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The relatively small binding energy in nuclei suggests that they may be well represented by near-BPS

Skyrmions since their mass is roughly proportional to the baryon number A. For that purpose, we propose

a generalization of the Skyrme model with terms up to order six in derivatives of the pion fields and treat

the nonlinear � and Skyrme terms as small perturbations. For our special choice of mass term (or

potential) V, we obtain well-behaved analytical BPS-type solutions with nonshell configurations for the

baryon density, as opposed to the more complex shell-like configurations found in most extensions of the

Skyrme model. Along with static and (iso)rotational energies, we add to the mass of the nuclei the often

neglected Coulomb energy and isospin breaking term. Fitting the four model parameters, we find a

remarkable agreement for the binding energy per nucleon B=A with respect to experimental data. These

results support the idea that nuclei could be near-BPS Skyrmions.
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I. INTRODUCTION

The idea suggested by Skyrme [1] that baryon physics
could emerge as solitons from an effective Lagrangian of
meson fields remains one of the most original and success-
ful attempts for the description of the low-energy regime of
the theory of strong interactions (QCD). Although it pre-
dates QCD and was almost eclipsed by it, the proposal
gained strong support when it was realized that, in the large
Nc limit, QCD is equivalent to an effective theory of
mesons [2,3]. Perhaps the most important feature of the
Skyrme model in that regard is that the soliton solutions
which arise are characterized by a conserved topological
charge, the winding number, which Skyrme identified as
the baryon number. In other words, in this scheme, the
baryons as well as nuclei are simply topological solitons.

In its original formulation, the Skyrme model succeeds
in predicting the properties of the nucleon within a preci-
sion of 30%. This is considered a rather good agreement
for a two-parameter theory [4]. However, a number of
generalizations of the model have been proposed to im-
prove this concordance with baryon and nuclear physics.
They mostly exploit our ignorance of the exact form of the
low-energy effective Lagrangian of QCD for example, the
structure of the mass term [5–7], the contribution of other
vector mesons [8,9] or simply the addition of higher-order
terms in derivatives of the pion fields [5]. Unfortunately,
for now, QCD alone only gives hints that such extensions
should appear and the complete determination of the ef-
fective Skyrme-like Lagrangian remains a most serious
challenge.

Despite such efforts, one of the recurring problems of
Skyrme-like Lagrangians is that they almost inevitably
lead to large binding energy for nuclei already at the
classical level. A solution may be at hand by constructing
effective Lagrangians with soliton solutions that saturate
the Bogomol’nyi bound, i.e. so-called Bogomol’nyi-

Prasad-Sommerfield–type (BPS) Skyrmions, since their
classical static energy grows linearly with the baryon
number A (or atomic number) much like the nuclear
mass. Support for this idea comes from a recent result
from Sutcliffe [10] who found that BPS-type Skyrmions
seem to emerge for the original Skyrme model when a
large number of vector mesons are added. The additional
degrees of freedom cause the mass of the soliton to de-
crease down to the saturation of the Bogomol’nyi bound.
A different and more direct approach was proposed by
Adam, Sanchez-Guillen, and Wereszczynski (ASW) [11]
by means of a prototype model consisting of only two
terms: one of order six in derivatives of the pion fields
[12] and a second term, called the potential, which is
chosen to be the customary mass term for pions in the
Skyrme model [13]. The model leads to BPS-type com-

pacton solutions with size and mass growing as A1=3 and A
respectively, a result in general agreement with experimen-
tal observations. However, the connection between the
ASW model and pion physics, or the Skyrme model, is
more obscure due to the absence of the nonlinear � and
so-called Skyrme terms which are of order 2 and 4 in
derivatives, respectively.
Following this picture, some of us [14] have reexamined

a more realistic generalization of the Skyrme model which
includes terms up to order six in derivatives [12] in the
sector where the nonlinear � and Skyrme terms are small.
In that limit and for an appropriate choice of mass term, it
is possible to find well-behaved analytical solutions for the
static solitons. Since they saturate the Bogomol’nyi bound,
their static energy is directly proportional to A and we
recover some of the results in Ref. [11]. In fact, these
solutions allow computing analytically the mass of the
nuclei (static and rotational energy) in the regime where
quadratic and quartic terms are small perturbations.
Adjusting the four parameters of the model to fit the
resulting binding energies per nucleon with respect to the
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experimental data of the most abundant isotopes leads to an
impressive agreement.

These results support the idea of a BPS-type Skyrme
model as the dominant contribution to an effective theory
for the properties of nuclear matter. However, a few issues
remain to be addressed before such a model is considered
viable. We shall concentrate on two of them in this work.
First, as for most extensions of the Skyrme model, the
BPS-type models in Refs. [11,14] generate shell-like con-
figurations for the energy and baryon densities as opposed
to what experimental data suggests, i.e. almost constant
densities in the nuclei. We show here that it is possible to
construct an effective Lagrangian which leads to nonshell
configurations and still preserves the agreement with nu-
clear data. The second issue concerns the inclusion of the
Coulomb energy and the isospin symmetry breaking term
in the calculation of nuclear masses. In the context of the
Skyrme model, these contributions have been thoroughly
studied for A ¼ 1 [15–21] but are usually neglected, to a
first approximation, for higher A since they are not ex-
pected to overcome the binding energies which are usually
large and also because finding the configurations is already
numerically challenging so that only small A solutions are
known (e.g. approximate toroidal, tetrahedral, cubic con-
figurations for A ¼ 1; 2; 3 standard Skyrmions, respec-
tively). However, for our type of near-BPS model, they
may have a significant impact on the predictions given the
already good agreement with data. Moreover, it turns out
that the calculation of the Coulomb energy is simplified
by the axial symmetry of the solutions and is calculable
for all A.

II. THE NEAR-BPS SKYRME MODEL

We propose to study the model based on the Lagrangian
density

L ¼ L0 þL2 þL4 þL6 (1)

with

L 0 ¼ ��2VðUÞ (2)

L 2 ¼ ��Tr½L�L
�� (3)

L 4 ¼ �Trð½L�; L��2Þ (4)

L 6 ¼ � 3

2

�2

162
Trð½L�; L��½L�; L��½L�; L��Þ; (5)

where L� ¼ Uy@�U is the left-handed current of the

meson fields represented by the SUð2Þ matrix U ¼ �0 þ
i�i�i which obey the nonlinear condition �2

0 þ�2
i ¼ 1.

The constants �, �, �, and � are left as free parameters
of the model although we shall be interested in the regime
where � and � are small. The original Skyrme model was
built out of only the nonlinear � term,L2, and the Skyrme

term, L4. One often adds the so-called mass term, L0, to
take into account chiral symmetry breaking and generate a
pion mass term for small fluctuations of the chiral field in
VðUÞ. Finally, the term of order six in derivatives of the
pion fields L6 is equivalent to

L J6 ¼ � "6
4
B�B�

that was first proposed by Jackson et al. [12] to allow for
the possibility of !-meson interactions. Here, we define
the topological (baryon) current density B�:

B � ¼ 	��
�

24�2
TrðL�L
L�Þ: (6)

The boundary condition at infinity must be constant to
ensure that solutions for the Skyrme field have finite energy
but it also characterizes solutions by a conserved topologi-
cal charge,

A ¼
Z

d3rB0 ¼ � 	ijk

24�2

Z
d3rTrðLiLjLkÞ: (7)

The static energy arising fromL6 comes from the square of
the baryon density

E6 ¼ "6
4

Z
ðB0ðrÞÞ2d3r

so in a sense, it is the analog of the Coulomb energy

EC ¼ 1

2

Z 
ðrÞ
ðr0Þ
4�jr� r0j d

3rd3r0 (8)

except that instead of following the jr� r0j�1 law, the
interaction is replaced by a � function:

E6 ¼ "6
4

Z
B0ðrÞB0ðr0Þ�3ðr� r0Þd3rd3r0:

In other words, the baryonic charge interacts locally.
Historically, L0 and L6 were introduced to provide a

more general effective Lagrangian than the original
Skyrme model and indeed, the Lagrangian in (1) represents
the most general SUð2Þ model with at most two time
derivatives. As an effective theory based on the 1=Nc

expansion of QCD, there no reason to believe that
higher-order derivatives should be absent. However, since
one generally relies on the standard Hamiltonian interpre-
tation for the quantization procedure, higher-order time
derivatives are usually avoided.
As a result, the model has been studied extensively but

remarkably, this was done only for values of parameters�,
�, �, and � close to that of the original Skyrme model.
Presumably these choices were made so that L2 and L4

would continue to have a significant contribution to the
mass of the baryons and thereby preserve the relative
successes of the Skyrme model in predicting nucleon
properties and their link to pion physics (� is proportional
to the pion decay constant F�). Yet this sector of the theory
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fails to provide an accurate description of the binding
energy of heavy nuclei.

Noting that this caveat may come from the fact that the
solitons of the Skyrme model do not saturate the
Bogomol’nyi bound, ASW proposed a model [11] (equiva-
lent to setting � ¼ � ¼ 0Þ whose solutions are BPS-type
solitons and have lower binding energies. A more realistic
approach was proposed in Ref. [14] to analyze the full
Lagrangian (1) in the sector where � and � are relatively
small treating these two terms as perturbations. However,
in spite of a very good agreement with experimental nu-
clear masses, there remains an obstacle to the acceptance
of such model. Nuclear matter is believed to be uniformly
distributed inside a nucleus whereas the solutions of the
aforementioned models display shell-like configuration for
the baryon and energy densities. Part of this work is to
demonstrate that it is possible to construct an effective
Lagrangian which leads to nonshell configuration and still
preserves and even improves the agreement with nuclear
mass data.

We may write the general static solution as

U ¼ ein��F ¼ cosFþ in � � sinF; (9)

where n̂ is the unit vector

n̂ ¼ ðsin� cos�; sin� sin�; cos�Þ: (10)

Let us consider the model in (1) in the limit where � and �
are small. For that purpose, we introduce the axial solu-
tions for the � ¼ � ¼ 0 case,

F ¼ FðrÞ; � ¼ 
; � ¼ n�; (11)

where n is an integer. The static energy arising from (1)
becomes

Estat ¼ 4�
Z

r2dr

�
�2V þ 9�2

16
n2F02 sin

4F

r4

(12)

þ 2�

�
F02 þ ðn2 þ 1Þ sin

2F

r2

�

þ 16�
sin2F

r2

�
ðn2 þ 1ÞF02 þ n2

sin2F

r2

��
:

Here F0 ¼ @F=@r and the topological charge simplifies to

A ¼ � 2n

�

Z
F0sin2Fdr ¼ n: (13)

Minimizing of the static energy for � ¼ � ¼ 0 leads to the
differential equation for F:

9�2n2

4

sin2F

2r2
@r

�
sin2F

r2
F0
�
��2 @V

@F
¼ 0: (14)

The change of variable z ¼ 2
ffiffi
2

p
�r3

9n� allows this last expres-

sion to be written in a simple form

sin 2F@z½sin2Fð@zFÞ� � @V

@F
¼ 0 (15)

that can be integrated

1
2 sin

4FðFzÞ2 ¼ V: (16)

Regrouping the terms, we getZ
dF

sin2Fffiffiffiffiffiffiffi
2V

p ¼ �ðz� z0Þ; (17)

where z0 is an integration constant. Finally, the expression
for FðzÞ can be found analytically provided the integral on
the left-hand side is an invertible function of F.
The potential (or so-called mass term) V in (17) is a key

ingredient in the determination of the solution here.
Unfortunately, its exact form is unknown and indeed, has
been the object of several discussions [5,7,13]. For sim-
plicity, it is often assumed to be

V ¼ 1
4 Tr½UþUy � 2� ¼ 1� cosF:

This form was considered in ASW for � ¼ � ¼ 0 in the
context of BPS-Skyrmions and solving (17) for F led to a

BPS-compacton FðrÞ ¼ 2 arccosð�r3Þ for r 2 ½0; ��ð1=3Þ�,
where � ¼ �

18n� is a constant depending on the parameters

�, �, and n. Note that F0 diverges as r ! ��ð1=3Þ and
vanishes at r ¼ 0. Since this solution saturates the
Bogomol’nyi bound, the static energy is proportional to
the baryon number A ¼ n.
A more general choice was introduced in Ref. [5]:

��2V ¼ X4
k¼1

CkTr½Uk þUyk � 2�: (18)

This form allows one to recover the chiral symmetry break-
ing pion mass term � 1

2m
2
�� � � in the limit of small pion

field fluctuations U ¼ 2 expði�a�a=F�Þ and to find a rela-
tion between the pion mass m� and the parameter �,

X1
k¼1

k2Ck ¼ �m2
�F

2
�

16
: (19)

The case considered in Ref. [14] is a particular example of
such potential with

� C1 ¼ C2 ¼ C3 ¼ 4C4 ¼ �2

128
(20)

and Ck>4 ¼ 0. Assuming the axial solution (11), the po-
tential simplifies to

V ¼ sin2
�
F

2

�
cos6

�
F

2

�
(21)

and upon integration (17), we get the solution

FðrÞ ¼ �2j arccosðe��r3Þj (22)

with � ¼ �
18n� . Here, we use the absolute value in order to

eliminate the sign ambiguity of the arccos function. In
order to set the baryon number to jAj ¼ n and the integra-
tion constant z0, we fix the boundary conditions Fð0Þ ¼ 0
and Fð1Þ ¼ �� for positive and negative baryon number,
respectively. Note that the exponential falloff of F at large
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r helps prevent some quantities such as the moments of
inertia from becoming infinite.

Unfortunately, the BPS-type models in Refs. [11,14]
both lead to shell configurations for the baryon and energy
densities which disagrees with experimental results. This is
often the case for Skyrme models and it is clear from
expressions (12) and (13) that this behavior can be traced
back to the form of the profile FðrÞ or more precisely to the
derivative F0ðrÞ which tends to zero near r ¼ 0 for such
models.

Let us consider the more appropriate solution of the
form

FðrÞ ¼ �2j arccosðe�ar2Þj (23)

with a ¼ �2=3 and similar boundary conditions Fð0Þ ¼ 0
and Fð1Þ ¼ �� Here, since F0ð0Þ � 0, neither the baryon
density

B 0ðrÞ ¼ � n

2�2

sin2F

r2
F0 ¼ 2an

�2

e�ar2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2ar2

p
(24)

nor the static energy density vanishes near r ¼ 0. We find
by inspection of (17) that this solution emerges from a
potential similar to (21), namely

V ¼ � 8sin2ðF2Þcos6ðF2Þ
9 lnðcos2ðF2ÞÞ

: (25)

The logarithmic dependence in the denominator of this
expression could be problematic since F ¼ 0 at r ¼ 0
and F ¼ �� at r ¼ 1 but the limits for V are well defined
and finite, i.e. limr!0;1V ¼ 8

9 ; 0, respectively. It is interest-

ing to note that according to (16), the square root of the
potential

ffiffiffiffi
V

p ¼ 3��

8�

�
� 2n

�

sin2F

r2
F0
�
¼ 3��

8�
B0ðrÞ (26)

corresponds to the baryon radial density (the term in paren-
thesis) up to a multiplicative constant. Thus, in order to
obtain a nonshell baryon density, it suffices to construct a
potential V that does not vanish at small r. Such a potential
would also imply that F0ð0Þ � 0. Our choice of potential
clearly verifies this requirement but this relation also ex-
plains why the earlier BPS-type models could not generate
a nonshell configuration, namely V � ð1� cosðF2ÞÞ and

F0ð0Þ ¼ 0 in that limit.
The expression (25) only applies to the axial solution

(11) and we need to write a more general form for V in
terms of U if this is to be used in the expression for the
Lagrangian. A simple but not unique approach to construct
the potential is to identify cosðF=2Þ to the expression

1

4
ð2I þUþUyÞ ¼ cos2

�
F

2

�
I;

where I is the identity matrix. Then, a convenient expres-
sion for V is given by

��2VðUÞ ¼ �2

576
Tr

�ð2I �U�UyÞð2I þUþUyÞ3
lnðð2I þUþUyÞ=4Þ

�
:

Comparing this expression to (18) allows retrieving each
coefficient

C1 ¼ �0:129 631�2; C2 ¼ �0:100 632�2;

C3 ¼ �0:045 532�2; C4 ¼ �0:010 506 1�2; . . .

such that

X1
k¼1

k2Ck ¼ �1:127 98�2 ¼ �m2
�F

2
�

16
:

Inserting expression (23) in (12), we get the static energy
of the soliton in the small � and � approximation

Estat ¼ E0 þ E2 þ E4 þ E6

with

E0 ¼ 4
3

ffiffiffi
2

p ð�3þ 2
ffiffiffi
3

p Þn�3=2��

E2 ¼ ð8ð ffiffiffi
2

p � 1Þðn2 þ 1Þ þ 6
ffiffiffi
2

p
�ð52ÞÞ�3=2���1=3

E4 ¼ 64ð2ð16 ffiffiffi
2

p ð ffiffiffi
3

p � 1Þ � 15Þn2 þ ffiffiffi
2

p Þ�3=2��1=3

E6 ¼ 4
3

ffiffiffi
2

p ð�3þ 2
ffiffiffi
3

p Þn�3=2��; (27)

where � ¼ �
18n� sets the scale of the solution and � is the

Riemann �-function. The termsV andE6 are proportional to
the baryon numberA ¼ n as one expects from solutions that
saturate the Bogomol’nyi bound whereas the small pertur-

bations E2 ¼ A1=3ða2 þ b2A
2Þ and E4¼A�1=3ða4þb4A

2Þ
have a more complex dependence. Part of this behavior, the

overall factor A�1=3, is due to the scaling. The additional
factor of A2 comes from the axial symmetry of the solution
(11). Note that it is also easy to calculate analytically the
root mean square radius of the baryon density

hr2i1=2 ¼ 1

2

�
18A�

�

�
1=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�1þ ln16

p
(28)

which is consistent with experimental observation for the

charge distribution of nuclei hr2i1=2 ¼ r0A
1=3.

In order to represent physical nuclei, we have taken into
account their rotational and isorotational degrees of free-
dom and quantize the solitons. The standard procedure is to
use the semiclassical quantization which is described in the
next section.

III. QUANTIZATION

Skyrmions are not pointlike particles. So we resort to a
semiclassical quantization method which consists in add-
ing an explicit time dependence to the zero modes of the
Skyrmions and applying time-dependent (iso)rotations on
the Skyrme fields by SUð2Þ matrix AðtÞ and BðtÞ
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~Uðr; tÞ ¼ AðtÞUðRðBðtÞÞrÞAðtÞ; (29)

where RðBðtÞÞ is the associated SOð3Þ rotation matrix. The
approach assumes that the Skyrmion behave as a rigid
rotator. Upon insertion of this ansatz in the time-dependent
part of the full Lagrangian (1), we can write the (iso)rota-
tional Lagrangian as

L rot ¼ 1
2aiUijaj � aiWijbj þ 1

2biVijbj; (30)

where ai ¼ �iTrAy _A and bi ¼ iTr _BBy
The moment of inertia tensors Uij is given by

Uij ¼
Z

d3rUij

¼ �
Z

d3r

�
2�TrðTiTjÞ þ 4�Trð½Lp; Ti�½Lp; Tj�Þ

þ 9�2

162
Trð½Ti; Lp�½Lp; Lq�½Lq; Tj�Þ

�
; (31)

where Ti ¼ iUy½�i2 ; U�. The expressions forWij and Vij are

similar except that the isorotational operator Ti is replaced
by a rotational analog Si ¼ �	iklxkLl as follows:

Wij ¼
Z

d3rW ij ¼
Z

d3rUijðTj ! SjÞ (32)

Vij ¼
Z

d3rV ij ¼
Z

d3rUijðTj ! Sj; Ti ! SiÞ: (33)

Following the calculations in [14] for axial solution of the
form (11), we find that all off-diagonal elements of the
inertia tensors vanish. Furthermore, one can show that
U11 ¼ U22 and U33 can be obtained by setting n ¼ 1 in
the expression for U11. Similar identities hold for Vij and

Wij tensors. The axial symmetry of the solution imposes

the constraint L3 þ nK3 ¼ 0which is simply the statement
that a spatial rotation by an angle 
 about the axis of
symmetry can be compensated by an isorotation of �n

about the �3 axis. It follows from expressions (31)–(33)
that W11 ¼ W22 ¼ 0 for jnj � 2 and n2U33¼nW33¼V33.

The general form of the rotational Hamiltonian is given
by [22]

Hrot ¼ 1

2

�ðL1 þW11
K1

U11
Þ2

V11 � W2
11

U11

þ ðL2 þW22
K2

U22
Þ2

V22 � W2
22

U22

þ ðL3 þW33
K3

U33
Þ2

V33 � W2
33

U33

þ K2
1

U11

þ K2
2

U22

þ K2
3

U33

�
; (34)

where (Ki) Li is the body-fixed (iso)rotation momentum
canonically conjugate to ðaiÞbi. The expression for the
rotational energy of the nucleon A ¼ 1 simplifies due to
the spherical symmetry

EN
rot ¼

3

8U11

: (35)

It is also easy to calculate the rotational energies for nuclei
with winding number jnj � 2

Hrot ¼ 1

2

�
L2

V11

þ K2

U11

þ �K2
3

�
(36)

with

� ¼ 1

U33

� 1

U11

� n2

V11

:

These momenta are related to the usual space-fixed isospin
(I) and spin (J) by the orthogonal transformations

Ii ¼ �RðA1ÞijKj; (37)

Ji ¼ �RðA2ÞTijLj: (38)

According to (37) and (38), we see that the Casimir invar-
iants satisfy K2 ¼ I2 and L2 ¼ J2 so the rotational
Hamiltonian is given by

Hrot ¼ 1

2

�
J2

V11

þ I2

U11

þ �K2
3

�
: (39)

We are looking for the lowest eigenvalue of Hrot which
depends on the dimension of the spin and isospin repre-
sentation of the eigenstate ji; i3; k3ijj; j3; l3i. For � ¼ � ¼
0, we can show that � is negative and we shall assume that
this remains true for small values of � and �. Then, for a
given spin j and isospin i, � must take the largest possible
eigenvalue k3. Since K

2 ¼ I2 and L2 ¼ J2, the state with
highest weight is characterized by k3 ¼ i and l3 ¼ j and
since nuclei are build out of A fermions we must have an
isospin j � A=2. On the other hand, the axial symmetry of
the static solutions implies that k3 ¼ �l3=n where n ¼ A.
But for even A nuclei, k3 must be an integer and jl3=nj �
jj=nj � jA=ð2nÞj ¼ 1=2 so

0 � jk3j �
���������

A

2n

��������
�
¼ 0

Similarly for half-integer spin nuclei, jk3j must be a half-
integer so the only possible value is

1

2
� jk3j �

��������
A

2n

��������¼
1

2
:

Summarizing, if we assume for simplicity that the � and �
terms only generate small perturbations, the largest pos-
sible eigenvalue k3 is

� ¼ maxðjk3jÞ ¼
�
0 for A ¼ even
1
2 for A ¼ odd:

(40)

The lowest eigenvalue of the rotational HamiltonianHrot

for a nucleus is then given by [14]

Erot ¼ 1

2

�
jðjþ 1Þ
V11

þ iðiþ 1Þ
U11

þ ��2

�
: (41)

The spins of the most abundant isotopes are fairly well
known. The isospins are not so well known so we resort to
the usual assumption that the most abundant isotopes
correspond to states with lowest isorotational energy.
Since i � ji3j, the lowest value that i can take is simply
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ji3j where i3 ¼ A=2� Z. For example, the deuteron cor-
responds to A ¼ n ¼ 2, i ¼ 0, j ¼ 1, and � ¼ 0, so the
rotational energy reduces to

ED
rot ¼ 1

V11

: (42)

The explicit calculations of the rotational energy of
nuclei then require only three moments of inertia which
can be found analytically:

U11 ¼ �3=2

18
½24ð2 ffiffiffi

2
p � 1Þ���1 þ 128ð2 ffiffiffi

2
p ð3� 4

ffiffiffi
3

p Þð3n2

þ 1Þ þ 3ð12n2 þ 7ÞÞ���1=3 þ 3
ffiffiffi
2

p ð8 ffiffiffi
3

p � 9Þ
	 ð3n2 þ 1Þ�2�1=3� (43)

V11 ¼ �3=2

18
½6ð2 ffiffiffi

2
p � 1Þðn2 þ 3Þ���1 þ 32ð32 ffiffiffi

2
p ð3

� 4
ffiffiffi
3

p Þn2 þ 3ð67n2 þ 9ÞÞ�3=2���1=3

þ 12
ffiffiffi
2

p ð8 ffiffiffi
3

p � 9Þn2�3=2�2�1=3� (44)

and U33 ¼ U11ðn ! 1Þ.
So far, both contributions to the mass of the nucleus,

Estat and Erot, are charge invariant. Since this is a symmetry
of the strong interaction, it is reflected in the construction
of the Lagrangian (1) and one expects that the two terms
form the dominant portion of the mass. However, isotope
masses differ by a few percent so this symmetry is broken
for physical nuclei. In the next section, we consider two
additional contributions to the mass, the Coulomb energy
associated with the charge distribution inside the Skyrmion
and an isospin breaking term that may be attributed to the
up and down quark mass difference.

IV. COULOMB ENERGYAND ISOSPIN BREAKING

Even if we thought of a nucleus as a simple collection of
individual protons and neutrons, there would be a repulsive
electromagnetic force between protons and the process
would require energy to bring these charges together. The
result is an increase in the mass of the object by an amount
corresponding to the Coulomb energy. Such an effect is of
course also present in the Skyrmions description of nuclei
since the static configuration has nonvanishing charge
density. The electromagnetic and isospin breaking contri-
butions to the mass have been thoroughly studied for A ¼ 1,
mostly in the context of the computation of the proton-
neutron mass difference [15–21], but are usually neglected,
to a first approximation, for higher A since they are not
expected to overcome the large binding energies predicted
by the model. There are also practical reasons why they are
seldom taken into account. The higher baryon number
configurations of the original Skyrme model are nontrivial
(toroidal shape for A ¼ 2, tetrahedral for A ¼ 3, etc.) and
finding them exactly either requires heavy numerical cal-
culations (see for example [23]) or some kind of clever

approximation like rational maps [24]. Moreover, the com-
putation of the Coulomb energy is more challenging in
general since it involves two integrations over volume. One
can also argue that the Coulomb energy of Skyrmions is
somewhat reduced by shell-like configurations of the
charge densities as opposed to what it would be for a nearly
constant spherical density found in electron scattering ex-
periments. In our case however, we are interested in a more
precise calculation of the nuclei masses and an estimate of
the Coulomb energy is desirable, and even more so in our
model which generates nonshell configurations. It turns out
that the analytical form of the chiral angle FðrÞ in (23) and
the axial symmetry of the solution simplify the computa-
tion of the Coulomb energy.
Let us first consider the charge density inside

Skyrmions. Following Adkins et al. [4], we write the
electromagnetic current

J�EM ¼ 1
2B

� þ J�3
V ; (45)

with B� the baryon density and J�3
V the vector current

density, so the conserved electric charge is given by

Z ¼
Z

d3rJ0EM ¼
Z

d3r

�
1

2
B0 þ J03V

�
¼ A

2
þ k3 (46)

with k3, the eigenvalue of third component of isospin in the
body-fixed frame. The vector current is then defined as the
sum of the left- and right-handed currents

J�i
V ¼ J�i

R þ J�i
L

which are invariant under SUð2ÞL 
 SUð2ÞR transforma-
tions of the form U ! LURy. More explicitly, we get

J0iV ¼ Uijaj �W ijbj; (47)

where Uij and W ij are the moment of inertia densities in

(31)–(33). In the quantized version, aj and bj are expressed

in terms of the conjugate operatorsKi and Li. Here we only
need the relation

Ki ¼ Uijaj �Wijbj:

Since the off-diagonal elements of Uij and Wij vanish

when the solution is axially symmetric and also n2U33 ¼
nW33 ¼ V33, we have

a3 ¼ K3 þW33b3
U33

¼ K3

U33

þ nb3:

Inserting a3 in (47), the isovector electric current density
reduces to

J03V ¼ K3

U33

U33

;

where U33=U33 may be interpreted here as a normalized
moment of inertia density for the third component of
isospin. Finally, the electric charge density is given by
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ðrÞ � 1

2
B0ðrÞ þ i3

U33ðrÞ
U33

; (48)

where we have replaced k3 by i3 using the fact that the
charge density of body-fixed and space-fixed frame only
differs by a rotation.

The Coulomb energy stored in a charge distribution 
ðrÞ
takes the usual form (8). In practice, unless one considers
very simple configurations, it is not possible to find an
analytical expression for the Coulomb energy. Nonetheless,
it is often helpful to expand 
ðrÞ in terms of normalized
spherical harmonics to take care of the angular integrations


ðrÞ ¼ X
l;m


lmðrÞYm�
l ð
;�Þ: (49)

Following the approach described in [25], we define the
quantities

QlmðrÞ ¼
Z r

0
dr0r0lþ2
lmðr0Þ (50)

which, at large distance, are equivalent to a multipole mo-
ments of the distribution. Then, each moment contributes to
the Coulomb energy by an amount

Ulm ¼ 1

2	0

Z 1

0
drr�2l�2jQlmðrÞj2

and the total Coulomb energy associated to the distribution
is given by

EC ¼ X1
l¼0

Xl
m¼�l

Ulm:

In our case, the angular dependence of the charge den-
sity is rather simple. The first part is a spherically sym-
metric contribution

B 0ðrÞ ¼ � n

2�2

sin2F

r2
F0

whereas the only nontrivial piece comes from the third
moment density U33ðrÞ and is proportional to sin2ð
Þ:

U33 ¼
�
4�sin2Fþ 32�sin2F

�
F02 þ sin2F

r2

�

þ 9�2

8

sin2F

r2

�
sin2


¼ u33ðrÞsin2
:
The summation (49) consists of only two terms


00ðrÞ ¼ 2
ffiffiffiffi
�

p B0ðrÞ
2

þ 4
ffiffiffiffi
�

p
3

u33ðrÞ
U33

i3


20ðrÞ ¼ � 4

3

ffiffiffiffi
�

5

r
u33ðrÞ
U33

i3:

The expressions for moments Q00ðrÞ and Q20ðrÞ are found
by integrating (50) analytically. Finally, we obtain the

Coulomb energy by computing numerically the last re-
maining integral

EC ¼ 1

2	0

Z 1

0
ðjQ00j2r�4 þ jQ20j2r�6Þr2dr: (51)

The Coulomb energy alone cannot explain the isotope
mass difference. This is particularly evident for A ¼ 1
where the proton mass is known to be smaller than that
of the neutron although the Coulomb energy alone would
suggest otherwise. On the other hand, isospin is not an
exact symmetry, a fact that may be traced back to the up
and down quark mass difference. Several attempts have
been made to modelize the isospin symmetry breaking
term within the Skyrme model [20,21]. Here we shall
assume for simplicity that this results in a contribution
proportional to the third component of isospin

EI ¼ aIi3 (52)

with the parameter aI fixed by setting the neutron-proton
mass difference to its experimental value. Since both of
them have the same static and rotational energies,

�Mexpt
n�p ¼ ðEn

C � Ep
CÞ � aI ¼ 1:293 MeV

and

aI ¼ � 1

�M
expt
n�p þ ðEp

C � En
CÞ

:

Summarizing, the mass of a nucleus reads

EðA; i; j; k3; i3Þ ¼ EstatðAÞ þ ErotðA; i; j; k3Þ
þ ECðA; i3Þ þ EIðA; i3Þ; (53)

where we have written the explicit dependence of each
piece in terms of the relevant nuclear quantum numbers of
the nuclei. The prediction depends on the parameters of the
model �, �, �, and �.

V. RESULTS AND DISCUSSION

The values of the parameters�,�,�, and � remain to be
fixed. Let us first consider the case where � ¼ � ¼ 0.
This should provide us with a good estimate for the values
of �, �, �, and � required in the 4-parameter model (1)
and, after all, it corresponds to the limit where the mini-
mization of the static energy leads to the exact analytical
solution (23).
We need two input parameters to set � and �. For

simplicity, we choose the mass of the nucleon and that a
nucleus X with zero (iso)rotational energy (i.e. a nucleus
with zero spin and isospin) and neglect for now the
Coulomb and isospin breaking energies. The total energy
of these two states is according to (27) and (41)
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EN ¼ 8

3

ffiffiffi
2

p ð�3þ 2
ffiffiffi
3

p Þ�3=2��

þ ð18Þ4=3
32�3=2

ffiffiffi
2

p ð8 ffiffiffi
3

p � 9Þð��Þ1=3�4=3
(54)

EX ¼ 8
3

ffiffiffi
2

p ð�3þ 2
ffiffiffi
3

p ÞnX�3=2��: (55)

Solving for � and � we get

� ¼ 3ð�3þ 2
ffiffiffi
3

p Þ1=433=4nX
4ð2EXÞ1=4ð�ð8

ffiffiffi
3

p � 9ÞðnXEN � EXÞÞ3=4

� ¼ ððnXEN � EXÞð8
ffiffiffi
3

p � 9ÞÞ3=4E5=4
X

ð3�Þ3=4ð2ð2 ffiffiffi
3

p � 3ÞÞ5=4n2X
: (56)

As an example, let us examine the case where the nucleus
X is Helium-4, the first doubly magic number nucleus
with zero spin and isospin. Setting the mass of the
nucleon as the average mass of the proton and neutron
i.e. EN ¼ 938:919 MeV and that of Helium-4 nucleus to
EHe ¼ 3727:38 MeV, we get the numerical value �¼
0:00641362MeV�1, �¼�¼0 and � ¼ 14 908 MeV2

which we shall refer as Set I. The masses of the nuclei
including static, (iso)rotational, Coulomb, and isospin
breaking contributions are then computed using (53).
Table I shows the relative deviation of the predicted with
regard to experimental values of nuclear masses of a few
isotopes (Set I). The predictions are accurate to 0.4% or

better even for heavier nuclei. Part of this accuracy is
probably due to the fact that the static energy of a BPS-
type solution is proportional to A so if it dominates, the
nuclear masses should follow approximately the same
pattern. However, the predictions remain surprisingly
good for a 2-parameter model. Perhaps more relevant are
the predictions of the binding energy per nucleon (B=A).
The results are presented in Fig. 1—Set I (solid line) and

FIG. 1. Binding energy per nucleon B=A as a function of the
baryon number A: The experimental data (black circles) are
shown along with predicted values (solid lines) for parametriza-
tion of Set I (� ¼ � ¼ 0), Set II (best fit for nuclear masses),
and Set III (best fit for B=A), respectively.

TABLE I. Prediction versus experimental nuclear masses.

Set I Set II Set III Experiment

�ð104 MeV2Þ 1.490 80 1.505 71 1.729 55

�ð10�3 MeV2Þ 0 5.881 18 22.0821

�ð10�6 MeV0Þ 0 �1:848 77 �5:809 89
�ð10�3 MeV�1Þ 6.413 62 6.339 73 5.536 91

F� (MeV) 0 0.307 0.594 186

m� (MeV) � � � 208 530 82 300 138

eð104Þ � � � �185 000 �5380
r0 (fm) 2.637 2.617 2.385 1.23

Nucleus X
EX�Eexp

Eexp
Eexp (MeV)

Nucleon Input �0:0008 0.0020 938.919
2H �0:0032 �0:0048 �0:0020 1875.61
3H �0:0042 �0:0057 �0:0030 2808.92
4He Input �0:0017 �0:0009 3727.38
6Li �0:0017 �0:0034 �0:0010 5601.52
7Li �0:0014 �0:0031 �0:0008 6533.83
9Be �0:0006 �0:0023 �0:0001 8392.75
10B �0:0004 �0:0021 �0:000 01 9324.44
16O 0.0010 �0:0008 0.0009 14 895.1
20Ne 0.0010 �0:0007 0.0008 18 617.7
40Ca 0.0016 0.0001 0.0006 37 214.7
56Fe 0.0018 0.0001 0.0004 52 089.8
238U 0.0004 0.000 01 0.0006 221 696
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can be compared to the experimental values (black circles).
We consider here only a subset of the table of nuclei in [26]
composed of the most abundant 144 isotopes. We observe a
sharp rise of the binding energy per nucleon at small A
followed by a slow linear increase for larger nuclei. The
overall accuracy is of the order of 15%which is rather good
considering the fact that the calculation involves the mass
difference between the nucleus and its constituents.

Experimentally the charge radius of the nucleus is
known to behave approximately as

hr2emi1=2 ¼ r0A
1=3

with r0 ¼ 1:25 fm. On the other hand, it is possible to
calculate the root mean square radius for the baryon den-
sity [see Eq. (28)] which leads to

hr2i1=2 ¼ ð2:599 fmÞA1=3: (57)

For the charge radius hr2emi1=2, the dependence on A is more
complex since it involves an additional isovector contribu-
tion (48)

hr2emi ¼
R
d3rr2
ðrÞR
d3r
ðrÞ ¼ A

2Z
hr2i þ hr2Vi; (58)

where Z ¼ i3 þ A=2 is the charge of the nucleus. We get
the expression

hr2Vi ¼
i3

ZU33

Z
drr4u33ðrÞ

¼ i3
ZU33

�3=2

24�5=3
½648	 21=631=3ð ffiffiffi

2
p � 8ÞA4=3��2=3

þ 128ð4 ffiffiffi
2

p ð�9þ 16
ffiffiffi
3

p Þ � 279ÞA2=3��2=3

þ 13	 25=631=6ð9 ffiffiffi
3

p � 32Þ�4=3�4=3�;
where U33 also depends on A and is obtained by substitut-
ing U33 ¼ U11ðn ! 1Þ in (43). Our computation verifies
that the charge radius obeys roughly the proportionality
relation

hr2emi1=2 � ð2:637 fmÞA1=3

but overestimates the experimental value of r0 by approxi-
mately a factor of 2.

Let us now release the constraints on � and � and allow
for small perturbations from the nonlinear � and Skyrme
term. In order to estimate the magnitude of the parameters
� and � in a real physical case, we perform two fits: Set II
optimizes the four parameters �, �, �, and � to better
reproduce the masses of the nuclei while Set III tries to
reach the best agreement with respect to the binding energy
per nucleon, B=A. Both fits are performed with data from
the same subset of the most abundant 144 isotopes as
before. A summary of the results is presented in Table I
while Fig. 1 displays the general behavior of B=A as a
function of the baryon number for Sets I, II, III, and
experimental values. We find that the two new sets of

parameters are very close to Set I. The nonlinear � and
Skyrme parameters � and � are small in magnitude but in
order to make a relevant comparison, it is best to look at the
relative importance of the contributions in (1) and how they
scale with respect to the parameters of the model, namely

�� : ���1=3 : ��1=3 : ��

Set I 95.61 : 0 : 0 : 95.61

Set II 95.46 : 4:408	 10�5 : �2:255	 10�4 : 95.46

Set III 95.74 : 1:418	 10�4 : �7:904	 10�4 : 95.74

forL0,L2,L4, andL6, respectively. Clearly, the nonlinear
� and Skyrme terms are extremely small compared to that
of L0 and L6, i.e. by at least 6 orders of magnitude. This
provides support to the assumption that (23) is a good
approximation to the exact solution. The overall factor
�� remains approximately the same for all the sets but
B=A turns out to be somewhat sensitive to these small
variations because it involves a mass difference. Even
more sensitive to small change in parameters is the charge
radius r0 with 10% decrease between Set II and Set III
(Table I) which suggests that the predicted value of r0
should be taken as an estimate rather than a firm prediction.
Comparing Set II and Set III to the original Skyrme

model with a pion mass term, we may identify

F� ¼ 4
ffiffiffiffi
�

p
; e2 ¼ 1

32�

and using (19) we find

m� ¼ 1:0621
�ffiffiffiffi
�

p :

These quantities, F�, e
2, and m� take values (see Table I)

which are orders of magnitude away for those obtained for
the Skyrme model but this is expected since we have
assumed from the start that � and � are relatively small.
We find also that the Skyrme term has the wrong sign so

it would destabilize the soliton against shrinking if it was
not for the contribution of order six in derivatives which
ensures stability against scale transformations. Indeed the
term of order six was even introduced at one point to
resolve some problems with this sign [12]. In principle
however, a negative coefficient for the Skyrme term could
become problematic since the energy may no longer be
bounded from below. One can argue that for our set of
parameters, the relative weight of theL4 piece with respect
to that of L0 or L6 is so small, i.e. approximately

��1=3=����10�6, and is at least partially canceled by
that of the nonlinear � term L2 so that the energy would
remain bounded from below. To substantiate this point on
the relative contribution of each term, it is useful at this
point to invoke some relevant links noticed by Manton [27]
between an effective SUð2Þ scalar Lagrangian and the
strain tensor in the theory of elasticity. As in nonlinear
elasticity theory, the energy density of a Skyrme field
depends on the local stretching associated with the map
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U:R3 � S3. This is related to the strain tensor at a point in
R3 which is defined as

Mij ¼ @i�@j�;

where � ¼ ð�;�z; �x; �yÞ ¼ �1
4 Tr½fLi; Ljg�;

where i, j refers to the Cartesian space coordinates.Mij is a

3	 3 symmetric matrix with three positive eigenvalues �2
1,

�2
2, and �

2
3. Three fundamental invariants emerge fromMij

in this simple geometrical interpretation due to Manton.
They correspond to the Lagrangians L2, L4, and L6 and
lead to the following energy densities, respectively:

E1¼�ð�2
1þ�2

2þ�2
3Þ

E2¼�j�jð�2
1�

2
2þ�2

2�
2
3þ�2

1�
2
3Þ E3¼3��2

1�
2
2�

2
3; (59)

where we wrote for simplicity � ¼ 3
2

�2

162
, and to the baryon

density

B 0 ¼ 1

2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1�

2
2�

2
3

q
: (60)

Assuming without loss of generality that �2
1 � �2

2 � �2
3,

we find

E 1 � 3��2
3; E2 � �3j�j�2

1�
2
2; E3 � 3��2

1�
2
2�

2
3

for a total energy density

E � �2V þ �j�j
�

þ 3

�
�2
3 �

j�j
�

�
ð�þ ��2

1�
2
2Þ

� �2V � 3j�jð�2
1�

2
2Þ:

So, negative energy density contributions would come

from regions where �2
3 <

j�j
� ��10�6, in other words,

where the baryon density B0 in (60) is very small. Even
for �2

3 ¼ 0 and � negligibly small, the energy density

should be dominated by the potential term �2V. If we
consider the integrated energy density subject to the con-
dition that the total baryon number A is a positive integer,
then we expect the energy to be bounded from below for
our set of parameters.

Clearly for our axial solution, the L2 and L4 pieces of
the Lagrangian do not play the same significant role in the
stabilization of the soliton as they do in the case of the
Skyrme model. The properties of the soliton are almost
completely determined by the values of� and � so F� and
m� may not be so closely related to the nucleon mass scale
as for the original Skyrme model. Perhaps the explanation
for such a departure is that the parameters of the model are
merely bare parameters and they could differ significantly
from their renormalized physical values. In other words,
we may have to consider two quite different sets of pa-
rameters: a first one, relevant to the perturbative regime for
pion physics where F� and m� are close to their experi-
mental value and a second one, that applies to the non-
perturbative regime in the case of soliton. Unfortunately,

one of the successes of the original Skyrme model is that it
established a link between pion physics with realistic
values for F� and m� and baryon masses. Such a link
here is more obscure.
On the other hand, the model in (1) (in the regime where

� and � are small) improves the prediction with regard to
the properties of the nuclei of nuclear masses. Let us look
more closely at the results presented in Fig. 1. These are in
the form of the ratio of the binding energy per nucleon
(B=A) as a function of the baryon (or atomic) number A.
The experimental data (black circles) are shown along with
predicted value (solid lines) for parametrization of Set I,
Set II, and Set III. Set I is the least accurate when it comes
to reproducing the experimental data, especially in the
heavy nuclei sector. Yet, the agreement remains within a
0.4% of the experimental masses which is much better than
with the original Skyrme model. Moreover, since the ratio
B=A depends on the difference between the mass of a
nucleus and that of its constituents, it is sensitive to small
variation of the nuclear masses so the results for B=A may
be considered as rather good. The second fit (Set II), which
is optimized for nuclear masses, overestimates the binding
energies of the lightest nuclei while it reproduces almost
exactly the remaining experimental values (A * 40).
Finally, the least square fit based on B=A (Set III) is the
best fit overall but in order to provide a better representa-
tion for light nuclei, it abdicates some of the accuracy
found in Set II for A * 40.
This apparent dichotomy between light and heavy nuclei

may be partly attributed to the (iso)rotational contribution

to the mass. The size of nuclei grows as A1=3 and their
moments of inertia increase accordingly. Also, the spin of
the most abundant isotopes remains small while isospin
can have relatively large values due to the growing dis-
equilibrium between the number of proton and the number
of neutron in heavy nuclei. Our numerical calculations
reveal that the total effect leads to a (iso)rotational energy
Erot < 1 MeV for A > 10 for all sets of parameters con-
sidered and its contribution to B=A decreases rapidly as A
increases. On the contrary for A < 10 the rotational energy
is responsible for a larger part of the binding energy which
means that B=A should be sensitive to the way the rota-
tional energy is computed. So clearly, the shape of the
baryon density will have some bearing on the predictions
for the small A sector.
Since part of this work is to propose a model with

nonshell configuration, it is relevant to compare our result
with a similar analysis [14] which involves a typical shell-
like configuration. For this purpose we repeated our calcu-
lation omitting the Coulomb and isospin breaking term. It
turns out that both models are equally successful at repro-
ducing data. Minimizing the square root of the mean
squared deviation of B=A from its experimental value gives
almost identical results for both models, � ¼ 0:50 MeV
per nucleon, despite generating completely different
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baryon and energy configurations. In fact, the absence of a
variation in � signals somehow the equal inability for both
models to provide an accurate description of light and
heavy nuclei sectors at the same time. One could improve
the agreement by fitting separately the parameters�, �, �,
and � in the two sectors A > 40 and A < 40. But this would
mean introducing an arbitrary baryon number dependence
on the parameter which could only be justified by introduc-
ing some kind of dynamical effect on �, �, �, and �.

The second motivation for this work regards this addi-
tion of the Coulomb and isospin breaking effect into the
nuclear masses. These are often neglected in the context of
the Skyrme model although they must inevitably be taken
into account for a complete description of the nucleus. The
Coulomb energy and isospin breaking term represent small
corrections to the nuclear mass (of the order of 0.1% and
0.01%, respectively) however our results show that the
Coulomb effect is much more significant in the calculation
of the binding energy. The change in B=A is depicted in
Fig. 2 for Set III in the separation between the red and blue
lines (with and without Coulomb term, respectively). The
effect increases almost linearly with the baryon number up

to approximately 2 MeV per nucleon for the heaviest
nuclei. It represents roughly half the Coulomb effect esti-
mated in the Liquid Drop model ðB=AÞCoulomb¼�aCZ	
ðZ�1ÞA�4=3 where the value of aC¼0:691MeV=nucleon.
On the other hand, the isospin breaking contribution due to
EI remains very small. Despite the magnitude of these
corrections, it turns out that the optimization of the model
parameters only yields a slight improvement of the overall
agreement with � ¼ 0:48 MeV per nucleon.
To summarize, we have proposed a 4-terms model as a

generalization of the Skyrme model. By choosing an ap-
propriate form for the potential V, we allowed for near-
BPS solitons with nonshell configurations for the baryon
density in order to achieve a more realistic description of
nuclei as opposed to the more complex configurations
found in most extensions of the Skyrme model (e.g. A ¼
2 toroidal, A ¼ 3 tetrahedral, A ¼ 4 cubic, . . .). Moreover,
we introduced additional contributions to the mass of the
nuclei coming from the Coulomb energy and an isospin
breaking term. Fitting the model parameters, we find a
remarkable agreement for the binding energy per nucleon
B=A with respect to experimental data. These results sug-
gest that nuclei could be considered as near-BPS
Skyrmions. On the other hand, there remain some caveats.
First, the Skyrme model provides a simultaneous descrip-
tion for perturbative pion interactions and nonperturbative
baryons physics with single realistic values for F� and m�

and baryon masses. The connection between the two sec-
tors here seems to be much more intricate. Also, a much
better agreement could be reached if one could construct a
solution that would describe equally well the light and
heavy nuclei. Finally, one would like ultimately to repro-
duce the observed structure of the nucleus, i.e. a roughly
constant baryon density becoming diffuse at the nuclear
surface which is characterized by a skin thickness parame-
ter. A more appropriate choice of potential may be instru-
mental in achieving some of these goals.
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