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We study the Skyrme model of baryons with quantum chiral anomaly of QCD in magnetic back-

grounds, and suggest a possible induction of a novel structure of electric charge inside the baryons. Due to

the anomaly-induced gauged Wess-Zumino term �ð�0 þmultipionÞ ~E � ~B, the Skyrmions giving a local

pion condensation hð�0 þmultipionÞi � 0 would produce a local charge source, in the background

magnetic field ~B � 0. Since the appearance of the total additional electric charge on the baryon looks

unrealistic and surprising, we discuss the validity of our detailed evaluation of the anomaly effects.
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I. INTRODUCTION

The chiral anomaly is one of the central concepts in
QCD, and it manifests the nature of quantum field theories
in an explicit way in our hadronic world. As the chiral
anomaly is essentially coupled to electromagnetic sector,
since the electromagnetism is a part of the chiral symmetry,
the introduction of nontrivial electromagnetic backgrounds
should add a good flavor of physics onto the chiral anom-
aly. In this paper, we report an interesting new effect
induced by the chiral anomaly, for baryons in a background
magnetic field.

We analyze baryons in a constant magnetic background
in detail, and suggest that the baryon would acquire an
additional electric charge due to the chiral anomaly. Since
the result is counterintuitive and seems to be against charge
conservation, we discuss in detail how things work in a
concrete model of baryons. The mechanism of the genera-
tion of the charge is quite simple. It is well-known that
Wess-Zumino-Witten (WZW) term [1,2] actually captures
the chiral anomaly in terms of the hadronic degrees of
freedom. In particular, this term serves as a manifestation
of the famous �0 ! 2� decay. Now, any baryon carries a
cloud of pions around it, and so it is a source of the pions.
Once we replace one of the two �’s in the Wess-Zumino-
Witten term by the background magnetic field, we imme-
diately see that the baryon can be a source of the electro-
magnetism (another �), i.e.. the baryon can have an
additional charge structure due to the chiral anomaly and
the pion cloud. The schematic picture of this mechanism is
illustrated in Fig. 1.

In this paper, we explicitly demonstrate this mechanism
in detail, with a help of a concrete model of the pion-cloud

picture of the baryons, the Skyrmemodel [3]. In the Skyrme
model, baryons are given as a solitonic object made of a
local pion condensate h�ðxÞi � 0. Plugging the Skyrme
solution to the Wess-Zumino-Witten term, it can be shown
that the magnetic-field background can induce a novel
charge structure inside the baryon (Skyrmion).
In particular, we give an argument that the total charge

can also be generated, and as a result the Gell-Mann-
Nishijima formula for baryon charges can be corrected
under the magnetic field due to the anomaly

Qe ¼ e

�
I3 þ NB

2

�
þQanm

2
: (1)

Here in themodified formula,Qe is the electric charge of the
baryon, I3 is the third component of isospin, NB is the
baryon number, and the new term Qanm is the charge gen-
erated by the anomaly and the background magnetic field.
The generation of the electric charge is counterintuitive,

so one may be suspicious of the result. In this paper, we
analyze the validity of the calculation in detail. One should
also notice that, for example, in the renownedWitten effect
[4,5], monopoles are accompanied with electric charges, in
the presence of the � term. We may regard our WZW term
as an analogue of the � term for the Witten effect. In
addition, the chiral magnetic effect [6–9] in heavy ion
collisions shares the same property too. So, it is fair to
say that the generation of the electric charge is not a unique
feature of our investigation, but is a common feature
among parity-violating effects.
Quantum anomaly is literally quantum-mechanical, and

thus is a tiny effect. However, when the coupled magnetic
field is strong, this effect may be enhanced. So our physical
motivation for this work is primarily oriented to the situ-
ation in which strong magnetic field is present with a finite
density of baryonic matter. For this, one can come up with
two important physical cases: one is a neutron star, in
which neutrons are very dense and with a strong magnetic
field, and the other is a heavy ion collision, in which nuclei
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are smashed and a strong electromagnetic field is expected
to be created instantly. In this paper, we do not go into these
concrete cases. We concentrate on providing a basis for
that, and, in particular, evaluate in detail the anomaly
WZW term with the quantized Skyrmions, under a con-
stant magnetic field.

Since we have not explored the effects of the backreac-
tion of the magnetic field to the Skyrmions, the result of our
induced charge may not be conclusive. In this paper, we
present some arguments that the backreaction may not be
significant, but we shall wait for a further examinations in
the Skyrme model to have a definite conclusion on the
induced charge. In addition, we do not follow the time-
dependent process of turning on the magnetic field gradu-
ally, so we cannot address the issue of the origin of the
generated charges. We leave these as a future work.

The organization of this paper is as follows. In Sec. II, we
provide a review of the Skyrme model and the WZW term,
with a brief introduction to the Skyrmion solution. In
Sec. III, we shall explicitly evaluate the anomaly term for
the Skyrmions (baryons) in the magnetic field, and observe
that there seems to appear the additional charge. We quan-
tize the Skyrmion and evaluate the anomaly-induced electric
current for an arbitrary baryon state. In Sec. IV, we evaluate
the multipole moments of the anomaly-induced electric
current andfind a quadrupole,with a pion-mass dependence.
In Sec. V, we discuss possible other effects due to the
background magnetic field on the baryon. In Sec. VI, we
evaluate classically the anomaly-induced charge for higher-
charge (=multiple) Skyrmions. The final section is for our
nonexhaustible conclusion and discussions. AppendixA is a
study of the generated charge in a nonconstant magnetic
field. InAppendix B, we show that the induced charge is due
to amultipion effect (i.e., a pion cloud), andwe compare our
result with a point-particle description of baryons. The letter
version of this paper is [10].

II. THE SKYRMIONS AND THE
ANOMALY-INDUCED CHARGES

As briefly described in the introduction, it is indeed
almost straightforward to calculate the effect of the anom-
aly term for baryons in the presence of the magnetic-field
background, once we adopt a concrete model of the pion
cloud. Here, we first review the Skyrme model, which

realizes baryons as a condensation of the pions, and also
review the gauged WZW term, which manifests the chiral
anomaly in QCD.

A. The model

1. The Skyrme model

The chiral symmetry SUðNÞL � SUðNÞR acts on left-
handed and right-handed quarks as

qL ! ULqL;

qR ! URqR; with UL;R 2 SUðNÞL;R:
(2)

When the chiral condensate �qRqL develops a nonzero
vacuum expectation value by some nonperturbative effects

h �qRqLi ¼ �v31N; with v ¼ Oð�QCDÞ; (3)

the axial part of the chiral symmetry is spontaneously
broken as

SUðNÞL � SUðNÞR ! SUðNÞLþR: (4)

This gives rise to Nambu-Goldstone (NG) bosons,
namely, the pions, which take value in the coset

space SUðNÞL�SUðNÞR
SUðNÞLþR

,

UðxÞ ¼ exp

�
4i�aðxÞ
F�

Ta

�
; ða ¼ 1; 2; . . . ; N2 � 1Þ:

(5)

Here F� ¼ 108 ½MeV� is the pion decay constant and Ta is
a generator of SUðNÞ and we use the following standard
normalization

Tr ½TaTb� ¼ 1
2�

ab: (6)

The chiral symmetry acts on the NG modes as

U ! ULUUy
R: (7)

For later convenience, let us define left- and right-
invariant Maurer-Cartan one-forms by

L� � Uy@�U; R� � @�UUy: (8)

These take their values in the algebra of SUðNÞR and
SUðNÞL, respectively. The chiral symmetry acts on them as

L� ! URL�U
y
R; R� ! ULR�U

y
L: (9)

We can think of U as an effective low-energy field. Its
effective Lagrangian of the leading order to Oð@2Þ can be
uniquely determined as

Lð2Þ ¼ F2
�

16
Tr½@�U@�Uy þM2

�ðUþUy � 2Þ�

¼ F2
�

16
Tr½�R�R

� þM2
�ðUþUy � 2Þ�:

(10)

Here M� stands for the pion mass M� ¼ 137½MeV� and
our metric is ��� ¼ diagðþ1;�1;�1;�1Þ. By expanding

FIG. 1 (color online). A schematic figure for electric charge
generation of a nucleon. In electromagnetic backgrounds, i.e.,
F�� � 0, the chiral anomaly generates an additional coupling to

the gauge fields A�.
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L� and R� with respect to 1=F�, one gets

L� ¼ 4i
@��

a

F�

Ta þ 8i�abc
�a@��

b

F2
�

Tc þ . . . ; (11)

R� ¼ 4i
@��

a

F�

Ta � 8i�abc
�a@��

b

F2
�

Tc þ . . . : (12)

Plugging this into Lð2Þ, one obtain a standard kinetic term
of the pions and corrections

Lð2Þ ¼ 1

2
@��

a@��a �M2
�

2
�a�a

� 2

3F2
�

ð�a�a@��
b@��b � �a�b@��

a@��bÞ

þ 2M2
�

3F2
�

ð�a�aÞ2 þ � � � : (13)

We are interested in a topological soliton made by the
pions in this work. The topological winding number is
given by

�3ðSUðNÞÞ ¼ NB 2 Z: (14)

As will be shown, NB is identified with the baryon number
via the WZW term. However, it is easy to see, from a
simple scaling argument, that no topological solitons can

survive from collapsing in the theory with Lð2Þ. So one

needs higher-derivative corrections to Lð2Þ. Therefore, we
take a term of order Oð@4Þ, which is so-called the Skyrme
term

L ð4Þ ¼ 1

32e2s
Trð½R�; R��½R�; R��Þ; (15)

with es being a dimensionless coupling constant. We will
choose the parameter es ¼ 4:84 by following Ref. [11].
Now we are ready to write down the Skyrme model with
the right-invariant one-form as

L ¼ F2
�

16
Tr½�R�R

� þM2
�ðUþUy � 2Þ�

þ 1

32e2s
Trð½R�; R��½R�; R��Þ: (16)

A Noether current of SUðNÞL can be obtained by per-
forming a local and infinitesimal SUðNÞL rotation

�R� ¼ i@�	L: (17)

Variation of the Skyrme Lagrangian is given by

�L ¼ Tr

�
i

8

�
�F2

�R� þ 1

e2s
½R�; ½R�; R���

�
@�	L

�
: (18)

Then the conserved current is given by

j
�
L ¼ i

8

�
F2
�R

� � 1

e2s
½R�; ½R�; R���

�
: (19)

Similarly, the SUðNÞR current takes the form

j�R ¼ i

8

�
�F2

�L
� þ 1

e2s
½L�; ½L�; L���

�
: (20)

These currents are related by

j�L ¼ �Uj�RU
y; (21)

where we have used

UL�Uy ¼ UðUy@�UÞUy ¼ R�: (22)

The equation of motion of the Skyrme model is identical to
the current conservation law if the pion mass is zero

@�j
�
L ¼ 0; or @�j

�
R ¼ 0: (23)

When the pion mass is nonzero, the equation of motion
becomes

@�j
�
L ¼ � iF2

�m
2
�

16
Tr½U�Uy�: (24)

The vector and axial conserved currents are defined by

j�V ¼ j
�
L þ j

�
R

2
; j�A ¼ j

�
L � j

�
R

2
: (25)

The vector SUðNÞLþR is nothing but the isospin, so we
write its conserved charge as

Ia ¼
Z

d3xj0aV ¼
Z

d3xTr½ðj0L þ j0RÞTa�: (26)

2. Electromagnetic interaction

Let us next take the electromagnetic interaction into
account. For simplicity, hereafter, we concentrate on the
minimal case with two flavors N ¼ 2. Since the electric
charges of u and d quarks are 2=3 and �1=3 respectively,
the NG modes are rotated under the electromagnetic
Uð1Þ as

U!e�ieQUeieQ¼e�ieT3
UeieT

3
; Q¼1

6
1þT3; (27)

where T3 ¼ 
3=2 with the Pauli matrix 
a. Thus the elec-
tromagnetic Uð1Þem is a subgroup of SUð2ÞLþR.
Interactions of the NG modes and the electromagnetic

fields are introduced by gauging the Uð1Þem � SUð2ÞLþR

and replacing the partial derivative @� by a covariant

derivative

D �U ¼ @�Uþ ieA�½T3; U�: (28)

The left- and right-invariant one-forms are then replaced as

R� ! ~R� � D�UUy; L� ! ~L� � UyD�U: (29)

Then the total Lagrangian can be read as
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L ¼ � 1

4
F��F

�� þ F2
�

16
Tr½� ~R�

~R� þ ðUþUy � 2Þ�

þ 1

32e2s
Trð½ ~R�; ~R��½ ~R�; ~R��Þ: (30)

The classical equation of motion is derived by varia-
tional method as before. One can easily obtain

D �
~j�L ¼ � iF2

�M
2
�

16
Tr½U�Uy�; (31)

~j �
L � i

8

�
F2
�
~R� � 1

e2s
½ ~R�; ½ ~R�; ~R���

�
: (32)

One can also express the E.O.M. in terms of the right-
invariant one-form ~L� by just replacing ~R� with ~L�. Note

that since the electromagnetic charge Q breaks the chiral
symmetry SUð2ÞL � SUð2ÞR ! Uð1Þem, ~j�L and ~j�R are not
conserved currents. The Maxwell equation is given by

@�F
�� ¼ e~j3�V ; ~j3�V ¼ Tr½T3ð~j�L þ ~j�RÞ�: (33)

Thus the electromagnetic charge is given by

Qe ¼ e
Z

d3x~j3�¼0
V ¼ eI3: (34)

3. WZW term and Chiral anomaly

In order to describe the baryons in the Skyrme model
whose fundamental degrees of freedom are mesons, we
have to consider not only elemental particles but also
topological excitations. Since the NG modes do not carry
the Uð1ÞB charges, we need to add an extra terms to the
above Lagrangian. It is the so-called Wess-Zumino-Witten
term. With an electromagnetic field A�, the WZW term in

the N ¼ 2 flavor model is given by [12]

SWZW½A�� ¼
Z

d4x
e

2
j
�
BA�; (35)

with the baryonic current

j
�
B ¼ 1

24�2
����� Tr½R�R�R�� � e

8�2
�����@�ðA�P�Þ:

(36)

Here we use �0123 ¼ �1 and define

P� � i

2
Tr½
3ðL� þ R�Þ�: (37)

This baryon current is clearly conserved due to the anti-
symmetric tensor �����. On the other hand, j�B appears to
depend on gauge choices, at a glance. But this is not the
case. One can rewrite the baryonic current as

j�B ¼ 1

24�2
����� Tr½ ~R�

~R�
~R��

� ie

32�2
�����F��Tr½
3ð ~L� þ ~R�Þ�: (38)

This is manifestly gauge-invariant.
The first term in the current j�B gives a topological

number associated with �3ðSUð2ÞL�RÞ. Indeed, the inte-
gration of it over the space gives the topological winding
number

NB ¼
Z

d3x
1

24�2
�ijk Tr½RiRjRk�: (39)

The second term in the current j
�
anm is a manifestation of

the chiral anomaly. Actually, plugging Eqs. (11) and (12)
into Eq. (35), one finds the famous �0 ! 2� term by the
anomaly

� Nce
2

48�2F�

�����A�F��@��
0 þOðF�3

� Þ

¼ � Nce
2

12�2F�

�0 ~E � ~BþOðF�3
� Þ; (40)

where the equality holds up to a total derivative.
Let us next obtain the electric charge coupled to a

photon fluctuation a� under a background electromagnetic

field �A�. To this end, we expand the gauge field as

A� ¼ �A� þ a�: (41)

Then the WZW action linear in a� gives

SWZW½a��¼
Z
d4x

�
e

2
j
�
B ð �AÞa��

e2

16�2
����� �A�@�ða�P�Þ

�

¼
Z
d4x�����

��
e

48�2
Tr½R�R�R��

� e2

16�2
ð@� �A�ÞP�

�
a�� e2

16�2
�A�ð@�a�ÞP�

�
:

(42)

From this, we can read the electromagnetic current
j�em;WZW ¼ �SWZW=�a� as

j�em;WZW ¼ j�anm þ �����e

48�2
½Tr½R�R�R�� þ 3e@�ð �A�P�Þ�;

(43)

j�anm � ������ e2

16�2
ð@� �A�ÞP�: (44)

The current j�em;WZW is gauge-invariant [12]. The total

electromagnetic current is

j�em ¼ e~j3�V þ j�em;WZW: (45)

This is gauge-invariant, and always conserved on the mass
shell, from the gauge invariance.
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The total electric charge is given by the spatial integral
[13] of the zeroth component of this current (45)

Qe ¼ eI3 þ e

2
NB þ e2

16�2

Z
d3xBiPi: (46)

Here Bi stands for a background magnetic field (we have
used �0ijk ¼ ��ijk), and I3 is the isospin charge defined in
(34) [14]. This is the expression of the gauge-invariant and
conserved electric charge, which includes an extra term to
the well-known Gell-Mann-Nishijima formula. The last
term is a contribution from the chiral anomaly.

Note that, as we will see below shortly, the surface term
in Eq. (43) does not contribute to the net electric charge if
the pion mass is nonzero. So, we focus on the new last term
of Eq. (46) coming from Eq. (44), in the following of this
paper.

B. The Skyrmion: A nucleon as a topological soliton

Let us find a solution of the classical equations of motion
derived previously,

D �
~j
�
L ¼ 0; @�F

�� ¼ e~j�V: (47)

We solve these by dealing with the electromagnetic inter-
action as a perturbation. Then we expand the chiral field
with respect to the electromagnetic coupling constant e as

U ¼ expði ~
 � ð ~f0 þ ~f1 þ � � �ÞÞ;
A� ¼ Að0Þ

� þ Að1Þ
� þ � � � :

(48)

At the zeroth order the chiral fields and electromagnetic
fields are decoupled, so that the equations of motion are
those of the Skyrme model without the electromagnetic
interaction and the Maxwell equation without a source

@�j
ð0Þ�
L ¼ � iF2

�M
2
�

16
Tr½U�Uy�; @�F

ð0Þ�� ¼ 0;

(49)

with

jð0Þ�L ¼ i

8

�
F2
�R

ð0Þ� � 1

e2s
½Rð0Þ

� ; ½Rð0Þ�; Rð0Þ���
�
: (50)

The second equation in Eq. (49) is solved by considering a
constant background magnetic field, say along the xi-axis

1
2 �

ijkFjk ¼ Bi (51)

with Bi being a constant.
In order to solve the first equation in Eq. (49), it is useful

to introduce a dimensionless coordinate

x� ! 1

esF�

x�; @� ! esF�@�: (52)

In terms of this new coordinate, the Skyrme equation is
written as

@�ðRð0Þ��½Rð0Þ
� ;½Rð0Þ�;Rð0Þ���Þ¼m2

�

2
Tr½Uy�U�; (53)

with a dimensionless mass in unit of 1=ðesF�Þ

m� � M�

eF�

: (54)

Here and after, we will use this notation.
Let us make a standard hedgehog (radial) ansatz, for a

static and topologically nontrivial solution with NB ¼ 1,

U0ð ~xÞ ¼ expði ~f0 � ~
Þ ¼ expðifðrÞ ~
 � ~̂xÞ; (55)

x̂ i ¼ xi
r
: (56)

One can express U in a different fashion as

U0 ¼ 12 cosj ~f0j þ i
~f0

j ~f0j
� ~
 sinj ~f0j

¼ 12 cosfþ i ~̂x � ~
 sinf:
(57)

Then we obtain for a static configuration

Rð0Þ
i ¼ if0x̂i ~̂x � ~
þ i

2r
ð
i � ~̂x � ~
x̂iÞðsin2fþ 2i ~̂x � ~
sin2fÞ:

(58)

Putting this into Eq. (53), we obtain the ordinary differen-
tial equation�
1

4
þ2sin2f

r2

�
f00 þ 1

2r
f0þsin2f

r2

�
f02�1

4
�sin2f

r2

�
¼m2

�

4
sinf:

(59)

The solution with a unit winding number corresponds to

lim
r!1fðrÞ ¼ �; lim

r!0
fðrÞ ¼ 0: (60)

Numerical solutions with differentm�’s are given in Fig. 2.

We adopt the physical pion mass m
phys
� ¼ 0:263, which

was determined from the mass splitting between nucleon
and � [11]. We also show the profile functions for

m 0.0263

m 0.263

m 0

m 2.63

2 4 6 8 10 12 14
r

0.5

1.0

1.5

2.0

2.5

3.0

f

m 0.0263

m 0.263

m 0

m 2.63

2 4 6 8 10 12 14
r

0.5

1.0

1.5

2.0

2.5

3.0

f

FIG. 2. Profile functions for the hedgehog solution.
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m� ¼ 2:63 and 0.0263 in order to demonstrate a character-
istic property of the profile function. We see that the larger
(smaller) m� gives the thinner (fatter) Skyrmion. The
profile function with m� ¼ 0:0263 almost coincides to
that with m� ¼ 0, see Fig. 2.

Asymptotic behavior of f can be found by solving the
linearized equations of motion for large r

f00 þ 2

r
f0 � 2f

r2
�m2

�f ¼ 0: (61)

This is solved by

f ’
�
C

r2
þ A

r

�
e�m�r; (62)

where C and Að¼ Cm�Þ are constant. For a massless pion,
we find

f ’ C

r2
; (63)

with C ’ 8:638. For a massive pion, the asymptotic form
decays exponentially,

f ’ A

r
e�m�r; (64)

where A is a constant that depends onm�. For example, we
find A ’ 2 for m� ¼ 0:263.

III. ANOMALY-INDUCED CHARGE

We substitute the Skyrme solution to the electromag-
netic current calculated from the WZW term, to evaluate
the anomaly-induced electric charge of the baryons. We
here use classical Skyrmions for an illustration first, then
we move onto quantized Skyrmions, to obtain a formula
for the anomaly-induced charge for baryon quantum states.
The anomaly-induced charge is the last term of Eq. (46).

Since we are considering a constant magnetic-field back-
ground, it is enough to see Pi defined in Eq. (37).

A. Classical evaluation

To evaluate Pi, let us first write down the left- and right-
invariant one-forms as

Ri ¼ ið ~
 � ~̂xÞf0x̂i þ i

2
ð ~
 � @i ~̂xÞ sin2f

þ ½ð@i ~̂x � ~̂xÞ1þ ið@i ~̂x� ~̂xÞ � ~
�sin2f; (65)

Li ¼ ið ~
 � ~̂xÞf0x̂i þ i

2
ð ~
 � @i ~̂xÞ sin2f

þ ½ð@i ~̂x � ~̂xÞ1� ið@i ~̂x� ~̂xÞ � ~
�sin2f: (66)

Plugging these into Eq. (37), we have

Pi ¼ �f0x̂ix̂3 � 1

2
ð@ix̂3Þ sin2f: (67)

The topological charge density, P1 and P3 are shown in
Fig. 3 at m� ¼ 0. The induced electric charge densities
with nonzero m� (see Fig. 4) are quite similar to those for
the massless case in Fig. 3. A tiny difference comes from
the similar but slightly different behaviors in profile func-
tions fðrÞ, as shown in Fig. 2.
The spatial integrations of P1 and P3 becomeZ

d3xP1 ¼ 0;
Z

d3xP3 ¼ � 4�

3ðesF�Þ2
c0; (68)

with

c0 �
Z

drðr2f0 þ r sin2fÞ: (69)

Note that the integration variable r ! r=ðesF�Þ is the
dimensionless coordinate, so that c0 is a dimensionless
number. This means that the net induced charge is zero

FIG. 3 (color online). NB ¼ 1 Skyrmion solution for m� ¼ 0. From left to right, contour plots of the baryon number density, P1 ¼
�0:2 and P3 ¼ �0:2, respectively.
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for ~B / ð1; 0; 0Þ, and (0,1,0), whereas it is nonzero for ~B /
ð0; 0; 1Þ, where a nonzero correction appears to the Gell-
Mann-Nishijima formula. The numerical coefficient c0 can
be rewritten as

c0 ¼ ½r2f�10 þ
Z

drð�2rfþ r sin2fÞ: (70)

The first term is a surface contribution that becomes non-
zero only atm� ¼ 0 due to distinct behavior at large r shown
in Eq. (63), and the second term expresses a pion-cloud

effect discussed in Appendix B. Computational results of
c0 become

c0 ¼ �14:1þ C ðm� ¼ 0Þ; (71)

c0 ¼ �10:2 ðm� ¼ 0:263Þ; (72)

where C is asymptotic factor shown in Eq. (63).
Computational results for other values of the pion masses
are also summarized in Table I.
Finally, we evaluate contributions from the surface term

in Eq. (43). To this end, we need to compute

W ¼ �
Z

d3x�ijk@ið �AjPkÞ: (73)

Interestingly, plots of the integrand (density) are quite
similar to those in Fig. 3 if we choose a gauge �Ai ¼
B1ð0;�z=2; y=2Þ or �Ai ¼ B3ð�y=2; x=2; 0Þ. The surface
term can be evaluated as

W ¼
Z

d�2

�
x̂i�

ijk �Aj

�
f0x̂kx̂3 þ ð@kx̂3Þ sin2f

2

��
r!1

:

As shown in Eq. (64), the profile function for m� � 0 is
exponentially small at large r, so that this integration
vanishes.
Note that in the massless case the asymptotic behavior

given in Eq. (62) leads to W � 0 as

W ¼ 32�iC

3ðesF�Þ2
B3: (74)

We see that this surface term with the constant C given in
Eq. (62) cannot cancel the last term of Eq. (46). Anyway,
since the physical pion mass is not zero, we consider the

FIG. 4 (color online). The contour plots of the anomalous-
charge densities of B ¼ 1 Skyrmion for  ¼ 0:263 on the cross
section by the y ¼ 0 plane. The top panel shows �P1=2 with
B1 � 0 and the bottom panel shows �P3=2 with B3 � 0. The
blue lines have positive values and the red ones have negative
values. The black broken lines correspond to zero charge con-
tours.

TABLE I. Numerical results of the coefficients c0 and c2. We
neglect the surface contribution atm� ¼ 0 shown in Eq. (71) due
to distinct behavior of the Skyrmion profile function fðrÞ at r !
1, i.e., fðrÞ � 1=r2, discussed in Sec. II B.

m�=m
phys
� c0 c2

0 �1:41� 101 �1
0.1 �1:37� 101 �4:90� 105

0.125 �1:37� 101 �2:99� 105

0.25 �1:34� 101 �6:68� 104

0.5 �1:23� 101 �1:50� 104

1 �1:02� 101 �3:27� 103

2 �7:32 �6:91� 102

3 �5:67 �2:76� 102

4 �4:62 �1:44� 102

5 �3:88 �8:63� 101

10 �2:20 �1:89� 101

20 �1:15 �4:14

30 �7:97� 10�1 �1:74

50 �4:99� 10�1 �6:90� 10�1

100 �2:38� 10�1 �1:35� 10�1
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new last term in Eq. (46) as the anomaly-induced electric
charge [15].

B. Evaluation with quantized Skyrmion

To evaluate the anomalous current and charge for each
baryon state, the Skyrmion is quantized as a slowly rotating
soliton. Quantizing the collective coordinates of soliton’s
moduli space G is achieved by the canonical quantization
of a particle on a manifold G. In the case of two flavors,
G ¼ SUð2Þ ’ S3. We construct the angular momentum
operators acting on baryon states and the harmonic func-
tions on G corresponding to baryon wave function. Using
these, we evaluate the expectation values of the anomalous
currents.

We evaluate the expectation values hj�anmiB and the
anomalous charge QB

anm for each baryon state B in the
presence of a background magnetic field. We show that
the spatial components of the currents vanish: hjianmiB ¼ 0.
We also obtain the anomalous charge Qanm, which is given
by integrating hj0anmiB.

1. Angular momentum operators and
spherical harmonics on S3

Let g 2 G be a group element of a group manifold G.
Then there are operators La and Ra acting on g from left
and right, respectively, and satisfying the commutation
relations

½La;Lb� ¼ ifabcLc; ½Ra;Rb� ¼ ifabcRc: (75)

Here the roman indices correspond to those of the tangent
space of G, and fabc is the structure constant of the Lie
algebra of G: ½Ta; Tb� ¼ ifabcTc and TrðTaTbÞ ¼ �ab=2.
The actions of La and Ra on g are

Lag ¼ �Tag; Lag
�1 ¼ g�1Ta; Rag ¼ gTa;

Rag
�1 ¼ �Tag

�1: (76)

We restrict ourselves to the case G ¼ SUð2Þ, and thus
fabc ¼ �abc. This is the case of the two-flavor Skyrmion.

The operators La and Ra are precisely the angular
momentum operators with respect to the isometry
SUð2ÞL � SUð2ÞR of S3. We introduce the scalar spherical
harmonics on S3, YJm ~m, where J is the same magnitude
spins of both SUð2ÞL and SUð2ÞR, and m and ~m are the
eigenvalues of their third components, respectively. The
actions of the operators on the spherical harmonics are

L2YJm ~m ¼ R2YJm ~m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp

YJm ~m;

L�YJm ~m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ 	mÞðJ �mþ 1Þp
YJðm�1Þ ~m;

R�YJm ~m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ 	 ~mÞðJ � ~mþ 1Þ

p
YJmð ~m�1Þ;

L3YJm ~m ¼ mYJm ~m; R3YJm ~m ¼ ~mYJm ~m;

(77)

where L� ¼ L1 � iL2 and R� ¼ R1 � iR2.

It is convenient to introduce aD-functionDabðgÞ so as to
see the relation of Eq. (76) and (77). It is defined by the
adjoint action of g,

gTag
y ¼ TbDbaðgÞ: (78)

The action of La and Ra on DabðgÞ becomes

LcDabðgÞ ¼ i�cadDdbðgÞ;
RcDabðgÞ ¼ �i�cdbDadðgÞ:

(79)

With a little more algebra, it can be shown that appropriate
linear combinations of DabðgÞ precisely give the harmonic
functions YJm ~m.
Note that La and Ra are, respectively, the isospin and

the spin operators for baryon states. See, for instance,
Ref. [16] for a discussion in the three-flavor case. The
adjoint action of g to the hedgehog Skyrmion givesUðxÞ ¼
gU0ðxÞgy ¼ U0ðxrotÞ. That is, gx̂ � �gy ¼ x̂rot��. The
transformation of the unit vector x̂ under the spatial rota-
tion caused by DðgÞ is

x̂ a ! x̂rota ¼ DabðgÞx̂b: (80)

It is natural to identify SUð2ÞR as the baryon spin, where
g ! gkR with kR 2 SUð2ÞR.

2. Absence of the spatial anomalous current

To evaluate hjianmiB in the presence of a background
magnetic field, we need to focus only on P0, owing to
the index structure of the WZW term. We first write down
P0 and then quantize it. Substituting a slowly rotating
Skyrmion Uðx; tÞ ¼ gðtÞU0ðxÞgyðtÞ for P0 (37), we obtain

P0 ¼ 2 sinð2fÞ�ac3DabðgÞx̂b Tr½
c _ggy�: (81)

In the procedure of the canonical quantization, the time-
derivative part is replaced with the angular momentum
operator as follows [17]:

La ¼ i�Tr½
a _ggy�;

� ¼ 8�

3

Z
drr2sin2f

�
1þ 4

�
f02 þ sin2f

r2

��
:

(82)

Hence P0 can be written in terms of raising and lowering
operators

P0 ¼ � 1ffiffiffi
3

p
�

sinð2fÞ½x̂þðY1��Lþ þ Y1þ�L�Þ

� x̂�ðY1�þLþ þ Y1þþL�Þ
þ x̂3ðY1�0Lþ þ Y1þ0L�Þ�Weyl; (83)

where the indices� in YJm ~m mean�1, and x̂� ¼ x̂1 � ix̂2.
The Weyl ordering for the operators is understood.
Integrating a product of three spherical harmonics over

S3 gives
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Z d�3

2�2
ðYJ1m1 ~m1

Þ
YJ2m2 ~m2
YJ3m3 ~m3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J2 þ 1Þð2J3 þ 1Þ

2J1 þ 1

s
CJ1m1

J2m2J3m3
CJ1 ~m1

J2 ~m2J3 ~m3
; (84)

where CJ1m1

J2m2J3m3
is a Clebsch-Gordan coefficient of SUð2Þ.

The wave function of each baryon state is given by YJm ~m.
Our primary interest is in nucleons (I ¼ J ¼ 1=2) and �
baryons (I ¼ J ¼ 3=2), but here we can keep J arbitrary.
We use Eq. (84) to evaluate P0 projected onto each baryon
state.

In Eq. (83), we need to focus only on the last line

OW � ðY1�0Lþ þ Y1þ0L�ÞWeyl

¼ Y1�0Lþ þ Y1þ0L� þ ffiffiffi
2

p
Y100: (85)

It is easily seen that each of the first and the second lines in
Eq. (83) gives no contribution. Integrating Eq. (85) by
using Eq. (84) along with baryon states of quantum num-
bers ðJ; I3; S3Þ for (iso)spin and the third components, we
obtain

hOWiB ¼
Z d�3

2�2
ðYJI3�S3Þ
OWYJI3�S3

¼ ffiffiffi
3

p
CJ�S3
10J�S3

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ � I3ÞðJ þ I3 þ 1Þ

q
CJI3
1�1JðI3þ1Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ I3ÞðJ � I3 þ 1Þ

q
CJI3
11JðI3�1Þ þ

ffiffiffi
2

p
CJI3
10JI3

Þ;
(86)

where the minus sign appearing in front of S3 is due to
Eq. (79). This exactly vanishes once values of the Clebsch-
Gordan coefficients are substituted [18]

CJ�
10J� ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

JðJ þ 1Þp ;

CJ�
1�1Jð�	1Þ ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ � �ÞðJ 	 �þ 1Þ

2JðJ þ 1Þ

s
:

(87)

Thus we see hjianmiB ¼ 0.

3. Anomalous electric charge in baryons

In j0anm, rotation of the Skyrmion is encoded in x̂rot3 .

Hence, it is sufficient to evaluate hx̂rot3 iB, which directly

leads us to hj0anmiB. Since this part does not contain deriva-
tives in time, we simply integrate Eq. (80) by using
Eq. (84). The result is

hx̂rot3 iB ¼ � I3S3
JðJ þ 1Þ x̂3: (88)

Below, we will mainly focus on the case J ¼ 1=2 for
simplicity. However, thanks to Eq. (88), it is straightfor-
ward to consider higher-spin cases. For instance, this
gives hx̂rot3 iN ¼ �4I3S3x̂3=3 for nucleons, and hx̂rot3 i� ¼
�4I3S3x̂3=15 for � baryons.

Let us calculate the total electric charge from the anoma-
lous effect. The matrix elements of P� are evaluated by

applying Eq. (88),

hP0iNI3;S3 ¼ 0; (89)

hPaiNa¼1;2
I3;S3

¼ � 16i

3
I3S3

�
f0 � sinð2fÞ

2r

�
x̂ax̂3; (90)

hP3iNI3;S3 ¼ � 16i

3
I3S3

��
f0 � sinð2fÞ

2r

�
x̂23 þ

sinð2fÞ
2r

�
:

(91)

The anomalous-charge density under a constant magnetic
field B is indeed induced in nucleons

hj0anmiNI3;S3 ¼
ie2Nc

48�2
BihPiiNI3;S3 : (92)

The integration of hPiiNI3;S3 over the whole space yieldsZ
d3xhPiiNI3;S3 ¼

(
0 ði ¼ 1; 2Þ;
� 16�i

9 ð4I3S3Þc0 ði ¼ 3Þ;
where c0 is defined in Eq. (70). The numerical values of c0
are shown in Table I for several pion masses. From Eq. (92)
, we obtain the anomalous charge for nucleons

QN
anm ¼ 4e2Nc

27�
I3S3

c0B3

ðesF�Þ2
: (93)

In this final expression we restored the rescaling factor
esF� by a dimensional counting. Equation (93) shows that
an electric charge is actually induced by the anomalous
effect even for a neutron.
As seen from Eq. (88), dividing the result in Eq. (93) by

a factor of 5 gives the anomalous charge of � baryons.
The plot of the charge density of hj0anmi for the quantized

Skyrmion shows exactly the same as Fig. 3. For a magnetic
field along x1 direction, the charge density plot is symmet-
ric, thus the total charge vanishes. However, obviously
multipoles, in particular, a quadrupole, may show up. In
the next section, we calculate multipoles in hj0anmi.

IV. MULTIPOLE MOMENTS OF ANOMALOUS
CHARGES AND PION-MASS DEPENDENCE

When one regards charged baryons as pointlike parti-
cles, multipole moments are suitable physical quantities to
describe an original charge distribution. In this section, we
extend the calculations to the higher multipole moments
due to the anomalous-charge distributions, and estimate
pion-mass dependence of the anomalous charges and the
multipole moments.
First, we can easily find that the dipole moment due to

the anomalous charge vanishes

Di �
Z

d3xxihj0anmiN ¼ 0 ði ¼ 1; 2; 3Þ: (94)

ANOMALY-INDUCED CHARGES IN BARYONS PHYSICAL REVIEW D 85, 114038 (2012)

114038-9



On the other hand, the quadrupole moment

Qij �
Z

d3xð3xixj � r2�ijÞhj0anmiN; (95)

is calculated for the nucleon as

Qij ¼ e
2Nc

135�
ðI3S3Þ ~Qijk

eBk

ðesF�Þ4
c2; (96)

~Qijk �
�2�k3 0 3�k1

0 �2�k3 3�k2

3�k1 3�k2 4�k3

0
BB@

1
CCA

ij

; (97)

where the numerical coefficient,

c2 ¼
Z

dr½2r4f0 � r3 sinð2fÞ�; (98)

is shown in Table I for several pion masses. This means that
the leading multipole due to the anomalous contribution is
the quadrupole moment. We note that the quadrupole is
induced in response to all directions of the external mag-
netic fields, although the anomalous charge is induced only
by B3 (see Eq. (93)).

In order to extract the pion-mass dependence of the
anomalous charge and the quadrupole moment, we calcu-
late the Skyrmion profile function fðrÞ for wide pion-mass

range (0:1 � m�=m
phys
� � 100). Behavior of fðrÞ for sev-

eral pion masses is shown in Fig. 5, where the solid line is

fðrÞ atm� ¼ m
phys
� . We find that the wave function shrinks

with the pion mass increasing.
Since the pion-mass-dependence of the anomalous

charge and the quadrupole moment appears in the numeri-
cal coefficients, c0 and c2, via r integration with fðr;m�Þ,
we focus on these coefficients. Figure 6 shows results of

�c0 (top) and �c2 (bottom) as a function of m�=m
phys
� in

log-log scale. Numerical values of c0 and c2 are also
summarized in Table I. We can see that c0 becomes almost

plateau at small pion mass (m�=m
phys
� < 1), whereas that

decreases linearly at large pion mass (m�=m
phys
� > 10). We

fit the results by a function, A=mn
�, with A and n being free

parameters, and obtain c0 ��6:0ð7Þ=m0:97ð5Þ
� in a range of

30 � m�=m
phys
� � 100, shown by the dashed line on Fig. 6

(top). This implies that the pion-mass dependence of the
anomalous charge is Qanm / 1=m� at large pion mass.
On the other hand, c2 behaves linearly for all pion-mass

region. We also fit the results by A=mn
�, and obtain c2 �

�127ð15Þ=m2:06ð7Þ
� in a range of 20 � m�=m

phys
� � 100,

shown by the dashed line on Fig. 6 (bottom). Although
the fit is performed at a large pion-mass region, almost all
results of c2 are located around the dashed line. This
implies that the quadrupole moment due to the anomaly
behaves as Qij / 1=m2

�.

Note that we have evaluated j�anm, which is only a part of
the total electromagnetic current. [19]

V. NO CONTRIBUTION FROM OTHER
CORRECTIONS

In this section, we study other effects of the background
magnetic field to the electric charge of the nucleon. Our
aim is to show that the anomaly-induced electric charge is
not canceled by the other electromagnetic effects.
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FIG. 5 (color online). Behavior of the Skyrmion profile func-
tions, fðrÞ, for several pion masses.
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FIG. 6 (color online). Results of the numerical coefficients,

�c0 (top) and �c2 (bottom), as a function of m�=m
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� in log-

log scale. The dotted lines mean fit results by a function A=mn
�,

with A and n being free parameters in the fit ranges shown by the
arrows on the figures. Numerical results of the fit are also shown
on the figures.
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The total electric charge is written as a modified Gell-
Mann–Nishijima formula,

Qe ¼ eI3 þ eNB

2
þQanm

2
: (99)

The first term stems from the electromagnetic current in
the original Skyrme model. The second term is due to the
baryon number coupling to the electromagnetic potential.
The last one is the anomaly-induced electric charge, which
is nonzero only when we have the background electromag-
netic field.

We are working with the perturbative expansion with
respect to the background magnetic field eB. What we
found for the anomaly-induced charge is

Qanm ¼ Oðe2BÞ: (100)

In the total charge formula (99), the second term is due to
the baryon charge, which is a topological charge for the
Skyrme model, thus not corrected by the background mag-
netic field. On the other hand, the first term can be cor-
rected in the presence of B. If a correction of the order
OðeBÞ appears from the I3 term in the charge formula, then
it may possibly cancel our anomaly-induced charge. In the
following, we shall present an argument showing that there
is no such correction of OðeBÞ to the I3 term.

First, let us examine if there is a correction to the
electromagnetic current itself in the Skyrme model. One
may naively think that, since the Skyrme solution itself is
corrected by the background electromagnetic field, the
current may also be corrected. However, this is not the
case for the Skyrmion. The reason is that for the Skyrmion,
the electromagnetic Uð1Þ is identical to a part of the iso-
spin, and the action itself has the isospin structure from the
first place. In fact, the relevant I3 is indeed expressed by a
part of the flavor SUð2Þ rotation, and thus the current I3 is
universally expressed as

I3 ¼ i

2

�
a0

@

@a3
� a3

@

@a0
� a1

@

@a2
þ a2

@

@a1

�
(101)

Here, there is no room for eB to show up, thus we can
safely use this expression for I3 in the electric charge
formula (99).

Then, the issue is whether the expectation value of I3 in
the background magnetic field is corrected or not. The
background magnetic field modifies the wave function of
the Skyrmion, so in principle this corrected wave function
may give a correction to hI3i, which is of importance for us.
We shall show in the following that there is no such
correction at OðeBÞ.

To proceed, we need to know how the Skyrme moduli
wave function is corrected. Because of the background
magnetic field, there appears a potential in the moduli
space, then two of the moduli parameters are lifted to
become pseudomoduli parameters. The corrected quantum
mechanics of themoduli and the pseudomoduli is written as

S ¼ 2�
X3
i¼0

½ð _aiÞ2� � eB3Vð ~aÞ; (102)

where the potential of the quantummechanics is of the form
Vð ~aÞ ¼ ðða1Þ2 þ ða2Þ2Þ ~Vð ~aÞ. The function ~Vð ~aÞ is a poly-
nomial of ai (with a finite order), with just numerical
coefficients. The potentialVð ~aÞ breaks the SUð2Þ symmetry
of the system down to the diagonal Uð1Þ.
We briefly explain how to derive the form (102) of the

induced potential. In the Skyrme model, the electromag-
netic interaction enters as

R̂ � � D�UUy; D�U � @� þ ieA�½q;U�: (103)

For a background magnetic field B3, we consider A1 ¼
�B3x

2, thus among R̂� the electromagnetic contribution

appears only in R̂1 as

R̂ 1 ¼ @1UUy þ �R̂1; (104)

�R̂1 � �ieB3x
2½q;GU0G

y�GUy
0G

y: (105)

Here we have already substituted the Skyrme solution.

Assuming that G is dependent on t and plugging this R̂
into the action, we obtain a correction to the Skyrme
Lagrangian at OðeBÞ as

�L ¼ F2
�

8
Tr½R1�R̂1� þ 1

8e2s
Tr½R�; R1�½R�; �R̂1�: (106)

Since we know that the Skyrme solution has the particular
dimension dependence x ! x=ðesF�Þ, we obtain

�S ¼
Z

d4x�L ¼
Z

dt
1

e3sF�

eB3Vð ~aÞ; (107)

where Vð ~aÞ is a polynomial in ai, with only dimensionless
numerical coefficients. This is nothing but the potential in
Eq. (102). As the potential Vð ~aÞ should vanish when G
corresponds to the electromagnetic direction, i.e., the 
3
direction, Vð ~aÞ is proportional to ða1Þ2 þ ða2Þ2.
With the potential, the Skyrme wave function c ð ~aÞ is

modified. We may apply a well-known perturbation tech-
nique for quantum mechanics, and obtain the corrected
nucleon wave function as

jl ¼ 1=2i ¼ jl ¼ 1=2i0
þ eB3

X1
n¼1

Vl¼1=2;l¼nþ1=2

El¼1=2 � El¼nþ1=2

jl ¼ nþ 1=2i0

þOððeBÞ2Þ: (108)

Here Vl¼1=2;l¼nþ1=2 is the matrix element of the operator V
appearing in the quantum mechanics (102), and the state
with subscript 0 is the one without the perturbation. In the
current case the states have degenerate energy, but the
expression above is universal.
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Now, using this corrected wave function, we evaluate the
expectation value of I3. Since we have

0hl ¼ nþ 1=2jI3jl ¼ 1=2i0 ¼ 0 (109)

for n � 1, we obtain

hI3i ¼ hI3i0 þOððeBÞ2Þ; (110)

where hI3i0 is the third component of the isospin of the
leading (uncorrected) order wave function. Therefore,
the electromagnetic correction to the charge formula starts
at OððeBÞ2Þ, which is at higher order compared to the
anomaly-induced charge Qanm. This means that our
anomaly-induced charge Qanm is the leading-order correc-
tion ofOðeBÞ, and cannot be canceled by the other effect of
the background magnetic field.

Here we have presented an argument that the total
induced charge due to the anomaly is not canceled by other
corrections due to the magnetic field. This argument may
be reinforced and supplemented by an explicit computation
of a backreaction to the Skyrme configuration itself, from
the magnetic field. The calculation of the backreaction is
quite complicated, so we leave it to our future work.

VI. HIGHER-CHARGE SKYRMIONS

In this section, we study classical higher-charge
Skyrmions and the anomaly-induced charges. To this
end, we will utilize the so-called rational map ansatz
[20], which is a reasonable method giving a good approxi-
mation. In this section we use another notation based on a
standard textbook [21]. A main difference from the pre-
vious sections is the dimensionless coordinate

x� ! 2x�
esF�

; @� ! esF�@�
2

: (111)

Let us first give a brief review on the rational map ansatz. A
solution of the Skyrmion UðxÞ with UðxÞ ! 1 as jxj ! 1
gives a map from R3 þ f1g ’ S3 to SUð2Þ ’ S3. The map
is characterized by the homotopy group �3ðSUð2ÞÞ ¼ Z.
More explicitly, it can be expressed as

UðxÞ ¼ expðifBðrÞ ~
 � ~nð�;	ÞÞ; (112)

where ffB;ng is a coordinate of SUð2Þ under a constraint
fB 2 ½0; �� and j ~nj ¼ 1: Namely, we decompose SUð2Þ
into I½0;�� � S2. The parameters ðr; �;	Þ are standard

spherical coordinates on the space R3 ’ R�0 � S2. In
order to get the map of degree NB 2 Z, we assume that
fB is a one-to-one map from R�0 ! I½0;��. Then ~nð�;	Þ
should give a map S2 ! S2 of degree NB. Let us introduce
the stereographic projection, which is useful to find the
generic map of degree NB,

zð�;	Þ ¼ ei	 tan
�

2
: (113)

For example, the NB ¼ 1 hedgehog ansatz (the one-to-one
map from S2 to S2) can be expressed by

~nðz; �zÞ ¼
�

zþ �z

1þ jzj2 ;�i
z� �z

1þ jzj2 ;
1� jzj2
1þ jzj2

�
: (114)

This can be easily extended to a NB-to-one map from S2 to
S2 by replacing z with any rational maps wðzÞ : C to C

wðzÞ ¼ PðzÞ
QðzÞ : (115)

Here PðzÞ and QðzÞ are holomorphic functions in z and we
setNB ¼ maxfdegP; degQg. Thus, we obtain the map from
S2 to S2 of degree NB

~n ¼
�
wþ �w

1þ jwj2 ;�i
w� �w

1þ jwj2 ;
1� jwj2
1þ jwj2

�
: (116)

Plugging this into Eq. (112), we reach the map from S3 to
SUð2Þ of degree NB. This is called the rational map ansatz.
The baryon number can be expressed by

NB ¼ �
Z f0B

2�2

�
sinfB
r

1þ jzj2
1þ jwj2

�
2
��������dwdz

��������2

r2drd�z;

(117)

where d�z is the usual area element on a 2-sphere

d�z ¼ 2idzd�z

ð1þ jzj2Þ2 ¼ sin�d�dr: (118)

By making use of the following pullback�
1þ jzj2
1þ jwj2

�
2
��������dwdz

��������2

d�z ¼ d�w; (119)

it is easy to change the integral area over S2 to the target
space of the rational map S2 as

r :h:s of Eq: ð117Þ ¼ �
Z f0B

2�
sin2fBdrd�w

¼ � 2NB

�

Z 0

�
sin2fBdfB ¼ NB; (120)

where we have used
R
d�w ¼ 4�NB. The Skyrmion en-

ergy in the F�=ð4esÞ energy unit and 2=ðesF�Þ length unit
with the rational map ansatz is given by

E ¼ 4�
Z 1

0
dr

�
r2f02B þ 2NBðf02B þ 1Þsin2fB

þ I
sin4fB
r2

þ 8m2
�ð1� cosfBÞ

�
; (121)

where we have introduced

I � 1

4�

Z �
1þ jzj2
1þ jwj2

�
4
��������dwdz

��������4

d�z: (122)

In order to find the best approximation, we need to seek
an appropriate rational map wðzÞ. We should choose w in
such a way that I is minimized. Though this is not easy
task, by using a numerical method, the rational maps wðzÞ
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for several NB were found in Ref. [20]. For instance, the
following rational maps for NB ¼ 1; 2; . . . ; 8 are known as

w1 ¼ z; (123)

w2 ¼ z2; (124)

w3 ¼ z3 � ffiffiffi
3

p
izffiffiffi

3
p

iz2 � 1
; (125)

w4 ¼ z4 þ 2
ffiffiffi
3

p
iz2 þ 1

z4 � 2
ffiffiffi
3

p
iz2 þ 1

; (126)

w5 ¼ zðz4 þ bz2 þ aÞ
az4 � bz2 þ 1

; (127)

w6 ¼ z4 þ ic

z2ðicz4 þ 1Þ ; (128)

w7 ¼ z7 � 7z5 � 7z2 � 1

z7 þ 7z5 � 7z2 þ 1
; (129)

w8 ¼ z6 � d

z2ðdz6 þ 1Þ ; (130)

with a ¼ 3:07, b ¼ 3:94, c ¼ 0:16 and d ¼ 0:14.
The last task is to determine the profile function fB.

Because no analytic solutions have been known, we need
to solve equations of motion numerically�
1þ 2NB

r2
sin2fB

�
f00B þ 2

r
f0B

þ NB sin2fB
r2

�
f02B � 1� I

NB

sin2fB
r2

�
� 4m2

� sinfB ¼ 0;

(131)

with the boundary condition fBð0Þ ¼ � and fBð1Þ ¼ 0.
We show several numerical solutions for NB ¼ 2 with
different pion masses in Fig. 7.

Now we are ready to evaluate the anomaly-induced
electric charge from Eqs. (37) and (46). As before, what
we need is only Pi, which can be obtained from

Ri ¼ ið ~
 � ~nÞf0Bx̂i þ
i

2
ð ~
 � @i ~nÞ sin2fB þ fð@i ~n � ~nÞ1

þ ið@i ~n� ~nÞ � ~
gsin2fB; (132)

Li ¼ ið ~
 � ~nÞf0Bx̂i þ
i

2
ð ~
 � @i ~nÞ sin2fB þ fð@i ~n � ~nÞ1

� ið@i ~n� ~nÞ � ~
gsin2fB: (133)

By plugging these into Eq. (37), we get

Pi ¼ �f0Bn3x̂i �
1

2
ð@in3Þ sin2fB: (134)

Note that, as expected, replacement n3 with x̂3 gives us a
NB ¼ 1 hedgehog solution.
The induced charge densities for theNB ¼ 2 solution are

shown in Fig. 8. As one can see, the NB ¼ 1 and NB ¼ 2
charge distributions are quite similar, even though the
baryon charge distributions are totally different.
However, one can find differences if paying attention to
the detail structures. As can be seen in Figs. 4 and 9, the
NB ¼ 2 densities are fatter than those of NB ¼ 1. Also the
NB ¼ 2 configuration has an internal structure.
The anomaly-induced charges of the classical

Skyrmions with NB ¼ 1; 2; . . . ; 8 under a constant back-

ground magnetic field ~B ¼ ð0; 0; B3Þ

Qclassical
anm ¼ e2

16�2ðesF�Þ2
B3~c0; (135)

~c 0 ¼ 4
Z

d3xP3; (136)

are summarized in the Table II. The prefactor 4 is needed
because of the dimensionless coordinate x� ! 2x�=esF�.

Note that c0 and ~c0 for NB ¼ 1 are related by ~c0 ¼
4�c0=3. We find that the classical anomaly-induced charge
is not proportional to the baryon charge NB. It is intriguing
that NB ¼ 4 and 7 Skyrmions have zero induced electric
charge. From the values given in the Table II, we observe
that higher-charge Skyrmions tend to cancel the total in-
duced charge. A natural reason for this cancelation is as
follows. Each Skyrmion has a classical orientation in spin
and isospin space, and to form a bound state of the
Skyrmions the orientations should be arranged to cancel
each other. Our formula of the anomaly-induced charge
depends on the signs of the quantum spin and isospin, so,
accordingly the total anomaly-induced charge would tend
to cancel each other. Although we have not performed
quantization of the higher-charge Skyrmions, we expect
that this cancelation should occur even at the quantized
level.

m 0.000263
m 0.263

m 2.63

m 0

5 10 15 20
r

0.5
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3.0

f2

FIG. 7. The profile functions fB¼2 for NB ¼ 2.
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Let us finally display the baryon number densities and
anomaly-induced electric charges of the Skyrmions with
NB ¼ 3; 4; � � � ; 8 and NB ¼ 17 [10], see Fig. 10. The
anomaly-induced charge densities exhibit amusing shapes.
Possible interpretation of the shape is an open question.

VII. CONCLUSION AND DISCUSSION

We have evaluated the gauged WZW term for quan-
tized Skyrmions under a background magnetic field in
the expansion of the electromagnetic coupling constant.
We have found that there is an anomaly-induced charge
structure due to the gauged WZW term. The detailed
analysis of the total induced charge suggests that the
pion cloud of the baryons can induce a net charge. The
magnitude of the induced charge structure is Oðe2BÞ, so
it is quite small except for the case with a strong
magnetic-field background. Although the generation of
the charge is counterintuitive, our detailed calculations
still suggest that the generated charge may not be can-
celed by backreactions. Although our discussion is still
not conclusive, we like to present our detailed calcula-
tions in this paper.

We have calculated the anomaly-induced electric
charge for any baryons, which appear as quantum ex-
citations of Skyrmions (Sec. III). The induced charge is
nonvanishing when the magnetic field is present along
the axis of the quantization of the spin and the isospin of
the baryon. In Sec. V, we argued that this induced charge
may not be canceled by other possible electromagnetic
corrections to the Skyrmion, although a complete verifi-
cation may need an explicit calculation of the backreac-
tion of the Skyrmion solution in the magnetic field. We
further examined explicitly the anomaly-induced quadru-
pole moment (Sec. IV) and also the cases with multi-
baryons (Sec. VI).

It is nontrivial that an additional electric charge of
baryons is generated in magnetic fields. So we do not claim

explicitly that our result is conclusive. However, it is
important that we provide a detailed calculation of the
anomaly term and its possible effect, and expect that our
calculations will serve as a further understanding of the
Skyrme model in the background electromagnetic field. If
our finding is true in nature, it may have an observable
effect on physics related to neutron stars and heavy ion
collisions [10].
Finally, we would like to discuss the possible origin of

the anomaly-induced charge. One may wonder if the
constant magnetic field may be too artificial and it might
be a reason for the anomaly-induced charge. In
Appendix A, we considered a magnetic field generated
by a circular electric current, and we found that the
calculated induced charge is again nonzero. It suggests
that the induced charge is not an artifact of the
everywhere-constant magnetic field.
Then what is the origin of the additional charge? A good

indication comes from the peculiar property of baryons. As
shown in Appendix B, we found that the total induced
charge is due to the multipion effect in the nonlinear sigma
model. As the Skyrmion profile extends to the spatial
infinity, the charge distribution also has a tail that elongates
to the spatial infinity. This would be the origin of the
generation of the additional electric charge. Obviously, if
quarks are completely confined, the total charge of any
baryon should be quantized to be a half-integer. However,
in reality, any baryon is surrounded by a pion cloud, which
means that quark-antiquark pair can percolate out of the
mean volume of the baryon. We can interpret our anomaly-
induced charge as an effective charge carried by the pion
cloud surrounding the baryon. To make sure our interpre-
tation, it is important to calculate the complete effect of the
magnetic field, i.e., the backreaction to the Skyrmion pro-
file due to the magnetic field.
The anomaly-induced charge may appear to violate the

charge conservation. In general, any electromagnetic cur-
rent should be conserved on the mass shell when the total

FIG. 8 (color online). NB ¼ 2 Skyrmion solution. From left to right, the baryon number density, P1 and P3, respectively.

ETO et al. PHYSICAL REVIEW D 85, 114038 (2012)

114038-14



system is gauge-invariant, and this applies surely to our
case. However, we considered in our paper only a static
situation, so we have not considered the situation where
one turns on the magnetic field gradually from zero to a

nonzero value, in a time-dependent manner. To understand
the origin of the additional charge concretely, one needs to
calculate the backreaction and also the time-dependent
magnetic fields. We leave it to our future work.

TABLE II. The anomaly-induced charge of NB ¼ 1; 2; � � � ; 8
Skyrmions under a constant magnetic-field background. The
dimensionless pion mass is chosen to be m� ¼ 0:263.

NB 1 2 3 4 5 6 7 8

~c0 �43:2 �105 �60:3 0.00 �13:3 28.7 0.00 �11:6

FIG. 9 (color online). The contour plots of the anomalous-
charge densities of B ¼ 2 Skyrmion on the cross section by the
y ¼ 0 plane. The top panel shows �P1=2 with B1 � 0 and the
bottom panel shows �P3=2 with B3 � 0. The blue lines have
positive values and the red ones have negative values. The black
broken lines correspond to zero charge contours.

FIG. 10 (color online). Higher-charge Skyrmion solution.
From left to right, the baryon number density, P1 and P3,
respectively. NB ¼ 3; 4; � � � ; 8 and 17 are shown from top to
bottom.
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APPENDIX A: ANOMALY-INDUCED CHARGE
IN CIRCULAR ELECTRIC-CURRENT

In the above argument of the anomaly-induced charge,
we have assumed a uniform external magnetic field.
However the magnetic field should be always closed unless
the magnetic monopole appears. In this appendix, we con-
sider the anomaly-induced charge in the external magnetic
field generated by a circular electric current, which is
instructive for us, because the magnetic field is closed
with finite circular radius, whereas that becomes uniform
when a radius of the circular electric-current becomes
infinity. Here we suppose that an electric field is not
induced by the electric current. We will show that the
anomalous charge is induced in the circular electric-current
even with the finite radius.

Let us suppose the circular electric-current density with
a radius a on xy-plane as

jðrÞ � j0a

2�
�ðzÞ�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
� aÞð� sin�; cos�; 0Þ; (A1)

where we assume that magnitude of the electric-current is
proportional to the radius a. The magnetic field generated
by the electric-current density can be given by

B ðrÞ ¼ �

4�
rot

Z
d~r

jð~rÞ
j~r� rj ; (A2)

with � being a magnetic permeability. For simplicity, we
omit the factor �=4� in the following. One can easily see
that, in the large radius limit (a ! 1), the magnetic field
becomes

B1 ¼ B2 ¼ 0; B3 ¼ j0: (A3)

This is the same situation with the uniform external mag-
netic field to z-direction.

When the nucleon is located at the center of the circular
electric current, the anomalous charge in the external
magnetic field is given by an integration of hjanmiNI3;S3 ,
shown in Eq. (92), over the whole space,

Qanm ¼ ie2Nc

48�2

Z
d3xBihPiiNI3;S3 : (A4)

Notice that the magnetic field is also a function of the
coordinate variables. Performing the integration over the
whole angular-space, we can separate three components of
the anomalous charge

�xyðrÞ ¼
Z

d�2x̂1x̂3 ~B1 ¼
Z

d�2x̂2x̂3 ~B2;

�z;1ðrÞ ¼
Z

d�2
~B3; �z;2ðrÞ ¼

Z
d�2x̂

2
3
~B3;

where ~Bi � Bi=j0. Then the anomalous charge can be
rewritten as

Qanm ¼ 4eNc

27�
ðI3S3Þ ej0

ðesF�Þ2
ðcxy þ cz;1 þ cz;2Þ;

with the numerical coefficients

cxy ¼ 3

4�

Z 1

0
dr½2r2f0 � r sinð2fÞ��xyðrÞ;

cz;1 ¼ 3

8�

Z 1

0
drr sinð2fÞ�z;1ðrÞ;

cz;2 ¼ 3

8�

Z 1

0
dr½2r2f0 � r sinð2fÞ��z;2ðrÞ:

Namely, we denote cxy (cz;1 and cz;2) as component(s) of

the anomalous charge induced by Bx and By (Bz) generated

by the circular electric-current. With these definitions, one
can also show that cxy þ cz;1 þ cz;2 ¼ c0 at large radius

limit (a ! 1).
Figure 11 shows results of �xy, �z;1 and �z;2 as a function

of r in the case of a ¼ 1. We find that �xy shows small but

finite value with a peak at r ¼ a, which implies that the
anomalous charge is induced by not only Bz but also Bx

and By. �z;1 shows intrinsic behavior: it becomes constant

at r < a, whereas it vanishes at r > a. �z;2 shows smooth

behavior without any singularity at r ¼ a.
Magnitude of the coefficients, cxy þ cz;1 þ cz;2, is

shown in Fig. 12 as a function of the radius a for

m�=m
phys
� ¼ 0:5, 1.0 and 2.0. The arrows on the right
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FIG. 11 (color online). Results of �xy, �z;1 and �z;2 as a
function of r in the case of a ¼ 1.
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side denote magnitude of c0. The coefficients, cxy þ cz;1 þ
cz;2, have finite value even with finite radius, which implies

the anomaly-induced charge by the closed magnetic field,
and converge to c0 at large radius. It is also found that the
coefficients shows minimum values at some radius, e.g.,

a� 12 for m�=m
phys
� ¼ 1:0. This may be understood as

follows: in the case of a * m�1
� , the Skyrmion feels a

similar magnetic field to the uniform one to z-direction,
which induces a similar anomalous charge, i.e., cz;1 þ
cz;2 � c0. Furthermore, since the anomalous charge is

also induced by Bx and By at finite radius discussed above,

there is finite contribution, jcxyj> 0. This extra contribu-

tion gives larger induced charge than that induced by the
uniform magnetic field.

We also calculate the multipole moment due to the
anomaly, and find that the results are similar to the case
of the uniform magnetic field: the dipole moment vanishes,
whereas the quadrupole moment Qij shows finite values

only for diagonal parts (i ¼ j).

APPENDIX B: MULTIPION EFFECTAND
COMPARISON WITH POINT-PARTICLE PICTURE

Here we argue that the anomaly-induced electric charge
is due to the pion cloud that exists around any baryon. The
pion ‘‘cloud,’’ which is the multipion effect, in the anomaly
term is simply the terms with higher powers in the � field.
The anomaly term in the gauged WZW term SWZW can be
expanded as

SWZW �
Z

d4xA0B3P3 �
Z

d4xTr½
3Uy@U�A0B3

�
Z

d4x½@�0 þ ��@�þ � � ��A0B3: (B1)

The first term is responsible for the famous �0 ! 2�
interaction, while the remaining terms are the pion cloud.

In the following, we shall see that, only with the first
term, the anomaly-induced total charge Qanm vanishes. So,
our anomaly-induced total charge is due to the pion cloud.
For the Skyrme solution, we have �0 � fðrÞx̂3, so the

total electric charge induced by the first term in Eq. (B1) is
proportional to

Z
d3x@3�0¼

Z
d3x@3ðfðrÞx̂3Þ

¼2�
Z
r2 sin�drd�

��
f0 �f

r

�
cos2�þf

r

�

¼4�

3

Z 1

0
drðr2f0þ2rfÞ¼4�

3
½r2f�r¼1

r¼0 : (B2)

The last expression vanishes for nonzero pion mass, be-
cause fðrÞ decays exponentially at large r, and fð0Þ is finite.
So, the anomaly-induced total charge vanishes if one use
only the single-pion term in the anomaly term (B1).
It was discussed in [22] that the anomaly-induced total

charge of nucleon vanishes, by using a generic argument
without using the specific Skyrme model. The argument
[22] uses only the single-pion term, so our result is con-
sistent with it.
Before going to the multipion term, we note that, in the

chiral limit where the pion mass vanishes, the last expres-
sion is nonzero, since f� r�2 at large r (see [23]). So, in
the chiral limit, the contribution that comes from the
single-pion term is nonzero. This is again consistent with
the discussion in [22] where the pion momentum is ne-
glected compared to the pion mass to show the vanishing
total charge. Note that this discussion on the chiral limit is
suggestive but not so firm since various observables in the
Skyrme model diverges in the chiral limit.
Now, let us evaluate the multipion term in Eq. (B1). The

representative 3-pion term is evaluated as

Z
d3x��@��

Z 1

0
rfðrÞ3dr; (B3)

which is nonzero for any pion mass. Therefore, we con-
clude that our anomaly-induced total charge is due to the
multipion effect.
The point-particle picture of [22] shows that the quad-

rupole moment is induced as a leading moment. So let us
compare the conclusion of the Skyrmion with that of the
point-particle picture.
The anomaly-induced quadrupole moment has been

written in the point-particle picture as [22]

Qij
pp ¼ �Nc�

6�

gA
ðf�m�Þ2

Ny�i
3NBj; (B4)

where � ¼ e2=4�, and gA and N are the axial coupling
constant and the nucleon wave function, respectively. In
the Skyrmion, the quadrupole moment due to the anomaly
is given in Eq. (96), where the pion-mass dependence of
the coefficient becomes

-14

-12

-10

-8

-6

-4

-2

 0

 0  5  10  15  20  25  30
a

cxy + cz,1 + cz,2
mπ /mπ

phys

0.50
1.00
2.00

FIG. 12 (color online). Magnitude of cxy þ cz;1 þ cz;2 as a
function of the radius a of the circular electric-current for

m�=m
phys
� ¼ 0:5, 1.0 and 2.0. The arrows on the right side denote

magnitude of c0.
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c2 ’ A

ðm�=esF�Þ2
: (B5)

Using the formula of gA ¼ ��D=3e2s in the Skyrme
model, where D is the numerical coefficients of r integra-
tion including the pion profile function [23], we can rewrite
the quadrupole moment with familiar physical observables
as

Qij ¼ � 8Nc�

45�

A

D
I3S3

gA
ðF�m�Þ2

~QijkBk: (B6)

We have checked that the numerical coefficientD does not
show singular dependence on m�. This implies that the
pion-mass dependence of the quadrupole moment is quali-
tatively consistent between the point-particle picture and
the Skyrme picture.
As a consequence of the comparison, we find no contra-

diction between the point-particle picture and the Skyrme
picture. For further understanding of the anomaly-induced
charge, calculations of the multipion effect in the point-
particle picture are required.
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