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We study the fragmentation of (light) quarks and gluons to hadrons inside a jet of cone size R. This

allows for a more exclusive analysis of fragmentation than is currently the case. The shape of semi-

inclusive cross sections in the hadron energy fraction z is described by fragmenting jet functions, which

we calculate in terms of R and the jet energy E. We introduce a new joint resummation to sum the double

logarithms of R and 1� z in the fragmenting jet functions, which has a similar application to initial-state

radiation at hadron colliders. Our results at next-to-leading logarithmic order indicate that the resumma-

tion of the threshold logarithms of 1� z is already important for z * 0:5 and improves the convergence of

perturbation theory. Our framework may be used to analyze LHC and RHIC data and to test and tune

Monte Carlo event generators.
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I. INTRODUCTION

High-energy processes with an observed hadron in
the final state can be described by factorizing the
short-distance (partonic) physics, which is perturbatively
calculable in QCD, from (universal) non-perturbative con-
tributions, see e.g. Ref. [1]. In this context, the (unpolar-
ized) fragmentation functions (FFs) Dh

i ðz;�Þ [2] encode
information on the transition from an energetic parton i ¼
fg; u; �u; d; . . .g to a hadron h, which carries the fraction z of
its energy, plus a remainder X. The knowledge of both
perturbative and non-perturbative ingredients in factoriza-
tion theorems is crucial to control theoretical predictions.
For example, a better determination of the b-quark FF was
important for resolving a discrepancy between CDF data
and theory for the pT spectrum of J=c [3]. Furthermore,
additional understanding of hadron production at high pT

in pp collisions is also required to determine more accu-
rately the relative suppression of hadron spectra (jet
quenching) seen in heavy-ion collisions [4].

Parametrizations for the FFs have been constrained by
fitting to data for single-inclusive charged hadron produc-
tion in eþe� at next-to-leading order (NLO) in perturba-
tion theory [5,6]. More recently, global analyses have been
performed that also include semi-inclusive deep-inelastic
scattering and/or pp, p �p data from HERA, RHIC, and the
Tevatron [7]. To illustrate the current level of precision, the

dominant D�þ
u ðz;� ¼ mZÞ is determined with uncertain-

ties at the 10% level for z * 0:5 [6]. The FFs of the gluon
and the non-valence quarks are known even less accurately.

In contrast to the inclusive analyses listed above, the
Belle Collaboration is studying light-quark fragmentation
in their on-resonance data, using a cut on the thrust event
shape to remove the large b-quark background [8]. Here,
the fragmentation takes place inside a (hemisphere) jet of

invariant mass s, described by the fragmenting jet func-
tions (FJFs) Gh

i ðs; z; �Þ that we introduced in Ref. [9].
Correspondingly, z should not be too small, to avoid con-
tributions from hadrons outside the jets. For s � �2

QCD,

the FJFs can be perturbatively matched onto the FFs [9],
i.e. Gh

i ¼
P

jJ ij �Dh
j where the convolution is in the

momentum fraction z. In performing this OPE, we assume
that parton and hadron masses1 are negligible compared to
the jet mass. The Wilson coefficients J ij describe emis-

sions from the parent parton at larger virtualities building
up the jet, whereas Dh

j encodes physics at lower scales

where hadronization effects are important.
The one-loop J ijðs; z; �Þ were determined in

Refs. [10,11], and allowed us to calculate in Ref. [11] the
cross section for eþe� ! hXwith a cut on thrust up to next-
to-next-to-leading logarithmic order in soft-collinear effec-
tive theory (SCET) [12]. There we found correlations
between the thrust cut and z that are crucial for the analysis
of the Belle data. Of course, this analysis is subject to non-
perturbative power corrections, which can be sizable at the
Belle energy, and a comparison with data is desirable to
assess their importance.
Here we study fragmentation inside cone jets defined

with a cone jet algorithm. For simplicity we discuss the
case of eþe� ! N jets, but our method can also be applied
to pp collisions.2 Following Refs. [13–15], the cone size is

1The corrections due to the hadron mass mh are of order
m2

h=ðz2Q2Þ, where Q is the scale of the hard interaction. For
light hadrons they are negligible unless z is small.

2For pp collisions the jet algorithms are defined in terms of �
and the pseudo-rapidity � and thus not azimuthally symmetric
around the jet axis, introducing an additional complication. We
assume the cancellation of Glauber gluons in factorization
theorems.
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denoted by R, and a cutoff� is applied on the energy in the
region between jets.3 The jets are required to be energetic
and well separated:

tan 2ðR=2Þ; tan2ðR=2Þ
tan2ðc =2Þ ;

�

Emin

� 1 (1)

where c is the minimum angular separation between
jets and Emin the minimum jet energy. Additional power
corrections due to the jet algorithm are suppressed if R is
not too small [16]; see also Eq. (3). SCET can then be
applied to separate hard, collinear, and soft dynamics,
leading to factorization formulas as in Refs. [13,14].
Schematically, at leading power,

d�h

dz
ðE;RÞ ¼

Z
d�N tr½HNSN�Gh

i ðE; R; z; �ÞY
‘

J‘: (2)

The hard function HN describes the hard collision and the
soft function SN the soft radiation (both are matrices in
color space). For each of the jets there is a jet function J‘
describing the final-state collinear radiation, which is re-
placed by a FJF for the jet in which the hadron is observed
[9]. The phase space is denoted by d�N. The dependence
on the renormalization scale � cancels in the cross section
up to the order that one is working and is used to estimate
the uncertainty from higher-order corrections. Large loga-
rithms of ratios of mass scales are summed by evaluating
each of these functions at their natural scale, where they
contain no large logarithms, and by running them to a
common scale � using their renormalization group equa-
tions. The FJFs with a cone restriction depend on E and R
rather than s, and in the next section we calculate their
matching onto FFs at NLO,

Gh
i ðE; R; z;�Þ ¼ X

i

Z 1

z

dz0

z0
J ijðE; R; z0; �ÞDh

j

�
z

z0
; �

�

�
�
1þO

� �2
QCD

4E2tan2ðR=2Þ
��

: (3)

To avoid large non-perturbative corrections, R should thus
not be too small.4 Because the other ingredients of the
factorization theorem in Eq. (2) do not affect the fragmen-
tation variable z, the shape of the cross section in z is
completely determined by the cone FJF. (This is not the
case when invariant masses are measured, as in Ref. [11],
because invariant masses also receive a contribution from
soft radiation.) The soft function is sensitive to two
different scales [14] leading to non-global logarithms
[17], but this only affects the normalization of the cross
section. Furthermore, we would like to mention that the
generalization of our framework to transverse-momentum-

dependent and polarized FFs can be applied as a tool to
obtain information on the proton spin structure by studying
azimuthal asymmetries for hadron distributions inside a
high-pT jet in transversely polarized pp collisions [18].

II. CALCULATION

We now calculate the one-loop matching coefficients for
the cone FJFs Gh

i ðR; z;�Þ onto FFs. At one loop, the cone
restriction is equivalent to

s � min

�
z

1� z
;
1� z

z

�
4E2tan2ðR=2Þ; (4)

where s is the invariant mass of the jet, z the fragmentation
variable, E the jet energy, and R the cone size. [Note that E
and R appear in the combination E2tan2ðR=2Þ, which is
invariant under boosts along the jet axis.] We may there-
fore obtain the matching coefficients from the bare results

for the standard FJFs in Ref. [11]. We find, using the MS
scheme,

J qqðE; R; z; �Þ
2ð2�Þ3 ¼ �ð1� zÞ þ �sCF

�

�
�ð1� zÞ

�
L2 � �2

24

�

þ PqqðzÞLþ Ĵ qqðzÞ
�
;

J qgðE; R; z; �Þ
2ð2�Þ3 ¼ �sCF

�
½PgqðzÞLþ Ĵ qgðzÞ�;

J ggðE; R; z; �Þ
2ð2�Þ3 ¼ �ð1� zÞ þ �sCA

�

�
�ð1� zÞ

�
L2 � �2

24

�

þ PggðzÞLþ Ĵ ggðzÞ
�
;

J gqðE; R; z; �Þ
2ð2�Þ3 ¼ �sTF

�
½PqgðzÞLþ Ĵ gqðzÞ�; (5)

with the splitting functions in the convention of Eq. (3.7)
in Ref. [19]. Anti-quarks have the same coefficients as
quarks, and J q �q and J qq0 only start at two-loop order. In

Eq. (5),

L ¼ ln
2E tanðR=2Þ

�
(6)

and

Ĵ qqðzÞ ¼ 1

2
ð1� zÞ þ

8<
:
PqqðzÞ lnz z � 1

2

ð1þ z2Þ
�
lnð1�zÞ
1�z

�
þ z � 1

2

;

Ĵ qgðzÞ ¼ z

2
þ PgqðzÞ

8<
: lnz z � 1

2

lnð1� zÞ z � 1
2

;

Ĵ ggðzÞ ¼
8<
:
PggðzÞ lnz z � 1

2
2ð1�zþz2Þ2

z

�
lnð1�zÞ
1�z

�
þ z � 1

2

;

Ĵ gqðzÞ ¼ zð1� zÞ þ PqgðzÞ
8<
: lnz z � 1

2

lnð1� zÞ z � 1
2

:

(7)

3� may also be defined as a jet energy veto, which is
equivalent up to Oð�sÞ.

4From Ref. [16] non-perturbative effects are expected to scale
like 1=R for small R, which is consistent with the leading non-
perturbative correction to the soft function.
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We have cross-checked these results with expressions
for the jet functions Ji with a cone restriction in Ref. [14]
(there called ‘‘unmeasured jet functions’’). The FJFs Gi

and jet functions Ji have the same anomalous dimension
[9], consistent with Eq. (2), which provides a check on the
UV-divergent terms that we encounter in deriving Eq. (5).
The finite terms were checked with the momentum sum
rule [9,11]

X
j

Z 1

0
dzzJ ijðR; z; �Þ ¼ 2ð2�Þ3JiðR;�Þ; (8)

and a new sum rule

Z 1

0
dz½J qqðR;z;�Þ�J q �qðR;z;�Þ�¼2ð2�Þ3JqðR;�Þ:

(9)

This new relation follows from quark-number conservation
in the perturbative calculation of the FJF Gi

q.

III. THRESHOLD LOGARITHMS

Closer inspection reveals thatJ qq andJ gg contain large

threshold logarithms. For example,

J qqðE;R; z; �Þ
2ð2�Þ3 ¼ �sCF

�

�
�ð1� zÞ

�
L2 � �2

24

�
þ 2L

ð1� zÞþ
þ 2

�
lnð1� zÞ
1� z

�
þ
þOð1� zÞ

�
; (10)

which by Eq. (3) leads to the large (double) logarithms

Gh
qðE;R; z; �Þ
2ð2�Þ3 ¼ ln2

�
2ð1� zÞE tanR2

�

�
Dh

qðzÞ þ . . . (11)

We may thus sum both the logarithms of R and the
threshold logarithms by evaluating the FJF at � ¼
2ð1� zÞE tanðR=2Þ. [In the plots we evolve the FJF to� ¼
2E tanðR=2Þ, to remove the z dependence from this scale.]
Fig. 1 shows the improved convergence of perturbation
theory arising from threshold resummation, which will be
discussed more extensively in the next section. We stress
that we do not need to perform a threshold expansion;
therefore our results are also valid away from the threshold
region.
This improvement holds to all orders in perturbation

theory because we find that the logarithms of R and
1� z are tied together through the anomalous dimension
of J qq.

5 Using Eq. (3), this can be obtained from the

anomalous dimension of the (unmeasured) jet function
[13,14] and the FF [20],

�J qq
¼ �2�q

�
L�ð1� zÞ þ 1

ð1� zÞþ
�

þ ~�J�ð1� zÞ þOð1� zÞ: (12)

Here �q ¼ �sCF=�þOð�2
sÞ is the (quark) cusp anoma-

lous dimension. The non-cusp anomalous dimension ~�J
only starts at two loops, which is reflected in the absence
of single logarithms in Eqs. (10) and (11). In moment
space one can see explicitly how the logarithm of R and
the 1=ð1� zÞþ combine because the Nth moment of
1=ð1� zÞþ is � lnN � �E.
The above discussion applies to J gg as well. In contrast,

the off-diagonal J qg and J gq do not contain threshold

logarithms, and their contribution should thus be evaluated
at the appropriate scale � ¼ 2E tanðR=2Þ.

FIG. 1 (color online). The FJF for u ! �þ at LL and NLL order for E ¼ 100 GeV and R ¼ 0:4. The bands show the perturbative
uncertainties from varying the scale in the matching onto D�þ

j up and down by factors of two, and then evolving G�þ
u to � ¼

2E tanðR=2Þ. For reference we include the LO result (where� is the jet energy E) in the left panel. In the middle panel the same curves
and bands relative to this LO result are shown. The dotted lines correspond to the central values without threshold resummation, for
which the uncertainties are shown in the right panel.

TABLE I. Order counting for the matching coefficients, the
non-cusp and cusp anomalous dimension, and the �s running.

J ij ~� � 	

LO 0-loop � � 1-loop

NLO 1-loop � � 2-loop

LL 0-loop � 1-loop 1-loop

NLL 1-loop 1-loop 2-loop 2-loop

5This requires the all-orders structure of the jet function
anomalous dimension, which is known for hemisphere invariant
mass jets, but not established for jet algorithms.
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Our new joint resummation can also be used in the
standard FJFs Gh

i ðs; z; �Þ of Refs. [9–11]. Here, the scale
choice �2 ¼ ð1� zÞs sums both the logarithms of s and
1� z. We have checked that this significantly improves the
convergence of perturbation theory at large z.

Similarly, for initial-state jets described by beam func-
tions Biðt; x; �Þ [21], we find that the logarithms of t and
1� x can be simultaneously resummed by evaluating the
flavor-diagonal terms for matching beam functions onto
PDFs at the scale �2 ¼ ð1� xÞt. At the LHC, the momen-
tum fraction x is typically small, suggesting that threshold
resummation is less important than in the case studied here.
However, it has been argued that the logarithms of 1� x
are dynamically enhanced through the shape of the PDFs
[22]. A detailed study is left for future work.

IV. RESULTS

We now show some numerical results for fragmentation
inside a cone jet. Our order counting is shown in Table I.
As input, we use the HKNS FFs [6] at LO or NLO and their
value for �s.

We first consider a fixed cone R ¼ 0:4 and study the
convergence of our resummed result. Fig. 1 shows the
central values and perturbative uncertainties for the u !
�þ FJF at LL and NLL. The middle and right panels show
these results relative to the LO curve, making the separa-
tion between the central curves and the size of the uncer-
tainties more visible. As expected, the cone restriction
suppresses the small z region because at large z the hadron
carries off most of the energy and there is not much addi-
tional radiation that would be subject to the cone restric-
tion. As is clear from comparing the dotted with the solid
curves, the effect of threshold resummation becomes im-
portant at z * 0:5. Including threshold resummation im-
proves the convergence and leads to smaller uncertainties.
At small z, the difference between LL and NLL is not fully
captured by the uncertainty band. However, in this region
the uncertainties on the FFs (which are not shown here)
dominate.

We have studied similar plots for d ! �þ and g ! �þ.
Here the convergence is not as good when the dominant

mixing contribution involvingD�þ
u (andD�þ

�d
) turns on. For

g ! �þ and d ! �þ, this happens at NLO and NNLO,
respectively.
In Fig. 2 we study the effect of varying the cone size R.

We stress that the normalization of the curves for different
R should not be compared because other ingredients in the
factorization theorem affect normalization of the cross
section (the shape in z is entirely determined by G). For
u ! �þ and d ! �þ the small z region gets suppressed
relative to the large z region as one reduces the cone size, as
expected. For g ! �þ the bump-shaped enhancement at
intermediate z is mainly due to the J gq contribution.

V. CONCLUSIONS

Our framework leads to a reliable description of frag-
mentation within an identified jet, providing the tools for a
more exclusive study of fragmentation. This can be used to
reduce the background from other processes, to help iden-
tify underlying partonic structures, and to enable novel
tests of the universality of FFs. Our setup provides accurate
analytical predictions, where large logarithms are properly
summed, for single hadron spectra in a jet that can be
used to tune Monte Carlo event generators. This will
become more and more relevant as the determination of
the fragmentation functions becomes more accurate.
We have for the first time established a connection between
the resummation of logarithms for exclusive jet production
and threshold resummation, and have shown the numeri-
cal importance of their interplay in the case of jet
fragmentation.
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FIG. 2 (color online). The FJF for u; d; g ! �þ is shown at NLL order for E ¼ 100 GeV. The curves are for R ¼ 0:2, 0.4, 0.6, 0.8
and are shown relative to the R ¼ 1 result.
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