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We present a comprehensive study of inclusive hadron production in deep inelastic scattering (DIS) at

low x. Properties of the hadron spectrum are different in different kinematic regions formed by three

relevant momentum scales: photon virtuality Q2, hadron transverse momentum kT and the saturation

momentum QsðxÞ. We investigate each kinematic region and derive the corresponding asymptotic

formulas for the cross section at the leading logarithmic order. We also analyze the next-to-leading-order

corrections to the Balitski-Fadin-Kuraev-Lipatov kernel that are responsible for the momentum conser-

vation. In particular, we establish the asymptotic behavior of the forward elastic dipole-nucleus scattering

amplitude at high energies deeply in the saturation regime and a modification of the pomeron intercept.

We study the nuclear effect on the inclusive cross section using the nuclear modification factor and its

logarithmic derivative. We argue that the later is proportional to the difference between the anomalous

dimension of the gluon distribution in nucleus and in proton and thus is a direct measure of the coherence

effects. To augment our arguments and present quantitative results we performed numerical calculations

in the kinematic region that may be accessible by the future DIS experiments.

DOI: 10.1103/PhysRevD.85.114021 PACS numbers: 13.60.Hb

I. INTRODUCTION

In the last decade we have learned a great deal about
gluon saturation/color glass condensate [1–27] thanks to
the relativistic dAu and AuAu program at the Relativistic
Heavy Ion Collider (RHIC). The future deep inelastic
scattering (DIS) programs at the Electron-Ion Collider
(EIC) and the Large Hadron Electron Collider (LHeC)
promise to provide even more detailed information about
structure of the nuclear matter at low x. How successful
these programs will be depends a lot on our ability to
pinpoint the processes that are most sensitive to the
low-x regime. In this paper we study one such process—
inclusive hadron production in eA scattering. It has been a
subject of intense theoretical investigation over the past
decade [28–37] and has proved to be a powerful tool in dA
collisions at RHIC. On the one hand, we expect that pðdÞA
and eA processes have very much in common due to the
Pomerantchuk theorem, that states that all high energy
scattering processes are mediated by exchange of a collec-
tive gluon state—known as pomeron—that has vacuum
quantum numbers. On the other hand, proton wave func-
tion is characterized by a soft, nonperturbative scale,
whereas the virtual photon wave function can be calculated
using the perturbation theory and is characterized by vir-
tuality Q2. A possibility to dial Q2 is a great advantage of
DIS. Our main goal in this paper is to provide a thorough
analysis of the inclusive hadron production in various
kinematic regions characterized by three dimensional
scales: photon virtuality Q2, hadron momentum kT and
the saturation momentum Qs and to produce numerical
predictions for both novel and well-known quantities that
can be tested at EIC and/or LHeC.

Our paper is organized as follows. In Sec. II we use the
dipole model [38] to relate the DIS ��A cross section to
that of the color dipole q �qþ A. The ��A differential cross
section can be expressed in a factorized form as a product
of the light-conewave function of the virtual photon �� and
q �qþ A differential cross section. In Sec. III we review the
properties of the Balitski-Fadin-Kuraev-Lipatov (BFKL)
pomeron [39,40] and the unintegrated gluon distribution
function at LO, particularly we emphasize the leading
logarithmic asymptotics. These are used in Sec. IV to
derive the asymptotic properties of gluon production in
dipole-nucleus scattering in various kinematic regions. In
Sec. V the result is further generalized to the case of LO
gluon production in DIS.
The next-to-leading-order (NLO) corrections to the in-

clusive hadron production are rather complex. These
include NLO correction to the BFKL kernel [41–52], run-
ning coupling corrections [53–60] and energy conservation
[61–63] corrections to Balitsky-Kovchegov (BK) [21–24].
It has been argued in [64] that energy conservation is the
most important phenomenological effect beyond the LO.
Therefore, in Sec. VI we investigate the role of this effect on
inclusive hadron production. In our calculations we rely on
a phenomenological approach suggested in [64,65] where a
modified BK (mBK) equation that satisfies energy conser-
vationwas derived. It was utilized in [61,66] to calculate the
NLO corrections to the total DIS cross section. mBK equa-
tion serves as the basis for our NLO calculations. First, we
derive the dipole scattering amplitude in dilute and satura-
tion regimes; the corresponding expressions are given by
(70) and (83) respectively. The effect of energy conserva-
tion on the low x evolution is exhibited in Figs. 1–3. We
argue that the energy conservation effects decrease the
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energy dependence of the saturation momentum. These
results are used for computation of dipole density in various
asymptotic regimes. Similarly to our analysis of LO case,
we explore the NLO gluon production first for dipole-
nucleus process and then for DIS scattering.

It is very instructive to know how the DIS on a heavy
nucleus is different from DIS on a proton at low x. Had the
coherence length been short, of the order of the proton
radius, the hadron production in��Awould have been equal
the incoherent sum of A ��N processes. However, since the
coherence length is larger than the nuclear radius, the entire
process is coherent. Because it is interesting to compare the
coherent and incoherent regimes, one introduces the nu-
clear modification factor (NMF) R that calibrates the cross
section in ��A with that of ��N rescaled by atomic weight
A. Section VII is devoted to the study of the properties
of this quantity as a function of the hadron transverse
momentum, photon virtuality and atomic weight.

We expect that at EIC/LHeC kinematic region the low-x
evolution effects start to play an important role rendering
the anomalous dimensions dependent on atomic weight.
This manifests itself in inclusive hadron production in dA
collisions at RHIC as the transition from the Cronin en-
hancement at midrapidity to suppression of the NMF at
forward rapidities even at kT > Qs. In order to evaluate
how steep is the dependence of the NMF on rapidity, we
introduce a new observable J, defined as the logarithmic
derivative of R, viz. d lnR=dy. We demonstrate in Sec. VII
that at kT � Qs, J is proportional to the difference of the
anomalous dimensions of the gluon distribution in nucleus
and in proton. Without the low-x evolution one expect J to
vanish. However, due to the low-x evolution J acquires a
finite negative value. Therefore, J can serve as a direct
probe of the effect of the slow-x evolution on the nuclear
gluon distribution function.

The numerical computations are presented in Sec. VIII
and displayed in Figs. 4–8. We use the bCGC model [67]
for the dipole-nucleus forward scattering amplitude,
albeit with the simplified b-dependence. In Fig. 5 we
plot d2F2=d lnk

2
Tdy as a function of photon virtuality

Q2 and hadron transverse momentum kT and rapidity
y ¼ lnð1=xPÞ.1 In order to emphasize the role played by
the NLO effects we exhibit both LO and NLO results in
each plot for the structure function. In Fig. 5 we see that the
NLO calculation yields much smaller cross section for
inclusive hadron production than the LO one.
Additionally, its functional dependence on kT , Q

2 and y
is substantially weaker in NLO than in LO. This is in
accordance with our observation in Sec. VI that NLO
correction reduces the anomalous dimension of the gluon
distribution. Interestingly, most of the NLO effect cancels

in the NMF which appears to be a robust quantity in this
respect. This indicates that the energy conservation effect
factors out to a large extent from the inclusive cross
section.
The NMF shown in Fig. 7 displays a number of interest-

ing features. First, the NMF is strongly suppressed at small
kT’s but exhibits an enhancement toward higher kT’s where
the Cronin effect (R> 1) is observed. This seems to be in
contrast with pA collisions [34] where the Cronin effect
gives way to suppression of NMF at all kT’s as the hadron
rapidity increases. This is the result of the linear evolution
in the rapidity interval between the virtual photon and the
hadron. This evolution produces dipoles of different sizes
that scatter in the nucleus with different amplitudes. At
small kT large dipoles, on which the gluon saturation
effects are stronger, dominate the cross section, whereas
at higher kT smaller dipoles contribute to the NMF en-
hancement. Second, we observe a relatively weak
A-dependence. This is also a result of the averaging over
different dipoles. Third, we note a peculiar Q2 dependence
that is explained in Sec. VIII.
To investigate the rapidity dependence in more detail we

plot the logarithmic slope of the nuclear modification
factor J on Fig. 8 (for dipole-nucleus scattering). We see
that it is negative for the entire kinematic region indicating
the graduate suppression of the NMF towards large rapid-
ities. This is in agreement with our arguments in Sec. VII.
We argue that J is directly proportional to the difference
between the anomalous dimensions of the gluon distribu-
tion function in the nucleus and in proton. Hence we
believe that measuring J is a great tool for exploring the
low-x regime of QCD.
We summarize our results in Sec. IX.

II. FROM ��A TO q �qþA SCATTERING

The dominant contribution to the inclusive hadron
production in DIS at low-x, at rapidities away from the
virtual photon and nucleus fragmentation regions, comes
from the fragmentation of fast s-channel gluons [2].
The cross section for inclusive production of a gluon of
transverse momentum k at rapidity y in deep inelastic
scattering can be represented as an integral in the configu-
ration space [68]:2

d���Aðk; y;QÞ
d2kdy

¼ 1

2�2

Z
d2r

Z 1

0
dz�ðr; z; QÞ

� d�q �qþAðk; y; rÞ
d2kdy

; (1)

where the virtual photon wave function � describes split-
ting of a photon of virtuality Q2 into q �q color dipole. It is
given by

1We use the xP notation borrowed from the diffractive DIS
where it denotes the momentum fraction carried by the pomeron.
It does not have this simple interpretation in our case because the
interaction is inelastic.

2We use the notation k2 ¼ k2 ¼ k2T , where k is a vector
transverse to the collision axis.
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�ðr; zÞðQ; r; zÞ ¼ j���
T ðQ; r; zÞj2 þ j���

L ðQ; r; zÞj2; (2a)

�Tðr; zÞðQ; r; zÞ ¼ 2Nc

X
f

�f
em

�
fa2K2

1ðraÞ½z2 þ ð1� zÞ2� þm2
fK

2
0ðraÞg; (2b)

�Lðr; zÞðQ; r; zÞ ¼ 2Nc

X
f

�f
em

�
4Q2z2ð1� zÞ2K2

0ðraÞ: (2c)

Here a2 ¼ Q2zð1� zÞ þm2
f, �

2
em ¼ e2z2f=ð4�Þ, with zf being electric charge of quark f in the units of electron charge e.

The cross section for inclusive gluon production in dipole-nucleus scattering reads [29]

d�q �qþAðk; y; rÞ
d2kdy

¼ 2�sCF

�2

1

k2

Z
d2b

Z
d2r0e�ik�r0 ½r2

r0NGðr0; b0; yÞ�½r�2
r0 nðr; r0; Y � yÞ�; (3)

Here the dipole density nðr; r0; Y � yÞd2r0 is the number of
daughter dipoles of size r0 in the interval d2r0 produced by
a parent dipole of size r at the relative rapidity Y � y [4–6].
It satisfies the BFKL equation [39,40] with the initial
condition

nðr; r0; 0Þ ¼ �ðr� r0Þ: (4)

At the leading logarithmic order, the corresponding solu-
tion is [39,40]

nðr; r0; yÞ ¼ 1

2�2r02
Z 1

�1
d�e2 ��s�ð�Þy

�
r

r0

�
1þ2i�

(5)

with the eigevalue function � given by

�ð�Þ ¼ c ð1Þ � 1
2c ð12 � i�Þ � 1

2c ð12 þ i�Þ; (6)

where c ð�Þ ¼ �0ð�Þ=�ð�Þ.
Let fðr; r0; yÞ be the particular solution of the two-

dimensional Poisson equation

r2
r0fðr; r0; yÞ ¼ nðr; r0; yÞ: (7)

Employing (5) we derive the Melin representation of f

fðr; r0; yÞ ¼ r�2
r0 nðr; r0; yÞ

¼ 1

2�2

Z 1

�1
d�

1

ð2i�þ 1Þ2 e
2 ��s�ð�Þy

�
r

r0

�
1þ2i�

:

(8)

It is convenient to write (3) as a convolution in the mo-
mentum space. To this end we introduce the Fourier-image
of f with respect to the second argument:

~fðr;q;yÞ¼
Z
d2r0e�iq�r0fðr;r0;yÞ

¼ r

�q

Z 1

�1
d�e2 ��s�ð�Þy

�
rq

2

�
2i� �ð12� i�Þ

�ð12þ i�Þð2i�þ1Þ2
(9)

and the unintegrated gluon distribution function of the
nucleus [2,29]

’Aðk; yÞ ¼ CF

�sð2�Þ3
Z

d2b
Z

d2re�ik�rr2
rNGðr;b; yÞ:

(10)

NGðr; b; yÞ is the forward scattering amplitude of a color
gluon (or adjoint) dipole r on the nucleus at impact pa-
rameter b at the relative rapidity y. It obeys the BK
equation [21,23] and its properties are discussed in the
next section. Using (9) and (10) in (3) we get

d�q �qþAðk; y; rÞ
d2kdy

¼ 4�2
s

�k2

Z
d2p’Aðp; yÞ~fðr; k� p; Y � yÞ:

(11)

III. LOGARITHMIC APPROXIMATIONS

A. Asymptotic expressions for ~f

It is worthwhile to list here the asymptotic formulas for
~f in various kinematic regions (we follow notations of
[69–71] were more details can be found).
(1) �sy � ln2ðrq=2Þ.—In this case the eigenfunction

(6) can be expanded near its minimum � � 2 ln2�
7�ð3Þ�2. Expression under the �-integral in (8) has a
saddle point at

i�sp ¼ lnð2=rqÞ
14�ð3Þ ��sy

: (12)

In this approximation integration over � in (8) pro-
duces

~fðr;q;yÞ¼ r

q

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14��ð3Þ ��sy

p
�eð�

ð0Þ
P �1Þye�ðln2ðrq=2Þ=14�ð3Þ ��syÞ; (13)

with �ð0Þ
P � 1 ¼ 4 ��s ln2.

(2) rq < 2 and lnð2=rqÞ � �sy. In this region, the
leading contribution to the �-integral stems from
the pole at i� ¼ 1=2. Approximating the eigenfunc-
tion as � � 1=ð1� 2i�Þ and employing the saddle-
point method in (8) again yields
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~fðr;q;yÞ¼ r2

8
ffiffiffiffi
�

p 1

ð2 ��syln
2
rqÞ1=4

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sylnð2=rqÞ

p
: (14)

The saddle point is

2i�sp ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

ln 2
rq

vuut : (15)

(3) rq > 2 and lnðrq=2Þ � �sy. Now, another pole in �

dominates, � � 1=ð1þ 2i�Þ with the result for ~f

~fðr; q; yÞ ¼ 1

2q2
ffiffiffiffi
�

p 1

ð2 ��sy ln
rq
2 Þ1=4

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnðrq=2Þ

p

(16)

and for the saddle point

2i�sp ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

lnrq2

s
: (17)

B. Properties of ’A

Unintegrated gluon distribution ’A is defined by (10).
NGðr; y; bÞ stands for the forward elastic gluon dipole
scattering amplitude. At large Nc, the gluon dipole is
equivalent to two q �q dipoles each of which scatters with
amplitude Nðr; y; bÞ. Therefore,

NGðr; b; yÞ ¼ 2Nðr;b; yÞ � N2ðr; b; yÞ: (18)

The q �q scattering amplitude satisfies the BK equation
[21,23]3 and its properties are well-known. Initial condi-
tion for the BK equation is the Glauber-Mueller formula
[38] for the forward scattering amplitude N of a q �q color
dipole on the nucleus:

Nðr; b; 0Þ ¼ 1� e�ð1=8Þr2Q2
s0 : (19)

The gluon saturation momentum [1] at initial rapidity
y ¼ 0, which corresponds to the Bjorken variable x0 such
that y ¼ lnx0x , is related to gluon distribution function xG at

x ¼ x0 as

Q2
s0 ¼

4�2�sNc

N2
c � 1

	TðbÞx0Gðx0; 1=r2Þ; (20)

where 	 is the nuclear density, TðbÞ is the nuclear thickness
function as a function of the impact parameter b. The gluon

distribution function at the leading order in �s, i.e. in the
two-gluon exchange approximation, reads

xGðx; 1=r2Þ ¼ �sCF

�
ln

1

r2�2
; (21)

with� being some nonperturbative momentum scale char-
acterizing the nucleon’s wave function. Using (19) in (18)
we derive the initial condition for the gluon dipole scatter-
ing amplitude

NGðr; b; 0Þ ¼ 1� e�ð1=4Þr2Q2
s0 : (22)

Let us now list some properties of the amplitude NG; see
[34,69] for details.
(1) At r � 1=Qs0 the BK equation reduces to the BFKL

equation, which must be solved with the initial
condition Nðr; b; 0Þ � r2Q2

s0=4. Small dipoles scat-

ter independently, perforce NG � 2N. Thus, in this
region

NGðr; b; yÞ ¼
Z 1

�1
d�e2 ��s�ð�ÞyðrQs0Þ1þ2i�

� 1

8�

1þ ð1� 2i�Þ lnQs0

�

ð1� 2i�Þ2 : (23)

(2) In particular, if r � 1=Qs0 and ln 1
rQs0

� �sy the

solution is

NGðr;b;yÞ¼
ffiffiffiffi
�

p
8�

ðln 1
rQs0

Þ1=4
ð2 ��syÞ3=4

r2Q2
s0

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

ln 1
rQs0

vuut ln
Qs0

�

1
A

�e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sylnð1=rQs0Þ

p
: (24)

(3) For r � 1=Qs0 and �sy � ln2ð1=rQs0Þ we have

NGðr; b; yÞ ¼ rQs0

4

lnQs0

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14�ð3Þ� ��sy

p
� eð�P�1Þye�ðln2ðrQs0Þ=14�ð3Þ ��syÞ: (25)

(4) The saturation region is characterized by the satu-
ration momentum QsðyÞ. With the double-
logarithmic accuracy it reads [75–77]

QsðyÞ ¼ Qs0e
2 ��sy: (26)

In the saturation region r > 1=Qs, solution to the
BK equation is [75–77]

Nðr; b; yÞ ¼ 1� S0e
�ð1=8Þln2ðr2Q2

s Þ; (27)

where S0 is a constant that can be determined by
matching N from (27) with that of (23) at r ¼
2=QsðyÞ. Consequently,

3The BK equation assumes dominance of the pure glue con-
figurations. However, it was pointed out in [72–74] that flavor-
singlet quark anomalous dimensions are numerically important
for the linear evolution and might impact the nonlinear evolution
as well. Such contributions have not been yet fully incorporated
into the nonlinear evolution equations, though there has been a
remarkable progress in recent years [55–58]. We will rely on the
BK equation that provides a basis of a very successful low x
phenomenology, e.g. see [27].
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NGðr;b; yÞ ¼ 1� S20e
�ln2ðrQsÞ; (28)

where we utilized (18).
Equations (23)–(28) are derived with the logarithmic

accuracy. We can calculate ’A given by (10) in the same
approximation as

’Aðk; yÞ � CF

�sð2�Þ2
Z

d2b
Z 1=k

0
dr

@

@r

�
r
@

@r
NGðr; b; yÞ

�

¼ CF

�sð2�Þ2k
Z

d2b
@

@r
NGðr̂=k;b; yÞ: (29)

We stress that this formula holds only in the asymptotic
regions specified in 1–4 above; still this is a very useful
approximation as it captures the most essential features of
the unintegrated gluon distribution.

It is evident from (29), that in place of function
NGðr;b; yÞ it is convenient to use function ~NGðk; b; yÞ ¼
NGðr̂=k; b; yÞ, where r̂ ¼ r=r. In particular,
@NGðr̂=k; b; yÞ=@r ¼ �k2@ ~NGðk; b; yÞ=@k.4 Plugging (29)
into (11) we obtain

d�q �qþAðk; y; rÞ
d2kdy

¼ �sCF

�3k2

Z
d2b

Z
d2p

@ ~NGðp; b; yÞ
@ lnð1=pÞ

� ~fðr;p� k; Y � yÞ: (30)

IV. PROPERTIES OF THE DIPOLE-NUCLEUS
CROSS SECTION

To calculate the cross section for gluon production in
dipole-nucleus scattering we need to evaluate the integral
over the transverse momentum p in the right-hand side
(rhs) of (30). It convenient to consider the inclusive cross
section at a fixed impact parameter b:

gðk;y;b;rÞ	d�q �qþAðk;y;rÞ
d2kdyd2b

�
�sCF

�3k2

��1

¼
Z
d2p

@ ~NGðp;b;yÞ
@lnð1=pÞ

~fðr;p�k;Y�yÞ: (31)

When taking the p-integral with the logarithmic accuracy
in various kinematic regions it is useful to keep in mind that
(28) and (23) imply that @ ~NG=@ lnð1=pÞ 
 lnðQs=pÞ�
expf�ln2ðQs=pÞg if p � Qs and @ ~NG=@ lnð1=pÞ 

Q2

s=p
2 if p � Qs, while (14) and (16) indicate that

~f
 1=k2 if k � 1=r and ~f
 r2, if k � 1=r.
(1) k � Qs � 2=r.—Because of the strong ordering of

the relevant scales we have

g � 2�
Z k

Qs

dpp
@ ~NGðp; b; yÞ
@ lnð1=pÞ

~fðr; k; Y � yÞ: (32)

Using (23) we derive

Z k

Qs

dpp
@ ~NGðp; b; yÞ
@ lnð1=pÞ

¼ k2
Z 1

�1
d�e2 ��s�ð�Þy

�
Qs0

k

�
1þ2i�

� 1

8�

1þ ð1� 2i�Þ lnQs0

�

ð1� 2i�Þ2
1þ 2i�

1� 2i�

�
ffiffiffiffi
�

p
8�

ðln k
Qs0

Þ3=4
ð2 ��syÞ5=4

Q2
s0

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

ln k
Qs0

vuut ln
Qs0

�

1
A

� e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnðk=Qs0Þ

p
: (33)

Thus, it follows upon substitution of (16) and (33)
into (32) and then into (30) that

d�q �qþAðk; y; rÞ
d2kdy

¼ �sCF

8�3k4

Z
d2bQ2

s0

ðln k
Qs0

Þ3=4
ð2 ��syÞ5=4ð2 ��sðY � yÞ lnkr2 Þ1=4

�
0
@1þ

ffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

ln k
Qs0

vuut ln
Qs0

�

1
Ae2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ��sðY�yÞ lnðkr=2Þ
p

� e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnðk=Qs0Þ

p
: (34)

(2) k � 2=r � Qs.—Repeating the by now familiar
procedure yields

g � 2�
Z k

Qs

dpp
@ ~NGðp; b; yÞ
@ lnð1=pÞ

~fðr; k; Y � yÞ: (35)

We observe that the cross section in this case is
exactly the same as (34).

(3) Qs � k � 2=r.—

g�2�
Z Qs

k
dpp

@ ~NGðp;b;yÞ
@lnð1=pÞ

~fðr;p;Y�yÞ: (36)

With the help of (28) and (16) we get

g ¼ 2rS20

Z 1

�1
d�

1

1þ 2i�
e2 ��sðY�yÞ=1þ2i�

�
Z Qs

k
dpe�ln2ðQs=pÞ ln

Qs

p

�
rp

2

�
2i�

: (37)

Now, using 
 ¼ lnðQs=pÞ in place of pZ Qs

k
dpe�ln2ðQs=pÞ ln

Qs

p
p2i�

¼ Q2i�þ1
s

Z lnðQs=kÞ

0
d

e�
2�
ð1þ2i�Þ

� Q2i�þ1
s

Z 1

0
d

e�
2 ¼ 1

2
Q2i�þ1

s : (38)

4We assumed in (20) that the b-dependence factors out in the
initial condition; perforce it factors out in the solution for heavy
nuclei. Therefore, scattering amplitudes depend only on the
absolute value of vector b.
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Putting everything together yields

d�q �qþAðk; y; rÞ
d2kdy

¼ ��sCFS
2
0

�5=2k2

Z
d2b

1

ðlnrQs

2 Þ1=4ð2 ��sðY � yÞÞ1=4 e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sðY�yÞ lnðrQs=2Þ

p
: (39)

(4) Qs � 2=r � k.—

g � 2�
Z Qs

2=r
dpp

@ ~NGðp; b; yÞ
@ lnð1=pÞ

~fðr;p; Y � yÞ: (40)

This case is similar to the previous one except that the lower limit of the integral in (37), k, is now replaced by 1=r.
However, for very large Qs, the integral over p is independent of the lower limit of integration as is clear from (38). We
conclude thereby that the cross section in this case coincides with (39).

(5) 2=r � k � Qs.—

g � 2�
Z k

Qs

dpp
@ ~NGðp; b; yÞ
@ lnð1=pÞ

~fðr; k; Y � yÞ þ 2�
Z 2=r

k
dpp

@ ~NGðp; b; yÞ
@ lnð1=pÞ

~fðr;p; Y � yÞ: (41)

The first of these integrals reads using (33) and (14)

2�
Z k

Qs

dpp
@ ~NGðp; b; yÞ
@ lnð1=pÞ

~fðr;k; Y � yÞ ¼ 1

32

ðln k
Qs0

Þ3=4
ð2 ��syÞ5=4

1þ
ffiffiffiffiffiffiffiffi
2 ��sy

ln k
Qs0

r
lnQs0

�

ð2 ��sðY � yÞ ln 2
rQs0

Þ1=4 Q
2
s0r

2e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnðk=Qs0Þ

p
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sðY�yÞ lnð2=rQs0Þ

p
:

(42)

The second one is done by substituting (24) and the integral form (9) (it is useful to note that @ ~NG=@ lnð1=pÞ � 2 ~NG) and
then integrating over p in the leading log approximation (i.e. treating logp as a constant) followed by the saddle-point
integral over �. We have

2�
Z 2=r

k
dpp

@ ~NGðp;b;yÞ
@ lnð1=pÞ

~fðr;p;Y�yÞ¼Q2
s0r

2

ðln k
Qs0

Þ1=4ðln 2
krÞ1=4ð1þ

ffiffiffiffiffiffiffiffi
2 ��sy

ln k
Qs0

r
lnQs0

� Þ
2ð2 ��syÞ3=4ð2 ��sðY�yÞÞ3=4 e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sylnðk=Qs0Þ

p
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sðY�yÞ lnð2=krÞ

p
: (43)

Substitution of (42) and (43) into (30) gives for the cross section

d�q �qþAðk; y; rÞ
d2kdy

¼ �sCF

�3k2

Z
d2bQ2

s0r
2

ðln k
Qs0

Þ1=4ðln 2
krÞ1=4ð1þ

ffiffiffiffiffiffiffiffi
2 ��sy

ln k
Qs0

r
lnQs0

� Þ
2ð2 ��syÞ3=4ð2 ��sðY � yÞÞ3=4 e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnðk=Qs0Þ

p
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sðY�yÞ lnð2=krÞ

p

�
�
1þ ðln k

Qs0
Þ1=2ð2 ��sðY � yÞÞ1=2

ð2 ��syÞ1=2ðln 2
kr ln

2
rQs0

Þ1=4
�
: (44)

(6) 2=r � Qs � k.—

g � 2�
Z 2=r

Qs

dpp
@ ~NGðp; b; yÞ
@ lnð1=pÞ

~fðr;p; Y � yÞ: (45)

Repeating the steps leading to (43) and noting (26) we finally get

d�q �qþAðk; y; rÞ
d2kdy

¼ �sCF

�3k2

Z
d2bQ2

s0r
2

ðln 2
rQs0

Þ1=4 lnQs0

�

25=2ð2 ��syÞ3=4ð2 ��sðY � yÞÞ3=4 e
4
ffiffi
2

p
��sye2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sðY�yÞ lnð2=Qs0rÞ

p
: (46)

Equations (34)–(46) represent the dipole-nucleus inclusive cross section in all kinematic regions.

V. GLUON PRODUCTION AT THE LEADING ORDER IN ASYMPTOTIC REGIONS

The DIS inclusive cross section is obtained from the dipole-nucleus one using (1). Integration over the dipole size r and
momentum fraction z can be carried out for Q � �, m. In this case the largest contribution stems from the transversely
polarized virtual photon. Setting mf ¼ 0 in (2) we write (1) as
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d���Aðk; y;QÞ
d2kdy

¼ Nc

�2

X
f

�f
em

�

Z
d2r

Z 1

0
dzQ2zð1� zÞK2

1ðrQ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ

p
Þ½z2 þ ð1� zÞ2�d�

q �qþAðk; y; rÞ
d2kdy

: (47)

At large Q the dominant contribution to the z-integral arises from z ! 0, 1. This corresponds to either quark or antiquark
carrying most of the photon’s energy. These limits are symmetric, therefore we can calculate the z-integral for z ! 0 and
multiply the result by 2. Thus,

d���Aðk; y;QÞ
d2kdy

� NcQ
2

�2

2�em

3

Z 1

4=Q2
dr2

d�q �qþAðk; y; rÞ
d2kdy

2
Z 1

0
dzzK2

1ðrQ
ffiffiffi
z

p Þ ¼ 8Nc

3�2Q2

2�em

3

Z 1

4=Q2

dr2

r4
d�q �qþAðk; y; rÞ

d2kdy
;

(48)

where we took into account only three light quarks. To set the low limit of integration in (48) we noted that integrand in
(47) peaks at rQ
 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp � 2. Upon substitution of (30) into (48) we get

d���Aðk; y;QÞ
d2kdy

¼ 16�s�em

9�5

NcCF

Q2k2

Z
d2b

Z 1

4=Q2

dr2

r4

Z
d2p

@ ~NGðp; b; yÞ
@ lnð1=pÞ

~fðr;p� k; Y � yÞ: (49)

To determine the cross section for gluon production in DIS
it is convenient to do integral over r before we integrate
over � in ~f. We thus define an auxiliary function

dðQ;p; yÞ ¼
Z 1

4

Q2

dr2

r4
~fðr;p; yÞ: (50)

Employing (9) in (50) we obtain the Mellin representation
of d

dðQ;p; yÞ ¼ Q

2�p

Z 1

�1
d�e2�s�ð�Þy

�
p

Q

�
2i�

� �ð12 � i�Þ
ð12 � i�Þ�ð12 þ i�Þð2i�þ 1Þ2 (51)

Inasmuch as we are interested only in asymptotic behavior
of d, which we will derive using the saddle-point approxi-
mation, we can write in view of (9)

dðQ;p; yÞ ¼ Q2

4
~fð2=Q;p; yÞ 1

1
2 � i�sp

(52)

where �sp is a saddle-point given by one of the formulas
(12), (15), and (17). In particular, using (13), (14), and (16)
in (52) yields

dðQ;p;yÞ¼ Q

4p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14��ð3Þ ��sy

p eð�
ð0Þ
P �1Þye�ðln2ðp=QÞ=14�ð3Þ ��syÞ;

�sy� ln2
p

Q
; (53)

dðQ;p; yÞ ¼ 1

4
ffiffiffiffi
�

p ðln Q
Qs0

Þ1=2
ð2 ��syÞ3=4ðlnQpÞ1=4

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnðQ=pÞ

p
;

Q � p; (54)

dðQ; q; yÞ ¼ Q2

8
ffiffiffiffi
�

p
p2

1

ð2 ��sy ln
p
QÞ1=4

e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy lnðp=QÞ

p
;

Q � p: (55)

Inspecting (49), (50), (52), (30), and (31) we get

d���Aðk; y;QÞ
d2kdy

¼ 4Nc�em�

9�2

d�q �qþAðk; y; 2=QÞ
d2kdy

(56)

where we denoted by � the logarithmic (or constant) factor
ð1=2� i�spÞ�1. Explicitly,

� ¼ 2

0
@ lnmaxfk;Qg

minfk;Qg
2 ��sðY � yÞ

1
A1=2

; if k; Q � Qs;

� ¼ 1; if k; Q � Qs:
(57)

Equation (56) together with the expressions of the inclu-
sive dipole-nucleus cross section derived in Sec. V provide
the cross section for the inclusive gluon production in DIS
at the leading logarithmic approximation.

VI. NLO BFKL EFFECTS: ENERGY
CONSERVATION

A. Dipole scattering amplitude

As explained in the introduction, one of the most im-
portant NLO effects is the momentum conservation. BK
equation modified to account for the energy conservation
reads [64,65]

@Nðr; b; yÞ
@y

¼ ��s

2�

�
1� @

@y

�Z
d2r0

r2

r02ðr� r0Þ2
� fNðr0; b; yÞ þ Nðr� r0; b; yÞ
þ Nðr; b; yÞ � Nðr0; b; yÞNðr� r0; b; yÞg:

(58)

In this section we discuss solution to this equation in dilute
and saturation regimes.
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1. Dilute regime

Consider first the dilute regime. It is advantageous to
represent N as the double Mellin transform

Nðr; b; yÞ ¼
Z i1

�i1
d!

2�i

Z i1

�i1
d�

2�i
N ð�; b; !Þ

� e!yþ�
�


!� 2 ��s�1ð�;!Þ ; (59)

where we introduced a new dimensionless variable 
 ¼
lnð1=r2Q2

s0Þ. The anomalous dimension � is related to the

Mellin variable � that we have used so far as � ¼ 1=2�
i�, so that the LO BFKL eigenvalue function is �ð�Þ ¼
�ðið�� 1=2ÞÞ, see (6). �1ð�;!Þ denotes the NLO BFKL
eigenvalue function. In the dilute regime the N2 term in
the rhs of (58) can be neglected. Substituting (59) into (58)
one arrives at the following relation between the Mellin
variables

! ¼ 2 ��s�1ð�;!Þ ¼ 2 ��sð1�!Þ�ðið�� 1=2ÞÞ; (60)

with the explicit solution for !

! ¼ 2 ��s�ð�Þ
1þ 2 ��s�ð�Þ : (61)

This solution is plotted in Fig. 1. ! diverges at � ¼ ��
satisfying 2 ��s�ð��Þ ¼ �1. As ��s ! 0, ! approaches the
LO expression while �� ! �1. At � ! 0, i.e. i� ! 1=2,
� � 1=ð1� 2i�Þ ¼ 1=2� and (61) yields

�ð!Þ ¼ ��s

�
1

!
� 1

�
: (62)

This can be used as a model of anomalous dimension that
takes into account the energy conservation as suggested in
[72,78,79].5;6

Integrating (59) over ! we obtain

Nðr; b; yÞ ¼
Z þ1

�1
d�CA

�e
!ð�Þyþ�
�
; (65)

with !ð�Þ given by (61). Remembering that in the dilute
regime (and Nc � 1) NG ¼ 2N, see (18), and using the
same initial condition as in (23) we get

NGðr; b; yÞ ¼
Z 1

�1
d� exp

�
2 ��s�ð�Þy

1þ 2 ��s�ð�Þ
�
ðrQs0Þ1þ2i�

� 1

8�

1þ ð1� 2i�Þ lnQs0

�

ð1� 2i�Þ2 : (66)

This integral can be taken in the double-logarithmic ap-
proximation (DLA), which corresponds to keeping only
one of the poles of �, namely �ð�Þ ¼ 1=ð1� 2i�Þ. Denote

s 0.3

3 2 1 0 1 2 3
5

4

3

2

1

0

1

2

s 0.2

6 4 2 0 2 4 6
5

4

3

2

1

0

1

2

FIG. 1 (color online). !ð�Þ for (a) ��s ¼ 0:3 and (b) ��s ¼ 0:2. LO and NLO are represented by dashed (red) and solid (blue) lines
respectively. Notice the different � ranges of the two plots.

5Indeed, the anomalous dimension is proportional to the
Mellin transform of the gluon splitting function

�ð!Þ ¼ ��sCF

�

Z 1

0
PggðzÞz!dz: (63)

Energy conservation then implies that

�ð1Þ ¼ ��sCF

�

Z 1

0
PggðzÞzdz ¼ 0: (64)

6Equations (62) and (58) is only one of many possible ways to
impose energy conservation on the low x evolution. It was
compared to another model in [80] where it was shown that
linear evolution of parton distributions at low x exhibits signifi-
cant model dependence. Nevertheless, (62) was used in a number
of models and provided an adequate description of the data; see
[64,65] and references therein. In view of absence of rigorous
theoretical results, phenomenological relevance of (62) is our
guiding principle.
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�ð
; yÞ ¼ 2 ��s�ð�Þy
1þ 2 ��s�ð�Þ � ð1=2þ i�Þ
: (67)

Then, in the DLA

�ð
; yÞ � ��s

�þ ��s

yþ �
� 


¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
��sy


p � 
ð1þ ��sÞ þ 1

2
ð�� �0Þ2 2
3=2

ð ��syÞ1=2
;

(68)

where

�0 ¼
ffiffiffiffiffiffiffiffi
��sy




s
� ��s (69)

is the saddle point. Substituting (68) into (66) and integrat-
ing over the saddle point gives

NGðr;b; yÞ ¼
1þ 2�0 ln

Qs0

�

32�1=2�2
0

ð ��syÞ1=4
ln3=4 1

r2Q2
s

�ðr2Q2
sÞ1þ ��se2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��sy lnð1=r2Q2

s Þ
p

: (70)

The most important correction due to energy conservation
requirement is steeper dependence of the scattering ampli-
tude on r.

2. Saturation momentum

To determine the saturation momentum, we need to find
a set of lines in the y, 
 plane along which the amplitude is
constant. In the DLA approximation this is equivalent
to the requirement that the phase (68) be constant, i.e.

2
ffiffiffiffiffiffiffiffiffiffiffi
��sy


p � 
ð1þ ��sÞ ¼ 0. Denoting solution to this equa-
tion as 
sðyÞ we obtain

Q2
s ¼ Q2

s0e

s ¼ Q2

s0e
ð4 ��sy=ð1þ ��sÞ2Þ: (71)

Energy dependence of the saturation momentum becomes
more gradual compared to the LO.

A more accurate evaluation of the saturation momentum
requires solving the following two equations [59]:

� ¼ 2 ��s�ð�Þy
1þ 2 ��s�ð�Þ þ �
� 
 ¼ 0; (72a)

@�

@�
¼ 2 ��s�

0ð�Þy
1þ 2 ��s�ð�Þ �

ð2 ��sÞ2�ð�Þ�0ð�Þy
ð1þ 2 ��s�ð�ÞÞ2

þ 
 ¼ 0: (72b)

The first one determines the line on y, 
 plane where the
amplitude is stationary, while the second one fixes the
trajectory of the steepest descend [59]. Eliminating y and

 from these equations we end up with an equation for the
saddle-point �sp:

�0ð�spÞ þ 1

1� �sp

�ð�spÞ ¼
2 ��s�ð�spÞ�0ð�spÞ
1þ 2 ��s�ð�spÞ : (73)

Employing (6) we write

�ð�Þ ¼ c ð1Þ � 1
2c ð�Þ � 1

2c ð1� �Þ; (74)

�0ð�Þ ¼ �1
2c

0ð�Þ þ 1
2c

0ð1� �Þ: (75)

Saddle point in the LO is obtained as the solution to (73) in
the ��s ! 0 limit. Hence, dropping the rhs of (73) we obtain
�sp ¼ 0:37. In the NLO approximation �sp depends on ��s

as shown in Fig. 2(a). As ��s increases �sp decreases and

becomes closer to the experimental data. For a given ��s

(72) implies that

Q2
s ¼ Q2

s0 exp

�
1

1� �sp

2 ��s�ð�spÞy
1þ 2 ��s�ð�spÞ

�
	 Q2

s0e
2 ��syhð ��sÞ:

(76)

Particularly, at the LO hð ��sÞ ¼ ð�ð�spÞÞ=ð1� �spÞ ¼ 2:44

independently of ��s. In Fig. 2(b) we show the NLO
behavior of h as given by (76) and its DLA given by
(71). Again we observe that the NLO correction makes
the energy dependence of the saturation scale more grad-
ual. This is understandable because the energy conserva-
tion reduces the phase space available for gluon emission.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

s

sp

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

s

h
s

2
sy

FIG. 2 (color online). (a) Solution for the saddle-point Eq. (73) �spð ��sÞ: solid blue line is NLO (energy conservation), dashed red line
is LO. (b) Function hð ��sÞ defined in (76): solid blue line is NLO, dotted (purple) is its DLA (71) and dashed (red) is LO.
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3. Saturation regime

In the saturation region, (58) reads

@Nðr; b; yÞ
@y

¼ ��s

�
1� @

@y

�Z r2

2=Q2
s

dr02

r02
fNðr0; b; yÞ

� Nðr0; b; yÞNðr; b; yÞg: (77)

We expect that the scattering amplitude will approach its
unitarity limit as y ! 1. Therefore, we are looking for a
solution to (77) in the form

N ¼ 1� S (78)

where S � 1 is an element of the scattering-matrix of
dipole r. Now

� @Sðr; yÞ
@y

¼ ��s

�
1� @

@y

�
flnðr2Q2

sÞSðr; yÞg: (79)

We are interested in the scaling solution viz. we are looking
for a solution in the form Sðr; yÞ ¼ Sð
ðr; yÞÞ where


 ¼ lnðr2Q2
sÞ ¼ lnðr2Q2

s0Þ þ
4 ��sy

ð1þ ��sÞ2
; (80)

and we used (71). Introducing a new parameter that deter-
mines rapidity dependence of the saturation scale (in the
DLA)

� ¼ 4 ��s

ð1þ ��sÞ2
(81)

we write (79) as

@S

@

ð ��s�
� �Þ ¼ ��sð
� �ÞS: (82)

It is easily integrated with the solution

Sð
Þ ¼ S0e
ð
=�Þð1� ��s
Þð1= ��s�Þ�1; (83)

where S0 is an integration constant that is determined by
matching with the solution in the dilute regime. This is
similar to the solution derived in [64]. Note, that (83) is
applicable only at 1< 
 
 1= ��s. Solution (83) is exhibited
in Fig. 3.

B. Dipole density

We proceed with the analysis of the NLO effects related
to the energy conservation in the dipole density. Using the
result of the Sec. VIA we obtain in place of (9):

~fðr; q; yÞ ¼ r

�q

Z ��

���
d� exp

�
2 ��s�ð�Þy

1þ 2 ��s�ð�Þ
��
rq

2

�
2i�

� �ð12 � i�Þ
�ð12 þ i�Þð2i�þ 1Þ2 ; (84)

where �� satisfy 1þ 2 ��s�ð��Þ ¼ 0. Similarly to our dis-
cussion in Sec. III A, we would like to find asymptotic

expressions for ~f in various kinematic regions. Since the
integrand in (84) is a steeply falling function of � we can
replace the limits of integration by �� ¼ �1.7

(1) �sy � ln2ðrq=2Þ.—Expression in the exponent of
(84) can be approximated as

2 ��s�ð�Þy
1þ2 ��s�ð�Þ

�ð�ð0Þ
P �1Þy
�ð0Þ
P

�14�ð3Þ ��sy

½�ð0Þ
P �2 �2: (85)

We see that the pomeron intercept became �ð1Þ
P ¼

2� 1=�ð0Þ
P , while the ‘‘diffusion constant’’ has in-

creased by 1=½�ð0Þ
P �2, i.e. growth of ~f with rapidity

has slowed down, while diffusion has speeded up.
The later observation has profound implications on
diffractive gluon production (see [69–71] for in-
depth discussion). For ��s ¼ 0:4 the intercept is

�ð1Þ
P ¼ 1:5 (compare with �ð0Þ

P ¼ 2:1), which is in
better agreement with the data. Equation (13) is
modified as follows:

~fðr; q; yÞ ¼ r

q

�ð0Þ
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

14��ð3Þ ��sy
p eð�

ð1Þ
P �1Þy

� e�ð½�ð0Þ
P �2ln2ðrq=2Þ=14�ð3Þ ��sðY�yÞÞ: (86)

(2) rq < 2 and lnð2=rqÞ � �sy.—Expanding � �
1=ð1� 2i�Þ we find the saddle point at

2i�1 ¼ 1þ 2 ��s �
ffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

ln 2
rq

vuut : (87)

Integration over the saddle-point and assuming
lnð2=rqÞ � y=�s yields

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1
S

FIG. 3 (color online). Solution to the LO (dashed red line) and
the modified (solid blue) BK equations deeply in the saturation
region 1< 
< 1= ��s. The initial condition is S ¼ 0:9 at 
 ¼ 1.

7Note, that we keep �� finite for the purpose of the numerical
integration in Sec. VIII.
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~fðr;q;yÞ¼ r2

8
ffiffiffiffi
�

p ðrq=2Þ2 ��s

ð2 ��syln
2
rqÞ1=4½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��s

1
y ln

2
rq

q
�

�e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sylnð2=rqÞ

p
: (88)

(3) rq > 2 and �sy � lnðrq=2Þ � y=�s.—Now, an-
other pole in � dominates � � 1=ð1þ 2i�Þ with
the result

~fðr;q;yÞ¼ 1

2q2
ffiffiffiffi
�

p ð2=rqÞ2 ��s

ð2 ��syln
rq
2 Þ1=4½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��s

1
y ln

rq
2

q
�

�e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sylnðrq=2Þ

p
: (89)

Note, that in both cases (88) and (89) the momentum
dependence of the leading twist is modified by an addi-
tional power 2 ��s. This can have important consequences at
high Q2 and/or kT . We are discussing this in more detail in
Sec. VIII.

VII. NUCLEAR MODIFICATION FACTOR

The nuclear modification factor is defined as

R��A ¼
R
d2b

d���A
d2kdyd2b

A
R
d2b

d���p
d2kdyd2b

: (90)

In the logarithmic approximation (56) implies that the
cross section for inclusive gluon production in DIS on a
heavy nucleus is simply proportional to the cross section
for inclusive gluon production by dipole of size r ¼ 2=Q.
Consequently, the nuclear modification factor (90) can be
approximated by

R��A � Rq �qþAjr¼2=Q: (91)

In the same approximation, pA scattering can also be
approximated as the q �qþ A one provided that we are
interested in inclusive processes not too close in rapidity
to the proton or nucleus fragmentation region [71]. Atomic
weight A and rapidity y dependence of inclusive cross
section in pA collisions at the leading logarithmic order
was discussed in great detail in [34] and we refer the
interested reader to that paper. Here we will focus on the
logarithmic derivative of the nuclear modification factor
defined as

J ¼ 1

R��A

@R��A

@y
: (92)

Outside the saturation region this observable is propor-
tional to the difference between the anomalous dimension
of the gluon distribution in the nucleus �A and the one in
the proton �p. If the coherence effects were negligible, the
two anomalous dimensions would have been identical.

This is not the case according to the theory of gluon
saturation. As the result, the NMF is suppressed even at
kT > Qs. Thus J is especially sensitive probe of the mecha-
nism that leads to the suppression of the NMF for hadron
production at small x.
Let us relate J to the difference of anomalous dimen-

sions �A � �p. It follows from (90) that

J ¼ @

@y
lnR��A ¼ @

@y
ln
d���A

d2kdy
� @

@y
ln
d���p

d2kdy
: (93)

Using (91), (30), and (31) and assuming that the
b-dependence factors out we derive

@

@y
lnR��A � @

@y
lngAjb¼0 � @

@y
lngpjb¼0; (94)

where g is the inclusive q �qþ A cross section modulo a
constant factor; see Sec. IV. We assigned superscripts A
and p to g to indicate the two cases: A > 1 and A ¼ 1
respectively. In the following wewill omit the specification
that g is taken at zero impact parameter. Outside the
saturation region we can employ the Mellin representation

for NG (23) and ~f (9), substitute them into (31), take the
leading-logaritmic approximation limit and obtain up to a
preexponential factor

gA / Q0r exp

�
2 ��s�ð�0ÞðY � yÞ þ 2i�0 ln

rp

2

þ 2 ��s�ð�A
0 Þyþ 2i�A

0 ln
Qs0

p

�
(95)

and analogously for gp. Here �0, �
A
0 are the saddle points

in the Mellin transform of ~f and ~NG respectively. The
omitted prefactor in (95) depends on momenta only loga-
rithmically. Momentum p stands for either Q or k depend-
ing on the kinematic region of interest. It is straightforward
to verify that gA and gp obey the equations

@gA

@y
¼ 2 ��s½�ð�A

0 Þ � �ð�0Þ�gA;
@gp

@y
¼ 2 ��s½�ð�p

0 Þ � �ð�0Þ�gp:
(96)

This is just the Mellin transform of the BFKL equation.
Plugging (96) into (94) we derive

J ¼ 2 ��s½�ð�A
0 Þ � �ð�p

0 Þ� � 2 ��s�
0ð�p

0 Þð�A
0 � �p

0 Þ: (97)

�0ð�Þ is given by (75) and the saddle-point�p
0 satisfies (73).

Consider a few examples. Denotep ¼ maxfkT;Qg. In the
region lnðp=Qs0Þ� ��sy we have [see e.g. (15) and (24)]

� � 1

1� 2i�
¼ 1

2�
(98)

with the saddle-point
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�A ¼ 1

2
ð1� 2i�A

0 Þ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

lnp� þ ln �
Qs0

vuut

� 1

2

ffiffiffiffiffiffiffiffiffiffiffi
2 ��sy

lnp�

s �
1þ lnQs0

�

2 lnp�

�
(99)

�p is obtained by setting Qs0 ¼ �. We see that in this
kinematic region �p < �A. By dint of (98) �0ð�Þ< 0 im-
plying that J < 0. More precisely,

J ¼ � ��s

lnQs0

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��sy ln

p
�

q : (100)

In the saturation region lnðp=Qs0Þ � ��sy, �
A effectively

tends to zero as the dipole scattering amplitude saturates at
unity. Therefore, in that region �A < �p, while � �
1=ð2ð1� �ÞÞ. Hence �0ð�Þ> 0 implying that again J < 0.
Finally, in the diffusion region� � 2 ln2� 7�ð3Þ�2 andwe
similarly obtain

J ¼ � lnp� lnQs0

�

7�ð3Þ ��sy
2
: (101)

Negativity of J in all kinematic regions signifies the
decrease of the inclusive cross section as a function of
rapidity. The rate of the decrease depends on the absolute
value of J.

VIII. NUMERICAL ANALYSIS

The numerical calculation of the inclusive hadron
production is performed using Eqs. (1), (2), (11), and
(10). We employed the bGCG model [67] for the
forward dipole-nucleus scattering amplitude. The bCGC

model is reviewed in the Appendix. Function ~f is calcu-
lated using formula (84). The gluon spectrum is then con-
voluted with the LO pion fragmentation function F G as
follows:

d��

d2kdy
¼

Z 1

zmin

dz

z2
d�G

d2kdy
ðk=zÞF Gðz; kÞ: (102)
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FIG. 4 (color online). Comparison between the LO and NLO calculations of k2ð½dF2ðx;Q2; yÞ�=½d2kdy�Þ as a function of kT at two
values of coupling (a) ��s ¼ 0:3 and (b) ��s ¼ 0:15.
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FIG. 5 (color online). Inclusive spectrum k2ð½dF2ðx;Q2; yÞ�=½d2kdy�Þ of (a) pions, (b) gluons as a function of kT .
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The fragmentation function is given in [81]. The total
rapidity interval is taken to be Y ¼ 10, which is equivalent
to x ¼ e�Y ¼ 4:5� 10�5. The range of photon virtualities
that we consider is Q2 ¼ 2–37 GeV2. This kinematic
region can be probed at the proposed Large Hadron elec-
tron Collider and its low Q2 part at the Electron Ion
Collider [82]. The rapidity interval y from the nucleus to

the produced gluon is related to xP, a variable used in
diffractive DIS, as xP ¼ e�y. We consider y in a narrow
interval 5 
 y 
 7 allowed by our formalism. At larger x
and/or xP the validity of the leading logarithmic approxi-
mation that we employ becomes uncertain.
The results of our calculations are shown in Figs. 4–8.

The NLO calculation shown in the figures refers to the part
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FIG. 6 (color online). Inclusive hadron spectrum k2ð½dF2ðx;Q2; yÞ�=½d2kdy�Þ as a function of (a) y, (b) Q2.
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FIG. 7 (color online). Nuclear modification factor as a function of kT for (a)–(c) hadrons at various A, y and Q2; (d) gluons. All
calculations include the NLO effects.
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of the NLO terms that are responsible for energy conser-
vation. In Fig. 4 and 5 we plot the inclusive cross section
normalized in the same way as the structure function

dF2ðx;Q2; yÞ
d2kdy

¼ 1

�em

Q2

4�2

d���Aðx;Q2; yÞ
d2kdy

: (103)

We observe that inclusive gluon production at NLO is
suppressed compared with the LO case. This is because
the anomalous dimension of dipole density at NLO is
smaller compared with that of LO, as can be seen in
Fig. 2. This is expected since energy conservation con-
strains the phase space available for hadron production. In
Fig. 4 we demonstrate that the difference between the LO
and NLO calculation is smaller at smaller values of
coupling.

We see in Fig. 5(b) that at small kT , the gluon production
cross section follows 1=k2T behavior. Indeed, 1=k2T comes
from the Lipatov vertex, whereas the gluon distribution in
the nucleus is saturated and hence depends on momentum
kT only logarithmically. This is seen in (11) where at small
kT the integral tends to a constant leaving the 1=k2T pre-
factor in front. Modification of the gluon spectrum due
to fragmentation can be inferred by comparing Fig. 5(a)
and 5(b).

The cross section grows withQ2 and xP logarithmically;
both dependences are much steeper at the LO than in
the NLO. We also note that energy conservation correction
substantially reduces the cross section. However, the func-
tional form of the kT-spectrum does not change in the
kinematic region that we studied, as we checked explicitly.
We attribute this to that fact that the dominant contribution
to the Mellin transform stems from anomalous dimension
� � 1=2 in both cases. We expect that at much larger Q
and kT the NLO kT-spectrum becomes steeper than those in

LO due to additional factors 1=Q2 ��s or 1=k
2 ��s

T . However,
assumptions of our model restrict our calculation only to
the semihard values of transverse momenta.
The largest uncertainty in our numerical calculation of

hadron spectrum comes from the oversimplified treat-
ment of nuclei geometry. Instead of integrating with a
realistic nuclear thickness TðbÞ we approximated the
nuclear density by the step-function. Based on our pre-
vious experience with this type of numerical calculations
we expect that a more accurate treatment of the nuclear
density will only affect the overall normalization of the
cross section. From this perspective the ratios of the
inclusive spectra should not be much affected by this
uncertainty.
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FIG. 8 (color online). Logarithmic derivative of NMF for dipole-nuleus scattering as a function for kT for (a), (b) gluons, (c),
(d) hadrons. dipole size r, total rapidity Y and nuclear wight A are indicated on each plot. All calculations include the NLO effects.
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Our calculation of the NMF as a function of kT for Au
(A ¼ 197) and Ca (A ¼ 40) is displayed in Fig. 7. The
general feature of NMF is suppression at low kT and
enhancement at larger kT (the later is often referred to as
the Cronin effect). This is in contrast with the hadron
production in pA scattering where the Cronin effect gives
way to the suppression at all kT’s provided that the hadron
rapidity y is large enough. The reason for this difference is
that whereas pA scattering can be approximated by dipole-
nucleus scattering [71], ��A interaction is a superposition
of many dipole-nucleus scatterings with different dipole
sizes r, see (3). At small kT NMF for dipoles of all sizes is
suppressed [34] and therefore we observe suppression of
the resulting R for DIS. On the other hand, the fact that
R> 1 at large kT implies that the inclusive cross section in
that region is dominated by dipoles whose individual scat-
tering on the nucleus exhibits Cronin enhancement, i.e.
they are not much effected by the low-x evolution.
Presence of such dipoles is ensured by evolution of the
dipole density n, which happens if Y � y � 1. Comparing
Figs. 7(a)–7(c) with 7(d) we note that due to fragmentation,
NMF of hadrons is much slower function of Q2, y and kT
than NMF of gluons. Additionally, fragmentation shifts the
value of the transverse momentum at which NMF crosses
unity towards lower kT .

Another feature seen in Fig. 7 (especially 7(d)) is that
suppression of NMF at low kT and its enhancement at high
kT increases with the photon virtuality Q2. To understand
the Q2 dependence of the NMF we note that a typical term
in its twist expansion looks like

R

�
1

Q2

�
nð�A��pÞ

; (104)

where n � 1 is an integer number. It implies that

@R

@ lnQ2 � �nð�A � �pÞR: (105)

At large kT �A > �p thus ð@RÞ=ð@ lnQ2Þ< 0, whereas at
small kT �A < �p thus ð@RÞ=ð@ lnQ2Þ< 0. This is indeed
what we observe in Fig. 7. Dependence of NMF on y can be
explained similarly.

Figure 8 displays the logarithmic derivative of the NMF
J defined in (92). As we argued in Sec. VII this quantity is
proportional to the difference between the anomalous di-
mensions of the gluon distribution function in nucleus and
proton, see (97). Our analysis in (100) and (101) indicates
that J is negative and decreases as the hadron rapidity y
increases, which is indeed seen in Fig. 8. Similar trend has
been noticed in pA collisions in [83]. We can also see
the effect of fragmentation on J by comparing Fig. 8(a) and
8(b) with 8(c) and 8(d). It is interesting that fragmentation
completely erases the kT dependence, while leaving the y
dependence qualitatively similar. We think that experimen-
tal investigation of J is of great interest as it emphasizes the

difference between the (linear) gluon evolution in a heavy
nucleus and in proton.

IX. SUMMARY

In this paper we studied the inclusive hadron production
in DIS scattering at small x using the dipole model [38].
We presented the analytical formulas for the cross section
in various kinematic regions and discussed the role of the
energy conservation, which is perhaps the most important
NLO correction. Employing the modified BK equation
suggested in [64,65], we derived the corresponding correc-
tion to the pomeron intercept and found that it is numeri-
cally closer to the phenomenological value than the LO
result. We also computed the high energy asymptotic of the
forward dipole-nucleus scattering amplitude.
Motivated by possible low x DIS experiments with

heavy nuclei [82] we performed numerical calculations
of the DIS inclusive cross section using the bCGC model
[67]. The results are shown in Figs. 4–8. We noticed that
the NLO effects generally tend to reduce the cross section
and make it weaker function of its arguments as compared
to the LO result. The nuclear modification factor exhibits
suppression at low kT and enhancement at higher kT even
at the largest hadron rapidities that we can address in our
approach. To understand dependence of the NMF on ra-
pidity better we introduced the logarithmic derivative of
NMF J and showed that it is proportional to the difference
between the anomalous dimension of the gluon distribution
function in nucleus and proton. Since this difference is
nonvanishing only due to coherence effects, J provides a
direct measure of the effect of coherence on inclusive cross
section. Figures 7 and 8 show dependence of NMF and J
on the photon virtuality Q2, x and hadron rapidity y. We
believe that our results may be helpful for experimental
investigation of the low-x regime of QCD in DIS.
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APPENDIX: BCGC MODEL

We performed the numerical calculations using the
bCGC model of the forward dipole scattering amplitude
[67]. We treat the nuclei and proton profiles as step-
functions; the saturation scales are assumed to scale with

A as Q2
s / A1=3. The advantage of this model—besides its

compliance with the known analytical approximations to
the BK equation [84]—is that its parameters are fitted to
the low x DIS data. The explicit form of the scattering
amplitude N is given by

Nðr;0;yÞ¼
8><
>:
N 0

�
r2Q2

s

4

�
�
; rQs
2;

1�exp½�aln2ðbrQsÞ�; rQs�2;

(A1)
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whereQ2
s is the quark saturation scale related to the gluon

saturation scale Q2
s—which we have called simply the

‘‘saturation scale’’ throughout the paper—by Q2
s ¼

ð4=9ÞQ2
s . Its functional form is

Q 2
s ¼ A1=3x�0e

�ys�=2 GeV2; (A2)

where s is the square of the center-of-mass energy and y is
rapidity with respect to the central rapidity. The anomalous
dimension is

� ¼ �s þ 1

c�ðln ffiffiffiffiffiffiffiffiffiffiffiffi
sþ y

p Þ ln
�

2

rQs

�
: (A3)

The gluon dipole scattering amplitude can be calculated
using (18). Parameters �s ¼ 0:628 and c ¼ 9:9 follow
from the BFKL dynamics [84], while N 0 ¼ 0:7 and � ¼
0:28 are fitted to the DIS data. Constants a and b are
uniquely fixed from by the requirement of continuity of
the amplitude and its first derivative.

[1] L. V. Gribov, E.M. Levin, and M.G. Ryskin, Phys. Rep.
100, 1 (1983).

[2] E.M. Levin and M.G. Ryskin, Nucl. Phys. B304, 805
(1988); Sov. J. Nucl. Phys. 45, 150 (1987); 41, 300 (1985).

[3] A. H. Mueller and J.-w. Qiu, Nucl. Phys. B268, 427
(1986).

[4] A. H. Mueller, Nucl. Phys. B415, 373 (1994).
[5] A. H. Mueller and B. Patel, Nucl. Phys. B425, 471 (1994).
[6] A. H. Mueller, Nucl. Phys. B437, 107 (1995).
[7] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49,

3352 (1994).
[8] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49,

2233 (1994).
[9] L. D. McLerran and R. Venugopalan, Phys. Rev. D 50,

2225 (1994).
[10] Y. V. Kovchegov, Phys. Rev. D 54, 5463 (1996).
[11] Y. V. Kovchegov, Phys. Rev. D 55, 5445 (1997).
[12] J. Jalilian-Marian, A. Kovner, L. D. McLerran, and H.

Weigert, Phys. Rev. D 55, 5414 (1997).
[13] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H.

Weigert, Nucl. Phys. B504, 415 (1997).
[14] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H.

Weigert, Phys. Rev. D 59, 014014 (1998).
[15] J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev.

D 59, 014015 (1998).
[16] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H.

Weigert, Phys. Rev. D 59, 034007 (1999); 59, 099903
(E) (1999).

[17] A. Kovner, J. G. Milhano, and H. Weigert, Phys. Rev. D
62, 114005 (2000).

[18] H. Weigert, Nucl. Phys. A703, 823 (2002).
[19] E. Iancu, A. Leonidov, and L.D. McLerran, Nucl. Phys.

A692, 583 (2001).
[20] E. Ferreiro, E. Iancu, A. Leonidov, and L. McLerran,

Nucl. Phys. A703, 489 (2002).
[21] Y. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).
[22] Y. V. Kovchegov, Phys. Rev. D 61, 074018 (2000).
[23] I. Balitsky, Nucl. Phys. B463, 99 (1996).
[24] I. Balitsky, AIP Conf. Proc. 407, 953 (1997).
[25] I. Balitsky, Phys. Rev. D 60, 014020 (1999).
[26] E. Iancu and R. Venugopalan, arXiv:hep-ph/0303204.
[27] J. Jalilian-Marian and Y.V. Kovchegov, Prog. Part. Nucl.

Phys. 56, 104 (2006).
[28] Y. V. Kovchegov and A.H. Mueller, Nucl. Phys. B529, 451

(1998).

[29] Y. V. Kovchegov and K. Tuchin, Phys. Rev. D 65, 074026
(2002).

[30] M.A. Braun, Phys. Lett. B 483, 105 (2000).
[31] A. Dumitru and L.D. McLerran, Nucl. Phys. A700, 492

(2002).
[32] J. P. Blaizot, F. Gelis, and R. Venugopalan, Nucl. Phys.

A743, 13 (2004).
[33] D. Kharzeev, E. Levin, and L. McLerran, Phys. Lett. B

561, 93 (2003).
[34] D. Kharzeev, Y. V. Kovchegov, and K. Tuchin, Phys. Rev.

D 68, 094013 (2003).
[35] D. Kharzeev, Y. V. Kovchegov, and K. Tuchin, Phys. Lett.

B 599, 23 (2004).
[36] R. Baier, A. Kovner, and U.A. Wiedemann, Phys. Rev. D

68, 054009 (2003).
[37] E. Iancu, K. Itakura, and D.N. Triantafyllopoulos, Nucl.

Phys. A742, 182 (2004).
[38] A. H. Mueller, Nucl. Phys. B335, 115 (1990).
[39] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp.

Teor. Fiz. 72, 377 (1977) [Sov. Phys. JETP 45, 199
(1977)].

[40] I. I. Balitsky and L. N. Lipatov, Yad. Fiz. 28, 1597 (1978)
[Sov. J. Nucl. Phys. 28, 822 (1978)].

[41] V. S. Fadin and L.N. Lipatov, Phys. Lett. B 429, 127
(1998).

[42] M. Ciafaloni and G. Camici, Phys. Lett. B 430, 349
(1998).

[43] M. Ciafaloni, D. Colferai, G. P. Salam, and A.M. Stasto,
Phys. Rev. D 68, 114003 (2003).

[44] M. Ciafaloni, D. Colferai, G. P. Salam, and A.M. Stasto,
Phys. Rev. D 66, 054014 (2002).

[45] M. Ciafaloni, D. Colferai, G. P. Salam, and A.M. Stasto,
Phys. Lett. B 541, 314 (2002).

[46] J. R. Forshaw, D. A. Ross, and A. Sabio Vera, Phys. Lett. B
498, 149 (2001).

[47] M. Ciafaloni, M. Taiuti, and A.H. Mueller, Nucl. Phys.
B616, 349 (2001).

[48] S. J. Brodsky, V. S. Fadin, V. T. Kim, L. N. Lipatov, and
G. B. Pivovarov, JETP Lett. 70, 155 (1999).

[49] D. A. Ross, Phys. Lett. B 431, 161 (1998).
[50] E. Levin, Nucl. Phys. B545, 481 (1999).
[51] N. Armesto, J. Bartels, and M.A. Braun, Phys. Lett. B

442, 459 (1998).
[52] Y. V. Kovchegov and A.H. Mueller, Phys. Lett. B 439, 428

(1998).

KIRILL TUCHIN AND DAJING WU PHYSICAL REVIEW D 85, 114021 (2012)

114021-16

http://dx.doi.org/10.1016/0370-1573(83)90022-4
http://dx.doi.org/10.1016/0370-1573(83)90022-4
http://dx.doi.org/10.1016/0550-3213(88)90655-4
http://dx.doi.org/10.1016/0550-3213(88)90655-4
http://dx.doi.org/10.1016/0550-3213(86)90164-1
http://dx.doi.org/10.1016/0550-3213(86)90164-1
http://dx.doi.org/10.1016/0550-3213(94)90116-3
http://dx.doi.org/10.1016/0550-3213(94)90284-4
http://dx.doi.org/10.1016/0550-3213(94)00480-3
http://dx.doi.org/10.1103/PhysRevD.49.3352
http://dx.doi.org/10.1103/PhysRevD.49.3352
http://dx.doi.org/10.1103/PhysRevD.49.2233
http://dx.doi.org/10.1103/PhysRevD.49.2233
http://dx.doi.org/10.1103/PhysRevD.50.2225
http://dx.doi.org/10.1103/PhysRevD.50.2225
http://dx.doi.org/10.1103/PhysRevD.54.5463
http://dx.doi.org/10.1103/PhysRevD.55.5445
http://dx.doi.org/10.1103/PhysRevD.55.5414
http://dx.doi.org/10.1016/S0550-3213(97)00440-9
http://dx.doi.org/10.1103/PhysRevD.59.014014
http://dx.doi.org/10.1103/PhysRevD.59.014015
http://dx.doi.org/10.1103/PhysRevD.59.014015
http://dx.doi.org/10.1103/PhysRevD.59.034007
http://dx.doi.org/10.1103/PhysRevD.62.114005
http://dx.doi.org/10.1103/PhysRevD.62.114005
http://dx.doi.org/10.1016/S0375-9474(01)01668-2
http://dx.doi.org/10.1016/S0375-9474(01)00642-X
http://dx.doi.org/10.1016/S0375-9474(01)00642-X
http://dx.doi.org/10.1016/S0375-9474(01)01329-X
http://dx.doi.org/10.1103/PhysRevD.60.034008
http://dx.doi.org/10.1103/PhysRevD.61.074018
http://dx.doi.org/10.1016/0550-3213(95)00638-9
http://dx.doi.org/10.1103/PhysRevD.60.014020
http://arXiv.org/abs/hep-ph/0303204
http://dx.doi.org/10.1016/j.ppnp.2005.07.002
http://dx.doi.org/10.1016/j.ppnp.2005.07.002
http://dx.doi.org/10.1016/S0550-3213(98)00384-8
http://dx.doi.org/10.1016/S0550-3213(98)00384-8
http://dx.doi.org/10.1103/PhysRevD.65.074026
http://dx.doi.org/10.1103/PhysRevD.65.074026
http://dx.doi.org/10.1016/S0370-2693(00)00570-0
http://dx.doi.org/10.1016/S0375-9474(01)01301-X
http://dx.doi.org/10.1016/S0375-9474(01)01301-X
http://dx.doi.org/10.1016/j.nuclphysa.2004.07.005
http://dx.doi.org/10.1016/j.nuclphysa.2004.07.005
http://dx.doi.org/10.1016/S0370-2693(03)00420-9
http://dx.doi.org/10.1016/S0370-2693(03)00420-9
http://dx.doi.org/10.1103/PhysRevD.68.094013
http://dx.doi.org/10.1103/PhysRevD.68.094013
http://dx.doi.org/10.1016/j.physletb.2004.08.034
http://dx.doi.org/10.1016/j.physletb.2004.08.034
http://dx.doi.org/10.1103/PhysRevD.68.054009
http://dx.doi.org/10.1103/PhysRevD.68.054009
http://dx.doi.org/10.1016/j.nuclphysa.2004.06.033
http://dx.doi.org/10.1016/j.nuclphysa.2004.06.033
http://dx.doi.org/10.1016/0550-3213(90)90173-B
http://dx.doi.org/10.1016/S0370-2693(98)00473-0
http://dx.doi.org/10.1016/S0370-2693(98)00473-0
http://dx.doi.org/10.1016/S0370-2693(98)00551-6
http://dx.doi.org/10.1016/S0370-2693(98)00551-6
http://dx.doi.org/10.1103/PhysRevD.68.114003
http://dx.doi.org/10.1103/PhysRevD.66.054014
http://dx.doi.org/10.1016/S0370-2693(02)02271-2
http://dx.doi.org/10.1016/S0370-2693(00)01386-1
http://dx.doi.org/10.1016/S0370-2693(00)01386-1
http://dx.doi.org/10.1016/S0550-3213(01)00456-4
http://dx.doi.org/10.1016/S0550-3213(01)00456-4
http://dx.doi.org/10.1134/1.568145
http://dx.doi.org/10.1016/S0370-2693(98)00570-X
http://dx.doi.org/10.1016/S0550-3213(99)00083-8
http://dx.doi.org/10.1016/S0370-2693(98)01284-2
http://dx.doi.org/10.1016/S0370-2693(98)01284-2
http://dx.doi.org/10.1016/S0370-2693(98)01059-4
http://dx.doi.org/10.1016/S0370-2693(98)01059-4


[53] E. Levin, Nucl. Phys. B453, 303 (1995).
[54] M.A. Braun, Phys. Lett. B 348, 190 (1995).
[55] Y. V. Kovchegov and H. Weigert, Nucl. Phys. A784, 188

(2007).
[56] Y. V. Kovchegov and H. Weigert, Nucl. Phys. A789, 260

(2007).
[57] Y. V. Kovchegov and H. Weigert, Nucl. Phys. A807, 158

(2008).
[58] I. Balitsky, Phys. Rev. D 75, 014001 (2007).
[59] A. H. Mueller and D.N. Triantafyllopoulos, Nucl. Phys.

B640, 331 (2002).
[60] D. N. Triantafyllopoulos, Nucl. Phys. B648, 293 (2003).
[61] J. Kuokkanen, K. Rummukainen, and H. Weigert, Nucl.

Phys. A875, 29 (2012).
[62] H. Weigert, Nucl. Phys. A783, 165 (2007).
[63] G. Chachamis, M. Lublinsky, and A. Sabio Vera, Nucl.

Phys. A748, 649 (2005).
[64] A. Kormilitzin and E. Levin, Nucl. Phys. A849, 98 (2011).
[65] E. Gotsman, E. Levin, U. Maor, and E. Naftali, Nucl.

Phys. A750, 391 (2005).
[66] E. Gotsman, E. Levin, M. Lublinsky, and U. Maor, Eur.

Phys. J. C 27, 411 (2003).
[67] H. Kowalski, L. Motyka, and G. Watt, Phys. Rev. D 74,

074016 (2006).
[68] N. N. Nikolaev and B.G. Zakharov, Z. Phys. C 49, 607

(1991).

[69] Y. Li and K. Tuchin, Phys. Rev. D 77, 114012
(2008).

[70] Y. Li and K. Tuchin, Nucl. Phys. A807, 190 (2008).
[71] Y. Li and K. Tuchin, Phys. Rev. C 78, 024905

(2008).
[72] S. Catani, M. Ciafaloni, and F. Hautmann, Nucl. Phys. B,

Proc. Suppl. 29, 182 (1992).
[73] S. Catani and F. Hautmann, Phys. Lett. B 315, 157

(1993).
[74] S. Catani and F. Hautmann, Nucl. Phys. B427, 475

(1994).
[75] E. Levin and K. Tuchin, Nucl. Phys. B573, 833 (2000).
[76] E. Levin and K. Tuchin, Nucl. Phys. A691, 779 (2001).
[77] E. Levin and K. Tuchin, Nucl. Phys. A693, 787 (2001).
[78] R. K. Ellis, Z. Kunszt, and E.M. Levin, Nucl. Phys. B420,

517 (1994); 433, 498 (1995).
[79] A. L. Ayala, M. B. Gay Ducati, and E.M. Levin, Nucl.

Phys. B511, 355 (1998).
[80] R. K. Ellis, F. Hautmann, and B. R. Webber, Phys. Lett. B

348, 582 (1995).
[81] B. A. Kniehl, G. Kramer, and B. Potter, Nucl. Phys. B597,

337 (2001).
[82] D. Boer et al., arXiv:1108.1713.
[83] K. Tuchin, Nucl. Phys. A798, 61 (2008).
[84] E. Iancu, K. Itakura, and L. McLerran, Nucl. Phys. A708,

327 (2002).

PROPERTIES OF INCLUSIVE HADRON PRODUCTION IN . . . PHYSICAL REVIEW D 85, 114021 (2012)

114021-17

http://dx.doi.org/10.1016/0550-3213(95)00416-P
http://dx.doi.org/10.1016/0370-2693(95)00101-P
http://dx.doi.org/10.1016/j.nuclphysa.2006.10.075
http://dx.doi.org/10.1016/j.nuclphysa.2006.10.075
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.008
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.008
http://dx.doi.org/10.1016/j.nuclphysa.2008.04.008
http://dx.doi.org/10.1016/j.nuclphysa.2008.04.008
http://dx.doi.org/10.1103/PhysRevD.75.014001
http://dx.doi.org/10.1016/S0550-3213(02)00581-3
http://dx.doi.org/10.1016/S0550-3213(02)00581-3
http://dx.doi.org/10.1016/S0550-3213(02)01000-3
http://dx.doi.org/10.1016/j.nuclphysa.2011.10.006
http://dx.doi.org/10.1016/j.nuclphysa.2011.10.006
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.032
http://dx.doi.org/10.1016/j.nuclphysa.2004.11.011
http://dx.doi.org/10.1016/j.nuclphysa.2004.11.011
http://dx.doi.org/10.1016/j.nuclphysa.2010.11.005
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.073
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.073
http://dx.doi.org/10.1140/epjc/s2002-01109-y
http://dx.doi.org/10.1140/epjc/s2002-01109-y
http://dx.doi.org/10.1103/PhysRevD.74.074016
http://dx.doi.org/10.1103/PhysRevD.74.074016
http://dx.doi.org/10.1007/BF01483577
http://dx.doi.org/10.1007/BF01483577
http://dx.doi.org/10.1103/PhysRevD.77.114012
http://dx.doi.org/10.1103/PhysRevD.77.114012
http://dx.doi.org/10.1016/j.nuclphysa.2008.04.011
http://dx.doi.org/10.1103/PhysRevC.78.024905
http://dx.doi.org/10.1103/PhysRevC.78.024905
http://dx.doi.org/10.1016/0920-5632(92)90441-T
http://dx.doi.org/10.1016/0920-5632(92)90441-T
http://dx.doi.org/10.1016/0370-2693(93)90174-G
http://dx.doi.org/10.1016/0370-2693(93)90174-G
http://dx.doi.org/10.1016/0550-3213(94)90636-X
http://dx.doi.org/10.1016/0550-3213(94)90636-X
http://dx.doi.org/10.1016/S0550-3213(99)00825-1
http://dx.doi.org/10.1016/S0375-9474(01)00590-5
http://dx.doi.org/10.1016/S0375-9474(01)00880-6
http://dx.doi.org/10.1016/0550-3213(94)90076-0
http://dx.doi.org/10.1016/0550-3213(94)90076-0
http://dx.doi.org/10.1016/0550-3213(94)00514-F
http://dx.doi.org/10.1016/S0550-3213(97)00737-2
http://dx.doi.org/10.1016/S0550-3213(97)00737-2
http://dx.doi.org/10.1016/0370-2693(95)00148-E
http://dx.doi.org/10.1016/0370-2693(95)00148-E
http://dx.doi.org/10.1016/S0550-3213(00)00744-6
http://dx.doi.org/10.1016/S0550-3213(00)00744-6
http://arXiv.org/abs/1108.1713
http://dx.doi.org/10.1016/j.nuclphysa.2007.10.008
http://dx.doi.org/10.1016/S0375-9474(02)01010-2
http://dx.doi.org/10.1016/S0375-9474(02)01010-2

