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The recent lattice calculation at finite axial chemical potential suggests that the induced current density

of the chiral magnetic effect (CME) is somehow suppressed compared with the standard analytical

formula. We show in a Nambu-Jona-Lasino-type model of QCD that such a suppression is a natural result

when considering the influence of the attractive axial-vector interaction. We point out that the lattice result

does not need to be quantitatively consistent with the analytical formula due to the chirality density-

density correlation. We also investigate the nonperturbative effect of instanton molecules on the CME.

Since an unconventional repulsive axial-vector interaction is induced, the CME will be enhanced

significantly by the instanton-anti-instanton pairings. Such a prediction needs to be tested by more

improved lattice simulations. We further demonstrate that the axial-vector interaction plays an important

role on the T ��A phase diagram.
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I. INTRODUCTION

The topological charge of gauge field theory is
defined as

QT ¼ g2

32�2

Z
d4xTr½F ~F�; (1)

where F and ~F refer to the field strength tensor and its dual,
respectively. It is well-known that quantum chromo-
dynamics (QCD) contains nontrivial gauge configurations
carrying the topological charge with an integer number [1].
These configurations interpolate between the topologically
different vacua of QCD characterized by different
Chern-Simons numbers. For a long time the experimental
evidence for the existence of the topological gluon configu-
rations only comes indirectly from the meson spectrum [2].

Recently, the study of the chiral magnetic effect (CME)
[3,4] has received much attentions since the topological
configurations of QCD may be observed directly in the
noncentral heavy-ion collisions. The essence of the CME is
the chiral imbalance induced by the nonzero topological
charge through the axial anomaly of QCD

ðNR � NLÞt¼þ1 � ðNR � NLÞt¼�1 ¼ �2QT; (2)

whereNRðNLÞ denotes the quark number of the right-handed
(left-handed) chirality in the chiral limit. Equation (2) indi-
cates the chiral asymmetry is generated by the nonzero
topological excitations. In a strong magnetic field which
may be produced in the noncentral heavy-ion collisions, a
net electric current will be induced along the direction of the
magnetic field due to the chirality imbalance.

In order to study the effect of the chiral asymmetry,
usually the axial chemical potential �A is introduced in a
grand canonical ensemble [4]. The physical meaning of
�A is the difference of the right- and left-handed quark

chemical potentials. This quantity can be identified as the
time derivative of the � angle of QCD, namely, �A ¼
@0�=2Nf [4]. In the presence of an external magnetic field

B, the analytical expression of the induced electric current
density for the CME at finite �A has been given in [4],
which takes the form

jem ¼ CNcNfe
2�AB; (3)

where C ¼ 1=2�2. Note that all quarks carrying the same
electric charge is assumed in (3). Obviously, this equation
explicitly breaks the P and CP symmetry.
Equation (3) indicates that the hot quark-gluon plasma is

an ideal place to study the physics of P - and CP -odd
excitations of QCD. First, the production probability of
the configurations with nonzero winding numbers becomes
higher since jumping over the potential barrier between
distinct classical vacua is probable at high temperatures.
The configurations responsible for such thermal transitions
are called sphalerons [5,6] in QCD, which might occur at a
copious rate at high temperature compared to the low-
temperature tunneling by the instanton. Second, a strong
magnetic field can be produced in noncentral heavy-ion
collisions [3,7]. The study based on the UrQMD model [7]
suggests that the eB produced at RHIC and LHC can be as
large as eB � 2m2

� and eB � 15m2
�, respectively.

1 So in a
noncentral heavy-ion collision, the induced electric current
may lead to an excess of the positive electric charge on one
side of the reaction plane and the negative electric charge
on the other. Such a charge separation effect may be
observed experimentally. Recently, a conclusive observa-
tion of charge azimuthal correlation has been presented by
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1The magnetic field strength can be translated into the CGS
system with the identity m2

� � 1018 Gauss, where m� ¼
140 MeV.
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the Star collaboration [8] which may result from the CME
with local P and CP violation.

Theoretically, the investigation of the CME has been
performed recently in the Lattice QCD simulation by in-
troducing a finite �A [9]. The advantage of the lattice
simulation at finite axial chemical potential is that there
is no sign problem comparing with the case at finite baryon
chemical potential. In this study, the CME described by
Eq. (3) has been confirmed qualitatively. But at the quanti-
tative level, the obtained electric current density is signifi-
cantly suppressed [9] compared to the analytical formula
(3). The further study at the quenched level of QCD
suggests that the lattice data are sensitive to the lattice
spacing [10] and the obtained data increase significantly
compared to the ones in [9]. However, the deviation of
the new lattice data from the analytical formula is still
sizable even some systematic errors have been taking into
account [10].

The suppression of the lattice data may stem from some
errors of the lattice simulation and/or the nonperturbative
effects of QCD. Accordingly, besides taking more im-
proved lattice calculations, physically understanding the
current lattice result through other methods of QCD is very
important and necessary. On the other hand, due to the
limitation of the lattice calculation, investigating the non-
perturbative corrections and making new predictions on the
CME are also very required by using the effective theories
or models of QCD.

The purpose of this paper has two aspects: First, we will
try to disclose the possible mechanism for the deviation of
the present lattice data from the analytical result by taking
into account some QCD corrections; second, we will ex-
plore the nonperturbative influence of the instanton mole-
cules on the CME and make some predictions. Note that
both aspects are closely related to the effective four-quark
interaction in the axial-vector channel, where the chirality
density-density correlation plays an important role.

The paper is organized as follows: In Sec. II, we give the
effective quark interactions of QCD for T > Tc. In Sec. III,
we present the correction to the CME from the axial-vector
interaction. Section IV is devoted to the numerical results
and related discussions. The last section is the summary
and conclusion.

II. EFFECTIVE QUARK
INTERACTIONS FOR T > Tc

The experimental data of RHIC suggests that strongly
coupled quark-gluon plasma (sQGP) is formed for T > Tc,
which exhibits the behavior of a perfect fluid. Now it is
widely believed that the nonperturbative QCD still plays
very important roles on the hot quark-gluon plasma up to
2–3Tc. Since the chiral magnetic effect may be observed
directly in heavy-ion collisions, one naturally expects that
the role of the nonperturbative aspects of QCD on the
CME should be quite remarkable. One of the possible

nonperturbative effects may arise from the instanton-anti-
instanton (I �I) molecules at finite temperature near Tc.
As a major component of the QCD vacuum, the instan-

tons can produce the quark condensate, the low-lying
hadron state and other nonperturbative features of QCD,
according to the interacting instanton liquid model [11]. At
zero and low temperatures, the instanton ensemble is in a
random liquid state which is responsible for the sponta-
neous chiral symmetry breaking and the axial anomaly.
Naively, one would expect that the instantons might give a
little contribution to the CME due to their significant
suppression at high temperature.
However, it has been suggested that the hot chiral

transition is not driven by the vanishing of the instantons
and anti-instantons but by their rearrangement around Tc

[12–14]. Namely, when approaching to Tc from below,
the random instantons and anti-instantons are paired up
into the ordered I �I molecules. This picture implies that
the instantons still keep sizable density near Tc with the
molecular forms. Moreover, a recent investigation
indicates that the I �I molecules can even survive up to
�5Tc [15].
The rearrangement picture indicates that the nonpertur-

bative effects induced by the instanton configurations will
persist into the high temperature region. In the chiral
symmetric phase, the interacting I �I molecules can be
regarded as one of the possible mechanisms responsible
for the sQGP formed in Tc < T < 2� 3Tc [16]. So even
though the chiral restoration is one of the necessary con-
ditions for the appearance of the electric current jem, the
instantons may still exert important influence on the chiral
magnetic effect via the molecular forms.
It is well-known that the random instanton configura-

tions can lead to the famous ’t Hooft interactions among
quarks with different flavors

L 0tHooft �
Y
f

ð �c�0Þð ��0c Þ; (4)

which explicitly breaks the UAð1Þ symmetry due to the
axial anomaly. Similarly, the ordered I �I molecules also
result in effective quark interactions, but only with the
four-fermion coupling forms. For the two-flavor case, the
Fierz-invariant quark interactions induced by I �I molecules
has been derived in [14] with the form

Lmolsym ¼ G

�
2

N2
c

X3
a¼0

½ð �c �ac Þ2 � ð �c �a�5c Þ2�

þ 2

N2
c

ð �c���5c Þ2 � 1

2N2
c

X3
a¼0

½ð �c �a��c Þ2

þ ð �c �a���5c Þ2�
�
þL8; (5)

where �0 and ~� are unit and Pauli matrices in flavor space,
respectively, and G is the coupling constant. The L8 in (5)
refers the quark interactions in the color octet channel. In
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the I �I molecular picture, it is expected that the dominant
quark interactions for T > Tc are the molecular ones rather
than the ’t Hooft interactions [13–16].2 Different from (4),
the Lagrangian (5) respects not only the SUVð2Þ �
SUAð2Þ �UBð1Þ symmetry, but also the UAð1Þ symmetry.
This is because the I �I pair gives vanishing topological
charges [14].

Note that the most general Fierz-invariant form for the
four-quark interactions under the invariance of SUVð2Þ �
SUAð2Þ �UBð1Þ �UAð1Þ symmetry including both the
scalar (pseudoscalar) and vector (axial-vector) currents is

Lð4Þ
general ¼

1

2
G1

X3
a¼0

½ð �c �ac Þ2 þ ð �c �ai�5c Þ2�

� 1

2
G2

X3
a¼0

½ð �c �a��c Þ2 þ ð �c �a���5c Þ2�

� 1

2
G3½ð �c �0��c Þ2 þ ð �c �0���5c Þ2�

� 1

2
G4½ð �c �0��c Þ2 � ð �c �0���5c Þ2� þLð4Þ

8 ;

(6)

where Gi are four independent coupling constants [17].
Comparing (5) with (6), one can find that the interacting I �I
molecule model (IIMM) predicts these coupling constants
with

G1¼ 4

N2
c

G; G2¼ 1

N2
c

G; G4¼�G3¼ 2

N2
c

G; (7)

which are all dependent on the only parameter G. We shall
show below that nonzero G2 and G3ð4Þ give nontrivial

contributions to the induced current jem for the CME.
We stress that even though we are very interested in the

possible nonperturbative influence of the instantons on the
CME, we do not limit our study within the only formalism
(5), which is just a special case of (6). Without loss of
generality, wewill assume that the Lagrangian density with
the four-quark interactions (6) works for Tc < T < 2�
3Tc. This Lagrangian can be regarded as an extension of
the traditional Nambu-Jona-Lasino (NJL) model of QCD
(In the next section, the degree of freedom of the Polyakov
loop is also included).

For the physics related to the CME, we are particularly
interested in the effective four-quark interactions in the
vector isospin-scalar and axial-vector isospin-scalar chan-
nels

L VA ¼ �GVð �c��c Þ2 �GAð �c���5c Þ2; (8)

which appears in both (5) and (6). The significance ofLVA

to the CME is attributed to the appearance of two special
vacuum expectation values (VEVs) in the chirally asym-
metric system under the influence of an external magnetic
field B, namely, jz ¼ h �c�3c i and nA ¼ h �c�0�5c i [4].
The former is the VEVof the vector current �c��c along
the direction of B and the latter the chiral charge density
conjugate to �A. As a consequence, the chiral magnetic
effect might be sensitive to the couplingsGV andGA in (8).
The prediction of the IIMM gives

GV ¼ G2

2
¼ G

2N2
c

; GA ¼ 2G4 þG2

2
¼ �3

G

2N2
c

: (9)

Equation (9) indicates two unconventional points induced
by the I �I molecules: (1) The vector interaction is attractive
while the negative GA implies that the axial-vector inter-
action is repulsive; (2) The magnitude of GA is three times
that of GV (For the totally polarized case, the coupling GA

in the temporal direction is even 12 times that of GV [14]).
This is quite different from the conventional four-quark

interactions derived from the Fierz transformation of the
colored quark-antiquark current-current interaction

L OGEA ¼ gð �c���
a
cc Þ2; (10)

which arises from the one gluon exchange approximation
(OGEA) of QCD. In the OGEA, both GV and GA are
positive with

GV ¼ GA ¼ GS

2
; (11)

where GS is the coupling constant in the scalar isoscalar
channel.
Note that it is very likely that the effective quark inter-

actions stemming from the OGEA can persist into the
nonperturbative region of QCD with relatively strong cou-
plings. Awell-known example in the literature is the global
color model (GCM) of QCD, which is based on the non-
local colored quark-antiquark current-current interaction

L GCMðx; yÞ ¼ gðx� yÞ �c ðxÞ���
a
cc ðxÞ �c ðyÞ���a

cc ðyÞ;
(12)

where gðx� yÞ is a function of the strong coupling [18].
This model can successfully describe the low-lying
hadrons [19] and give reasonable QCD condensates in
the vacuum and at finite temperature and density [20].
Since the axial-vector interaction may be repulsive (as in

the IIMM) or attractive (as in the OGEA or GCM), we will
treat the coupling GA in (8) as a free parameter. The
realistic GA may include contributions from both the I �I
molecules and the OGEA, which should depend on the
temperature in general. On the other hand, since the vector
interaction is attractive in both the IIMM and GCM, we
only consider the positive GV in the following.

2Note that the ’t Hooft-type interactions might also survive in
the T > Tc region according to [15]. Such interactions should
have little influence on the CME since the electric current only
appears in the chirally symmetric phase.
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III. CORRECTION TO THE CME FROM
AXIAL-VECTOR INTERACTION

Working at the mean field level, the Lagrangian (8) can
be rewritten as

LMF
VA ¼ GAn

2
A � 2GAnA �c�0�5c �GVj

z2

þ 2GVj
z �c�3c : (13)

We can read two nontrivial points from Eq. (13). First, both
squared terms of the condensates jz and nA give contribu-
tions to the thermodynamical potential. Second, the four-
quark interactions in the axial-vector and vector channels
lead to a dynamical axial chemical potential �0

A ¼
�2GAnA, and an effective gauge field A

z ¼ �2GVj
z along

the direction of B, respectively. Note that both points are
not taken into account in [4] to derive the analytical
formula for the CME current.

To investigate the dynamical influence of LVA on the
CME, we add the kinetic Lagrangian for free-interacting
quarks, namely, Lkin ¼ �c ði��@� þ�A�

0�5Þc to the

Lagrangian (6). We will work in the chiral limit throughout
this paper. To describe the confinement-deconfinement
transition of QCD, we also include the dynamics of the
Polyakov loop, the action of which the pure gauge theory
denotes as U. Our model can be looked as the Polyakov-
loop-enhanced IIMM but with a varying axial-vector
coupling GA. In form, it is very similar to the so-called
two-flavor Polyakov-loop extended Nambu-Jona-Lasino
model [21].

One then gets the mean field thermodynamical potential

�¼UþGS�
2þGVj

z2�GAn
2
A

�Nc

X
f¼u;d

jqfBj
2�

X
s;k

	sk

Z 1

�1
dpz

2�
f2�!sðpÞ

� 2T
X

f¼u;d

jqfBj
2�

X
s;k

	sk

�
Z 1

�1
dpz

2�
lnð1þ 3�e�
!s þ 3 ��e�2
!s þ e�3
!sÞ;

(14)

where

	sk ¼

8>>><
>>>:
�s;þ1 for k ¼ 0; eB > 0;

�s;�1 for k ¼ 0; eB < 0;

1 for k � 0;

(15)

and f� is the UV regulator function. � and �� in (14)
correspond to the normalized traced Polyakov loop and its
Hermitean conjugate, respectively. In (15), s refers to the
spin and k denotes the Landau level. The dispersion rela-
tions of the quasiparticles derived from the eigenvalues of
the Dirac operator take the form

!2
s ¼ M2 þ ½jpj þ s ~�AsgnðpzÞ�2; (16)

where

jpj2 ¼ j~pzj2 þ 2jqfBjk (17)

and qf stands for the electric charge for f (u or d) quark. In

the above equations, ~�A and ~pz refer to the effective axial
chemical potential and the modified momentum along B,
respectively, namely

~�A ¼ �A þ�0
A ¼ �A � 2GAnA; (18)

~p z ¼ pz þ Az ¼ pz � 2GVj
z: (19)

The current jz, the chirality density nA, the quark conden-
sate3 �, and the VEV of the Polyakov loop � can be
determined self-consistently by solving the saddle point
equations:

@�

@nA
¼ 0;

@�

@jz
¼ 0;

@�

@�
¼ 0;

@�

@�
¼ 0: (20)

Note that the influence of GV on the CME has been
investigated in [22], where only the vector interaction is
introduced phenomenologically. The main conclusion is
that GV may lead to a dielectric correction to the CME
current density

j ¼ 1

2�2ð1þ 2GVCRÞ
� NcNfe�AB; (21)

where CR ¼ jeBj
2�2 [22]. When including the axial-vector

interaction, the dispersion relation (16) suggests that
Eq. (21) will be further modified as

j ¼ 1

2�2ð1þ 2GVCRÞ
� NcNfe ~�AB: (22)

However, a subtlety on the calculation of the polariza-
tion tensor or susceptibility in [22] has been pointed out by
Kenji Fukushima [23]: According to Eqs. (8-10) in [23],
the quantity CR should be zero since the corresponding
static susceptibility �33ðq0 ¼ 0; ~q ! 0Þ is always vanish-
ing. This implies that the vector interaction does not give
any correction to the CME. Actually, this point is also
consistent with the Nielsen-Ninomiya’s argument [24]
which is only based on the nonrenormalization of triangle
anomalies and the energy conservation. As shown in
Eq. (21) [or Eq. (22)], the nonzero CR will lead to a
modification of the coefficient before �AB (or ~�AB in
our case). Nevertheless, the argument proposed by
Nielsen and Ninomiya [24] does not support the coefficient
receiving any correction. This is because such a coefficient
is determined by the nonrenormalization of triangle
anomalies, which is known exactly due to the topological

3Strictly speaking, there should be two chiral order parameters
in the chiral limit since h �c Lc Ri � h �c Rc Li for nonzero �A.

ZHAO ZHANG PHYSICAL REVIEW D 85, 114028 (2012)

114028-4



nature of anomalies (for more details of this argument, see
the first part of Sec. III in [4]).

In light of this, the correct formula for the current
density should be

j ¼ 1

2�2
NcNfe ~�AB; (23)

rather than Eq. (22) when considering the axial-vector
interaction. We note that, unlike Eqs. (21) and (22),
Eq. (23) does not contradict Nielsen-Ninomiya’s argument.
This is because the energy required to remove a particle
from the left-handed Fermi surface and add it to the right-
handed Fermi surface is no longer 2�A but 2 ~�A due to the
influence of the axial-vector interaction. In fact, Eq. (23)
will be obtained naturally if we take the same method
as part A of Sec. 3 in [4] but with the replacement of �A

with ~�A.
In the following, we will ignore the vector interaction

and only consider the effect of the axial-vector interaction
on the CME. Using the method

jem ¼ � @�

@A3

��������A3¼0
(24)

and the replacement

@

@Az
! qf

d

dpz

; (25)

one can get the integral expression for the calculation of
the electric current density in the two-flavor case

jem ¼ Nc

X
f¼u;d

qf
jqfBj
2�

�X
s;k

	ks

Z 1

�1
dpz

2�

d

dpz

½f2�!sðpÞ þ � � ��: (26)

As the case of zeroGA, only the lowest Landau level (LLL)
gives a nonvanishing contribution in (26). Ignoring the
correction from GV , the induced electric current density
jem for the two-flavor case under the influence of GA

becomes

jem ¼ Nc

X
f¼u;d

q2f ~�AB

2�2
¼ 5 ~�Ae

2B

6�2
: (27)

As it should be, Eq. (27) indicates that the induced electric
current density is ultraviolet finite.

Unlike the analytical formula (3), the chirality density
nA appears directly in Eq. (27). This density can be
obtained self-consistently by

@�

@nA

¼ 0 ! nA ¼ � @�

@�A

¼ � @�

@ ~�A

; (28)

according to (18). This equation is similar to the determi-
nation of the baryon number density at finite � when
considering the vector interaction in the NJL-type model

[25]. We note that even though the formula (27) is obtained
from the LLL integration, it doesn’t mean that jem only
depends on the LLL for nonzero GA since the high Landau
levels also give contributions to the chirality density nA.
The modified expression of jem implies that the induced

electric current density under the influence of the axial-
vector interaction may deviate from the analytical result in
the following aspects. First, the current density jem is no
longer directly proportional to the axial chemical potential
�A and the magnetic field B. The reason is that in general,
the dynamical chemical potential �0

A doesn’t linearly de-
pend on �A and B. Second, �0

A is T dependent (since GA

and nA are both T dependent), so the current density jem
also depends on the temperature. Third, the IIMM predicts
that the CMEwill be enhanced significantly: (1)�0

A has the
same sign as�A because of the negativeGA; (2)�

0
A may be

sizable since GA is strong as GS. In contrast, the OGEA (or
GCM) predicts that the CME will be weakened by
the attractive axial-vector interaction compared to the
analytical result.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide numerical results for the
influence of the axial-vector interaction on the chirally
imbalanced matter in a constant magnetic field. The cou-
pling GS, the UV regulator function f�ðpÞ and the
Polyakov-loop model U in (14) are all adopted from
[26], in which the Polyakov-loop extended Nambu-Jona-
Lasino model was used to study the CME. The model
parameters of the NJL part are fitted by reproducing the
pion decay constant and the quark condensate in the vac-
uum. The Tc for vanishing �A, B, and GA is �228 MeV
with the influence of the Polyakov-loop dynamics [26].

A. Effect of axial-vector interaction
on the chiral magnetic effect

We will focus on the variation of the ratio

R ¼ jem=jemðGA ¼ 0Þ ¼ ~�A=�A (29)

with the impact of the coupling GA. The quantity R ¼
RðGA; T;�A; BÞ corresponds to the ratio C=2�2, which is
the focus of the recent lattice QCD calculations [9,10]. The
deviation of R from the unity reflects the influence of the
axial-vector interaction on the CME compared to the ana-
lytical formula.
In Fig. 1, we first show the dependence of R on the

coupling GA for different �A with fixed eB ¼
4� 1018 Gauss and T ¼ 230 MeV. The density of I �I
molecules might be sizable at this temperature since it
is just slightly greater than Tc (The catalytic effect of the
magnetic field on the chiral symmetry breaking can be
ignored for such an eB [26]). We see that R decreases
monotonically with increasing GA. The electric current
density is enhanced by GA < 0 and weakened by
GA > 0. Its deviation from the analytical value is quite
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significant: For the moderate coupling GA=GS ¼ �0:5
(0.5), the electric current density increases (decreases) by
�62 (27) percent at �A ¼ 15 MeV; While for the strong
coupling GA=GS ¼ �0:75 (0.75), the electric current den-
sity increases (decreases) by�140 (34) percent at the same
�A. This is in contrast to the minor modification of jem
caused by the vector interaction [22].

Figure 2 shows the electric current density jem and the
ratio R as functions of�A for different GA, where the same
T and B are used as in Fig. 1. For GA ¼ �0:5, the upper
panel indicates that the electric current density is nearly
proportional to�A in the small�A region, but its deviation
from the linear behavior becomes more and more signifi-
cant with increasing �A. Different from this, the electric
current density almost linearly depends on �A up to the
moderate �A region for GA ¼ 0:5. These features are
demonstrated more clearly in the lower panel of Fig. 2:
The ratio R monotonically increases with �A for GA ¼
�0:5while almost remains as a constant forGA ¼ 0:5. The
same information can be read from Fig. 1. This is because
the chirality density rises more rapidly with growing �A

for the repulsive axial-vector interaction.
The dependence of R on the temperature with �A ¼

15 MeV and eB ¼ 2� 1018 Gauss is displayed in Fig. 3.
For GA < 0, the ratio R monotonically increases with
increasing T and its deviation from one becomes huge
for the strong coupling. For GA > 0, the ratio R decreases
relatively slowly with growing T for both the moderate and
strong couplings. Though the change of R by T is not so
significant as GA < 0, the ratio R still decreases by �10
(15) percent from �Tc to �1:1Tc for GA=GS ¼ 0:5 (1).
Hence, the temperature has a noticeable effect on the
induced current. The reason is that the density nA is a
monotonically increasing function of T, as reported in [26].
Figure 4 indicates that the ratio R is not so sensitive to

the external magnetic field but still slowly rises (drops)
with eB for GA < 0ðGA > 0Þ. This is because that the
chirality density is enhanced by the magnetic field through
the increase of the thermodynamical potential [4]. Note
that such a tendency will slow down or cease for large
enough B since its catalytic effect on the chiral symmetry
breaking: The enhancement of the chiral condensate by the
magnetic field will suppress the chirality density.
Figures 1–4 imply that the chirality density-density

correlation has an important impact on the chiral magnetic

FIG. 2 (color online). Upper panel: The current jem as a
function of �A for different GA. Lower panel: The ratio of jem
to jemðGA ¼ 0Þ as a function of �A for different GA. The eB and
T are fixed as 4� 1018 Gauss and 230 MeV, respectively.

FIG. 1 (color online). The ratio of jem to jemðGA ¼ 0Þ as a
function of GA for different �A. The eB and T are fixed as
4� 1018 Gauss and 230 MeV, respectively.

FIG. 3 (color online). The ratio of jem to jemðGA ¼ 0Þ as a
function of T for different GA. The �A and eB are fixed as
15 MeV and 2� 1018 Gauss, respectively.
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effect, no matter the axial-vector interaction arises from the
I �I pairings, the OGEA, or the GCM. The ratio R can
deviate significantly from the unity under the combined
effects of GA, �A, T, and B. The deviation may be positive
or negative which depends on the sign ofGA. This contrasts
with the role of GV on the CME: It only affects the CME
obviously when the magnetic field B is very large [22]; Its
correction to the CME has nothing to do with �A and T.

Let us compare our results with the recent lattice QCD
data. In [9], the CME was qualitatively confirmed by the
lattice simulation via introducing a finite �A. However, the
obtained coefficient C is around 0.013, which is far less
than the analytical value 1=2�2 ’ 0:05. The further study
using the quenched simulation suggests that the suppres-
sion is sensitive to the lattice spacing [10]. The new lattice
coefficient C is roughly in the range 0.02–0.03 [10], which
increases greatly compared to the former results. However,
it still much less than the standard analytical value.
Moreover, another new point in [10] is that the coefficient
C might be dependent on the temperature.

Regardless of the possible errors in [10], we stress that
the current lattice data are quite natural when considering
the effect of the attractive axial-vector interaction:
(i) According to (27), the induced electric current is pro-
portional to the effective axial chemical potential ~�A,
which may be suppressed significantly compared to �A

by the positive GA. As demonstrated in Figs. 1–4, the
suppression is really remarkable for the moderate and
strong couplings. So the reduction of ~�A by the attractive
axial-vector interaction can explain why the lattice data of
the induced electric current are much less than the analyti-
cal value. Let us make a rough comparison. According to
Fig. 7 in [10], the lattice ratio C=2�2 is located in 0.4–0.6
for T � 1:1TcðTc � 270 MeVÞ. Our numerical results
shown in Fig. 3 suggest that the ratio R is in the range of
0.5–0.65 for T � 1:1TcðTc � 230 MeVÞ if GA=GS varies
from 1 to 0.5. We see that the lattice data are quite con-
sistent with our results if the axial-vector interaction is

attractive and strong enough. (ii) The lattice data suggest
that the coefficient C or the ratio C=2�2 is insensitive to
�A and eB. This feature is also in agreement with our
results for the attractive axial-vector interaction, as shown
in Figs. 2 and 4. (iii) One set of data (
 ¼ 5:90 with Nt ¼
4, 6, 12) in Fig. 7 of [10] indicates that the coefficient C
decreases with growing T. The author has argued that such
a behavior might be a lattice artifact. However, that the
induced current density jem may be suppressed by T can be
well interpreted by the attractive coupling GA as demon-
strated in Fig. 3. According to Fig. 7 of [10], the ratio
C=2�2 decreases from�0:53 to�0:32 when increasing T
from 317 MeV to 475 MeV; Or in other words, the ratio
C=2�2 decreases roughly by �0:04 per 0:1Tc. This is not
so far away from the decline rate �0:07 per 0:1Tc for
GA=GS ¼ 0:5, as indicated in Fig. 3.4 So to judge whether
the coefficient C is sensitive to the temperature or not
needs more detailed lattice investigation.
On the contrary, the IIMM predicts that the CME current

or the coefficient C will be enhanced by the I �I molecules.
Clearly, this prediction deviates distinctly from the present
lattice data. This might suggest that the dominant axial-
vector interaction for T > Tc is coming from the OGEA.
Nevertheless, the current lattice simulation is still rough
and far from conclusive (at least at the quantitative level).
First, the fact that the current lattice data are sensitive to the
lattice spacing [10] suggests that the continuum limit is
very important for quantitatively understanding the chiral
magnetic effect. Second, the main simulations in [10] are
still at the quenched level while the discretization error of
the fermion action is larger than that of the gauge action.
Therefore, more improved quantitative lattice investigation
will shed light on the role of the I �I molecules on the chiral
magnetic effect.
In any case, we stress that, due to the contribution of the

dynamical axial chemical potential, the lattice result of the
induced current for a finite �A doesn’t need to be quanti-
tatively consistent with the analytical formula. If there are
no other QCD modifications, the coefficient C or the ratio
R should be greater (less) than the standard analytical value
for GA < 0 (GA > 0).

B. Effect of axial-vector interaction
on the T��A phase diagram

The chiral tricritical point (TCP) on the T ��A phase
diagram has been found in [26], which locates at the
relatively larger�A region (in the chiral limit for vanishing
quark number density). The TCP is also confirmed in the
linear sigma model, whose location is very close to the T
axis [27]. These studies show that the T ��A phase dia-
gram is somehow similar to the T �� phase diagram of
QCD.

FIG. 4 (color online). The ratio of jem to jemðGA ¼ 0Þ as a
function of eB for different GA. The �A and T are fixed as
100 MeV and 240 MeV, respectively.

4In the realistic case, the coefficient C should change more
mildly since the coupling GA becomes weaker with increasing T.
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Here we will demonstrate the role of the axial-vector
interaction on the T ��A phase diagram. We are particu-
larly interested in its influence on the TCP. In Fig. 5, we
show the locations of the TCP for different axial-vector
interactions. We see that the TCP is quite sensitive to the
axial-vector coupling. The negative GA shifts the TCP
towards the smaller�A region while the positiveGA moves
it towards the larger �A area. This implies that the first-
order chiral transition is strengthened by the repulsive
axial-vector interaction induced by I �I molecules while
weakened by the attractive axial-vector interaction stem-
ming from the OGEA.

It is well-known that the attractive vector interaction can
soften the chiral transition and move the critical point (CP)
towards the larger� area via generating a dynamical quark
chemical potential [25,28]. Especially, when taking into
account the two-flavor color superconductivity, the vector
interaction combined with the charge-neutrality constraint
and/or the axial anomaly can even lead to multiple chiral
critical points [29].5 We observe from Fig. 5 that the
attractive axial-vector interaction at finite �A has a similar
influence on the chiral phase transition as the vector inter-
action does at finite �.

However, in the instanton molecule model, the axial-
vector interaction at finite �A and the vector interaction at
finite� have opposite effects on the chiral transition. Since
the induced GA and GV have different signs, the chiral
transition will be strengthened (softened) at finite �A (�).
In addition, the influence of the axial-vector interaction on
the chiral transition at finite �A could be more remarkable
since the coupling GA is much stronger than GV in the
instanton molecule picture.

Locating the CP on the T �� phase diagram is a focus
of the current studies on the QCD phase transition and

heavy-ion collisions. So far, the location and even the
existence of the CP is still under debate. Since there is no
sign problem at finite �A, it is very interesting to explore
the T ��A phase diagram of the chirally imbalanced
matter and locate the TCP by means of the lattice simula-
tion. Such an investigation may provide useful information
on the true QCD phase transition. Moreover, studying the
T ��A phase diagram through lattice QCDmay shed light
on the nonperturbative features of sQGP. For example,
we can test the instanton molecule picture of QCD by
investigating the T ��A phase diagram.

V. SUMMARYAND CONCLUSION

In this article, we have first investigated the influence of
the axial-vector interaction on the chiral magnetic effect by
introducing an axial chemical potential �A. Such an inter-
action can be induced by the instanton molecules or de-
rived from the one gluon exchange approximation of QCD.
In the presence of a finite chirality density nA, a dynamical
axial chemical potential �0

A is generated through the

density-density correlation. We derived that the induced
electric current density jem in an external magnetic field B
linearly depends on the effective axial chemical potential
~�A which includes the contribution of �0

A. Accordingly,

the obtained jem deviates from the standard analytical
formula and explicitly depends on the chirality density
nA. In general, the deviation relies on the axial-vector
couplingGA, the axial chemical potential�A, the tempera-
ture T, and the magnetic field B.
For GA > 0 from the one gluon exchange approxima-

tion, the induced current density can be significantly sup-
pressed comparing with the analytical value. We also find
that the ratio R ¼ jem=jemðGA ¼ 0Þ is insensitive to the
axial chemical potential and the magnetic field but
decreases with increasing temperature if GA > 0. These
features are quite consistent with the recent lattice results
at finite �A. Hence, the suppression of the lattice data
compared with the analytical formula can be attributed to
the influence of the attractive axial-vector interaction of
QCD. Actually, it is very likely that the deviation of the
lattice result originates from the difference between �A

and ~�A. The reason is that Nielsen-Ninomiya’s argument
does not support the renormalization of CME if �A is not
shifted dynamically.
On the contrary, an unconventional prediction from the

instanton molecule model is that the axial-vector interac-
tion is repulsive withGA < 0 and is much stronger than the
vector interaction. As a consequence, the chiral magnetic
effect will be enhanced significantly by the instanton
molecules near Tc. In such a picture, the ratio
jem=jemðGA ¼ 0Þ increases with both �A and T. These
features deviate obviously from the current lattice results.
Since the present lattice simulation at finite �A is still
rough and sensitive to the lattice spacing, we anticipate

FIG. 5. The locations of the chiral TCP in the T ��A plane
for different GA.

5The new critical point might also appear through the interplay
between the chiral condensates and the diquark condensates in
the color-flavor-locking phase in the context of the axial anom-
aly [30].
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the more improved lattice calculation to test these
predictions.

In addition, we also demonstrated that the axial-vector
interaction plays an important role on the T ��A phase
diagram of the chirally imbalanced matter. The repulsive
(attractive) axial-vector interaction can effectively
strengthen (weaken) the chiral phase transition if the cou-
pling is relatively strong. The chiral TCP on the T ��A

plane is shifted towards the lower (higher)�A region by the
repulsive (attractive) axial-vector coupling. This is quite
different from (similar to) the role of the vector interaction
on the chiral phase transition at finite baryon chemical
potential �.

Since there is no sign problem at finite�A, the improved
lattice simulation is still very welcome for disclosing the
nonperturbative QCD effect on the chiral magnetic effect.
Moreover, studying the deviation of the induced current
density from the analytic result and locating the TCP in
T ��A plane by the lattice simulation can be used to test
the instanton molecule picture for T > Tc.

We note that if �A is introduced by coupling it only to
the chiral density, it cannot be considered as a true chemi-
cal potential. The reason is that the axial charge is not a
conserved quantity due to the axial anomaly. Recently, it is
proposed by Robakov [31] that�A should be conjugated to
a proper combination of the chiral density and a Chern-
Simon term, which is a conserved quantity. It is then
claimed in [31] that the fact �A must be associated with
a conserved charge is essential in the discussion for the
nonrenormalization of the CME current.

Since there exists a subtlety on the definition of �A, a
question naturally arises that whether the dynamical axial
chemical potential �0

A defined in this paper can be asso-

ciated with a conserved charge. We point out that �0
A does

not need to be conjugated to a conserved charge if �A

could be really well-defined. The reason is that �0
A is an

induced quantity generated dynamically by the axial-
vector interaction for nonzero nA. This is different from
the parameter �A (assuming it has been well-defined as a
true chemical potential), which should be associated with a
conserved charge in principle. We note that no matter how
�A is introduced, it must give rise to nonzero nA. As
demonstrated in this paper, the �0

A induced by nA will

modify the chiral imbalance described originally by �A.
A natural extension of this work is to investigate the role

of the axial-vector interaction at finite � in the presence
of an external magnetic field. Conjugate to the induced
current for the chiral magnetic effect at finite �A, an axial-
vector current along the direction of the external magnetic
field is generated at finite � [32]. Another related topic at
finite � is the so called chiral shift parameter [33] in a
magnetic field. The roles of the axial-vector interaction in
these cases will be reported elsewhere [34].
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