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I. EVENT-BY-EVENT FLUCTUATIONS

The event-by-event fluctuations of the transverse emis-
sion pattern of hadrons in high-energy collisions of iden-
tical heavy nuclei have recently attracted much interest
experimentally [1–7] and theoretically [8–22]. When aver-
aged over collision events, the azimuthal angular distribu-
tion of emitted hadrons around the beam axis is symmetric
with respect to the plane perpendicular to the impact
parameter vector b between the two nuclei [Auþ Au or
Cuþ Cu at the Relativistic Heavy Ion Collider (RHIC) or
Pbþ Pb at the Large Hadron Collider (LHC)]. The event
averaged angular distribution

dN

d2pT

¼ dN

�dp2
T

�
1þ X1

n¼1

vnðpTÞ cosð�pÞ
�
; (1)

where �p is the angle between pT and b, is therefore

completely characterized by the even Fourier coefficients
vn. The dominant coefficient, v2, is called elliptic flow.

Owing to quantum fluctuations in the density distribu-
tions of the colliding nuclei and finite particle number
effects on the distribution of emitted particles, the left-
right symmetry is broken in individual collision events.
The angular distribution can then be written in the form

dN

d2pT

¼ dN

�dp2
T

�
1þ X1

n¼1

vnðpTÞ cosð�p þ c nÞ
�
; (2)

where c n describes the tilt angle of the ‘‘event plane’’ for
each Fourier coefficient with respect to the reaction plane
defined by the vector b. For even n, c n is peaked around
zero; for odd n, c n is randomly distributed. The dominant
odd coefficient, v3, is known as triangular flow. The event
averages of the amplitude of the coefficients vn are found
to be constant over a rather large pseudorapidity range
(j�j � 2) in Pbþ Pb collisions at the LHC [5], indicating
an approximately boost invariant origin.

The main dynamical source of event-by-event fluctua-
tions in the coefficients vn are believed to be nearly boost
invariant fluctuations in the transverse distribution of the
energy density at the beginning of the hydrodynamic ex-
pansion of the quark-gluon plasma formed in the nuclear

collisions. The geometric anisotropy of these fluctuations
then translates in an anisotropic transverse collective flow
pattern, which manifests itself in anisotropic particle emis-
sion. In the color glass condensate model of energy depo-
sition there are two obvious sources of fluctuations in the
deposited energy density. One is geometric fluctuations of
the position of nucleons in the colliding nuclei at the mo-
ment of impact, leading to transverse fluctuations in the
density of field generating color charges. This mechanism
has been studied widely and is usually described geomet-
rically by the Monte-Carlo Glauber model [23]. The trans-
verse correlation length of the fluctuations generated by
this mechanism will be of the order of the nucleon radius.
The other source of energy density fluctuations are

fluctuations in the color field strength for a given density
of color charges. This mechanism has not been investigated
quantitatively up to now. The transverse correlation length
generated by color field fluctuations will be dictated by the
single scale governing the physics of the color glass con-
densate, the saturation scaleQs. SinceQ

�1
s is much smaller

than the nucleon radius, the color field fluctuations can be
expected to govern the microscopic structure of the trans-
verse energy density fluctuations, which then is modulated
on longer transverse scales by fluctuations in the nucleon
density in the colliding nuclei.
Here we calculate the transverse correlation function

of the deposited energy density in nuclear collisions in
the framework of the Gaussian approximation similar,
but not equivalent, to the color glass condensate model
originally proposed by McLerran and Venugopalan
[24,25]. Transverse correlations of the produced gluon
density over a long rapidity range have been studied in
the Gaussian color glass condensate model in connection
with the ‘‘ridge’’ phenomenon. For example, Dumitru et al.
[26] calculated the transverse momentum correlation of
produced gluons; a formal expression for the correlated
production of an arbitrary number of gluons was derived by
Gelis et al. [27]. More recently (after the original submis-
sion of this manuscript), a Monte-Carlo calculation of the
transverse fluctuations of the deposited energy density
including local fluctuations in the color charge density of
the colliding nuclei was published [28].
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Our results derived below give an analytical representa-
tion of the contribution of color charge fluctuations to the
fluctuations in the transverse energy density, which enable
systematic studies of their parameter dependence and of the
contribution of fluctuating gluon fields in the colliding nu-
clei to the energy density fluctuations at the beginning of the
hydrodynamic expansion of the quark-gluon plasma in rela-
tivistic heavy-ion collisions. In Secs. II and III we derive the
two-point correlator of the energy density following the
collision of two nuclei. In Sec. IV we evaluate the resulting
integrals and present numerical results for the correlation
function for a representative choice of parameters.

II. ENERGY DENSITY FLUCTUATIONS IN THE
COLOR GLASS CONDENSATE MODEL

In the Gaussian random source approximation to the
color glass condensate model of small-x gluon structure
of atomic nuclei [24,25] the probability distribution of
color charge density �aðxÞ in the transverse plane is as-
sumed to be of the form

P½�a� ¼ exp

�
� 1

g2�2

Z
d2x�aðxÞ2

�
: (3)

Here �2 represents the area density of color charges in the
colliding nuclei, and Qs ¼ g2� is called the saturation
scale, because it represents the scale at which the small-x
evolution of the gluon density becomes nonlinear due to
saturation effects [29,30]. Owing to the independent con-
tributions of several nucleons to the color field, the
Gaussian approximation is expected to provide a good
description to the color source distribution in colliding
nuclei at small x [31]. In the light-cone gauge, the
Gaussian color charge distribution translates into a
Gaussian distribution of transverse gauge field strengths.
Here we will follow the work of Lappi [32].

To calculate the initial state density fluctuations

h"ðxÞ"ðyÞi � h"ðxÞih"ðyÞi; (4)

where x, y denote vectors in the transverse plane, we start
from the expression for the deposited energy density of the
gauge field given in Eq. (10) in Ref. [32]:

"ðxÞ ¼ 1

4
Fc
ijðxÞFc

ijðxÞ þ 2A�cðxÞA�cðxÞ (5)

with transverse vector indices i; j; m; n; . . . ¼ 1, 2.
Immediately after the collision, the field strength tensor
in the region between the receding nuclei only receives
contributions from the mixed terms, as the color field of
each individual nucleus is a pure gauge and the field
strength tensor of each individual nucleus is thus zero
outside the nuclear volume [33]:

Fc
ijðxÞ ¼ gfabcðAa

i ð1;xÞAb
j ð2;xÞ þ Aa

i ð2;xÞAb
j ð1;xÞÞ (6)

A�cðxÞA�cðxÞ ¼ g2

4
fabcfa0b0cA

a
i ð1;xÞAb

i

� ð2;xÞAa0
j ð1;xÞAb0

j ð2;xÞ: (7)

Here ‘‘1’’ and ‘‘2’’ denote the gauge fields carried by
nucleus 1 and 2, respectively. The field correlator in the
color glass condensate model is given by

hAa
i ðn;xÞAb

j ðm; yÞi ¼ 1

2
hAa

i ðn;xÞAb
j ðm; yÞi

þ 1

2
hAb

j ðm; yÞAa
i ðn;xÞi

¼ �mn�ab

Z d2p

ð2�Þ2
� cos½p � ðx� yÞ�pipj

p2
GðjpjÞ (8)

where GðjpjÞ is the Fourier transform of the function

GðjxjÞ ¼ 4

g2Njxj2
�
1� exp

�
g2N

8�
g2�2jxj2 lnð�jxjÞ

��

��ð1��jxjÞ (9)

with the IR cut-off parameter�. It is convenient to decom-
pose the momentum quadrupole tensor as follows:

pipj ¼ p2
1 þ p2

2

2
�ij þ p2

1 � p2
2

2
�3

ij þ p1p2�
1
ij; (10)

where �1, �3 are the familiar Pauli matrices. We thus
obtain

hAa
i ðn;xÞAb

j ðm; yÞi ¼ 1

2
�mn�ab

Z d2p

ð2�Þ2
�
cos½p1ðx1 � y1Þ� cos½p2ðx2 � y2Þ��ijGðjpjÞ þ cos½p1ðx1 � y1Þ�

� cos½p2ðx2 � y2Þ��3
ij

p2
1 � p2

2

p2
GðjpjÞ � sin½p1ðx1 � y1Þ� sin½p2ðx2 � y2Þ��1

ij

p1p2

p2
GðjpjÞ

�

¼ 1

2
�mn�abð�ijDðx� yÞ þ �3

ijEðx� yÞ � �1
ijFðx� yÞÞ � �mn�abSijðx� yÞ: (11)

For later use, we will note the values of the individual correlation functions D, E, F at the origin:
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Dð0Þ ¼
Z d2p

ð2�Þ2 GðjpjÞ ¼ lim
jxj!0

GðjxjÞ; Eð0Þ ¼ Fð0Þ ¼ 0: (12)

The expression for Dð0Þ diverges logarithmically for the function GðjxjÞ given in (9), if the gauge coupling g is taken as a
constant. However, as pointed out by Kovchegov andWeigert [34], the ultraviolet divergence can be removed by including
effects from the running of the coupling constant by means of the substitution

g4 ! g2ð�2Þg2ð1=jxj2Þ (13)

in the exponent of (9). The specific structure of this substitution, sometimes called the ‘‘triumvirate’’ structure of the
running coupling, is motivated by the form of next-to-leading order corrections to the small-x evolution of the BFKL
kernel in the color dipole approach to parton saturation [35,36].

We first evaluate the expectation value of the deposited energy density:

h"ðxÞi ¼ g2

2
fabcfa0b0chAa

i ð1;xÞAb
j ð2;xÞAa0

i ð1;xÞAb0
j ð2;xÞ þ Aa

i ð1;xÞAb
j ð2;xÞAa0

i ð2;xÞAb0
j ð1;xÞi

þ g2

2
fabcfa0b0chAa

i ð1;xÞAb
i ð2;xÞAa0

j ð1;xÞAb0
j ð2;xÞi

¼ g2

2
fabcfa0b0cDð0Þ2ð�aa0�bb0 þ �ab0�ba0=2þ �aa0�bb0=2Þ

¼ g2

2
NðN2 � 1ÞD2ð0Þ; (14)

recovering the result given in Eq. (14) of Ref. [32].
Next we evaluate the two-point correlator of the energy density:

h"ðxÞ"ðyÞi ¼ g4

4
fabcfa0b0cfefdfe0f0dhðAa

i ð1;xÞAb
j ð2;xÞAa0

i ð1;xÞAb0
j ð2;xÞ þ Aa

i ð1;xÞAb
j ð2;xÞAa0

i ð2;xÞAb0
j ð1;xÞ

þ Aa
i ð1;xÞAb

i ð2;xÞAa0
j ð1;xÞAb0

j ð2;xÞÞðAe
mð1; yÞAf

nð2; yÞAe0
mð1; yÞAf0

n ð2; yÞ
þ Ae

mð1; yÞAf
nð2; yÞAe0

mð2; yÞAf0
n ð1; yÞ þ Ae

mð1; yÞAf
mð2; yÞAe0

n ð1; yÞAf0
n ð2; yÞÞi (15)

We again make use of the fact that only correlators among fields in the same nucleus are nonzero, which allows us to
suppress the labels 1 and 2:

h"ðxÞ"ðyÞi ¼ g4

4
fabcfa0b0cfefdfe0f0dðhAa

i ðxÞAa0
i ðxÞAe

mðyÞAe0
mðyÞihAb

j ðxÞAb0
j ðxÞAf

nðyÞAf0
n ðyÞi

þ hAa
i ðxÞAa0

i ðxÞAe
mðyÞAf0

n ðyÞihAb
j ðxÞAb0

j ðxÞAf
nðyÞAe0

mðyÞi þ hAa
i ðxÞAa0

i ðxÞAe
mðyÞAe0

n ðyÞihAb
j ðxÞAb0

j ðxÞAf
mðyÞAf0

n ðyÞi
þ hAa

i ðxÞAb0
j ðxÞAe

mðyÞAe0
mðyÞihAb

j ðxÞAa0
i ðxÞAf

nðyÞAf0
n ðyÞi þ hAa

i ðxÞAb0
j ðxÞAe

mðyÞAf0
n ðyÞihAb

j ðxÞAa0
i ðxÞAf

nðyÞAe0
mðyÞi

þ hAa
i ðxÞAb0

j ðxÞAe
mðyÞAe0

n ðyÞihAb
j ðxÞAa0

i ðxÞAf
mðyÞAf0

n ðyÞi þ hAa
i ðxÞAa0

j ðxÞAe
mðyÞAe0

mðyÞihAb
i ðxÞAb0

j ðxÞAf
nðyÞAf0

n ðyÞi
þ hAa

i ðxÞAa0
j ðxÞAe

mðyÞAf0
n ðyÞihAb

i ðxÞAb0
j ðxÞAf

nðyÞAe0
mðyÞi þ hAa

i ðxÞAa0
j ðxÞAe

mðyÞAe0
n ðyÞihAb

i ðxÞAb0
j ðxÞAf

mðyÞAf0
n ðyÞiÞ

� g4

4
fabcfa0b0cfefdfe0f0d

X9
�¼1

M�: (16)

III. ENERGY DENSITY FLUCTUATIONS IN A MODIFIED GAUSSIAN MODEL

In principle, the expression (16) can be evaluated within the color glass condensate (CGC) model. However, the
nonlinear connection between the gauge potential and the color charge density makes such a calculation extremely
demanding. Here we take the view that the CGC model is only exact asymptotically but receives substantial unknown
corrections for realistic, i.e. not asymptotically large, collision energies. We also note that the physics encoded in the
McLerran-Venugopalan model of the saturated gluon density is basically encoded in just two numbers, namely, the size of
the typical gauge fields Aa

i and the scale of its transverse correlations 1=Qs. For realistic, presently accessible collision
energies, the effort of an exact evaluation of (16) in the Gaussian CGC model may thus not be justified.

Therefore, we here propose a model which drastically simplifies the evaluation of Eq. (16). This model assumes
Gaussian correlations for the transverse gauge field components in the light-cone gauge rather than for the color charges, as
assumed in the CGC model. For non-Abelian gauge fields both approximations are not equivalent, because the connection
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between �ðxÞ and Aa
i ðxÞ is nonlinear [25,37]. For the Gaussian source charge distribution that forms the basis of the

McLerran-Venugopalan model, these nonlinearities will lead to corrections to the energy density correlator obtained here.
These corrections, originating from transverse gauge links connecting x and y, vanish in the limit jx� yj ! 0 and we will
assume that they are small in general. As we only want to know the approximate properties of the energy density
fluctuations (size and typical length scale) we thus will combine (9) and (17). To explore the size of the uncertainties
introduced by this approximation we will study below several model variants. We will find that the quantitative differences
among the predictions for �"=" are, indeed, very small.

The Gaussian approximation we advocate implies the factorize of the correlators of four gauge fields into products of
correlators among two gauge fields, e.g.:

hAb
j ðxÞAa0

i ðxÞAf
nðyÞAe0

mðyÞi ¼ hAb
j ðxÞAa0

i ðxÞihAf
nðyÞAe0

mðyÞi þ hAb
j ðxÞAf

nðyÞihAa0
i ðxÞAe0

mðyÞi þ hAb
j ðxÞAe0

mðyÞihAf
nðyÞAa0

i ðxÞi
(17)

which represents the crucial simplification of our model, allowing for a nearly complete analytic treatment.
To proceed further we use the symmetry with respect to the color indices e0 and f0 to combine, e.g., the second and third

term in the large brackets of (16):

M2 þM3 ¼ hAa
i ðxÞAa0

i ðxÞAe
mðyÞAf0

n ðyÞihAb
j ðxÞAb0

j ðxÞðAf
nðyÞAe0

mðyÞ � Af
mðyÞAe0

n ðyÞÞi (18)

The second factor is easily shown to vanish:

h� � �i ¼ hAb
j ðxÞAf

nðyÞihAb0
j ðxÞAe0

mðyÞihAb0
j ðxÞAf

nðyÞihAb
j ðxÞAe0

mðyÞi � ðm $ nÞ
¼ �bf�b0e0Sjnðx� yÞSjmðx� yÞ þ �b0f�be0Sjnðx� yÞSjmðx� yÞ � ðm $ nÞ ¼ 0 (19)

The same holds true for the fourth and seventh term,M4 andM7. After considerable algebra, the fifth, sixth, eighth and
ninth terms combine to

M5 þM6 þM8 þM9 ¼ g4

4
fabcfa0b0cfefdfe0f0dhAa

i ðxÞAa0
j ðxÞAe

mðyÞAf0
n ðyÞih½Ab

i ðxÞAb0
j ðxÞ

� Ab
j ðxÞAb0

i ðxÞ�½Af
nðyÞAe0

mðyÞ � Af
mðyÞAe0

n ðyÞ�i

¼ g4

4
fabcfa0b0cfefdfe0f0dð�ae�a0f0SimSjn þ �af0�a0eSinSjmÞð�bf�b0e02½SinSjm � SimSjn�

þ �be0�b0f2½SimSjn � SinSjm�Þ

¼ g4

16
N2ðN2 � 1Þ½Dðx� yÞ2 þ Eðx� yÞ2 þ Fðx� yÞ2�2; (20)

where we made use of the relation

fabcfa0b0cfa0bd ¼ N

2
fab0d (21)

which follows from the Jacobi identity.
Finally we evaluate the first term:

M1 ¼ g4

4
fabcfa0b0cfefdfe0f0dhAa

i ðxÞAa0
i ðxÞAe

mðyÞAe0
mðyÞihAb

j ðxÞAb0
j ðxÞAf

nðyÞAf0
n ðyÞi

¼ g4

4
N2ðN2 � 1Þ2Dð0Þ4 þ g4

2
N2ðN2 � 1ÞDð0Þ2½Dðx� yÞ2 þ Eðx� yÞ2 þ Fðx� yÞ2�

þ 3g4

8
N2ðN2 � 1Þ½Dðx� yÞ2 þ Eðx� yÞ2 þ Fðx� yÞ2�2: (22)

Combining these equations we finally obtain

h"ðxÞ"ðyÞi � h"ðxÞih"ðyÞi ¼ g4

2
N2ðN2 � 1ÞDð0Þ2½Dðx� yÞ2 þ Eðx� yÞ2 þ Fðx� yÞ2�

þ 7g4

16
N2ðN2 � 1Þ½Dðx� yÞ2 þ Eðx� yÞ2 þ Fðx� yÞ2�2: (23)

Since the functions D, E, F always appear in the same combination, it makes sense to introduce the abbreviation
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Kðx� yÞ ¼ Dðx� yÞ2 þ Eðx� yÞ2 þ Fðx� yÞ2; (24)

In terms of which the average deposited energy density and
its fluctuation can be expressed as:

"0 ¼ h"i ¼ g2

2
NðN2 � 1ÞKð0Þ; (25)

�"ðx�yÞ2¼h"ðxÞ"ðyÞi�h"ðxÞih"ðyÞi

¼g4

2
N2ðN2�1Þ

�
Kð0ÞKðx�yÞþ7

8
Kðx�yÞ2

�
:

(26)

IV. EVALUATION OF INTEGRALS

Next we simplify the integrals Dðx� yÞ, Eðx� yÞ and
Fðx� yÞ. We abbreviate z ¼ x� y and z ¼ jzj. We begin
with DðzÞ.

DðzÞ ¼
Z 1

0

pdp

4�2
GðpÞ

Z 2�

0
d� cosðpz1 cos�Þ

� cosðpz2 sin�Þ
¼

Z 1

0

pdp

4�2
GðpÞ

Z �

0
d�ðcos½pðz1 cos�þ z2 sin�Þ�

þ cos½pðz1 cos�� z2 sin�Þ�Þ (27)

We substitute � ! ��� in the last term and introduce
the notation z1 ¼ z cosc , z2 ¼ z sinc :

DðzÞ ¼
Z 1

0

pdp

4�2
GðpÞ

Z 2�

0
d� cos½pz cosð�� c Þ�

¼
Z 1

0

pdp

2�
GðpÞJ0ðpzÞ ¼

Z 1

0

d2p

4�2
GðpÞeip�z

� GðzÞ; (28)

where we have used Eq. (3.715.18) from [38]. Similarly we
obtain

EðzÞ ¼
Z 1

0

pdp

4�2
GðpÞ

Z 2�

0
d� cosðpz1 cos�Þ

� cosðpz2 sin�Þðcos2�� sin2�Þ
¼

Z 1

0

dp

4�2
GðpÞ

Z �

0
d�ðcos½pðz1 cos�þ z2 sin�Þ�

þ cos½pðz1 cos�� z2 sin�Þ�Þ cosð2�Þ: (29)

Using the same substitutions we find:

EðzÞ ¼
Z 1

0

pdp

4�2
GðpÞ

Z 2�

0
d� cos½pz cosð�� c Þ�

� cosð2�Þ

¼ � cosð2c Þ
Z 1

0

pdp

2�
GðpÞJ2ðpzÞ (30)

where we used Eqs. (3.715.18) and (3.715.7) from [38].
Finally, a similar calculation yields:

FðzÞ ¼
Z 1

0

pdp

4�2
GðpÞ

Z 2�

0
d� sinðpz1 cos�Þ

� sinðpz2 sin�Þ cos� sin�

¼ sinð2c Þ
Z 1

0

pdp

2�
GðpÞJ2ðpzÞ: (31)

We conclude that the function KðzÞ only depends on the
distance z between the points x and y.
We can express DðzÞ and EðzÞ2 þ FðzÞ2 in terms of the

following integrals:

CnðzÞ ¼
Z 1

0

pdp

2�
GðpÞJnðpzÞ; (32)

for n ¼ 0, 2, namely:

DðzÞ ¼ C0ðzÞ; (33)

EðzÞ2 þ FðzÞ2 ¼ C2ðzÞ2: (34)

We rewrite the integrals as follows:

CnðzÞ ¼
Z d2p

ð2�Þ2
Z

d2xe�ip�xGðxÞJnðpzÞ: (35)

We have to evaluate integrals of the type

Bnðx; zÞ ¼
Z 1

0

pdp

2�
J0ðpxÞJnðpzÞ: (36)

This integral can be evaluated for n ¼ 0 using formula
(6.633.2) in [38]:

Z 1

0
pdpe�c2p2

J0ðpxÞJ0ðpzÞ ¼ e�ðx2þz2Þ=4c2

2c2
I0

�
xz

2c2

�
: (37)

We are interested in the limit c ! 0, which means that we
can apply the limit of I0ðzÞ for large arguments:

I0ðzÞ ! ezffiffiffiffiffiffiffiffiffi
2�z

p : (38)

This yields

B0ðx; zÞ ¼ lim
c!0

1

4�c

1ffiffiffiffiffiffiffiffiffi
�xz

p exp

�
�ðx� zÞ2

4c2

�

¼ 1

2�z
�ðx� zÞ:

(39)

For n ¼ 2 we use the recursion relation for Bessel
functions:

J2ðzÞ ¼ 2

z
J1ðzÞ � J0ðzÞ; (40)

and apply formula (6.512.3) from [38]:

Z 1

0
dpJ0ðpxÞJ1ðpzÞ ¼ 1

z
	ðz� xÞ; (41)

with the convention 	ð0Þ ¼ 1=2. This implies:

B2ðx; zÞ ¼ 1

�z2
	ðz� xÞ � 1

2�z
�ðx� zÞ: (42)
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When we insert these results into the desired integrals,
we find:

C0ðzÞ ¼ GðzÞ; (43)

C2ðzÞ ¼ 2

z2

Z z

0
xdxGðxÞ �GðzÞ: (44)

V. NUMERICAL RESULTS

We now evaluate the average energy density and its
fluctuations for a choice of the parameters that is motivated
by the initial conditions at which thermal QCD matter is
formed in heavy-ion collisions at RHIC and LHC:

Q2
s ¼ ðg2�Þ2 ¼ 2 GeV2; g2ð�2Þ ¼ 3:785;

g2ð1=x2Þ ¼ 16�2

9 lnð1=ð�2x2ÞÞ :
(45)

Note that the result is independent of the value of �. The
functions C0ðzÞ and C2ðzÞ are shown in Figs. 1 and 2 for
these parameter values.

For these parameters, the initial value of the deposited
energy density is "0 � 240 GeV=fm3. This very large
energy density quickly decreases due to the longitudinal
expansion and reaches much smaller values by the time of
thermalization. What matters for us is not the absolute
value of the initial energy density, but the relative size
and spatial correlation of its fluctuations, �"ðx� yÞ="0.
This function is shown in Fig. 3 for the parameters listed
above.

As the figure shows, the fluctuations of the initial energy
density are locally of similar magnitude as the energy
density itself and fall over distances of the inverse satura-
tion scale, here assumed as Q�1

s � 0:14 fm. This result is
in accord with the intuitive picture of the field configura-
tion immediately after the collision as a bundle of
longitudinally stretching random color flux tubes with
characteristic transverse width 1=Qs.

In order to explore the sensitivity of our result for the
relative energy density fluctuations, we consider two other

forms of the color potential correlation function GðjxjÞ.
The correlation function (9) of the McLerran-Venugopalan
(MV) model is characterized by two parameters: its nor-
malization G0 ¼ Gð0Þ, which is related to the average
value of the energy density, and its second derivative at
x ¼ 0 which defines the correlation length 
. For the two-
scale running coupling (13) we can write (9) as

GMVðjxÞ ¼ G0�MVðx2=
2Þ (46)

with G0 ¼ 4��2=9 and 1=
2 ¼ Nc�ðg�Þ2=9 and the di-
mensionless correlation function

�MVðuÞ ¼ ð1� e�uÞ=u: (47)

Because the behavior of GðxÞ is essentially Abelian at
short distances and non-Abelian corrections are small, we
require other model functions to have the same behavior in
the limit jxj ! 0. The two functions we consider here are:

�1ðuÞ ¼ e�u=2 ðModel 1Þ;
�2ðuÞ ¼

�
1þ u

2

��1 ðModel 2Þ:
(48)

The correlation functions of the color potential is then
obtained as
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0

FIG. 1 (color online). The function C0ðzÞ for the selected
parameters.
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FIG. 2 (color online). The function C2ðzÞ for the selected
parameters.
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FIG. 3 (color online). The function �"ðzÞ="0 for the selected
parameters.
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G1=2ðjxjÞ ¼ G0�1=2ðx2=
2Þ (49)

with the same parameters G0 and 
 as in the MV model.
In the following figures the results for the MVmodel are

shown as solid lines (red), those for Model 1 as dashed
lines (green) and those for Model 2 as dotted lines (blue).
The three correlation functions GðjxjÞ are compared in
Fig. 4, where it is seen that they exhibit the same behavior
for jxj ! 0, but fall off differently at large distances. The
results for the correlation function of the relative fluctua-
tion of the energy density �"=" are shown in Fig. 5. The
figure shows that the differences are reduced when com-
pared with those of the field correlator GðzÞ. In particular,
the MV model and the Gaussian Model 1 are nearly indis-
tinguishable. Overall, it seems unlikely that the differences
between the energy density fluctuations of the three models
could lead to observable differences in the final state of a
relativistic heavy-ion collision.

VI. SUMMARY

We have calculated the initial energy density fluctua-
tions in high-energy heavy-ion collisions using a Gaussian
model approximation for the gauge fields. The fluctuations
turn out to be very large with a transverse profile deter-
mined by the saturation scale Qs. A finite result is only

obtained when the triumvirate running coupling is used,
giving additional support to the correctness of Eq. (13).
The fluctuation probabilities thus derived can serve as
input for any calculation aiming at the investigation of
early fluctuations, in particular, for calculations which
study the fate of such fluctuations during thermalization.
For example, it is possible to investigate the problem of
event-by-event fluctuations in heavy-ion collisions within
the AdS/CFT paradigm using methods similar to those
employed in [39]. For such investigations of the generic
thermalization process in strongly coupled gauge theories
the precise properties of these fluctuations should be ir-
relevant such that our approximate treatment should be
fully sufficient.
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