) and (29), we obtain

A ð1Þ
00 ¼ Wð1Þ

3
að1Þ10a

ð1Þ
11�

��1u�u�2X�2
���1�2

¼ 4

9
n0T:

(B19)

In the 23-moment approximation, e.g. considering three
polynomials in the expansion (22), for ‘ ¼ 1,
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Að1Þ
r0 ¼ Wð1Þ

3
½ðað1Þ10a

ð1Þ
11 þ að1Þ20 a

ð1Þ
21 Þ���1u�u�2Xr�2

���1�2

þ að1Þ20 a
ð1Þ
22 �

��1u�u�2u�3Xr�2
���1�2�3

�;

Að1Þ
r2 ¼ Wð1Þ

3
ðað1Þ22 a

ð1Þ
21 �

��1u�u�2Xr�2
���1�2

þ að1Þ22 a
ð1Þ
22 �

��1u�u�2u�3Xr�2
���1�2�3

Þ: (B20)

Then, using the results from Appendix E for the coeffi-

cients að‘Þnq together with Eqs. (B17) and (B18), we obtain

Að1Þ
00 ¼ 2

3
n0T; Að1Þ

02 ¼ �2
0

90
n0T;

Að1Þ
20 ¼ � 4

3�2
0

n0T; Að1Þ
22 ¼ 1

3
n0T: (B21)

2. Shear-stress tensor

For the collision integrals related to the shear-stress
tensor, we need the following two contractions:

����1�2Xn
���1�2

¼ 10

3
TðI10Inþ5;2 þ 4I21Inþ4;2Þ;

����1�2u�3Xn
���1�2�3

¼ 5TðI10Inþ6;2 � I21Inþ5;2

þ 2I31Inþ4;2Þ: (B22)

In order to obtain the above relations, we used Eq. (20) and
the definitions (45). Using Eq. (B17),

�����X�1
���� ¼ 24T

P2
0

�0

;

�����X0
���� ¼ 400

3
T

P2
0

�2
0

;

�����u�1X�1
�����1

¼ 132T

P2
0

�2
0

;

�����u�1X0
�����1

¼ 880T

P2
0

�3
0

: (B23)

The components of Að2Þ change according to the number
of moments included. In the 14-moment approximation,
using Eqs. (23) and (29), we obtain

A ð2Þ
00 ¼ Wð2Þ

10
����1�2X�1

���1�2
¼ 3

5
n0T; (B24)

where we used Eqs. (B17) and (B23), together with the
results from Appendix E.

In the 23-moment approximation, e.g. considering two
polynomials in the expansion (22), for ‘ ¼ 2,

Að2Þ
r0 ¼ Wð2Þ

10
ð1þ að2Þ10 a

ð2Þ
10 Þ����1�2Xr�1

���1�2

þWð2Þ

10
að2Þ10a

ð2Þ
11�

���1�2u�3Xr�1
���1�2�3

;

Að2Þ
r1 ¼ Wð2Þ

10
að2Þ11a

ð2Þ
10�

���1�2Xr�1
���1�2

þWð2Þ

10
að2Þ11a

ð2Þ
11�

���1�2u�3Xr�1
���1�2�3

: (B25)

Then, using once more the results from Appendix E and
Eqs. (B17) and (B23), we obtain

Að2Þ
00 ¼ 9

10
n0T; Að2Þ

01 ¼ � 1

20
�0n0T;

Að2Þ
10 ¼ 4

3�0

n0T; Að2Þ
11 ¼ 1

3
n0T: (B26)

We did not calculate the coefficients related to the bulk
viscous pressure, since this quantity vanishes in the mass-
less limit. Also, if the mass was taken to be finite, some of
the steps taken in this appendix would not be possible.

APPENDIX C: TRANSPORT COEFFICIENTS

In this appendix we list all the transport coefficients of
fluid dynamics calculated in this paper. The transport
coefficients for the bulk viscous pressure are

‘�n¼�m2

3

�
�ð1Þ
1 �ð0Þ00 �

XN0

r¼0;�1;2

�ð0Þ0r

G3r

D20

þ XN0�3

r¼0

�ð0Þ0;rþ3�
ð1Þ
rþ2;0

�
;

(C1)

��n¼ m2

3ð"0þP0Þ
�
�ð0Þ00

@�ð1Þ
1

@ ln�0

� XN0

r¼0;�1;2

�ð0Þ0r

G3r

D20

þ XN0�3

r¼0

�ð0Þ0;rþ3�0

@�ð1Þ
rþ2;0

@�0

þ XN0�3

r¼0

ðrþ3Þ�ð0Þ0;rþ3�
ð1Þ
rþ2;0

�
;

(C2)

��� ¼ 2

3
�ð0Þ00 þm2

3
�ð0Þ
2 �ð0Þ00 �m2

3

XN0

r¼0;�1;2

�ð0Þ0r

G2r

D20

þ 1

3

XN0�3

r¼0

ðrþ 5Þ�ð0Þ0;rþ3�
ð0Þ
rþ3;0

�m2

3

XN0�5

r¼0

ðrþ 4Þ�ð0Þ0;rþ5�
ð0Þ
rþ3;0

þ ð"0 þ P0ÞJ10 � n0J20
D20

XN0

r¼3

�ð0Þ0r

@�ð0Þ
r0

@�0

þ ð"0 þ P0ÞJ20 � n0J30
D20

XN0

r¼3

�ð0Þ0r

@�ð0Þ
r0

@�0

; (C3)
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��n ¼ �m2

3

�
�ð0Þ00

@�ð1Þ
1

@�0

þ �ð0Þ00

1

h0

@�ð1Þ
1

@�0

þ XN0�3

r¼0

�ð0Þ0;rþ3

1

h0

@�ð1Þ
rþ2;0

@�0

þ XN0�3

r¼0

�ð0Þ0;rþ3

@�ð1Þ
rþ2;0

@�0

�
;

(C4)

��� ¼ �m2

3

�
��ð2Þ

2 �ð0Þ00 þ XN0

r¼0;�1;2

�ð0Þ0r

G2r

D20

þ XN0�3

r¼0

ðrþ 2Þ�ð0Þ0;rþ3�
ð2Þ
rþ1;0

�
; (C5)

where h0 ¼ ð"0 þ P0Þ=n0 is the enthalpy per particle. The
transport coefficients for the particle-diffusion current are

�nn ¼ �ð1Þ00 þ 1

3
m2�ð1Þ

2 �ð1Þ00 � 1

3
m2

XN1�2

r¼0

ðrþ 1Þ�ð1Þ0;rþ2�
ð1Þ
r0

þ 1

3

XN1

r¼2

ðrþ 3Þ�ð1Þ0r�
ð1Þ
r0

� XN1

r¼2

�ð1Þ0r

�
n0
D20

�
J20

@�ð1Þ
r0

@�0

þ J30
@�ð1Þ

r0

@�0

�

� "0 þ P0

D20

�
J10

@�ð1Þ
r0

@�0

þ J20
@�ð1Þ

r0

@�0

��
; (C6)

‘n� ¼ 1

h0
�ð1Þ00 � �ð0Þ

1 �ð1Þ00 þ XN1�2

r¼0

�ð1Þ0;rþ2

�0Jrþ4;1

"0 þ P0

þ 1

m2

XN1�2

r¼0

�ð1Þ0;rþ2�
ð0Þ
rþ3;0 �

XN1�4

r¼0

�ð1Þ0;rþ4�
ð0Þ
rþ3;0; (C7)

�n�¼ 1

"0þP0

�
1

h0
�ð1Þ00 ��ð1Þ00

@�ð0Þ
1

@ln�0

þ XN1�2

r¼0

�ð1Þ0;rþ2

�0Jrþ4;1

"0þP0

þ 1

m2

XN1�2

r¼0

ðrþ5Þ�ð1Þ0;rþ2�
ð0Þ
rþ3;0

þ 1

m2

XN1�2

r¼0

�ð1Þ0;rþ2

@�ð0Þ
rþ3;0

@ln�0

� XN1�4

r¼0

ðrþ4Þ�ð1Þ0;rþ4�
ð0Þ
rþ3;0

� XN1�4

r¼0

�ð1Þ0;rþ4

@�ð0Þ
rþ3;0

@ln�0

�
; (C8)

‘n� ¼ ��ð2Þ
1 �ð1Þ00 þ 1

h0
�ð1Þ00 þ XN1�2

r¼0

�ð1Þ0;rþ2

�0Jrþ4;1

"0 þ P0

� XN1�2

r¼0

�ð1Þ0;rþ2�
ð2Þ
rþ1;0; (C9)

�n� ¼ 1

"0 þ P0

�
1

h0
�ð1Þ00 � �ð1Þ00

@�ð2Þ
1

@ ln�0

þ XN1�2

r¼0

�ð1Þ0;rþ2

�0Jrþ4;1

"0 þ P0

� XN1�2

r¼0

�ð1Þ0;rþ2

@�ð2Þ
rþ1;0

@ ln�0

� XN1�2

r¼0

ðrþ 2Þ�ð1Þ0;rþ2�
ð2Þ
rþ1;0

�
; (C10)

�nn ¼ 3

5
�ð1Þ00 þ 2

5
m2�ð1Þ

2 �ð1Þ00 � 2

5
m2

XN1�2

r¼0;r�1

ðrþ 1Þ�ð1Þ0;rþ2�
ð1Þ
r0

þ 1

5

XN1

r¼2

ð2rþ 3Þ�ð1Þ0r�
ð1Þ
r0 ; (C11)

�n� ¼ �ð1Þ00

�
1

h0

@�ð0Þ
1

@�0

þ @�ð0Þ
1

@�0

�

� 1

m2

XN1�2

r¼0

�ð1Þ0;rþ2

�
1

h0

@�ð0Þ
rþ3;0

@�0

þ @�ð0Þ
rþ3;0

@�0

�

þ XN1�4

r¼0

�ð1Þ0;rþ4

�
1

h0

@�ð0Þ
rþ3;0

@�0

þ @�ð0Þ
rþ3;0

@�0

�
; (C12)

�n� ¼
�
1

h0

@�ð2Þ
1

@�0

þ @�ð2Þ
1

@�0

�
�ð1Þ00

þ XN1�2

r¼0

�ð1Þ0;rþ2

�
1

h0

@�ð2Þ
rþ1;0

@�0

þ @�ð2Þ
rþ1;0

@�0

�
: (C13)

The transport coefficients for the shear-stress tensor are

��� ¼ 1

3
m2�ð2Þ

2 �ð2Þ00 þ 1

3

XN2

r¼0

ðrþ 4Þ�ð2Þ0r�
ð2Þ
r0

� 1

3
m2

XN2�2

r¼0

ðrþ 1Þ�ð2Þ0;rþ2�
ð2Þ
r0

þ XN2

r¼0

�ð2Þ0r

�ð"0 þ P0ÞJ10 � n0J20
D20

@�ð2Þ
r0

@�0

þ ð"0 þ P0ÞJ20 � n0J30
D20

@�ð2Þ
r0

@�0

�
; (C14)

��� ¼ 2

7

XN2

r¼0

ð2rþ 5Þ�ð2Þ0r�
ð2Þ
r0 þ 4

7
m2�ð2Þ

2 �ð2Þ00

� 4

7
m2

XN2�2

r¼0

ðrþ 1Þ�ð2Þ0;rþ2�
ð2Þ
r0 ; (C15)
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���¼6

5
�ð2Þ00 þ

2

5
m2�ð0Þ

2 �ð2Þ00 þ
2

5m2

XN2�1

r¼0

ðrþ5Þ�ð2Þ0;rþ1�
ð0Þ
rþ3;0

þ2

5

XN2

r¼3

ð2rþ3Þ�ð2Þ0r�
ð0Þ
r0

�2

5
m2

XN2�2

r¼0;�1;2

ðrþ1Þ�ð2Þ0;rþ2�
ð0Þ
r0 ; (C16)

��n¼ 1

"0þP0

�
�2

5
m2�ð2Þ00

@�ð1Þ
1

@ln�0

þ2

5

XN2�1

r¼0

ðrþ6Þ�ð2Þ0;rþ1�
ð1Þ
rþ2;0

�2

5
m2

XN2�1

r¼0;�1

ðrþ1Þ�ð2Þ0;rþ1�
ð1Þ
r0

þ2

5

XN2�1

r¼0

�ð2Þ0;rþ1

@�ð1Þ
rþ2;0

@ln�0

�2

5
m2

XN2�3

r¼0

�ð2Þ0;rþ3

@�ð1Þ
rþ2;0

@ln�0

�
;

(C17)

‘�n ¼ � 2

5
m2�ð1Þ

1 �ð2Þ00 þ 2

5

XN2�1

r¼0

�ð2Þ0;rþ1�
ð1Þ
rþ2;0

� 2

5
m2

XN2�1

r¼0;�1

�ð2Þ0;rþ1�
ð1Þ
r0 ; (C18)

��n¼�2
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�
1
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@�ð1Þ
1

@�0

þ@�ð1Þ
1

@�0

�

þ2

5

XN2�1

r¼0

�ð2Þ0;rþ1

�
1

h0

@�ð1Þ
rþ2;0

@�0

þ@�ð1Þ
rþ2;0

@�0

�

�2

5
m2

XN2�3

r¼0

�ð2Þ0;rþ3

�
1

h0

@�ð1Þ
rþ2;0

@�0

þ@�ð1Þ
rþ2;0

@�0

�
: (C19)

APPENDIX D: CALCULATIONS

In this appendix we compute the quantity �ð2Þ
1 in the

14-moment approximation and the 23-moment approxi-
mation. This variable was defined in the main text and is
given by

�ð2Þ
1 ¼ XN2

n¼0

F ð2Þ
rn�

ð2Þ
n0 : (D1)

The first step is to compute the thermodynamic inte-

gral F ð‘Þ
rn ,

F ð‘Þ
rn ¼ ‘!

ð2‘þ 1Þ!!
Z

dKf0k ~f0kE
�r
k H ð‘Þ

knð���k�k�Þ‘:
(D2)

1. 14-moment approximation

In this case, N1 ¼ 1 and N2 ¼ 0, and

�ð2Þ
1 ¼ F ð2Þ

10 : (D3)

Also, in the 14-moment approximation,

H ð2Þ
k0 �

Wð2Þ

2!
að2Þ00P

ð2Þ
k0 ¼

Wð2Þ

2!
: (D4)

In the massless/classical limits

H ð2Þ
k0 ¼

�2
0

8P0

; (D5)

and finally

�ð2Þ
1 ¼ �2

0

4P0

1

5!!

Z
dKf0kE

�1
k ð���k�k�Þ2 ¼ �0

5
: (D6)

2. 23-moment approximation

In this case, N1 ¼ 2 and N2 ¼ 1, and

�ð2Þ
1 ¼ F ð2Þ

10 þ�ð2Þ
10F

ð2Þ
11 : (D7)

Also, in the 23-moment approximation,

H ð2Þ
k0 ¼

Wð2Þ

2!
ð1þ að2Þ10P

ð2Þ
k1Þ

¼ Wð2Þ

2!
½1þ ðað2Þ10 Þ2 þ að2Þ10a

ð2Þ
11Ek�;

H ð2Þ
k1 ¼

Wð2Þ

2!
að2Þ11P

ð2Þ
k1 ¼

Wð2Þ
2!

½að2Þ10 a
ð2Þ
11 þ ðað2Þ11 Þ2Ek�: (D8)

We know that

Wð2Þ ¼ �2
0

4P0

; ðað2Þ11 Þ2 ¼
�2

0

6
;

að2Þ10

að2Þ11

¼ � 6

�0

: (D9)

Thus,

H ð2Þ
k0¼

�2
0

8P0

ð7��0EkÞ; H ð2Þ
k1¼

�3
0

8P0

�
�1þ1

6
�0Ek

�
;

(D10)

and

F ð2Þ
10 ¼ �2

0

4P0

1

5!!

Z
dKf0kE

�1
k ð7� �0EkÞð���k�k�Þ2

¼ 2

5
�0;

F ð2Þ
11 ¼ �3

0

4P0

1

5!!

Z
dKf0kE

�1
k

�
�1þ 1

6
�0Ek

�
ð���k�k�Þ2

¼ ��2
0

30
: (D11)
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Substituting �ð2Þ from Eq. (79) we obtain

�ð2Þ
1 ¼ 2

15
�0 ¼ 0:133�0: (D12)

APPENDIX E: ORTHOGONAL POLYNOMIALS

In this appendix, we construct the set of orthogonal
polynomials used in the main text. These will be polyno-
mials in energy, Ek ¼ u�k

�, i.e., orthogonal polynomials

generated by the set 1, Ek, E2
k; . . . . We construct this

orthogonal set using the Gram-Schmidt orthogonalization
method. First we introduce

!ð‘Þ � Wð‘Þ

ð2‘þ 1Þ!! ð�
��k�k�Þ‘f0k ~f0k; (E1)

where f0k is the equilibrium distribution function as de-

fined in the main text. The weight Wð‘Þ will be determined

such that the orthogonal polynomial Pð‘Þ
kn of order n ¼ 0

and index ‘ is normalized,

Z
dK!ð‘ÞPð‘Þ

k0P
ð‘Þ
k0 ¼ 1: (E2)

Without loss of generality, the polynomials of order 0 are
set to 1 for all values of ‘,

Pð‘Þ
k0 � að‘Þ00 ¼ 1: (E3)

Then the normalization parameter Wð‘Þ is obtained from
Eq. (E2),

Wð‘Þ ¼ ð�1Þ‘ 1

J2‘;‘
: (E4)

The thermodynamic functions Jnq were defined in the main

text, see Eq. (45).
The polynomials are parametrized as

Pð‘Þ
kn ¼

Xn
r¼0

að‘Þnr Er
k: (E5)

We construct the polynomials in sequence according to the
parametrization (E5) starting from n ¼ 0, Eq. (E3), using
the orthonormality condition (24). The orthogonality/
normalization condition implies that, for a polynomial of

order i, Pð‘Þ
ki , Z

dK!ð‘ÞPð‘Þ
ki P

ð‘Þ
kj ¼ �ij; (E6)

for all j � i. Substituting Eq. (E5), we obtain the following

equation for the coefficients að‘Þij :

Xi
j¼0

Dð‘iÞ
kj

að‘Þij

að‘Þii

¼ J2‘;‘

ðað‘Þii Þ2
�ki; (E7)

where k ¼ 0; . . . ; i, and we defined the ðiþ 1Þ � ðiþ 1Þ
matrix Dð‘iÞ

kj � Jkþjþ2‘;‘. The solution of Eq. (E7) is

ðað‘Þii Þ2 ¼ ðD�1Þð‘iÞii J2‘;‘;
að‘Þij

að‘Þii

¼ ðD�1Þð‘iÞji

ðD�1Þð‘iÞii

; (E8)

where ðD�1Þð‘iÞ is the inverse of Dð‘iÞ. For example, for
any polynomial of order 1, the coefficients are

ðað‘Þ11 Þ2 ¼ ðD�1Þð‘1Þ11 J2‘;‘ ¼ ðJ2‘;‘Þ2
J2‘þ2;‘J2‘;‘ � ðJ2‘þ1;‘Þ2

;

að‘Þ10

að‘Þ11

¼ ðD�1Þð‘1Þ01

ðD�1Þð‘1Þ11

¼ � J2‘þ1;‘

J2‘;‘
: (E9)

APPENDIX F: IRREDUCIBLE TENSORS

In this appendix, we give some practical relations con-

cerning the irreducible tensors kh�1k�2 � � � k�‘i introduced
in the main text. The definition of these tensors is

kh�1k�2 � � � k�‘i ¼ ��1����‘
�1����‘

k�1 � � � k�‘ : (F1)

The projection operator��1����‘
�1����‘

is symmetric and traceless
in the indexes � and �

��1����‘
�1����‘

¼�ð�1����‘Þ
ð�1����‘Þ ;

g�i�j
��1����‘

�1����‘
¼g�i�j��1����‘

�1����‘
¼0; 8 1� i;j�‘: (F2)

The parentheses on the indices denotes symmetrization of
the tensor. These projections are constructed in Ref. [6] and
can be obtained from

��1����‘�1����‘ ¼ X½‘=2�
k¼0

Cð‘; kÞ��1����‘�1����‘
ð‘kÞ ;

Cð‘; kÞ ¼ ð�1Þk ð‘!Þ
2

ð2‘Þ!
ð2‘� 2kÞ!

k!ð‘� kÞ!ð‘� 2kÞ! ; (F3)

where in the last summation the symbol ½‘=2� denotes the
largest integer not exceeding ‘=2 and

�
�1����‘�1����‘

ð‘kÞ ¼ ð‘� 2kÞ!
�
2kk!

‘!

�
2 X
}�}�

��1�2 � � �

���2k�1�2k��1�2 � � ���2k�1�2k

���2kþ1�2kþ1 � � ���‘�‘ : (F4)

This summation is supposed to run over all distinct permu-
tations of �-type and �-type indices (we do not permute
the indices � with �). For ‘ ¼ 2 this recipe gives the usual
double symmetric and traceless projection operator ���

��

commonly employed in relativistic fluid dynamics. As
mentioned in the main text, this set of tensors is useful
because they form an orthogonal basis; see Eq. (20).
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10, 31 (1969); C. Marle, Ann. Inst. Henri Poincaré 10, 127
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