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In a series of papers, we have established the existence of two gauge-invariant decompositions of the

nucleon spin, which are physically nonequivalent. The orbital angular momenta of quarks and gluons

appearing in these two decompositions are gauge-invariant dynamical orbital angular momenta and

‘‘generalized’’ canonical orbital angular momenta with gauge-invariance, respectively. The key quantity,

which characterizes the difference between these two types of orbital angular momenta is what-we-call

the potential angular momentum. We argue that the physical meaning of the potential angular momentum

in the nucleon can be made more transparent, by investigating a related but much simpler example from

electrodynamics. We also make clear several remaining issues in the spin and momentum decomposition

problem of the nucleon. We clarify the relationship between the evolution equations of orbital angular

momenta corresponding to the two different decompositions above. We also try to answer the question

whether the two different decompositions of the nucleon momentum really lead to different evolution

equations, thereby predicting conflicting asymptotic values for the quark and gluon momentum fractions

in the nucleon.
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I. INTRODUCTION

The nucleon spin puzzle raised by the EMC measure-
ment in 1988 is still one of the fundamental unsolved
problems in QCD [1,2]. The current status and homework
of the nucleon spin problem can very briefly be summa-
rized as follows. (For recent reviews, see, for example,
[3,4].) First, the intrinsic quark spin contribution (or the
quark polarization in the nucleon) was fairly precisely
determined to be around 1=3 [5–7]. Second, gluon polar-
ization is likely to be small, although with large uncertain-
ties [8–11]. So, what carries the remaining 2=3 of the
nucleon spin? That is a fundamental question of QCD
which we want to answer. To answer this question unam-
biguously, we cannot avoid to clarify the following issues.
What is a precise definition of each term of the decom-
position based on quantum chromodynamics (QCD)? How
can we extract individual term by means of direct mea-
surements? Let us call it the nucleon spin decomposition
problem [12–17].

The recent papers by Chen et al. [18,19] arose much
controversy on the feasibility as well as the observability of
the complete decomposition of the nucleon spin [20–42].
In the previous papers [23,24], we have established the
existence of two physically nonequivalent decompositions
of the nucleon spin, both of which are gauge-invariant. The
quark and gluon intrinsic spin parts of these two decom-
positions are nothing different in these two decomposi-
tions. The difference appears in the orbital parts. The quark
and gluon orbital angular momenta appearing in one de-
composition is gauge-invariant dynamical (or mechanical)

orbital angular momentum (OAM), while those appearing
in another decomposition is generalized canonical OAM
having gauge-invariance. The key quantity, which charac-
terizes the difference between these two types of OAMs, is
what-we-call the potential angular momentum [23].
Understanding its physical meaning is therefore of vital
importance to make clear why there exist two decomposi-
tions at all and in what essential respects they are different.
One of the purposes of the present paper is to clarify the
physical meaning of this potential angular momentum term
in a clearest fashion with the help of a plainer example
from electrodynamics, i.e. through an analysis of a system
of charged particles and photons, analogous to a system of
color-charged quarks and gluons.
We also try to clarify several other issues left in the

decomposition problem of the nucleon spin momentum. It
is known that there also exist two different gauge-invariant
decompositions of the nucleon momentum into the contri-
butions of quarks and gluons. On the basis of a gauge-
invariant decomposition of the nucleon momentum, which
is different from the standardly-known one, Chen et al.
threw doubt on a common wisdom of deep inelastic scat-
tering physics that the gluons carry about half of the
nucleon momentum in the asymptotic limit [19]. To verify
the validity of this claim is of fundamental importance,
since it challenges our common knowledge on one of the
basics of perturbative QCD.
Also important to understand is a puzzling observation

on the scale dependencies of the quark and gluon OAMs. In
view of the physical inequivalence of the two types of
OAMs, i.e. the dynamical OAMs and the (generalized)
canonical OAMs, one might expect that they obey different
evolution equations. However, the past researches indicate*wakamatu@phys.sci.osaka-u.ac.jp
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that they do obey the same evolution equation at least at the
1-loop level [43–50]. The reason of this somewhat myste-
rious observation need explanation.

The plan of the paper is as follows. To make the paper
self-contained, we briefly summarize, in Sec. II, the current
status of the nucleon spin decomposition problem from our
own viewpoint. Next in Sec. III, we clarify the physical
meaning of the potential angular momentum, which char-
acterizes the difference between the two types of OAMs,
and consequently the difference between the two inequi-
valent decompositions of the nucleon spin. Section V is
devoted to the discussion on the relation between the two
different decompositions of the nucleon momentum. It will
be shown that the two decompositions lead to the same
evolution equation at least for the longitudinal momentum
fractions of quarks and gluons, thereby predicting the same
asymptotic limits for them. The relation between the evo-
lution equations for the quark and gluon OAMs corre-
sponding to the two different decompositions of the
nucleon spin is discussed in Sec. V. Then, we summarize
what we have found in Sect. VI.

II. BRIEF REVIEW OF THE NUCLEON SPIN
DECOMPOSITION PROBLEM—WHERE

ARE WE NOW?

As is widely known, there have been two popular
decompositions of the nucleon spin. One is the Jaffe-
Manohar decomposition [12], and the other is the Ji
decomposition [13,14]. Only the intrinsic quark spin part
is common in these popular decompositions and the other
parts are all different. A disadvantage of the Jaffe-Manohar
decomposition is that each term is not separately gauge
invariant except for the quark spin part. On the other hand,
each term of the Ji decomposition is separately gauge
invariant. Unfortunately, further gauge-invariant decompo-
sition of Jg into its spin and orbital parts is given up in this
widely-known decomposition. Especially annoying fact
was that the sum of the gluon spin and OAM in the
Jaffe-Manohar decomposition does not coincide with the
total angular momentum of gluons in the Ji decomposition.
Undoubtedly, this observation is inseparably connected
with the fact that the quark OAMs in the two decomposi-
tions are also different.

In fact, first pay attention to the difference of the quark
OAM parts in the two decompositions. What appears in the
Jaffe-Manohar decomposition is the so-called canonical
OAM, which is not gauge-invariant. On the other hand,
what appears in the Ji decomposition is the so-called
dynamical (or mechanical) OAM, which is manifestly
gauge-invariant [51]. As is well-known, the gauge princi-
ple in physics dictates that observables must be gauge-
invariant. Because of this reason, the observability of the
canonical OAM has been questioned for a long time. On
the other hand, Ji showed that the gauge-invariant dynami-
cal quark OAM can be extracted from the combined

analysis of unpolarized generalized parton distributions
and the longitudinally polarized parton distributions
[13,14].
Some years ago, however, Chen et al. proposed a new

gauge-invariant decomposition of nucleon spin [18,19].
The basic idea is to decompose the gluon field A into
two parts, i.e. the physical part Aphys and the pure-gauge

part Apure, which is a generalization of the decomposition

of the photon field A in QED into the transverse compo-
nentA? and the longitudinal componentAk. In addition to
general conditions of decomposition, by imposing one
plausible theoretical constraint, Chen et al. proposed a
new decomposition of the nucleon spin. A prominent
feature of their decomposition is that each term is sepa-
rately gauge-invariant, while allowing the decomposition
of the total gluon angular momentum into its spin and
orbital parts. Another noteworthy feature of this decom-
position is that it reduces to the gauge-variant decomposi-
tion of Jaffe and Manohar in a particular gauge,Apure ¼ 0,

A ¼ Aphys [12].

Chen et al.’s papers [18,19] arose much controversy on
the feasibility as well as the observability of the complete
decomposition of the nucleon spin [20–38]. We believe
that we have arrived at one satisfactory solution to the
problem, through a series of papers [23–25] In the 1st
paper [23], we have shown that the way of gauge-invariant
decomposition of nucleon spin is not necessarily unique,
and proposed another gauge-invariant decomposition. The
characteristic features of this decomposition is as follows.
First, the quark part of this decomposition is common with
the Ji decomposition, including both of spin and OAM
parts. Second, the quark and gluon-spin parts are common
with the Chen decomposition. A crucial difference with the
Chen decomposition appears in the orbital parts. The sum
of the quark and gluon OAMs in both decompositions is
just the same, but each term is different. The difference of
the gluon OAM in the two decompositions, which is equal
to the difference of the quark OAM in the two decompo-
sitions with an extra minus sign, is given in the following
form:

L g �L0g ¼ �ðLq �L0qÞ ¼
Z

�aðx�Aa
physÞd3x

¼
Z

c yx�Aphysc d3x; (1)

and we call it the potential angular momentum by the
following reason. (In the above equation, Lq and Lg stand
for the quark and gluon OAMs in our decomposition, while
L0q and L0g the quark and gluon OAMs in the decompo-
sition of Chen et al.) That is, the QED correspondent of this
term is nothing but the angular momentum carried by the
electromagnetic field or potential, which appears in the
famous Feynman paradox of classical electrodynamics
[52]. An arbitrariness of the decomposition arises, because
this potential angular momentum term is solely gauge-
invariant. This means that one has a freedom to shift this
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potential OAM term from the gluon OAM part to the quark
OAM part in our decomposition, which in fact leads to the
quark OAM in the Chen decomposition in such a way that

Lq þ potential angular momentum

¼
Z

c yx� ðp� gAÞc d3xþ g
Z

c yx�Aphysc d3x

¼
Z

c yx� ðp� gApureÞc d3x ¼ L0q: (2)

Next, in the 2nd paper [24], we found that we can make a
covariant extension of gauge-invariant decomposition of
the nucleon spin. Covariant generalization of the decom-
position has several advantages:

(i) First, it is useful to find relations to deep inelastic
scattering (DIS) observables.

(ii) Second, it is vital to prove frame independence of
the decomposition.

(iii) Third, it generalizes and unifies the previously-
known nucleon spin decompositions.

Basically, we find two physically different decomposi-
tions. The decomposition (I) contains the well-known
Ji decomposition [13], although it also allows gauge-
invariant decomposition of gluon total angular momentum
into its spin and OAM parts. The decomposition (II) con-
tains in it three known decomposition, i.e. those of
Bashinsky-Jaffe [15], of Chen et al. [18,19], and of Jaffe-
Manohar [12], as we shall discuss below. The basis of our
treatment is a decomposition of the full gauge field into its
physical and pure-gauge parts, similar to Chen et al.
[18,19]. Different from their treatment, however, we im-
pose only the following quite general conditions:

F��
pure � @�A�

pure � @�A�
pure � ig½A�

pure; A�
pure� ¼ 0; (3)

and

A�
physðxÞ ! UðxÞA�

physðxÞUyðxÞ; (4)

A�
pureðxÞ ! UðxÞ

�
A�
pureðxÞ þ i

g
@�
�
UyðxÞ: (5)

The first is the pure-gauge condition for A�
pure, while the

second are the gauge transformation properties for these
two components. (These transformation properties indi-
cates that the physics is basically contained in the physical
part A�

phys, while the pure-gauge part A
�
pure carries unphys-

ical gauge degrees of freedom.) Actually, these conditions
are not enough to fix gauge uniquely. However, the point of
our theoretical scheme is that we can postpone a complete
gauge fixing until a later stage, while accomplishing a
gauge-invariant decomposition of M��� based on the
above conditions alone. Still, we find the way of gauge-
invariant decomposition is not unique and are left with two
possibilities.

We start with the decomposition (II) given in the form:

M���¼M0���
q-spinþM0���

q-OAMþM0���
G-spinþM0���

G-OAMþM0���
boost ;

(6)

with

M
0���
q-spin ¼ M

���
q-spin; (7)

M
0���
q-OAM ¼ �c��ðx�iD�

pure � x�iD�
pureÞc ; (8)

M
0���
G-spin ¼ M

���
G-spin; (9)

M
0���
G-OAM ¼ �2Tr½F��ðx�D�

pure � x�D�
pureÞAphys

� �; (10)

and

M0���
boost ¼ �1

2 TrF
2ðx�g�� � x�g��Þ: (11)

At first sight, this decomposition looks like a covariant
generalization of Chen et al.’s decomposition, in the sense
that the quark OAM part contains pure gauge-covariant
derivative. However, a crucial difference is that we have
not yet fixed the gauge (and the Lorentz frame) explicitly.
The point is that, as long as the general conditions (3)–(5)
are satisfied, each term of the decomposition (II) is never
mixed up under general color gauge transformation of
QCD, which means that each term is separately gauge-
invariant [24]. These conditions are general enough, so that
they are expected to be satisfied by most gauges used in
QCD. The fact that the Bashinsky-Jaffe decomposition is
contained in our more general decomposition (II) was
explicitly verified in [24]. It is also logically plausible
that the Chen et al. decomposition is contained in our
decomposition (II). This is because, although their decom-
position is given in a noncovariant manner like the for-
mulation of electrodynamics to be discussed in Sec. II,
their decomposition of the gluon field A into Aphys and

Apure naturally satisfies our general conditions (3)–(5). In

view of the fact that both frameworks of Bashinsky-Jaffe
and of Chen et al. are contained in our more general gauge-
invariant decomposition, we naturally expect that both
give the same answer at least for the momentum sum
rule of QCD as well as for the longitudinal spin decom-
position of the nucleon, which can be formulated frame-
independently.
In a recent paper, Ji, Xu, and Zhao threw doubt on this

viewpoint [39]. According to them, the Bashinsky-Jaffe
decomposition is one gauge-invariant extension (GIE) of
gauge-variant Jaffe-Manohar decomposition based on the
light-cone gauge, whereas the Chen el al.’s decomposition
is another GIE based on the Coulomb gauge. (Concerning
the idea of GIE, see also [40].) Their claim is that, since
they are different GIEs, there is no reason to expect that
they give the same physical predictions. However, it seems
to us that their conclusion is heavily influenced by the
following observation. That is, the explicit calculations of
the evolution matrices for the momentum fractions of
quarks and gluons by Chen et al. based on the generalized
Coulomb gauge are advertised to give totally different
answers from the standardly-believed ones, which the
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treatment in the light-cone gauge can reproduce as we shall
see later. However, no one has checked the validity of their
Coulomb-gauge calculation yet. What would one con-
clude, if this discrepancy simply arises from some techni-
cal mistakes in the Coulomb-gauge treatment of the
problem? We shall come back to this question at the end
of Sec. IV.

Next we turn to the decomposition (I) given in the form:

M���¼M
���
q-spinþM

���
q-OAMþM

���
G-spinþM

���
G-OAMþM

���
boost;

(12)

with

M
���
q-spin ¼ 1

2�
���� �c���5c ; (13)

M
���
q-OAM ¼ �c��ðx�iD� � x�iD�Þc ; (14)

M���
G-spin ¼ 2Tr½F��A�

phys � F��A�
phys�; (15)

M
���
G-OAM ¼ �2Tr½F��ðx�D�

pure � x�D�
pureÞAphys

� �;
þ 2Tr½ðD�F

��Þðx�A�
phys � x�A�

physÞ�; (16)

M���
boost ¼ M0���: (17)

It differs from the decomposition (II) in the orbital parts.
The quark OAM part contains full covariant derivative
contrary to the decomposition (II). Correspondingly, the
gluon OAM part is also different. It contains a covariant
generalization of the potential angular momentum term.

It was sometimes criticized that there are so many de-
compositions of the nucleon spin. As already explained, we
do not take this viewpoint. We claim that there are only two
physically nonequivalent decompositions. (We shall de-
velop an argument which gives a support to this viewpoint,
in the next section, by utilizing a plainer example from
electrodynamics.) One is an extension of the Ji decompo-
sition, which also fulfills the decomposition of the gluon
total angular momentum into the intrinsic spin and orbital
part, while the other is a decomposition that contains in it
three known decompositions as gauge-fixed forms of more
general expression. (We however recall that there a criti-
cism to this idea [39].) The orbital OAMs appearing in these
two decompositions are, respectively, the dynamical OAMs
and the generalized canonical OAMs. Since both decom-
positions are gauge-invariant, there arises a possibility that
they both correspond to observables.

A clear relation with observables was first obtained for
the decomposition (I) [24]. The keys are the following
identities, which hold in our decomposition (I). For the
quark part, it holds that

x�T��
q � x�T��

q ¼ M���
q-spin þM���

q-OAM þ total divergence;

(18)

while for the gluon part we have

x�T��
g � x�T��

q � boost ¼ M���
g-spin þM���

g-OAM

þ total divergence: (19)

Here, T��
q and T��

g , respectively, stand for the quark and
gluon parts of QCD energy-momentum tensor in the
Belinfante symmetrized form. By evaluating the nucleon
forward matrix element of the above identities, we can
prove the following important relations.
First, for the quark part, we get

Lq�hp " jM012
q-OAMjp "i

¼1

2

Z 1

�1
x½Hqðx;0;0ÞþEqðx;0;0Þ�dx�1

2

Z 1

�1
�qðxÞdx;

(20)

with

M012
q-OAM ¼ �c

�
x� 1

i
D

�
3
c �

8>>><
>>>:

�c

�
x� 1

i r
�
3
c

�c

�
x� 1

i Dpure

�
3
c :

(21)

We find that the proton matrix element of our quark OAM
operator coincides with the difference between the 2nd
moment of generalized parton distribution (GPD) H þ E
and the 1st moment of the longitudinally polarized distri-
bution of quarks. What should be emphasized here is that
full covariant derivative appears, not a simple derivative
operator nor pure-gauge covariant derivative. In other
words, the quark OAM extracted from the combined analy-
sis of GPD and the polarized parton distribution function
(PDF) is dynamical (or mechanical) OAM not canonical
OAM. This conclusion is nothing different from Ji’s find-
ing [13].
Also for the gluon part, we find that the difference

between the 2nd moment of gluon GPD H þ E and the
1st moment of polarized gluon distribution coincides with
the proton matrix element of our gluon OAM operator
given as follows:

Lg � hp " jM012
g-OAMjp "i

¼ 1

2

Z 1

�1
x½Hgðx; 0; 0Þ þ Egðx; 0; 0Þ�dx�

Z 1

0
�gðxÞdx;

(22)

with

M012
g-OAM ¼ 2Tr½Ejðx�DpureÞ3Aphys

j �: canonical OAM
þ 2Tr½�ðx�AphysÞ3�: potential OAM term:

(23)

Namely, the gluon OAM extracted from the combined
analysis of GPD and polarized PDF contains a potential
OAM term, in addition to canonical OAM. (Notice that
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this also clarifies the reason why the sum of the gluon spin
and OAM in the Jaffe-Manohar decomposition does not
coincide with the total gluon angular momentum in the Ji
decompostion.) It would be legitimate to call the whole
part the gluon dynamical or mechanical OAM.

Here, we want to make several important remarks on the
above sum rules. First, our decomposition has a Lorentz-
frame-independent meaning. This should be clear from
the fact that the GPDs and PDFs appearing in our sum
rules are manifestly Lorentz-invariant quantities. Recently,
Goldman argued that the nucleon spin decomposition is
frame-dependent [53]. This is generally true. In fact,
Leader recently proposed a sum rule for the transverse
angular momentum [54]. In this sum rule, P0, the energy
of the nucleon, appears. It is clear that this sum rule is
manifestly frame-dependent. Note, however, that our main
interest here is the simplest and most fundamental longi-
tudinal spin decomposition of the nucleon. We emphasize
once again that the longitudinally spin decomposition is
definitely frame-independent. We think it a welcome fea-
ture, since, then the decomposition can be thought to reflect
intrinsic properties of the nucleon, which are independent
of the velocity which the nucleon is running with.
Underlying reason why the longitudinal spin sum rule is
Lorentz-frame-independent seems very simple. The OAM
component along the longitudinal direction comes from the
motion in the perpendicular plane to this axis, and such
transverse motion is not affected by the Lorentz trans-
formation along this axis.

Although our decomposition looks quite satisfactory in
many respects, one subtle question remained. It is a role of
quantum-loop effects. Is the longitudinal gluon polariza-
tion �G gauge-invariant even at quantum level? This is a
fairly delicate question. In fact, despite the existence of
several formal proof showing the gauge-invariance of �G
[45–49], it was sometimes claimed that �G has its mean-
ing only in the light-cone gauge and infinite-momentum
frame [43,55]. More specifically, in an influential paper,
Hoodbhoy, Ji, and Lu claim that �G evolves differently in
the Feynman gauge and the LC gauge [55]. However, the
gluon-spin operator used in their Feynman gauge calcula-
tion is given by

Mþ12
g-spin ¼ 2Tr½Fþ1A2 � Fþ2A1�; (24)

which is not gauge-invariant, and is delicately different
from our gauge-invariant gluon-spin operator given as

Mþ12
g-spin ¼ 2Tr½Fþ1A2

phys � Fþ2A1
phys�; (25)

The problem is how to incorporate this difference into the
Feynman rule for evaluating 1-loop anomalous dimension
of the quark and gluon-spin operators. This problem was
attacked and solved in the paper [25]. We find that the
calculation in the Feynman gauge (as well as in any
covariant gauge including the Landau gauge) reproduces
the answer obtained in the LC gauge, which is also the

answer obtained in the famous Altarelli-Parisi method
[56]. (This conclusion for the evolution of �G however
contradicts the one given in [34].) Our finding is important
also from another context. So far, a direct check of the
answer of Altarelli-Pasiri method for the evolution of �G
within the operator-product-expansion (OPE) framework
was limited to the LC gauge, because it was believed that
there is no gauge-invariant definition of gluon spin in the
OPE framework. This was the reason why the question of
gauge-invariance of�G has been left in unclear status for a
long time.
After establishing satisfactory natures of the decompo-

sition (I), now we turn our attention to another decompo-
sition (II) According to Chen et al., the greatest advantage
of the decomposition (II is that their quark OAM operator
L0

q satisfies the standard commutation relation of angular

momentum:

L 0
q �L0

q ¼ iL0
q; (26)

due to the property r�Apure ¼ 0. This property was

claimed to be essential for its physical interpretation as
an OAM. However, this is not necessarily true as is clear
from the papers [57,58], which treats a similar problem in
QED. It was shown there that the spin and OAM operators
of the photons do not satisfy the ordinary commutation
relation of angular momentum (SUð2Þ algebra) separately.
This is not surprising at all. In fact, it is true that the total
momentum as well as the total angular momentum opera-
tors of a composite system must satisfy the Poincare alge-
bra, because, in quantum field theory, a physical state of a
composite particle must be one of the irreducible repre-
sentations of the Poincare group. However, it is not an
absolute demand of the Poincare symmetry that the mo-
mentum and the angular momentum of each constitute of a
composite particle satisfies the Poincare algebra separately.
Then, the claimed superiority of the decomposition (II)
over (I) is not actually present. Nevertheless, since the
decomposition (II) is also gauge-invariant, there still re-
mains a possibility that it can be related to observables.
Recently, Hatta made an important step toward this

direction [29] based on his decomposition formula of the
physical- and pure-gauge components of gluon fields
proposed by himself in [28]. Starting from the gauge-
invariant expression of the Wigner distribution also called
the generalized transverse-momentum-dependent distribu-
tions (GTMDs), which depends not only the longitudinal
and transverse momenta but also the momentum transfer of
the target nucleon, he showed that the nucleon matrix
element of the generalized canonical OAM can be related
to a weighted integral of a certain GTMD. It is important
to recognize that this quantity does not appear in the stan-
dard classification of transverse-momentum-dependent
distributions (TMDs) by the following reason. To explain
it, we first recall the definition of the most fundamental
GTMD appearing in the classification given in [59]:
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W½�þ�ðx; 	; q2T; qT ��T;�
2
T ;
Þ

¼ 1

2

Z dz�d2zT
ð2�Þ2 ek�zhp0; �0j �c

�
� z

2

�
�þW

�
� z

2
;
z

2

��������n
�
c

�
z

2

�
jp; �izþ¼0

¼ 1

2M
�uðp0; �0Þ

�
F1;1 þ i�iþqiT

Pþ F1;2 þ i�iþ�i
T

Pþ F1;3 þ i�ijqiT�
j
T

M2
F1;4

�
uðp; �Þ: (27)

The GTMD defined by the 2nd line of the above equation
generally contains 4 pieces of invariant functions
F1;iðx; 	; q2T;�2

T; 
Þ with i ¼ 1; . . . ; 4, which are functions
of the Bjorken variable x, the skewedness parameter
	, the transverse-momentum square q2T , the transverse-
momentum-transfer square �2

T , and the parameter 
 char-
acterizing the nature of the functions under time-reversal.
In the forward limit, the first and the second pieces, re-
spectively, reduce to the usual spin-independent TMD and
the naively time-reversal odd Sivers function. On the other
hand, the last two terms disappear in the forward limit,
�? ! 0. Nonetheless, within the framework of a quark
model, which does not pay much attention to the gauge-
invariance issue, Lorce and Pasquini showed [60] that a
weighted integral of this 4th function is related to the
nucleon matrix element of the canonical OAM given as

Lcan ¼ �
Z

dxd2qT
q2T
M2

Fq
1;4ðx; 0; q2T; 0; 0Þ: (28)

This is just the sum rule, to which Hatta gave a gauge-
invariant meaning, i.e. the meaning within the framework
of QCD as a color gauge theory. In this sense, Hatta’s work
opened up a possibility that the OAM appearing in the
decomposition (II) may also be related to observables.
Since the relation between the OAM appearing in the
decomposition (I) and the observables is already known,
this means that we may be able to isolate the correspondent
of potential angular momentum term appearing in
Feynman’s paradox as a difference between the two
OAMs as

Lpot ¼ Lmech � L“can”: (29)

However, one must be careful about the presence of very
delicate problem on the sum rules containing GTMDs and/
or ordinary TMDs. (See, for example, the textbook [61],
which discusses the delicacies of TMDs in full detail.)
Once quantum-loop effects are taken into account, the
very existence of TMDs satisfying gauge-invariance and
factorization (universality or process independence) simul-
taneously is being questioned. Is process-independent ex-
traction of L“can” really possible? One must say that it is
still a challenging open question.

III. WHAT IS ‘‘POTENTIAL ANGULAR
MOMENTUM’’?

We have shown that the key quantity, which distin-
guishes the two physically different nucleon spin

decompositions, is what we call the potential angular
momentum term. To understand its physical meaning
more thoroughly, and also to understand the reason why
there exist two physically different decompositions with
gauge-invariance, we find it very instructive to study easier
QED case, especially an interacting system of charged
particles and photons [62–64]. The total Hamiltonian of
such system is given by

H ¼ X
i

1

2
mi _r

2
i þ

1

2

Z
d3r½E2 þ B2�: (30)

Here the 1st and the 2nd terms of the right-hand side (rhs),
respectively, stand for the mechanical kinetic energy of the
charged particles and the total energy of the electromag-
netic fields. As is well-known, the vector potential Aðr; tÞ
of the photon can be decomposed into longitudinal and
transverse components as

A ¼ Ak þA?; (31)

with the properties

r�Ak ¼ 0; r �A? ¼ 0: (32)

We emphasize that this longitudinal-transverse decompo-
sition is unique, once the Lorentz frame of reference is
fixed. Under a general gauge transformation given as

A0 ! A00 ¼ A0 � @

@t
�ðxÞ; (33)

A ! A0 ¼ Aþr�ðxÞ; (34)

the longitudinal component Ak transforms as

A k ! A0
k ¼ Ak þ r�ðxÞ; (35)

while the transverse component A? is invariant, i.e.

A? ! A0
? ¼ A?; (36)

indicating that Ak carries unphysical gauge degrees of

freedom.
To avoid a misunderstanding, we think it is important to

clarify the fact that the decomposition (31) itself has
nothing to do with Coulomb-gauge fixing. The Coulomb-
gauge condition is to require that

r �A ¼ 0: (37)

Since r �A? ¼ 0 by definition, this is equivalent to
requiring that
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r �Ak ¼ 0: (38)

This is the Coulomb-gauge fixing condition, which works
to eliminate unphysical gauge degrees of freedom Ak. In
fact, once this condition is imposed, Ak is divergence-free
as well as irrotational, so that we can take

A k ¼ 0 (39)

without loss of generality.
Naturally, the separation of the vector potentialA of the

photon into the transverse (physical) and longitudinal
(pure-gauge) components is frame-dependent. However,
it is also true that we can start this decomposition in an
arbitrary Lorentz frame. The Coulomb-gauge condition
r �A ¼ 0 is definitely Lorentz noncovariant, different
from the so-called Lorenz gauge condition @�A

� ¼ 0. It

is known that the 4-vector potential A� in the Lorenz gauge
satisfies the Lorenz gauge condition @�A

� ¼ 0 even after

Lorentz transformation to another frame. On the other
hand, when the 3-vector potential A in a certain Lorentz
frame is prepared to satisfy the Coulomb-gauge condition
r �A ¼ 0, the Lorentz-transformed vector potential A0
does not satisfyr0 �A0 ¼ 0. Here, we need a further gauge
transformation in order to get A0 satisfying r0 �A0 ¼ 0.
However, this does not make any trouble because we could
start the whole consideration in the transformed frame and
could impose the condition r �A ¼ 0 in that frame. (An
equivalent but formally more convenient framework for
showing the covariance of the Coulomb-gauge treatment
would be to require somewhat nonstandard Lorentz trans-
formation property for the 4-vector potential of the gauge
field as described in the textbook of Bjorken and Drell [65]
as well as in the recent paper [42].) The fact is that
observables (which must of course be gauge-invariant)
are independent of the choice of gauge. Both of the
Lorentz gauge and the Coulomb gauge give exactly the
same answer for physical observables. The is just the core
of Maxwell’s electrodynamics as a Lorentz-invariant
gauge theory.

To return to our main discussion, in parallel with the
above decomposition of the vector potentialA, the electric
field can also be decomposed into longitudinal and trans-
verse components as

E ¼ Ek þE?; (40)

with

E k ¼ �rA0 � @Ak
@t

; (41)

E? ¼ �@A?
@t

; (42)

while the magnetic field is intrinsically transverse

B ¼ r�A ¼ r�A? ¼ B?: (43)

As a consequence, the photon part of the total energy can
be decomposed into two pieces, i.e. the longitudinal part
and the transverse part, as

H¼XN
i�1

1

2
mi _r

2
i þ

1

2

Z
d3rE2

kþ
1

2

Z
d3r½E2

?þB2
?�: (44)

Now, by using the Gauss law r �Ek ¼ �, it can be shown

that the longitudinal part is nothing but the Coulomb
energy between the charged particles (aside from the
self-energies), so that we can write as

H ¼ XN
i¼1

1

2
mi _r

2
i þ Vcoul þHtrans; (45)

with

VCoul ¼ 1

4�

XN
i;j¼1ði�jÞ

qiqj
jri � rjj ; (46)

Htrans ¼ 1

2

Z
d3r½E2

? þB2
?�: (47)

Next we consider a similar decomposition of the total
momentum. The total momentum of the system is a sum
of the mechanical momentum of charged particles and the
momentum of photon fields as

P ¼ X
i

mi _ri þ
Z

d3rE� B: (48)

The total momentum of the electromagnetic fields can be
decomposed into longitudinal and transverse parts as

Z
d3rE� B ¼ Plong þ Ptrans; (49)

with

P long ¼
Z

d3rEk � B?; (50)

P trans ¼
Z

d3rE? �B?; (51)

which gives the decomposition

P ¼ X
i

mi _ri þ Plong þ Ptrans: (52)

Again, by using the Gauss law, it can be shown that Plong is

also expressed as

P long ¼
X
i

qiA?ðriÞ; (53)

so that we can write
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P ¼ X
i

mi _ri þ
X
i

qiA?ðriÞ þ Ptrans: (54)

We point out that the quantity qiA?ðriÞ appearing in this
decomposition is nothing but the potential momentum
according to the terminology of Konopinski [66]. In the
present context, it represents the momentum that associates
with the longitudinal (electric) field generated by the par-
ticle i. Which of particles or photons should it be attributed
to? This is a fairly delicate question. It is of the same sort of
question as which of the charged particles or photons
should the Coulomb energy be attributed to. To attribute
it to a charged particle is closer to the concept of ‘‘action at
a distance theory,’’ while to attribute it to an electromag-
netic field is closer to the concept of ‘‘action through
medium.’’ If there is no difference between their physical
predictions, the choice is a matter of convenience. Let us
see what happens if we combine the potential momentum
term with the mechanical energy of charged particles. To
this end, we recall that, under the presence of electromag-
netic potential, the canonical momentum pi of the charged
particle i is given by the equation

p i � @L

@ _ri
¼ mi _ri þ qiAðriÞ; (55)

where L is the Lagrangian corresponding to the
Hamiltonian (30). Using it, the total momentum P can be
expressed in the following form:

P ¼ X
i

ðpi � qiAkðriÞÞ þ Ptrans; (56)

where use has been made of the relationAðriÞ �A?ðriÞ ¼
AkðriÞ. The discussion so far is totally independent of the

choice of gauge. To make the following discussion as
transparent as possible, we shall work for a while in a
particular gauge, i.e. the Coulomb gauge, and will come
back to more general case later. As was already explained,
in the Coulomb gauge, we can set Ak ¼ 0 without loss of

generality. The above expression for the total momentum P
then reduces to a very simple form given as

P ¼ X
i

pi þ Ptrans: (57)

One observes that the total momentum of the charged
particles and the photons is given as a sum of the canonical
momenta of charged particles and the transverse momen-
tum of the electromagnetic fields.

Next, let us consider a similar decomposition of the total
angular momentum. The total angular momentum of the
system is a sum of the mechanical angular momentum of
charged particles and the angular momentum of photon
fields as

J ¼ X
i

miri � _ri þ
Z

d3rr� ðE�BÞ: (58)

Similarly as before, the total angular momentum of the
electromagnetic fields can be decomposed into longitudi-
nal and transverse parts asZ

d3rr� ðE�BÞ ¼ Jlong þ Jtrans; (59)

with

J long ¼
Z

d3rr� ðEk � B?Þ; (60)

J trans ¼
Z

d3rr� ðE? � B?Þ; (61)

which leads to the relation

J ¼ X
i

miri � _ri þ J
long

þ Jtrans: (62)

Again, by using the Gauss law, Jlong can also be

expressed as

J long ¼
X
i

qiri �A?ðriÞ; (63)

so that we can write as

J ¼ X
i

miri � _ri þ
X
i

qiri �A?ðriÞ þ Jtrans: (64)

We recall that the quantity qiri �A?ðriÞ appearing in the
above decomposition just corresponds to what we call the
potential angular momentum [23]. In the present context, it
represents the angular momentum that associates with the
longitudinal (electric) field generated by the charged par-
ticle i. Again, if one combines it with the mechanical
angular momentum of the charged particle i, the total
angular momentum P of the system is represented as

J ¼ X
i

ri � ðpi � qiAkðriÞÞ þ Jtrans; (65)

in general gauges, and as

J ¼X
ri � pi þ Jtrans; (66)

in the Coulomb gauge.
Summarizing the above manipulations, we find (in the

Coulomb gauge) the following much simpler-looking ex-
pressions for the total momentum and the total angular
momentum of the interacting system of charged particles
and the photons:

P ¼ X
i

pi þ Ptrans; (67)

J ¼ X
i

ri � pi þ Jtrans: (68)
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At first sight, it appears to indicate physical superiority of
the canonical momentum and the canonical angular mo-
mentum over the mechanical ones. However, such a con-
clusion is premature, as is clear from the following
consideration of the energy of the system. As already
pointed out, the total Hamiltonian of the system is given
as a sum of three terms, i.e. the mechanical energies of the
charged particles, the Coulomb energies between them,
and the energy of transverse photons. An important
observation here is that, different from the cases of total

momentum and angular momentum, when the sum of the
mechanical energy and the Coulomb energy (the energy
associate with Ek) is expressed in terms of the canonical

momentum, it does not reduce to a simple form, because

1

2
mi _r

2
i þ VCoul �

X
i

p2
i

2mi

: (69)

Instead, we have

H ¼ X
i

1

2mi

ðpi � qiA?ðriÞÞ2 þ VCoul

¼ X
i

p2
i

2mi

þ VCoul

þX
i

qi
2mi

½pi �A?ðriÞ þA?ðriÞ � pi� þ
X
i

q2i
2mi

A?ðriÞ �A?ðriÞ: (70)

Crucially important to recognize here is the difference of
the two quantities, X

i

1

2
mi _ri

2; (71)

and

X
i

p2
i

2mi

: (72)

As already mentioned, the former quantity represents the
mechanical kinetic energy of charged particles, i.e. the
kinetic energy of particles which associate with their trans-
lational motion. Usually, the latter quantity is also inter-
preted as the kinetic energy of charged particles, which
means that we are not distinguishing these two quantities
very clearly. The reason is that we are too much accus-
tomed with weakly coupled systems of charged particles
and photons. To understand it, let us consider the problem
of a hydrogen atom. Assuming, for simplicity, that the
proton is infinitely heavy, it reduces to a problem of one
electron and photons, described by the following
Hamiltonian:

H ¼ 1
2m _r2 þ VCoul þHtrans ¼ H0 þHtrans þHint; (73)

with

H0 ¼ p2

2m
þ VCoulðrÞ; (74)

Htrans ¼
X
k

X
�¼1;2

ℏ!ka
y
k;�ak;�; (75)

Hint¼ e

2m
½p �A?ðrÞþA? �p�þ e2

2m
A?ðrÞ �A?ðrÞ: (76)

Here, H0 is taken as an unperturbed Hamiltonian of the
Hydrogen atom with the Coulomb interaction between
the electron and the proton, Htrans is the Hamiltonian of
the transverse photons, and Hint describes the interactions
between the electron and the transverse photons. A general
form of eigenstates of the above Hamiltonian is expressed
as a direct product of the eigenstates of H0 and those of
Htrans as jc ni � jfnk;�gi, where

H0jc ni ¼ Enjc ni; (77)

while jfnk;�gi is an abbreviation of the following
occupation-number representation of transverse photons:

jfnk;�gi ¼
Y
�

jnk�;��
i: (78)

It is important to recognize that, in the ordinary description
of hydrogen atom, one does not include Fock components
of transverse (real) photons. (The formation of the hydro-
gen atom is entirely due to the Coulomb attraction between
the proton and the electron, and the transverse photons
have little to do with it.) Consequently, both of the total
momentum or the total angular momentum of the hydrogen
atom are saturated by the electron alone, and the photons
carry none of them. This also means that there is no
practical difference between the mechanical momentum

P mech ¼ m _r ¼ p� eA?; (79)

and the canonical momentum

P can ¼ p; (80)

since the expectation value of A? in such restricted Fock
space is vanishing. Exactly the same can be said for the
difference between the mechanical angular momentum
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J mech ¼ mr� _r ¼ r� ðp� eA?Þ; (81)

and the canonical angular momentum

J can ¼ r� p: (82)

The difference between the mechanical kinetic energy

1

2
m _r2 ¼ 1

2m
ðp� eA?Þ2 (83)

and the kinetic energy

1

2m
p2 (84)

is also ineffective in the static properties of the hydrogen
atom. The fact is that the difference between these two
quantities is nothing but the interaction Hamiltonian,
which is treated perturbatively, thereby describing the
processes of emissions and absorptions as well as the
scatterings of transverse photons by the hydrogen atom.

One must recognize that the situation is totally different
in QCD. Here, the nucleon is a strongly-coupled gauge
system of quarks and gluons. One certainly needs to in-
clude Fock components of transverse gluons. Otherwise,
the concept like the gluon distributions in the nucleon
would never be invoked. In such circumstances, the differ-
ence between the mechanical angular momentum and the
canonical angular momentum as well as the difference
between the mechanical momentum and the canonical
momentum are generally nonzero and may have sizable
magnitude.

So far, we were mainly working in the Coulomb gauge,
in order to avoid unnecessary complexities for the above
physical consideration. Now we consider the problem of
gauge-invariance more seriously. As we shall see below, it
provides us with a new and interesting insight into the
decomposition problem of the total momentum as well as
the total angular momentum of the interacting system of
charged particles and photons. (Since the argument goes in
entirely the same manner for both of the total momentum
and the total angular momentum, we concentrate below on
more interesting angular momentum case.) We have
already shown that the total angular momentum J can be
decomposed into the following form in an arbitrary gauge:

J ¼ X
i

ri � ðpi � qiAkðriÞÞ þ Jtrans: (85)

It is a well-known fact that the transverse part Jtrans of
photons can further be decomposed into the orbital and
spin parts as

J trans ¼
Z

d3rEl
?ðr�rÞAl

? þ
Z

d3rE? �A?: (86)

We emphasize that this decomposition is gauge-invariant,
because A? is gauge-invariant. (Naturally, E? is gauge-
invariant.) Then, we are led to a decomposition as follows:

J ¼ X
i

ri � ðpi � qiAkðriÞÞ þ
Z

d3rEl
?ðr�rÞAl

?

þ
Z

d3rE? �A?: (87)

When going to quantum theory (in the coordinate repre-
sentation), the canonical momentum is replaced by a dif-
ferential operator as

p i � qiAkðriÞ ) 1

i
ðri � iqiAkðriÞÞ: (88)

Notice that, with the identification Ak ¼ Apure, the rhs is

basically the pure-gauge derivative

D i;pure ¼ ri � iqiApureðriÞ; (89)

introduced by Chen et al. [18,19]. Using it, Eq. (87) can
now be written as

J ¼ L0
p þL0

� þ S0
�; (90)

with

L 0
p ¼ X

i

ri � 1

i
Di;pure; (91)

L 0
� ¼

Z
d3rEl

?ðr�rÞAl
?; (92)

S 0
� ¼

Z
d3rE? �A?: (93)

One may recognize now that this just corresponds to a
gauge-invariant decomposition of Chen et al. in the case of
QED except that we are handling here the charged particles
without intrinsic spin [18,19]. In fact, the gauge-invariance
of the 1st term can readily be verified, by using the gauge
transformation property of the longitudinal component
of Ak

A kðriÞ ! AkðriÞ þ r�ðriÞ; (94)

and the gauge transformation property of the quantum-
mechanical wave function of the charged particles given as

�ðr1; . . . ; rNÞ !
�YN

i

eiqi�ðriÞ
�
�ðr1; . . . ; rNÞ: (95)

As is obvious from our previous studies [23,24], however,
the above decomposition (90) is not a unique possibility of
gauge-invariant decomposition of the total angular mo-
mentum. To confirm it, we go back to Eq. (64), which we
now write as

J ¼ X
i

miri � _ri þ
Z

d3rr� ðEk �B?Þ

þ
Z

d3rEl
?ðr�rÞAl

? þ
Z

d3rE? �A? (96)
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Combining the piece
R
d3rr� ðEk � B?Þ, which was pre-

viously written as
P

iqiri �A?ðriÞ, with the orbital part of
Jtrans, we are led to another decomposition:

J ¼ Lp þ L� þ S�; (97)

where

L p ¼ X
i

miri � _ri; (98)

L �¼
Z
d3rEk

?ðr�rÞAk
?þ

Z
d3rr�ðEk�B?Þ; (99)

S � ¼
Z

d3rE? � B?: (100)

Note that, using the relationship pi ¼ mi _ri þ qiAðriÞ, Lp

can also be written as

L p ¼ X
i

ri � ðpi � qiAðriÞÞ (101)

! X
i

ri � 1

i
ðri � iqiAðriÞÞ �

X
i

ri � 1

i
Di: (102)

Obviously, this decomposition is also gauge-invariant. This
gauge-invariant decomposition falls into the category of
decomposition (I), while the previous decomposition into
that of decomposition (II) according to the classification in
[24]. As is clear by now, the difference between the two
decompositions arises from the treatment of the potential
angular momentum term

P
iqiri �A?ðriÞ, which is solely

gauge-invariant. In the decomposition (I), it is included in
the orbital angular momentum part of photons, while in the
decomposition (II), it is included in the orbital angular
momentum part of charged particles. As a consequence,
what appears in the decomposition (I) is the mechanical (or
dynamical) angular momentum given as

L mech
p � Lp ¼ X

i

ri � 1

i
Di �

X
i

ri � 1

i
ðri � iqiAðriÞÞ;

(103)

containing full gauge-covariant derivative, while what ap-
pears in the decomposition (II) is a generalized canonical
angular momentum (with gauge-invariance) given by

L “can”
p � L0

p ¼X
i

ri � 1

i
Di;pure

� X
i

ri � 1

i
ðri � iqiAkðriÞÞ; (104)

which reduces to the ordinary canonical momentum in the
Coulomb gauge, in which AkðriÞ ¼ 0. All of these are

anticipated facts from the analysis in our previous papers
[23,24]. Here, we can say more. It is a widespread belief
that, among the two quantities, i.e. the canonical angular
momentum and the dynamical (or mechanical) angular

momentum, what is closer to simple physical image of
orbital motion is the former because it appears that the
latter contains an extra interaction term between the
charged particles and the photons. (This prepossession is
further amplified by a simpler commutation relation of L0

p,

which is not possessed byLp [32,53].) We now realize that

the truth is just opposite. In fact, we have shown that the
canonical angular momentum is a sum of the mechanical
angular momentum and the longitudinal part of the photon
angular momentum as

L 0
p ¼ Lp þ

X
i

ri � qiA?ðriÞ (105)

¼ Lp þ
Z

d3rr� ðEk � B?Þ; (106)

where

L p ¼X
i

miri � _ri ¼
X
i

miri � vi: (107)

As is clear from the above expression (107) of Lp, it is

the mechanical angular momentum Lp not the canonical

angular momentum L0
p that has a natural physical inter-

pretation as orbital motion of particles. It may really sound
paradoxical, but what contains an extra interaction term is
rather the canonical angular momentum not the mechani-
cal angular momentum !

IV. RELATION BETWEEN THE TWO
INEQUIVALENT DECOMPOSITIONS OF

THE NUCLEON MOMENTUM

In one of the two papers [18,19], which brought about a
big argument on the nucleon spin decomposition problem,
Chen et al. suspect a common wisdom of DIS physics that
the gluons carry about half of the nucleon momentum in
the asymptotic limit. According to them, this large fraction
is due to an unsuitable definition of the gluon momentum
in an interacting theory. It was claimed that, if the quark
and gluon momenta are defined in a gauge-invariant and
consistent way, the asymptotic limit of the gluon momen-
tum fraction would be only about one-fifth as compared
with the standardly believed value of one-half. We shall
inspect below the validity of this astounding conclusion.
Their argument starts with the statement that the

conventional gluon momentum fraction is based on the
following decomposition of the total momentum operator
in QCD:

P total ¼
Z

d3xc y 1
i
Dc þ

Z
d3xE�B ¼ Pq þ PG;

(108)

where D ¼ r� igA is the standard covariant derivative.
The scale evolution of Pq and PG is governed by the

following anomalous dimension matrix at the leading order
[67,68]:
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�P �
�ð2Þ
qq �ð2Þ

qG

�ð2Þ
Gq �ð2Þ

GG

0
@

1
A ¼ �S

8�

� 8
9 ng

4
3nf

8
9ng � 4

3nf

 !
; (109)

with ng and nf being the number of gluon fields and the

number of active quark flavors. This leads to the well-
known asymptotic limit for the gluon momentum fraction,

P G ¼ 2ng
2ng þ 3nf

Ptotal: (110)

Their objection to this common knowledge is based
on another gauge-invariant decomposition proposed by
themselves:

Ptotal ¼ P0
q þ P0

G; (111)

where

P 0
q ¼

Z
d3xc y 1

i
Dpurec ; (112)

P 0
G ¼

Z
d3xEkDpureA

k
phys; (113)

with

D�
pure � @� � igA�

pure; (114)

D �
pure � @� � ig½A�

pure; ��: (115)

Although the detail of the calculation was not shown, they
concluded that this decomposition leads to the following
anomalous dimension matrix [19]:

�P0 ¼ �S

8�

� 2
9ng

4
3 nf

2
9 ng � 4

3nf

 !
; (116)

thereby predicting a totally different asymptotic limit for
the gluon momentum fraction,

P G ¼ ng
ng þ 6nf

Ptotal: (117)

For the typical case of nf ¼ 5, this gives P0
G ’ ð1=5ÞPtotal,

as compared with the prediction of the standard scenario
PG ’ ð1=2ÞPtotal.

Apparently, to discuss the momentum sum rule of QCD
and its evolution, it is more convenient to handle the
problem in a covariant way. Along the same line as ex-
plained in our previous papers [23,24], which established
the fact that there exist two physically inequivalent decom-
positions of the QCD angular momentum tensor, we can
show that there are two different decompositions of the
QCD energy-momentum tensor, both of which are gauge-
invariant. The decomposition (I) contains in it the standard
decomposition given in the paper [12]:

T�� ¼ T
��
q þ T

��
G ; (118)

with

T
��
q ¼ 1

2
�c ð��iD� þ ��iD�Þc ; (119)

T��
G ¼ �Tr½F��D�A� þ F��D�A�� þ 1

2g
�� Tr½F2�:

(120)

Since the second term of T��
G contributes only to the boost

and does not contribute to the momentum sum rule of the
nucleon, we shall drop it in the following argument. It can
be shown that, up to a surface term, the gluon part can
further be decomposed into two gauge-invariant pieces as

T
��
G ¼ �Tr½F��D�

pureA�;phys þ F��D
�
pureA�;phys�

� Tr½D�F
��A�

phys þD�F
��A

�
phys� þ surface term:

(121)

Here, the 2nd term of the above equation is a covariant
generalization of the potential momentum term as dis-
cussed in Sec. III. Under the imposed gauge transformation
property of the physical and pure-gauge components of the
gluon fields given by

A
�
physðxÞ ! UðxÞA�

physðxÞUyðxÞ; (122)

A�
pureðxÞ ! UðxÞ

�
A�
pureðxÞ þ i

g
@�
�
UyðxÞ; (123)

supplemented with the pure-gauge condition for the pure-
gauge part of A�,

F
��
pure � @�A�

pure � @�A
�
pure þ ig½A�

pure; A�
pure� ¼ 0; (124)

it is easy to show that each term of (121) is separately
gauge-invariant. Equations (118)–(120) combined with
(121) gives our gauge-invariant decomposition (I) of the
QCD energy-momentum tensor. Since the potential mo-
mentum term is still contained in the gluon part in this
decomposition, it is practically the same as the standard
decomposition.
On the other hand, if one combines the potential angular

momentum term with the quark part by making use of the
QCD equation of motion ðD�F

��Þa ¼ g �c��Tac , one is
led to another gauge-invariant decomposition (II) of QCD
energy-momentum tensor given as follows:

T�� ¼ T
0��
q þ T

0��
G ; (125)

where

T0��
q ¼ 1

2
�c ð��iD�

pure þ ��iD�
pureÞc ; (126)

T
0��
G ¼ �Tr½F��D�

pureA�;phys þ F��D
�
pureA�;phys�: (127)

This decomposition is thought of as a covariant general-
ization of the decomposition of Chen et al.
The question is now whether these two decompositions

of QCD energy-momentum tensor lead to different predic-
tions for the quark and gluon momentum fractions
and their evolution. As emphasized in [24], a remarkable
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feature of our gauge-invariant decompositions (I) and (II)
is that we have not yet fixed gauge explicitly. This means
that we can choose any gauge as long as the choice is
consistent with the above-mentioned general conditions
(122)–(124). Particularly useful is the fact that we can
take the light-cone gauge as well [24], which is the most
convenient gauge for discussing DIS observables.

We can then follow the argument given by Jaffe
[69]. The simplest way of obtaining the momentum sum
rule is to evaluate the nucleon matrix element of the
ðþþÞ-component of the energy-momentum tensor. The
momentum sum rule then follows from the normalization
condition:

hPjTþþjPi
2ðPþÞ2 ¼ 1: (128)

As emphasized by Jaffe, Tþþ simplifies dramatically in
Aþ ¼ 0 gauge, because of the simplification of Dþ and
Fþ�,

Dþ ¼ @þ � igAþ ! @þ; (129)

Fþ� ¼ @þA� � @�Aþ þ g½Aþ; A�� ! @þA�: (130)

As a consequence, Tþþ reduces to a marvelously simple
form as

Tþþ ¼ Tþþ
q þ Tþþ

G

! c y
þi@þcþ þ 2Trð@þA?Þ2; (131)

where cþ is the standard ðþÞ-component of c defined

by cþ � Pþc and Pþ ¼ ð1=2Þ���þ with �� ¼
ð1= ffiffiffi

2
p Þð�0 � �3Þ. The two terms here give the contribu-

tions of quarks and gluons, respectively, to Pþ. Each term
can be related to the 2nd moment of the positive definite
parton momentum distribution:

c y
þi@þcþ !

Z
dxxqðxÞ; ð@þAa

?Þ2 !
Z

dxxgðxÞ:
(132)

The normarization condition (128) then gives the well-
known momentum sum rule of QCD,

1 ¼
Z

dxx½qðx;Q2Þ þ gðx;Q2Þ�: (133)

This is a familiar story about the standard decomposition of
the QCD energy-momentum tensor.

A question is what would change if one adopts the
decomposition (II), which is thought to contain in it the
decomposition of Chen et al.? To answer this question, we
first recall the following relation between the quark part of
Tþþ in the two decompositions:

Tþþ
q � T0þþ

q ¼ g �c�þAþ
physc : (134)

We emphasize that the difference is nothing but a special
component of generalized potential momentum tensor.

Remember now the fact that, different from Chen et al.’s
treatment, we have a freedom to choose even the light-cone
gauge. Since Aþ ¼ Aþ

phys ¼ Aþ
pure ¼ 0 in this gauge, the

difference between Tþþ and T0þþ simply vanishes. We
must therefore conclude that the two decompositions (I)
and (II) give exactly the same answer, as far as the longi-
tudinal momentum sum rule is concerned. This fact has
been verified in a particular gauge, i.e. in the light-cone
gauge. Note, however, that both of our decompositions (I)
and (II) are manifestly gauge-invariant. It is therefore a
logical consequence of gauge-invariance that the statement
must hold in arbitrary gauges. (Naturally, it is of vital
importance to confirm the validity of this statement
through explicit calculations in other gauges than the
light-cone gauge.)
Still, one might worry about the claim by Chen et al. that

the two decompositions of the nucleon momentum lead to
totally different evolution equations for the momentum
fractions of quarks and gluons in the nucleon [19]. Let us
next try to clarify this point. Before discussing the evolution
equation corresponding to the decomposition (II), we think
it is useful to recall some basic knowledge on the evolution
matrix for the quark and gluon momentum fractions corre-
sponding to the standard decomposition (I). Though some-
what trivial to remark, since the quark and the gluon parts of
this standard decomposition is separately gauge-invariant,
the evolution matrix should be independent of gauge
choice. First we concentrate on the quark part of Tþþ,
which consists of two parts in general gauge as

Tþþ ¼ VA þ VB; (135)

with

VA ¼ �c�þi@þc ; (136)

VB ¼ g �c�þAþc : (137)

The momentum space vertices corresponding to these
operators are expressed by the following formulas supple-
mented with the diagram shown in Fig. 1:

VA ¼ �bc�
þpþ; (138)

VB ¼ gðTaÞbc�þgþ�: (139)

FIG. 1. Momentum space vertices for the quark part of Tþþ.
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Note that VB � 0 in general gauges, although VB ¼ 0 in
the light-cone gauge.

Shown in Fig. 2 are the Feynman diagrams, which

contribute to the anomalous dimension �ð2Þ
qq in general

covariant gauge. The answer in the Feynman gauge is
well-known. It is given by

�ð2Þ
qq ¼ �S

2�

�
1

6
CF � CF � 1

2
CF

�
¼ �S

2�

�
� 4

3
CF

�
; (140)

with CF ¼ 4=3. Here, the three terms in the middle of the
above equation, respectively, correspond to the contribu-
tions from the graphs (a), (b) and (c) of Fig. 2. On the other
hand, in the light-cone gauge, there is no contribution from
the graph (b), and the answer is given as

�ð2Þ
qq ¼�S

2�

�
�17

6
CFþ0þ3

2
CF

�
¼�S

2�

�
�4

3
CF

�
: (141)

Although individual term contributes differently, the final
answer is just the same as that of Feynman gauge.

Now that we have convinced that the anomalous dimen-

sion �ð2Þ
qq corresponding to the standard decomposition of

the energy-momentum tensor is independent of the choice
of gauge, our next task is to obtain the anomalous dimen-

sion �0ð2Þ
qq corresponding to another gauge-invariant decom-

position (II) of the QCD energy-momentum tensor. For this
purpose, we recall again the fact that the quark parts of
Tþþ in the two decomposition are connected through the
relation (134). As pointed out before, the rhs of (134)
vanishes in the light-cone gauge. This already indicates
that the anomalous dimensions corresponding to the two

decompositions are the same, i.e. �ð2Þ
qq ¼ �0ð2Þ

qq . Let us verify
this statement more explicitly by showing that the vertex
VC � g �c�þAþ

physc does not contribute to the correspond-

ing anomalous dimension even in other gauges than the
light-cone gauge. A key factor here is the fact that the
gluon field contained in the vertex VC is its physical part
Aþ
phys. By taking care of this fact, we recall somewhat

nonstandard Feynman rule proposed in [25]. According
to this rule, the momentum representation of the vertex

VC is given as

VC ¼ gðTaÞbc�þgþ�P�
T; (142)

which is delicately different from the vertex VB in that it
contains a kind of projection operator P�

T . This projection
operator P�

T with the Lorentz index � reminds us of the fact
that we must use the modified gluon propagator

~D��
ab ðkÞ ¼

i�ab

k2 þ i"
T��; (143)

with

T�� ¼ X2
�¼1

"�ðk; �Þ"��ðk; �Þ; (144)

whenever it is obtained with the contraction with the vertex
VC containing the Lorentz index �. The Feynman diagram,
which may potentially contribute to the anomalous dimen-
sion in question, is given by the same graph as the graph (b)
of Fig. 2 except that the vertex VB is replaced by VC. An
explicit calculation given in Appendix A shows that the
contribution of this diagram vanishes. [Note that this con-

versely means that the contribution to �ð2Þ
qq from the graph

(b) in the Feynman gauge comes totally from the vertex
g �c�þAþ

purec .]

Although slightly more trivial, we have also checked in
Appendix A that the potential momentum term does not

contribute to the anomalous dimension �ð2Þ
qG. (The relevant

diagram appearing in this proof is illustrated in Fig. 3.) In
this way, we now confirm that

�ð2Þ
qq ¼ �0ð2Þ

qq ; �ð2Þ
qG ¼ �0ð2Þ

qG : (145)

As is well-known, because of the conservation of total
momentum, the 2� 2 evolution matrix of the quark and
gluon momenta (in whatever decomposition) has only two
independent elements such that

�ð2Þ
Gq ¼ ��ð2Þ

qq; �ð2Þ
GG ¼ ��ð2Þ

qG: (146)

We therefore conclude that the anomalous dimension
matrix corresponding to the two decompositions (I) and

FIG. 2. One-loop diagrams contributing to the anomalous dimension of the quark part of the energy-momentum tensor. The diagram
(c) corresponds to the quark field-strength renormalization. Graphs that are not symmetric with respect to the vertical lines through the
operator vertex have to be counted twice.
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(II) of the QCD energy-momentum tensor are exactly the
same, i.e.

�ð2Þ
qq �ð2Þ

qG

�ð2Þ
Gq �ð2Þ

GG

0
@

1
A ¼

�0ð2Þ
qq �0ð2Þ

qG

�0ð2Þ
Gq �0ð2Þ

GG

0
@

1
A: (147)

This contradicts the conclusion of Chen et al. given in [19].
According to our analysis above, the gluons do carry about
one-half of the total nucleon momentum in the asymptotic
limit.

The readers might suspect that the conclusion above
contradicts our previous statement that the Chen et al.’s
decomposition is contained in our more general decom-
position (II), so that the physical predictions should be the
same. Note, however, that no one has yet checked the
validity of their calculation based on the Coulomb gauge.
Possible reasons of discrepancy might therefore be the
following. One possibility is that they have made a mistake
in their Coulomb-gauge calculation of the anomalous di-
mension matrix. In fact, the treatment of the gluon propa-
gator in the Coulomb gauge is known to be a fairly delicate
issue because of the so-called energy-divergence in loop
integrations [70]. Another possibility is that what they have
calculated does not precisely correspond to the evolution
matrix of the longitudinal momentum fractions of quarks
and gluons appearing in deep inelastic scattering physics.

V. RELATION BETWEEN THE TWO
INEQUIVALENT DECOMPOSITIONS OF

THE NUCLEON SPIN

In the previous section, we have shown that there cer-
tainly exist two generally inequivalent decompositions of
the nucleon total momentum, analogous to the QED prob-
lem. Nonetheless, as long as the longitudinal momentum
sum rules of the nucleon is concerned, the two decompo-
sitions turn out to give completely the same answer for the
quark and gluon momentum fractions including their scale
evolution.

Now, we turn to a more interesting problem of nucleon
spin decomposition. We first recall the fact that there exist
two different decompositions also for the nucleon spin,
both of which are gauge-invariant. The QCD angular mo-
mentum tensor in the decomposition (I) is given by
Eq. (12), while that in the decomposition (II) is given by
Eq. (6). The theoretical basis for obtaining the nucleon spin
sum rule is given by the equation [71]

hPsjW�s�jPsi=hPsjPsi ¼ 1
2; (148)

where s� is the covariant spin vector of the nucleon, while

W� ¼ �����J�P�=ð2
ffiffiffiffiffiffi
P2

p
Þ; (149)

with

J� ¼
Z

d3xM0�; (150)

is the so-called Pauli-Lubansky vector [72]. Assuming that
the nucleon is moving in the z direction with momentum
P� and helicity þ1=2, it holds that

J12jPþi ¼ 1
2jPþi: (151)

Thus we are led to the relation

1
2 ¼ hPþ jJ12jPþi=hPþ jPþi; (152)

which provides us with a basis for obtaining longitudinal
spin sum rule of the nucleon. Depending on the two
decompositions of M���, this gives the following sum
rules. The decomposition (I) gives

1
2 ¼ ð12��þ LqÞ þ ð�Gþ LGÞ ¼ Jq þ JG; (153)

where

�� ¼ hPþ j
Z

d3xc y�0�3�5c jPþi; (154)

Lq ¼ hPþ j
Z

d3xc yðx1D2 � x2D1Þc jPþi; (155)

�G ¼ hPþ j
Z

d3xðE1A2
phys � E2A1

physÞjPþi; (156)

LG¼hPþj
Z
d3x2TrfEkðx2D1

pure�x1D2
pureÞAk

physgjPþi

þhPþj
Z
d3x2TrfðD �EÞðx2A2

phys�x2A1
physÞgjPþi;

(157)

where we have neglected the normalization of the state, for
simplicity.
On the other hand, the decomposition (II) leads to

1
2 ¼ ð12��0 þ L0

qÞ þ ð�G0 þ L0
GÞ ¼ J0q þ J0G; (158)

where

FIG. 3. The Feynman graph, which may potentially contribute

to the anomalous dimension �ð2Þ
qG.
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��0 ¼ ��; (159)

L0
q ¼ hPþ j

Z
d3xc yðx1D2

pure � x2D1
pureÞc jPþi; (160)

�G0 ¼ �G; (161)

L0
G¼hPþj

Z
d3x2TrfEkðx2D1

pure�x1D2
pureÞAk

physgjPþi:
(162)

The difference between the two decompositions resides in
the orbital parts. Note that Lq and L0

q, respectively, corre-

spond to the nucleon matrix elements of mechanical and
generalized canonical OAM operators. What characterizes
the difference of these two quantities is the forward matrix
element of the potential angular momentum given by

Lq�L0
q¼�ðLG�L0

GÞ
¼hPþj

Z
d3xgc yðx1A2

phys�x2A1
physÞc jPþi:

(163)

It is important to recognize the fact that A1
phys and A

2
phys are

physical (transverse) components of gluons, which cannot
be transformed away even in the light-cone gauge. (This is
totally different from the case of the nucleon momentum
decomposition, where the transverse components do not
appear in the difference between Tþþ

q and T0þþ
q .) Since the

quantum state vector of the nucleon as a strongly-coupled
gauge system of quarks and gluons definitely contains
Fock components of transverse gluons, we conclude that
the difference between Lq and L

0
q is generally nonzero. An

explicit calculation by Burkardt and BC based on simple
models appears to confirm it [73].

Nonetheless, one mysterious observation still remains to
be clarified. The problem concerns the scale dependence of
quark and gluon OAMs. Accepting that there are two
different OAMs of both of quarks and gluons, i.e.
ðLq; LGÞ and ðL0

q; L
0
GÞ, one might naturally expect different

evolution equations for these two kinds of OAMs.
Somewhat embarrassingly, the past studies indicate that
the evolution equations of Lq and LG are nothing different

from those of L0
q and L

0
G [43–50]. This can be confirmed as

follows. First, the scale dependence of �� and �G at the
leading order is widely-known [56,74,75], and given as

d

dt

��

�G

 !
¼ �SðtÞ

2�

0 0
3
2CF

0

2

 !
��

�G

 !
; (164)

where t ¼ lnQ2=�2
QCD, CF ¼ 4=3, and 0¼11�ð2=3Þnf.

On the other hand, the leading-log evolution equation of
quark and gluon OAMs L0

q and L0
G was first derived by Ji,

Tang, and Hoodbhoy [43]. It is given by

d

dt

L0
q

L0
G

 !
¼ �SðtÞ

2�

� 4
3CF

nf
3

4
3CF � nf

3

0
@

1
A L0

q

L0
G

 !

þ �SðtÞ
2�

� 2
3CF

nf
3

� 5
6CF � 11

2

 !
��

�G

 !
: (165)

To be more precise, their derivation is based on a
gauge-noninvariant definition of L0

q and L0
G appearing in

the Jaffe-Manohar decomposition. Luckily, their calcula-
tion was done in the light-cone gauge. This ended up with
the result that the derived evolution equation coincides
with the answer obtained from the gauge-invariant defini-
tion of L0

q and L0
G appearing in our decompositin (II).

(Remember the similar situation which we encounter in
the study of evolution equation of �G [25]. The point is
that the Jaffe-Manohar decomposition is now taken as a
gauge-fixed form of our more general decomposition with
manifest gauge-invariance.)
Using the above evolution equations for ð��;�GÞ and

ðL0
q; L

0
GÞ, one can easily write down the evolution equation

of the quark and gluon total angular momentum in the
decomposition (II), which are defined by J0q �
L0
q þ 1

2 �� and J0G � L0
G þ�G. One finds that

d

dt

J0q
J0G

 !
¼ �SðtÞ

2�

� 4
3CF

nf
3

4
3CF � nf

3

0
@

1
A J0q

J0G

 !
: (166)

As noticed by several authors [44,50], the evolution matrix
appearing here is just the same as that of the momentum
fractions of quarks and gluons. On the other hand, Ji
showed that the scale evolution of the total angular mo-
menta of quarks and gluons appearing in the decomposi-
tion (I) is controlled by the same evolution matrix as that of
the quark and gluon momentum fractions as

d

dt

Jq

JG

 !
¼ �SðtÞ

2�

� 4
3CF

nf
3

4
3CF � nf

3

0
@

1
A Jq

JG

 !
: (167)

The reason is that the quark and gluon angular momenta Jq
and JG in the decomposition (I) are defined by the QCD
angular momentum tensor M���, which is related to the
energy-momentum tensor T�� through the relation

M��� ¼ T��x� � T��x�; (168)

with

T�� ¼ T
��
q þ T

��
G : (169)

According to Ji, forming spatial moment of T��
q and T��

G

does not change the short-distance singularity of the op-
erators. It then follows that ðJq; JGÞ and ðhxiq; hxiGÞ obey
the same evolution equation. At any rate, one now realizes
that ðJq; JGÞ and ðJ0q; J0GÞ obey the same evolution equation

at least at the one-loop order. Since �� and �G are
common in the two decompositions, this also means that
ðLq; LGÞ and ðL0

q; L
0
GÞ obey the same evolution equation.
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How can we understand this somewhat puzzling
observation ? The answer is basically given in the
paper by Ji [13]. He claims that the above observation
can be understood, since the interaction-dependent term,
g
R
d3xc yx�Ac , which characterizes the difference

between the dynamical and canonical angular momenta
of quarks, shall not affect the leading-log evolution in
the light-cone gauge. Unfortunately, an explicit proof is
not given there. Furthermore, the statement holds only
in the light-cone gauge, because it is based on gauge-
noninvariant expression g

R
d3xc yx�Ac of the

interaction-dependent part. To refine Ji’s statement and
also to make the role of gauge-invariance more manifest,
we recall the fact that the difference of Lq and L0

q is given

by the nucleon matrix element of potential angular mo-
mentum [see (163)], which is a manifestly gauge-invariant
quantity. It is therefore possible to extend the validity of
Ji’s statement by showing that the (gauge-invariant) poten-
tial angular momentum term does not contribute to the
evolution matrix also in other gauges than the light-cone
gauge. The proof is given in Appendix B. (The relevant
Feynman diagram is shown in Fig. 4.) This clarifies the
reason why ðLq; LGÞ and ðL0

q; L
0
GÞ, appearing in the two

generally different decompositions of the nucleon spin,
obey the same evolution equation.

To avoid a misunderstanding, we want to reemphasize
the following fact. In the case of longitudinal momentum
sum rule discussed in the previous section, we showed that
the two decompositions of the QCD energy-momentum
tensor gives the same evolution equation for the momen-
tum fractions of quarks and gluons. In this case, the nu-
merical values of the quark and gluon momentum fractions
in the two decompositions are also the same at an arbitrary
energy scale, because the transverse components of the
gluon fields never contribute to the longitudinal momen-
tum sum rule, as can be seen in the expression (134). This
is not the case for the longitudinal spin sum rule of the
nucleon, however. Although the quark and gluon OAMs
appearing in the two decompositions (I) and (II) are shown
to obey the same evolution equation, there is no reason that
their numerical values at an arbitrary energy scale also

coincide. In fact, they are generally different, because the
transverse (real) gluon fields do contribute to the difference
between the two definitions of quark and gluon OAMs in
the nucleon. [Remember the relation (163).] As empha-
sized in [76], a clear recognition of this fact is especially
important if one tries to compare the predictions of low
energy effective models on the nucleon spin contents with
those of lattice QCD [76–83].

VI. SUMMARYAND CONCLUSION

In summary, we first briefly review the current status of
the nucleon spin decomposition problem with particular
emphasis upon the fact that there exists two physically
inequivalent gauge-invariant decompositions (I) and (II)
of the nucleon spin. The difference between these two
decompositions resides in the orbital parts of quarks and
gluons, while intrinsic spin parts of quarks and gluons are
just common. The OAMs of quarks and gluons appearing
in the decomposition (I) are the gauge-invariant dynamical
(or mechanical) OAMs, while the OAMs appearing in the
decomposition (II) are the (generalized) canonical OAMs
with gauge-invariance. The key ingredient, which charac-
terizes the difference between these two OAMs is what we
call the potential angular momentum. We clarify the physi-
cal meaning of this quantity by using an analogous but
much simpler example from electrodynamics, i.e. a system
of charged particles and photons. It was shown that the
potential angular momentum represents angular momen-
tum associated with the longitudinal component of the
electric field generated by the charged particles.
Remember the fact that the longitudinal component of
the electric field is also the origin of the Coulomb inter-
actions between the charged particles, although the gen-
eration of potential angular momentum needs the magnetic
field as well. Related to the fact that the longitudinal
component of the electric field does not show up in the
absence of the charged particle sources, there arises the
ambiguity as to which of charged particles or the photons
the potential angular momentum should be attributed to.
(One encounters the same arbitrariness if one attempts to
attribute the Coulomb energy to either of the charged
particles or the photons.) If we attribute the potential
angular momentum to the charged particle property, we
have an angular momentum decomposition, in which the
angular momentum of the charged particles is given by the
(generalized) canonical OAM. On the other hand, if we
attribute it to the property of the photons, the orbital part of
the charged particle is given by the mechanical (or dynami-
cal) OAM. Although the choice is a matter of taste, it is
important to recognize the fact that what is closer to the
physical image of orbital (rotational) motion of charged
particles is the mechanical OAM rather than the canonical
OAM, in sharp contradiction to a widespread belief
or prepossession. One confirms that the terminology
mechanical OAM has a legitimate reason for it. This

FIG. 4. The Feynman graph, which may potentially contribute
to the evolution matrix for the quark orbital angular momentum.
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understanding may be of important physical significance,
because, for example, one must recognize clearly which of
dynamical or mechanical OAMs is a relevant quantity
when one tries to explain the single-spin asymmetry of
semi-inclusive hadron productions based on the orbital
angular momenta of nucleon constituents.

Also addressed in the paper are several other issues left
in the decomposition problem of nucleon spin and momen-
tum. After verifying the fact that there exist two gauge-
invariant decomposition of the QCD energy-momentum
tensor into the quark and gluon contributions, which are
generally nonequivalent, we have verified that the two
decompositions give exactly the same answer as long as
the longitudinal momentum sum rule of the nucleon is
concerned. It was further proved that the two decomposi-
tions give the same answer also for the evolution equation
for the momentum fractions of quarks and gluons, which
contradicts Chen et al’s claim that the gluons carry much
smaller momentum fraction in the asymptotic limit as
compared with the standardly-believed value of about
one-half.

We have also compared the evolution equations of
OAMs of quarks and gluons appearing in the two decom-
positions of the nucleon spin. We confirmed the fact that
these two types of OAMs obey exactly the same evolution
equations as indicated by the preceding studies. We
showed that the reason of this somewhat mysterious ob-
servation can be trace back to the fact that the potential
angular momentum, which gives the difference between
the two types of OAMs, does not contribute to the evolu-
tion matrix of the quark and gluon OAMs. We therefore
believe that the present investigation has deepened our
understanding about the relation between the two different
decompositions of the nucleon spin..
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APPENDIX A: PROOF THAT THE POTENTIAL
MOMENTUMTERMDOES NOTCONTRIBUTE TO

THE ANOMALOUS DIMENSION MATRIX OF
QUARK AND GLUON MOMENTUM FRACTIONS

The contribution of the potential momentum term to �ð2Þ
qq

can be obtained by evaluating the matrix element

Tqq ¼ hpsj
Z

d3xg �c ðxÞ�þAþ
physðxÞc ðxÞjpsi; (A1)

where jpsi is one quark state with momentum p and spin s.
The corresponding 1-loop diagram is given by the diagram
(b) of Fig. 1 except that the vertex VB is replaced by VC.
Taking care of the Feynman rule explained in the text, we
obtain

Tqq¼
Z d4k

ð2�Þ4 �uðpsÞg�
þgþ�ta

i6k
k2þ i"

ð�ig��tbÞuðpsÞ

� �i�ab

ðk�pÞ2þ i"

X2
�¼1

"�ðk�p;�Þ"��ðk�p;�Þ: (A2)

By using

T���
X2
�¼1

"�ðk;�Þ"��ðk;�Þ¼g���
k�n�þk�n�

k �n ; (A3)

with n� being a lightlike vector with n2 ¼ 0 [25], we can

write

Tqq ¼ �g2CF

Z d4k

ð2�Þ4
1

ðk2 þ i"Þ½ðk� pÞ2 þ i"�
� �uðpsÞ�þgþ� 6k��uðpsÞ

�
g�� �

ðk� pÞ�n� þ ðk� pÞ�n�
ðk� pÞ � n

�
: (A4)

Averaging over the spins, we obtain

�X
spins �uðpsÞ�þgþ� 6k��uðpsÞg�� ¼ 4kþpþ; (A5)

�X
spins �uðpsÞ�þgþ� 6k��uðpsÞðk�pÞ�n�þðk�pÞ�n�

ðk�pÞ�n ¼4kþpþ: (A6)

We thus find that the contributions from the two parts of the
(modified) gluon propagator precisely cancel each other,
which proves our statement that the potential momentum
term does not contribute to �ð2Þ

qq .
Next, we consider the following matrix element

TqG ¼ hp�j
Z

d3xg �c�þAþ
physc jp�i; (A7)

where jp�i is one gluon state with momentum p and polar-
ization �. The 1-loop diagram, that might potentially contrib-
ute to this matrix element, is shown in Fig. 3. This gives

TqG ¼
Z d4k

ð2�Þ4
1

ðk2 þ i"Þ½ðk� pÞ2 þ i"�
� Tr½�þta 6k��tað6k� 6pÞ�"þðp; �Þ"��ðp; �Þ: (A8)
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Since the real gluon state has only transverse polarizations, we
have

"þðp; �Þ ¼ 0: (A9)

This ensures that the potential momentum term does not

contribute to the anomalous dimension �ð2Þ
qG.

APPENDIX B: PROOF THAT THE POTENTIAL
ANGULAR MOMENTUM TERM DOES NOT

CONTRIBUTETOTHEEVOLUTIONMATRIX FOR
ORBITAL ANGULAR MOMENTUM

We are interested here in the 1-loop contribution to the
matrix element

hpþ jL̂potjpþi; (B1)

with

L̂ pot¼
Z
d3xg �c ðxÞ�þðx1A2

physðxÞ�x2A1
physðxÞÞc ðxÞ:

(B2)

To avoid singular nature of the matrix element resulting
from the explicit factor of x�, it is customary to first
consider the off-forward matrix element and to take the
forward limit afterwards. For the off-forward matrix ele-
ment in a quark or gluon state, we have

hp0þjL̂potjpþi ¼
Z

d3xfx1hp0 þ jg �c ðxÞ�þA2
physðxÞc ðxÞjpþi

� x2hp0 þ jg �c ðxÞ�þA1
physðxÞc ðxÞjpþig

¼ ð2�Þ3
�
�i

@

@p0
1

�3ðp0 � pÞhp0 þ jg �c ð0Þ�þA2
physð0Þc ð0Þjpþi

þ i
@

@p0
2

�3ðp0 � pÞhp0 þ jg �c ð0Þ�þA1
physð0Þc ð0Þjpþi

�
: (B3)

When convoluted with a test function [43], this gives two terms. One is

lim
p0!p

�
i

@

@p0
1

hp0 þ jg �c ð0Þ�þA2
physð0Þjpþi � i

@

@p0
2

hp0 þ jg �c ð0Þ�þA1
physð0Þjpþi

�
; (B4)

which represents the generation of orbital angular momen-
tum from quark and gluon helicities in the splitting pro-
cesses. The other is

� 1

pi hpþ jg �c ð0Þ�þAi
physð0Þc ð0Þjpþi;

ði: not summedÞ;
(B5)

which represents the self-generation of orbital angular
momentum in the splitting processes.

We first consider the former contribution, which has the
structure

lim
p0!p

�
i

@

@p0
1

~T2 � i
@

@p0
2

~T1

�
; (B6)

with

~T i ¼ hp0 þ jg �c ð0Þ�þAi
physð0Þc ð0Þjpþi: (B7)

The 1-loop Feynman diagram contributing this matrix
element is similar to that shown in Fig. 4. This gives

~Ti¼ 1

2pþ
Z d4k

ð2�Þ4 �uðp
0þÞg�þgi�ta

i6k
k2þi"

ð�g��tbÞuðpþÞ

� �i�ab

ðk�pÞ2þi"

X2
�¼1

"�ðk�p;�Þ"��ðk�p;�Þ: (B8)

From this, we obtain

i
@

@p0þ
~T2¼g2CF

2pþ
Z d4k

ð2�Þ4
@

@p0
1

�uðp0
1Þ�þ6k��uðpþÞ

� 1

ðk2þ i"Þ½ðk�pÞ2þ i"�
�
�i
��ðk�pÞin�

ðk�pÞ �n
�
;

(B9)

where we have used the fact that ni ¼ 0 for i ¼ 1, 2. Using
the explicit form of the light-cone spinors

uðpþÞ ¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
pþ

q
ffiffiffi
2

p
pþ

0ffiffiffi
2

p
pþ

0

0
BBBBB@

1
CCCCCA;

uðp0þÞ ¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
pþ

q
ffiffiffi
2

p
pþ

p0
1 þ ip0

2ffiffiffi
2

p
pþ

p0
1 þ ip0

2

0
BBBBB@

1
CCCCCA; (B10)

it can be shown that

lim
p0!p

@

@p0
1

�uðp0Þ�þ6k��uðpÞ�i
� ¼ 0; (B11)
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lim
p0!p

@

@p0
1

�uðp0Þ�þ6k��uðpÞðk� pÞin� ¼ 0: (B12)

Then, we find that

lim
p0!p

i
@

@p0
1

~T2 ¼ 0: (B13)

Similarly

lim
p0!p

i
@

@p0
2

~T1 ¼ 0; (B14)

In this way, we find that

lim
p0!p

�
i

@

@p0
1

~T2 � i
@

@p0
2

~T1

�
¼ 0: (B15)

Next we consider the term corresponding to self-
generation of the orbital angular momentum in the splitting
processes, which takes of the form:

� 1

pi hpþjg �c ð0Þ�þAi
physð0Þc ð0Þjpþi¼� 1

piT
i: (B16)

We find that

Ti¼ 1

2pþ
Z d4k

ð2�Þ4 �uðpþÞg�þgi�ta
i6k

k2þ i"
ð�g��taÞuðpþÞ

� �i�ab

ðk�pÞ2þ i"

�
g���

ðk�pÞ�n�þn�ðk�pÞ�
ðk�pÞ �n

�

¼�ig2CF

2pþ
Z d4k

ð2�Þ4 �uðpþÞ�þ6k��uðpþÞ

� 1

ðk2þ i"Þ½ðk�pÞ2þ i"

�
�i
��ðk�pÞin�

ðk�pÞ �n
�
: (B17)

Using the relation

uðpþÞ�þ6k��uðpþÞ
�
�i
� � ðk� pÞin�

ðk� pÞ � n
�

¼ 2ðkþpi � pþkiÞ k
þ þ pþ

kþ � pþ ; (B18)

we have

Ti ¼ � 2ig2CF

2pþ
Z d4k

ð2�Þ4
1

ðk2 þ i"Þ½ðk� pÞ2 þ i"�
� ðkþpi � pþkiÞ k

þ þ pþ

kþ � pþ : (B19)

Carrying out k� integration, shifting the variable k? tp

k0? ¼ k? � xp? and trading kþ for xpþ, we obtain

Ti ¼ g2CF

2ð2�Þ3
Z d2k0?

k02?

Z 1

0
ðx� xÞ xþ 1

x� 1
¼ 0: (B20)

This means that the contributions from the two parts of the
modified gluon propagator in (B17), i.e. the g��, and the
other part, cancel each other out. We therefore confirm
the fact that the potential angular momentum term, which
distinguishes the two decompositions of the nucleon spin,
does not contribute to the evolution matrix for the quark
OAM.We emphasize that our proof here is not bound to the
choice of gauge.
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[82] Ph. Hägler et al. (LHPC Collaboration), Phys. Rev. D 77,

094502 (2008).
[83] J. D. Bratt et al. (LHPC Collaboration), Phys. Rev. D 82,

094502 (2010).

MORE ON THE RELATION BETWEEN THE TWO . . . PHYSICAL REVIEW D 85, 114039 (2012)

114039-21

http://dx.doi.org/10.1088/0954-3899/24/7/002
http://dx.doi.org/10.1016/S0550-3213(98)00559-8
http://dx.doi.org/10.1016/S0550-3213(98)00559-8
http://dx.doi.org/10.1016/S0550-3213(00)00288-1
http://dx.doi.org/10.1103/PhysRevD.70.114001
http://dx.doi.org/10.1103/PhysRevD.70.114001
http://dx.doi.org/10.1103/PhysRevLett.100.232002
http://dx.doi.org/10.1103/PhysRevLett.103.062001
http://arXiv.org/abs/0807.0699
http://dx.doi.org/10.1103/PhysRevLett.104.039101
http://dx.doi.org/10.1103/PhysRevLett.106.259101
http://dx.doi.org/10.1103/PhysRevD.81.114010
http://dx.doi.org/10.1103/PhysRevD.83.014012
http://dx.doi.org/10.1103/PhysRevD.84.037501
http://arXiv.org/abs/1010.1080
http://arXiv.org/abs/1102.1130
http://dx.doi.org/10.1103/PhysRevD.84.041701
http://dx.doi.org/10.1016/j.physletb.2012.01.024
http://arXiv.org/abs/1010.4336
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.019
http://dx.doi.org/10.1103/PhysRevA.82.012107
http://dx.doi.org/10.1103/PhysRevA.82.012107
http://dx.doi.org/10.1103/PhysRevD.83.071901
http://dx.doi.org/10.1103/PhysRevD.83.071901
http://dx.doi.org/10.1016/j.physletb.2011.04.045
http://dx.doi.org/10.1016/j.physletb.2011.04.045
http://arXiv.org/abs/1110.6516
http://dx.doi.org/10.1103/PhysRevD.85.058901
http://dx.doi.org/10.1103/PhysRevD.85.058901
http://arXiv.org/abs/1203.1288
http://arXiv.org/abs/1205.0516
http://arXiv.org/abs/1202.2843
http://arXiv.org/abs/1205.2916
http://arXiv.org/abs/1205.6483
http://dx.doi.org/10.1103/PhysRevLett.76.740
http://dx.doi.org/10.1103/PhysRevLett.76.740
http://dx.doi.org/10.1103/PhysRevD.59.014013
http://dx.doi.org/10.1103/PhysRevD.59.014013
http://dx.doi.org/10.1103/PhysRevLett.65.2511
http://dx.doi.org/10.1103/PhysRevLett.66.289
http://dx.doi.org/10.1103/PhysRevLett.66.1663
http://dx.doi.org/10.1016/0370-2693(91)90954-O
http://dx.doi.org/10.1016/0370-2693(91)90954-O
http://dx.doi.org/10.1016/0370-1573(95)00011-5
http://dx.doi.org/10.1016/0370-1573(95)00011-5
http://arXiv.org/abs/hep-ph/9803403
http://dx.doi.org/10.1063/1.3667298
http://dx.doi.org/10.1103/PhysRevD.85.051501
http://dx.doi.org/10.1103/PhysRevD.59.074010
http://dx.doi.org/10.1103/PhysRevD.59.074010
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1080/09500349414550911
http://dx.doi.org/10.1080/09500349414550911
http://dx.doi.org/10.1209/0295-5075/25/7/004
http://dx.doi.org/10.1209/0295-5075/25/7/004
http://dx.doi.org/10.1088/1126-6708/2009/08/056
http://dx.doi.org/10.1088/1126-6708/2009/08/056
http://dx.doi.org/10.1103/PhysRevD.84.014015
http://dx.doi.org/10.1119/1.11298
http://dx.doi.org/10.1103/PhysRevD.9.980
http://dx.doi.org/10.1103/PhysRevD.9.416
http://dx.doi.org/10.1098/rsta.2000.0731
http://dx.doi.org/10.1103/PhysRevD.58.056003
http://dx.doi.org/10.1016/S0031-8914(42)90113-7
http://dx.doi.org/10.1103/PhysRevD.79.071501
http://dx.doi.org/10.1143/PTP.54.1816
http://dx.doi.org/10.1016/0550-3213(76)90328-X
http://dx.doi.org/10.1016/0550-3213(76)90328-X
http://dx.doi.org/10.1140/epja/i2010-10954-6
http://dx.doi.org/10.1103/PhysRevD.38.1633
http://dx.doi.org/10.1103/PhysRevD.38.1633
http://dx.doi.org/10.1103/PhysRevLett.101.102003
http://dx.doi.org/10.1103/PhysRevD.71.074001
http://dx.doi.org/10.1103/PhysRevD.71.074001
http://dx.doi.org/10.1103/PhysRevD.74.054006
http://dx.doi.org/10.1103/PhysRevD.74.054006
http://dx.doi.org/10.1103/PhysRevD.77.074011
http://dx.doi.org/10.1103/PhysRevD.77.074011
http://dx.doi.org/10.1103/PhysRevD.77.094502
http://dx.doi.org/10.1103/PhysRevD.77.094502
http://dx.doi.org/10.1103/PhysRevD.82.094502
http://dx.doi.org/10.1103/PhysRevD.82.094502

