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An exploration of the dynamically generated � and � resonances has been made in the vector meson-

baryon (VB) systems coupled to pseudoscalar meson-baryon (PB) channels. The VB interactions are

obtained from the Lagrangians written within the hidden local symmetry which, in addition to Yukawa-

type vector-baryon-baryon (VBB) vertices, naturally gives rise to a contact interaction. Using the VBB

vertices, we calculate the t-, s-, and u-channel diagrams considering the octet baryon exchange in the

latter two cases. For the PB channels we rely on the the Weinberg-Tomozawa interactions and calculate

the PB $ VB transition amplitudes extending the Kroll-Ruderman theorem by replacing the photon by

the vector mesons. In addition to the low-lying �ð1405Þ, �ð1670Þ found in previous works, we find

resonances which coincide well with �ð2000Þ, �ð1750ÞS11, �ð1940ÞD13, �ð2000ÞS11 and predict three

��’s with J� ¼ 3=2� and masses 1754� i2 MeV, 1862� i33 MeV, 2139� i14 MeV together with a

broad 1=2� �� with mass�1430 MeV. We find that most of these next-to-low-lying states couple weakly

with the pseudoscalar mesons, which implies that it is important to study the reactions with VB final states

in order to obtain reliable information on the properties of such resonances.
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I. INTRODUCTION

Understanding meson-baryon interaction is an important
aspect of exploring the strong interaction at low and inter-
mediate energies. A lot of work has been done in this
direction, especially in the case of the low energy interac-
tion of light pseudoscalar mesons and baryons, where
several resonances in the baryon spectrum arise due to
this interaction [1–12]. These states can be understood as
weakly bound meson-baryon systems, whose existence
originates directly from the characteristics of the theory
of quantum chromodynamics (QCD), which leads to the
generation of a quark-antiquark pair when the distance
between the quarks increases. In other words, this leads
to the decay of a heavier hadron to two (or more) lighter
ones. Such a decaying heavier hadron can be understood as
a quasibound system of two (or more) lighter hadrons [for
baryon resonances found in two, three (or more) meson-
baryon systems, see, for example, Refs. [13–15]]. In the
case of the pseudoscalar meson-baryon system, the low
energy interaction has been found to be governed by the
spontaneous breaking of the chiral symmetry of QCD and
is well explained in terms of the low energy theorems.
Studies of relevant systems, accomplished with the effec-
tive field theories based on chiral symmetry and its sponta-
neous breaking, have been very successful in explaining
the properties of some of the baryon resonances.

Recently, some attention is being paid to the vector
meson-baryon (VB) interactions as well [16–23]. The dif-
ficulty in this case comes from the fact that vector mesons
are not light enough for the low energy theorems to be
applicable. Considering this, we have recently studied the
vector meson-baryon interaction within a formalism based
on the hidden local symmetry (HLS), which accommo-
dates vector mesons consistently with the chiral symmetry.
In this work we have calculated the t-, s-, and u-channel
exchange diagrams together with a contact interaction
which arises from the part of the HLS Lagrangian related
to the anomalous magnetic moment of the baryons. It was
shown in Ref. [22] that this latter contact interaction is
demanded by the gauge invariance of the HLS Lagrangian
containing the term related to the anomalous magnetic
moment of the baryons. The contribution from all the
diagrams considered in Ref. [22], except the s-channel
exchange, was shown to be important for the systems
with total strangeness zero. The purpose of the present
work is to study the strangeness �1 VB systems.
Further, in an independent study, we checked the effect

of coupling vector mesons to the resonances generated in
the pseudoscalar meson-baryon (PB) systems in Ref. [24].
Some earlier works have shown that certain baryon reso-
nances couple strongly to both pseudoscalar and vector
mesons [16–18]. In Ref. [24] we made coupled channel
calculations taking both PB and VB channels into account
for total strangeness�1 but since the focus was on the low-
lying resonances, we calculated the PB and VB diagonal
amplitudes by considering only the t-channel diagrams
which simplified the formalism. The transition amplitudes
between the two channels were obtained by extending the
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Kroll-Ruderman theorem by replacing the photon by a
vector meson under the vector meson dominance notion.
Our calculations done in this formalism lead to very inter-
esting results. We found that the low-lying � and �
resonances couple strongly to the closed, heavy mass,
VB channels. These results do not imply that the wave
functions of the low-lying strangeness�1 resonances con-
sist of important VB components because the heavy mass
of the VB channels suppresses it. However, the findings
of Ref. [24] are very important for building models to
study reactions producing such resonances. Although the
motivation for the study reported in Ref. [24] was to study
low-lying resonances, we tested if the heavier resonances
became wider by coupling them to PB channels but an
interpretation of the higher energy resonances could not be
made conclusively since the t-channel diagrams were
considered as the only source of VB interactions. Thus, it
remains to study the effect of coupling pseudoscalar
mesons to VB resonances, which is appropriate to do in
the present work and use the wisdom gained from
Refs. [22,24] together.

The paper is organized as follows: In the next section we
obtain the interaction between the vector mesons and
baryons with total strangeness �1 and discuss the transi-
tion amplitudes between VB and PB systems. We show the
amplitudes obtained on the real axis and discuss the related
poles found in the complex plane. Finally, we give a
summary of the resonances found in the present work
and their relation to the known resonances.

II. VECTOR MESON-BARYON INTERACTION

The foundation of our formalism lies on the gauge
invariant VB Lagrangian written as

L VB ¼ �c i 6Dc ; (1)

which has been obtained through the minimal substitution

@� ! D� ¼ @� þ ig��ðxÞ; (2)

and by requiring that the nucleon fields (c ) transform
under the hidden local symmetry (HLS) as c ! hðxÞc ,
where hðxÞ is an element of the HLS. We set the sign
convention such that, analogously to the quantum electro-
dynamics, a positive sign for the amplitude V ¼ �L ¼
g �c����c (for g > 0) arises for a positively charged field.

Further, keeping in mind the importance of the reproduc-
tion of the anomalous magnetic moment of the baryons, we
extend the interaction term of Eq. (1) [in SU(2)] to

L �N ¼ �g �c

�
���

� þ ��

4M
����

��

�
c ; (3)

with

��� ¼ @��� � @��� þ ig½��; ���: (4)

It was discussed in detail in Ref. [22] that the hidden gauge
invariance of the Lagrangian given by Eq. (3) requires the
invariance of the new term: �c hyðxÞ����

��hðxÞc , which

can be accomplished only when the commutator part of the
tensor field ��� is taken into account. Consequently, one is
left with a contact term (CT) for the VB interaction which
should be essentially considered. Further, this interaction
was found to be large in Ref. [22]. Additionally, the
analytical calculations of the amplitudes corresponding to
the exchanges of the octet baryons in the s and u channels,
at the leading order, were also found to be comparable in
order of magnitude to those obtained from the t-channel
and the contact interactions. All these findings motivated
the SU(3) generalization of the Lagrangian of Eq. (3) to

LVBB ¼ �g

�
h �B��½V�

8 ; B�i

þ 1

4M
ðFh �B���½@�V�

8 � @�V�
8 ; B�i

þDh �B���f@�V�
8 � @�V�

8 ; BgiÞ
þ h �B��BihV�

0 i þ
C0

4M
h �B���V

��
0 Bi

�
(5)

for the Yukawa type vertices and

L VVBB ¼ � g

4M
fFh �B���½ig½V�

8 ; V
�
8 �; B�i

þDh �B���fig½V�
8 ; V

�
8 �; Bgig (6)

for the contact interactions, where the subscripts 8 and 0
denote the octet and singlet vector fields, respectively,
which have been obtained by taking the !-� mixing into
account. The constants D and F in Eq. (5) are fixed to the
values 2.4 and 0.82, respectively, as in Ref. [25], where a
good reproduction of the magnetic moments of the baryons
was obtained. Further, the constant for the singlet vector
meson-baryon interaction C0 is taken as 3F�D. In this
way, we have the anomalous magnetic couplings of the
vector meson-baryon-baryon vertices consistent with their
known values: �� ’ 3:2, �! ’ �� ’ 0.

The Lagrangian given by Eq. (6) leads to the amplitude
of the vector meson-baryon interaction

VCT
ij ¼ iCCT

ij

g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MiMj

p ~� � ~	2 � ~	1; (7)

whereMiðMjÞ refers to the mass of the baryon in the initial

(final) state and ~	1ð ~	2Þ, here and throughout this article,
denotes the polarization vector of the vector meson in the

initial (final) state. Clearly, this interaction possesses a ~s � ~S

structure, where ~s and ~S represent the spin 1=2 and spin 1
operators, respectively. The constantsCCT

ij in Eq. (7) for the

VB systems with strangeness �1 and isospin 0 and 1
configurations are given in Tables I and II, respectively.
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The amplitudes for the s-, u-, and t-channel exchanges
can be obtained using Eq. (5) and the three-vector
Lagrangian contained in the kinetic term of the vector field:

L 3V 2 �1
2hV��V��i: (8)

For the sake of completeness, we would like to mention at
this point that we use the standard approach of obtaining
the s-, u-, and t-channel amplitudes within the nonrelativ-
istic limit, which is suitable for studies of hadronic systems
at near-threshold energies. Such diagrams, thus, effectively
give rise to point interactions, which have the following
general form:

Vt
ij ¼ �Ct

ij

1

4f2�
ðK0

1 þ K0
2Þ ~	1: ~	2; (9)

Vu
ij ¼ Cu

ij

�
� g2

m� 2M

�
~	1 � ~� ~	2 � ~�; (10)

Vs
ij ¼ Cs

ij

�
g2

mþ 2M

�
~	2 � ~� ~	1 � ~�: (11)

The coefficients Ct
ij, C

u
ij, C

s
ij have been listed in Ref. [22]

for the meson-baryon systems with total strangeness 0. We
give the Cij coefficients of Eqs. (9)–(11) for the strange-

ness �1 systems with isospin 0 as well as 1 in Tables III
and IV for the u channel and Tables V and VI for the s
channel, respectively. The Ct

ij’s (for the t channel) can be

found in Refs. [4,24].
It is important to recall that the contribution of the s- and

u-channel diagrams in the present study of s-wave (near-
threshold) meson-baryon interaction comes only from the
terms involving the negative energy solution of the Dirac
equation for the baryon propagator. Since such diagrams
require large momentum transfers at the nonrelativistic

TABLE I. Coefficients for the contact term potential for VB
systems in the S ¼ �1 and I ¼ 0 configuration.

�K�N !� �� �� K��
�K�N Dþ3F

2
Dþ3F
2
ffiffi
6

p
ffiffi
3
2

q
ðD�F

2 Þ � Dþ3F
2
ffiffi
3

p 0

!� 0 0 0 D�3F
2
ffiffi
6

p

�� 2F 0
ffiffi
3
2

q
ðDþF

2 Þ
�� 0 � D�3F

2
ffiffi
3

p

K�� � D�3F
2

TABLE III. Coefficients for the u-channel potential for S ¼ �1 and I ¼ 0.

�K�N !� �� �� K��
�K�N 0 �36M2�36FmMþðD2�9F2Þm2

8
ffiffi
6

p
M2

ffiffi
3
2

p
ð4M2þ4FmMþðF2�D2Þm2Þ

8M2 0 36M2þ36FmMþð9F2�5D2Þm2

24M2

!� ð6Mþð3F�2DÞmÞ2
36M2 � Dmð2MþFmÞ

4M2
ð6Mþð3F�2DÞmÞð6MþðDþ3FÞmÞ

36
ffiffi
2

p
M2 � ð6M�ðD�3FÞmÞð2MþðF�DÞmÞ

8
ffiffi
6

p
M2

�� �24M2�24FmMþðD2�6F2Þm2

12M2
DmððD�FÞm�2MÞ

4
ffiffi
2

p
M2 �

ffiffi
3
2

p
ð4M2þ4FmMþðF2�D2Þm2Þ

8M2

�� ð6MþðDþ3FÞmÞ2
72M2 � ð6M�ðD�3FÞmÞð2MþFmÞ

4
ffiffi
3

p
M2

K�� 0

TABLE II. Coefficients for the contact term potential for VB
systems in the S ¼ �1 and I ¼ 1 configuration.

�K�N �� �� !� K�� ��

�K�N � D�F
2 � Dþ3F

2
ffiffi
6

p � F�D
2

D�F
2
ffiffi
2

p 0 � D�F
2

�� 0 �
ffiffi
2
3

q
D 0 D�3F

2
ffiffi
6

p 0

�� F 0 DþF
2 0

!� 0 � DþF
2
ffiffi
2

p 0

K�� 0 DþF
2

DþF
2

�� 0

TABLE IV. Coefficients for the u-channel potential for S ¼ �1 and I ¼ 1.

�K�N �� �� !� K�� ��

�K�N 0 ð2MþðDþFÞmÞð6MþðDþ3FÞmÞ
8
ffiffi
6

p
M2

�4M2�4FmMþðD2�F2Þm2

8M2
ð6M�ðD�3FÞmÞð2MþðF�DÞmÞ

8
ffiffi
2

p
M2 � 12M2þ12FmMþðD2þ3F2Þm2

24M2 0

�� D2m2

12M2
Dmð2MþFmÞ

2
ffiffi
6

p
M2 � Dmðð2D�3FÞm�6MÞ

12
ffiffi
3

p
M2

ð6M�ðD�3FÞmÞð2MþðF�DÞmÞ
8
ffiffi
6

p
M2

Dmð6MþðDþ3FÞmÞ
12

ffiffi
6

p
M2

�� 12M2þ12FmM�ðD2�3F2Þm2

12M2 � ð2MþFmÞ2
2
ffiffi
2

p
M2

4M2þ4FmMþðF2�D2Þm2

8M2 � ð2MþFmÞð2MþðF�DÞmÞ
4M2

!� ð2MþFmÞ2
4M2 � ð2MþðF�DÞmÞð2MþðDþFÞmÞ

8
ffiffi
2

p
M2

ð2MþFmÞð2MþðF�DÞmÞ
4
ffiffi
2

p
M2

K�� 0 � ð2MþFmÞð2MþðDþFÞmÞ
4M2

�� ð2MþðF�DÞmÞ2
8M2
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energies, we include a form factor in the calculations of
these diagrams which is written following Refs. [26–29] as

Fð�; xÞ ¼ �4

�4 þ ðx2 �M2
xÞ2

; (12)

where x is the Mandelstam variable under consideration
(s or u), Mx is the mass of the baryon exchanged in such
diagrams, and � is a parameter which we fix as 650 MeV
since it corresponds to a reasonable average size of the
hadrons (�0:6 fm).

III. COUPLING VB AND PB SYSTEMS

The motivation of our present work is twofold: one
comes from the findings of Ref. [22], where a detailed
study of the vector meson-baryon interaction was done for
the total strangeness zero systems. It is natural to explore
the strangeness�1 systems next. Further, a formalism was
developed in Ref. [24] to couple the pseudoscalar and
vector mesons to baryon resonances, and a study of low-
lying strangeness �1 baryon resonances was made. The
choice of the low energy range and strangeness�1 systems
was made in the latter work recalling that it is in this sector
where those states exist which can be considered as the best
candidates for acquiring the nature of dynamically gener-
ated resonances. The work presented in Ref. [24] relied on
the diagonal interactions obtained from the t-channel ex-
change, which is suitable for studying low-lying reso-
nances and which simplified the calculations. Within the
latter simple formalism, we tested the energy region of VB

resonances too to test if their widths increased by coupling
them to the PB channels and we found that the effect of the
PB-VB coupling was not limited to widening of poles. It
led to moving of the poles in the complex plane, which
turned them to either virtual states or shadow poles. It is,
thus, important to study strangeness �1 VB systems
coupled with those of PB with the VB interactions obtained
in the previous section.
For this, guided by the Weinberg-Tomozawa theorem,

we continue to use the PB ! PB amplitudes calculated
with the t-channel diagrams. Further, the PB $ VB am-
plitudes are also used from Ref. [24], which were obtained
consistently by starting with the nonlinear sigma model
and by using the Kroll-Ruderman (KR) theorem to write
the Lagrangian for the �N ! �N process and by replacing
the � by a vector meson via the notion of the vector meson
dominance. This procedure, which required the introduc-
tion of a vector meson field as a gauge boson of the hidden
local symmetry, led to the following Lagrangian for the
flavor SU(3) case:

L PBVB ¼ �igKR
2f�

ð ~Fh �B���5½½P;V��; B�i

þ ~Dh �B���5f½P; V��; BgiÞ; (13)

where the trace h. . .i has to be calculated in the flavor space
and ~F ¼ 0:46, ~D ¼ 0:8 such that ~Fþ ~D ’ gA ¼ 1:26. The
ratio ~D=ð ~Fþ ~DÞ � 0:63 here is close to the quark model
value of 0.6, and the empirical values of ~F and ~D can be
found, for example, in Ref. [30]. The coupling between the

TABLE VI. Coefficients for the s-channel potential for S ¼ �1 and I ¼ 1.

�K�N �� �� !� K�� ��

�K�N 1
2 ½ðD�FÞm

2M þ 1�2 � Dmð2MþðD�FÞmÞ
4
ffiffi
6

p
M2 � ð2MþðD�FÞmÞð2M�FmÞ

4M2
ð2MþðD�FÞmÞð2M�FmÞ

4
ffiffi
2

p
M2

�4M2þ4FmMþðD2�F2Þm2

8M2
ð2MþðD�FÞmÞ2

8M2

�� D2m2

12M2
Dmð2M�FmÞ

2
ffiffi
6

p
M2

DmðFm�2MÞ
4
ffiffi
3

p
M2 � DmððDþFÞm�2MÞ

4
ffiffi
6

p
M2 � Dmð2MþðD�FÞmÞ

4
ffiffi
6

p
M2

�� ðFm�2MÞ2
2M2 � ðFm�2MÞ2

2
ffiffi
2

p
M2

ð2M�FmÞð2M�ðDþFÞmÞ
4M2 � ð2MþðD�FÞmÞð2M�FmÞ

4M2

!� ðFm�2MÞ2
4M2 � ð2M�FmÞð2M�ðDþFÞmÞ

4
ffiffi
2

p
M2

ð2MþðD�FÞmÞð2M�FmÞ
4
ffiffi
2

p
M2

K�� 1
2 ð1� ðDþFÞm

2M Þ2 �4M2þ4FmMþðD2�F2Þm2

8M2

�� ð2MþðD�FÞmÞ2
8M2

TABLE V. Coefficients for the s-channel potential for S ¼ �1 and I ¼ 0.

�K�N !� �� �� K��
�K�N ððDþ3FÞm�6MÞ2

24M2
ð6Mþð2D�3FÞmÞððDþ3FÞm�6MÞ

12
ffiffi
6

p
M2

DmððDþ3FÞm�6MÞ
4
ffiffi
6

p
M2 � ððDþ3FÞm�6MÞ2

24
ffiffi
3

p
M2 ��36M2þ36FmMþðD2�9F2Þm2

24M2

!� ð6Mþð2D�3FÞmÞ2
36M2

Dmð6Mþð2D�3FÞmÞ
12M2

ð6Mþð2D�3FÞmÞð6M�ðDþ3FÞmÞ
36

ffiffi
2

p
M2 � ð6MþðD�3FÞmÞð6Mþð2D�3FÞmÞ

12
ffiffi
6

p
M2

�� D2m2

4M2 � DmððDþ3FÞm�6MÞ
12

ffiffi
2

p
M2 � Dmð6MþðD�3FÞmÞ

4
ffiffi
6

p
M2

�� ððDþ3FÞm�6MÞ2
72M2

�36M2þ36FmMþðD2�9F2Þm2

24
ffiffi
3

p
M2

K�� ð6MþðD�3FÞmÞ2
24M2
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PB and VB channels, gKR ¼ 6, in Eq. (13), has been
obtained using the Kawarabayashi-Suzuki-Riazuddin-

Fayazuddin relation [31]: gKR ¼ m�=ð
ffiffiffi
2

p
f�Þ � 6. Using

Eq. (13), the amplitudes for the processes involving all the
strangeness �1 PB-VB systems have been obtained and
are given in Ref. [24], which we use in the present work
also.

IV. RESULTS AND DISCUSSIONS

In the previous sections we have given the information
required to calculate the lowest order amplitudes for differ-
ent channels coupled to strangeness �1 involving pseudo-
scalar and vector mesons. These amplitudes have been
used as the kernels to solve the Bethe-Salpeter equations

T ¼ V þ VGT; (14)

where the loops are calculated using a Gaussian cutoff

G ¼
Z d3q

ð2�Þ3
1

2E1ð ~q; mÞ
2M

2E2ð ~q;MÞ

� e�ðq2�q2onÞ=�2

E� E1ð ~q;mÞ � E2ð ~q;MÞ ; (15)

with the same cutoff values as those used in Ref. [24]: for
the PB channels �PB ¼ 750 MeV and for VB channels
�VB ¼ 545 MeV. Finally, we would like to add that the
loops of the channels involving mesons with large widths
ð�;K�Þ have been calculated by making a convolution over
the varied mass of these mesons [20,22,24].

FIG. 1. Squared amplitudes for VB channels with total strangeness�1 and isospin 0. The left (right) panels show the results for VB
systems in the spin 1=2 (3=2) configuration.
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A. �� and �� in VB systems

The total isospin of a VB system can be 0 or 1, and since

we are looking for dynamically generated resonances, it is

most relevant to study the low energy meson-baryon scat-

tering considering the relative s-wave interaction. This

implies that the total spin-parity of the VB systems in

our work can be either 1=2� or 3=2�. We show the VB

squared amplitudes for isospin 0 in Fig. 1 for spin 1=2 (left
panels) as well as 3=2 (right panels). This figure depicts the
amplitudes obtained by taking the t-channel exchange as

the VB interaction (dotted lines), by adding the contact

term given by Eq. (7) (dashed lines) and the contributions

from the s and u channels (solid line). The t-channel
amplitudes are identical for both spins (although the scales

of the figures on the right and left panels are different,

which is due to the difference in the results obtained

by adding other diagrams), and show peaks corresponding

to three poles (already discussed in Refs. [20,24]):

1795� i0 MeV, 1923� i4 MeV, and 2138� i21 MeV.
However, by adding the contact interaction we find that

none of the spin 1=2 poles survive as physical poles (mean-

ing that the poles cannot be related to any physical state

since they move in the complex plane to either become a

virtual or a shadow pole), contrary to the spin 3=2 case

where three poles are found (see Tables VII and VIII). It is

important to mention here that the poles listed in
Tables VII and VIII are rather narrow because they have
been obtained by calculating the loops without convoluting
them over the large widths of the vector mesons, although
we do follow this convolution procedure to calculate the
amplitudes on the real axis.
Next, let us discuss the results obtained for total isospin

1 VB systems. We show the squared amplitude for this case
in Fig. 2, where the different lines shown have the same
meaning as those in Fig. 1. The amplitudes obtained with
the t-channel interaction in the isospin 1 case show peaks
around 1830 MeV and 1970 MeV; however, none of them
correspond to a pole in the complex plane and are cusp
structures present near the thresholds of the �K�N and ��
channels, respectively. It should be added here that these
cusp structures look like Breit-Wigner peaks due to the
loops calculated with the convolution procedure. By add-
ing the contact interaction and s- and u-channel diagrams,
we find that the peak near 1830 MeV shifts to a lower
energy by about 20 MeV in the spin 1=2 case and the peak
near the �� threshold also shifts to a lower energy by
20 MeV in the spin 3=2 case and a corresponding reso-
nance/bound state pole is found in both cases. The former
peak corresponds to a spin 1=2 bound state pole in the
complex plane at 1822� i0 MeV and the latter one to a
spin 3=2 resonance pole at 1947� i5 MeV (see Table IX).

TABLE VII. Poles found in the VB channels and their respective couplings for the isospin 0, spin 1=2 case, when the interaction
kernel is taken as the t-channel diagram and when the contributions from the contact term, s and u channels are also added (i.e.,
V ¼ Vsum ¼ Vt þ VCT þ Vs þ Vu).

Pole I Pole II Pole III

V ¼ Vt V ¼ Vsum V ¼ Vt V ¼ Vsum V ¼ Vt V ¼ Vsum

MR � i�=2 (MeV) ! 1795� i0 1827� i0a 1923� i4 2044� i61a 2138� i21 2129� i81a

Channels # Couplings (gi) of the poles to the different channels

�K�N (1831) 3:8� i0:0 � � � 0:1� i0:5 � � � 0:0� i0:4 � � �
!� (1898) 1:2� i0:0 � � � 0:3� i0:2 � � � �0:5þ i0:3 � � �
�� (1963) �1:9� i0:0 � � � 3:7þ i0:2 � � � 0:1þ i0:1 � � �
�� (2136) �1:8� i0:0 � � � �0:5þ i0:3 � � � 0:7� i0:4 � � �
K�� (2210) �0:6� i0:0 � � � 1:0þ i0:0 � � � 4:2þ i0:2 � � �

aThese poles are unphysical in nature (which means they are either a virtual or a shadow pole).

TABLE VIII. Same as Table VII but for the spin 3=2 configuration.

Pole I Pole II Pole III

V ¼ Vt V ¼ Vsum V ¼ Vt V ¼ Vsum V ¼ Vt V ¼ Vsum

MR � i�=2 (MeV) ! 1795� i0 1760� i0 1923� i4 1893� i1 2138� i21 2149� i17

Channels # Couplings (gi) of the poles to the different channels

�K�N (1831) 3:8� i0:0 5:1� i0:0 0:1� i0:5 0:1� i0:2 0:0� i0:4 �0:1� i0:5
!� (1898) 1:2� i0:0 1:9� i0:0 0:3� i0:2 0:4� i0:1 �0:5þ i0:3 �0:3þ i0:3
�� (1963) �1:9� i0:0 �1:3þ i0:0 3:7þ i0:2 4:7þ i0:1 0:1þ i0:1 0:1þ i0:3
�� (2136) �1:8� i0:0 �2:5þ i0:0 �0:5þ i0:3 �0:2þ i0:1 0:7� i0:4 0:8� i0:4
K�� (2210) �0:6� i0:0 �0:9þ i0:0 1:0þ i0:0 1:9þ i0:1 4:2þ i0:2 4:5þ i0:3
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Notice that a peak structure can be seen near 2.2 GeV in
some spin 1=2 and 3=2 amplitudes (solid lines), which is
just the K�� cusp and does not signify the presence of any
physical states. Additionally, the �K�N cusp continues to
show up in the final spin 3=2 amplitudes (solid lines).

Wewould like to postpone relating the 1=2� poles found
in our work to the known resonance states to the subse-
quent sections, where the coupling of VB and PB channels
will be discussed. However, the 3=2� poles in our formal-
ism do not couple to the PB channels in the swave; thus we
can try to associate them to the known ��=�� states.

In the case of ��, there is only one known resonance
with J� ¼ 3=2� in the 1700–2400 MeV energy region
[32]: �ð2325ÞD13. None of the three 3=2� states found

in the present work seem to be compatible with this reso-
nance. Thus our 3=2� states, with the properties listed in
Table VIII, are the predictions which should be tested in
the experiments in the future. The evolution of these reso-
nances in the VB systems, although nontrivial, is plausible
since weakly bound moleculelike states can exist near the
threshold of the attractively interacting hadrons.
In the isospin one case also, there is only one � reso-

nance [32] known to have quantum numbers J� ¼ 3=2� in
the 1700–2400 MeV range: �ð1940ÞD13. The state with
isospin 1 and the spin-parity 3=2� listed in Table IX is in
good coincidence with the �ð1940ÞD13, which has a sig-
nificantly large branching ratio to the �K�N channel. It is
also important to add that the full width at the half

FIG. 2. Same as Fig. 1 but for the isospin 1 case.
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FIG. 3. Amplitudes of VB channels, in isospin 0, spin 1=2 configuration, when coupled to PB systems. The results are shown for
different values of gKR, which refers to the coupling between the PB and VB channels. From the Kawarabayashi-Suzuki-Riazuddin-
Fayazuddin relation (see Sec. III) gKR ¼ 6.

TABLE IX. Poles and their couplings to the VB channels in isospin 1 configuration. Like in Tables VII and VIII, here also, the
results under the heading Vt are those which have been obtained by taking the t-channel diagrams as the interaction kernels and those
labeled with V ¼ Vsum (with Vsum ¼ Vt þ VCT þ Vs þ Vu) are the results of adding the contributions from the contact term, s and u
channels.

Spin s ¼ 1=2 s ¼ 3=2
V ¼ Vt V ¼ Vsum V ¼ Vt V ¼ Vsum

MR � i�=2 (MeV) ! � � � 1822� i0 � � � 1947� i5

Channels # Couplings (gi) of the poles to the different channels

�K�N (1831) � � � 2:3� i0:0 � � � �0:3þ i0:2
�� (1886) � � � �0:6þ i0:0 � � � �0:5þ i0:2
�� (1963) � � � �1:9þ i0:0 � � � 2:7þ i0:2
!� (1975) � � � �1:0þ i0:0 � � � 0:3þ i0:1
K�� (2210) � � � 0:1� i0:0 � � � 1:9þ i0:2
�� (2213) � � � 1:6� i0:0 � � � 0:2� i0:0
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maximum of this state, from the calculations on the real
axis, is�33 MeV, which is still less than the known width
of this state. It is possible that the 3=2� states found in our
work also couple to one/two pseudoscalar-octet/decuplet
baryon channels, which are open at these energies and
considering such additional channels can increase the
phase space for decay of this resonance. A coupling of
3=2� states to the pseudoscalar-octet baryon channels can
be made following the formalism of Ref. [23]. Such im-
provements should be made in future.

B. �� and �� in coupled PB-VB systems

We have discussed the interaction of vector mesons and
baryons and the resonances found in these systems so far.
However, the pseudoscalar meson-baryon systems can also
give rise to states with the same quantum numbers as the
VB systems, and some PB and VB channels have similar
masses; thus treating them as coupled channels can play an
important role in understanding the properties of some of
the resonances (as shown in Ref. [24] for the low-lying
resonances). Let us see now how the resonances found in
the VB systems, discussed in the previous subsection,
change when they are coupled to pseudoscalar mesons.
As explained in Sec. III, the PB-VB channels couple
through a contact interaction obtained from an extension
of the Kroll-Ruderman theorem by replacing the photons
by the vector mesons. This s-wave interaction couples the
VB and PB channels with total spin 1=2 only; thus only the
results with J� ¼ 1=2� discussed in the previous subsec-
tion get affected by the PB-VB coupling and the results for
J� ¼ 3=2� remain unchanged. Indeed the calculations
done within a different formalism in Ref. [23] shows that
the PB-VB coupling does very little to the 3=2� VB
channels and is more important in the J� ¼ 1=2� case.

The amplitudes for the VB systems with isospin 0,
coupled to PB channels, are shown in Fig. 3, where the
results corresponding to uncoupled PB-VB systems are
shown by a dotted line and marked by gKR ¼ 0. These
results, for gKR ¼ 0, are identical to those shown with solid
lines in Fig. 1, and as discussed in the previous subsection,
the peaks appearing in these results do not correspond to
a pole in the complex plane which can be related to
a physical state. We find, however, that the �K�N
virtual pole given in Table VII turns into a resonant pole
for gKR ¼ 3 coupling between the PB and VB channels
(see Table X). It moves closer to the real axis on increasing
the coupling to 6 and ends up at 1929� i48 MeV. This
pole seems to couple strongly to the �� channel and might
be related to the poorly understood�ð2000Þ with unknown
spin-parity. The mass and width of the pole found in our
work, 1929� i48 MeV, are in good agreement with those
known for the �ð2000Þ. Further, this resonance has been
found in the reactions with the �K�N final state, which is an
open channel with the largest coupling strength (as shown
in Table X).
Before going ahead we would like to briefly discuss the

existence of an ambiguity of the sign in the relative phase
of the couplings of the PB and VB systems to a resonance.
The source of the ambiguity lies in the fact that the
PB $ VB transition amplitudes coming from the
Lagrangian given by Eq. (13) are such that TPB!VB ¼
�TVB!PB (which in turn is the result of the purely imagi-
nary nature of the kernel VPB!VB). Thus, to calculate the
couplings we need to fix our convention. We do so by
writing the amplitudes in terms of the effective couplings
of a resonance to its constituent PB and VB hadron pairs as

TPB!P0B0 � gPB
1ffiffiffi

s
p �MR þ i�=2

gP0B0 ; (16)

TABLE X. gi couplings of the spin 1=2, isospin 0 poles to the VB and PB channels for the different strengths of the coupling of the
Kroll-Ruderman term, gKR (PB-VB coupling). Note that no poles are found in isospin 0, spin 1=2 VB systems uncoupled to PB
channels (as shown in Table VII). However, one of the unphysical poles listed in Table VII, 1827� i0 MeV, which is a �K�N virtual
pole, turns into a resonance pole when PB channels are coupled to it. This pole continues to be virtual for gKR ¼ 1:5.

Kroll-Ruderman coupling: gKR 1.5 3 6

MR � i�=2 (MeV) ! 1827� i64a 1859� i62 1929� i48

Channels # Couplings (gi) of the poles to the different channels

�KN (1435) � � � �0:2þ i0:6 �0:2þ i0:4
�� (1330) � � � �0:1þ i0:2 �0:2� i0:1

� (1663) � � � �0:1þ i0:4 0:0þ i0:4
K� (1814) � � � 0:2� i0:3 0:3� i0:5
�K�N (1831) � � � �2:0þ i1:1 �1:1þ i0:9
!� (1898) � � � �0:1þ i0:1 0:3þ i0:2
�� (1963) � � � 6:0� i0:3 3:4þ i1:1
�� (2136) � � � 0:1� i0:1 �0:5� i0:3
K�� (2210) � � � �0:6þ i0:3 �1:7þ i0:3

aThis pole corresponds to a virtual bound state.
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TVB!V0B0 � ðigVBÞ 1ffiffiffi
s

p �MR þ i�=2
ð�igV0B0 Þ; (17)

and we write the nondiagonal amplitudes consistently as

TPB!VB � gPB
1ffiffiffi

s
p �MR þ i�=2

ð�igVBÞ; (18)

TVB!PB � ðigVBÞ 1ffiffiffi
s

p �MR þ i�=2
igPB ¼ �TPB!VB:

(19)

Formally, Eq. (19) is obtained by taking the complex
conjugate of Eq. (18) with the phase of the couplings gPB
and gVB kept unchanged. However, equivalent amplitudes
can also be obtained from effective Lagrangians written in
terms of an ‘‘effective field’’ of the resonance and
Eqs. (16)–(19) have been written with this prescription,
which has been used to calculate the couplings of the
resonance to different meson-baryon channels.

Next, we discuss the results for isospin 1, spin 1=2
PB-VB coupled channels. The squared amplitudes ob-
tained in this case are shown in Fig. 4. As shown in
Table IX, a pole with mass 1822� i0 MeV was found in
the VB systems in isospin 1, spin 1=2 configuration. The
dotted lines in Fig. 4 show the corresponding peak in the
squared amplitudes calculated on the real axis. We find that
coupling this pole to the pseudoscalar mesons does not
alter its properties much and results in only a little increase
in its width. This can be understood by looking at the weak
coupling of this pole to the different PB channels given in
Table XI. Thus, even though the phase space for this state
increases by coupling lighter decay channels to it, its weak
coupling to the lighter decay channels does not lead to a
larger width. Interestingly, we find that two more isospin 1,
spin 1=2 poles emerge when PB and VB channels are
coupled: 1873� i88 MeV and 1936� i132 MeV. These
poles are found for gKR ¼ 6 and possess large couplings
with the �� and K�� channels.
Let us now check if the isospin 1 states found in our

work can be related to any of the known resonances of

FIG. 4. Same as Fig. 3 but for the total isospin 1.
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TABLE XI. gi couplings of the spin 1=2, isospin 1 poles to the VB and PB channels for different strengths of the coupling of the
Kroll-Ruderman term. Note that three poles appear for PB-VB coupling gKR ¼ 6.

Kroll-Ruderman coupling: gKR 0 3 6

MR � i�=2 (MeV) ! 1822� i0 1821� i1 1821� i16 1873� i88 1936� i132

Channels # Couplings (gi) of the poles to the different channels

�KN (1435) 0:0� i0:0 0:1þ i0:1 0:1þ i0:4 0:9� i0:6 �0:2� i0:4
�� (1330) 0:0� i0:0 0:0� i0:0 �0:1þ i0:1 0:8� i0:3 �0:1� i0:5
�� (1253) 0:0� i0:0 0:2� i0:1 0:5� i0:1 0:2� i0:6 �0:2þ i0:8

� (1740) 0:0� i0:0 �0:3� i0:2 �0:5� i0:6 �0:4þ i0:7 0:9� i1:0
K� (1814) 0:0� i0:0 0:2þ i0:0 0:5þ i0:2 �1:0� 0:9 �0:4þ i1:1
�K�N (1831) 2:3� i0:0 2:5þ i0:3 2:7þ i1:2 �0:8� i0:1 0:9þ i0:1
�� (1886) �0:6þ i0:0 �0:6þ i0:1 �1:2þ i0:3 2:8þ i2:4 �0:4� i0:2
�� (1963) �1:9þ i0:0 �2:0þ i0:2 �2:7þ i0:4 4:3þ i1:9 �2:7� i3:4
!� (1975) �1:0þ i0:0 �0:9� i0:0 �0:5þ i0:2 �0:1� i1:6 �2:4� i0:3
K�� (2210) 0:1� i0:0 �0:1� i0:3 �0:3� i1:9 �3:0þ i1:3 4:7þ i0:5
�� (2213) 1:6� i0:0 1:5þ i0:1 1:0:� i0:2 �0:0þ i2:0 3:5þ i0:7

FIG. 5. Amplitudes for the pseudoscalar-baryon channels in isospin 1. The dotted (solid) line is the result of the calculation of the
coupled channel scattering equations for the PB-VB systems by taking the VB interaction obtained from the t-channel diagrams [by
summing the s-, t-, u-channel diagrams and the contact term of Eq. (7)].
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Ref. [32]. We find the pole 1821� i16 MeV to be com-
patible with the�ð1750ÞS11. It is important to mention that
the Breit-Wigner mass and width of this state extracted
from the amplitude on the real axis, 1800� i28 MeV, are
even more compatible with the properties of �ð1750ÞS11.
These values found on the real axis are more compatible
since they include the effect of the large decay widths of
the vector mesons. Another known feature of �ð1750ÞS11
is its large branching ratio (15%–55%) to the 
� channel,
which is also in agreement with our finding of its coupling
to the 
� channel being the largest among the open
channels (Table XI).

The other two isospin 1 poles found here, 1873�
i88 MeV and 1936� i132 MeV, seem to be compatible
with the information listed for the �ð2000ÞS11 resonance
with its mass ranging from 1755 to 2000 MeV in different
experiments. Since the widths of the two poles are large
and the difference between their masses is relatively small,
it leads to merging of the two possible corresponding peaks
in the cross sections. In fact, it is hard to see a well
distinguished peak corresponding to these poles in Fig. 4,
except in the case of the K�� channel (which is a closed
channel for the decay of these resonances). Only an en-
hancement/a broad bump is seen in the 1850–2000 MeV

FIG. 6. Amplitudes for pseudoscalar-baryon channels in isospin 0. The lines here have the same meaning as in Fig. 5.

TABLE XII. Couplings of the low-lying J� ¼ 1=2� poles to the PB and VB channels (see Ref. [33]).

Isospin 0 Isospin 1

MR � i�=2 (MeV) ! 1358� i53 1414� i12 1746� i28 1427� i145 1438� i198

Channels # Couplings Channels # Couplings

�KN (1435) 1:2� i1:4 2:8þ i0:6 0:3� i0:6 �KN (1435) �0:8þ i1:1 0:4� i0:9
�� (1330) �2:2þ i1:4 �0:2� i1:1 0:1þ i0:3 �� (1330) 1:9� i1:9 1:7� i1:4

� (1663) 0:1� i0:6 1:5þ i0:1 �1:0þ i0:3 �� (1253) �0:3� i0:1 �0:8þ i1:2
K� (1814) �0:6þ i0:4 0:0� i0:3 3:4þ i0:3 
� (1740) �0:2� i0:1 �0:5þ i0:9
�K�N (1831) 0:4þ i1:6 �4:9� i0:0 0:9þ i0:3 K� (1814) 0:9� i0:8 1:3� i1:7
!�(1898) �0:4þ i0:7 �1:6� i0:2 �0:2� i0:2 �K�N (1831) �1:7þ i0:0 �3:1� i0:1
�� (1963) 6:4� i1:3 �1:5þ i2:3 �3:2� i0:3 �� (1886) 6:0� i0:3 7:3� i0:9
�� (2136) 0:5� i1:0 2:3þ i0:3 0:3þ i0:2 �� (1963) �4:5� i0:1 �8:0þ i1:2
K�� (2210) 5:4� i1:3 �0:6þ i1:9 �0:7� i0:5 !� (1975) 0:1� i0:4 �0:3� i0:2

K��(2210) �6:1þ i1:0 �6:2þ i1:1
�� (2213) �0:2þ i0:5 0:5þ i0:3
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energy region, in the squared amplitudes of all the channels
shown in Fig. 4 (with solid lines). It is, thus, quite possible
that �ð2000ÞS11 might be linked to two closely spaced
poles, as found in our work.

We show the squared amplitudes for the PB channels in
Fig. 5, coupled to VB, for the isospin 1 case. This figure
shows a comparison of the results obtained for coupled
PB-VB systems (with gKR ¼ 6) when the VB ! VB am-
plitudes are obtained (1) from the t-channel interaction and
(2) by summing the contributions from the s-, t-, u-channel
diagrams and the contact term explained in Sec. II:

Vt þ Vs þ Vu þ VCT: (20)

It can be seen that the PB amplitudes at low energy do not
get altered by the two different VB interactions, implying
that one can rely on t-channel diagrams (for both PB and
VB channels) while studying the low-lying PB resonances.
In fact, the PB amplitudes at higher energies, where VB
channels are open, also do not change from one case to the
other except for the appearance of a clearer signal of a
resonance at 1800 MeV in the 
� and �� channels, when
the calculations are done by using the VB interactions
obtained from Eq. (20). These findings can be easily under-
stood by noticing weaker couplings of the resonances,
listed in Table XI, to the PB channels as compared to those
of the VB channels. This also implies that it is more
advantageous to study the resonances in the 1700–
2200 MeV region by analyzing the reactions producing
VB channels.

The amplitudes for PB channels in isospin 0 also do not
alter much by taking different VB interactions (see Fig. 6),
once again due to their weak coupling to the � resonances
generated in VB systems (see Table X), once again imply-
ing the importance of studying reactions with VB final
states to identify the properties of the VB resonances.

Finally, we do not discuss the low-lying resonances in
detail here since their properties change very little by using
the VB amplitudes of Eq. (20) in the calculations and hence
the results obtained in Ref. [24] do not change much. Even
though the changes are little, for the sake of completeness,
we give the low-lying poles and their coupling to different
PB-VB channels in Table XII.
At the end of this section, we would like to discuss the

cutoff (�) dependence of our results, since �’s are the
parameters in the present study. We solve Bethe-Salpeter
equations with the kernels obtained from the effective field
meson-baryon Lagrangians, which are based on hidden
local and chiral symmetries and where the hadrons form
the degrees of freedom. Since all the interactions are
approximated by contact ones, the present framework con-
sists of loop functions which are divergent in nature and
need to be regularized. In the present work, we have used a
Gaussian cutoff to regularize our meson-baryon loops and
it is important to check the sensitivity of our results to these
parameters. We have used a cutoff of 545 MeV for the VB
loops and 750 MeV for the PB loops and found several
resonances which seem to be quite compatible with the
known resonances. In Table XIII, we show how the poles
corresponding to these resonances change when one of the
cutoffs is varied within a reasonable range (�� 10%). It
can be seen that, in general, the masses and widths of the
states found in the present work depend weakly on the
cutoffs. The variation in the pole positions is of the order of
	 5%when the cutoffs are changed by�� 10%. Further,
Table XIII shows that changing the cutoff corresponds to
changing the properties of the interaction, which, in turn,
reflects in changing the properties of the dynamically
generated states. For instance, an increase in � leads to
an increase in the binding energy of the state due to
augmenting attraction in the system. It can also be noticed

TABLE XIII. Sensitivity of the pole positions of the different resonances found in the present work to a�� 10% variation of one of
the cutoffs. The dots in this table signify absence of a physical pole (in other words presence of a virtual/shadow pole) and NC signifies
no change occurs in the VB spin 3=2 amplitudes by changing the PB cutoff since the PB and VB channels do not couple in this case.

�PB ¼ 750 MeV �PB ¼ 750 MeV �VB ¼ 545 MeV
Spin-parity (J�) �VB ¼ 545 MeV �VB ¼ 500 MeV �VB ¼ 600 MeV �PB ¼ 675 MeV �PB ¼ 825 MeV

I ¼ 0 1=2� 1358� i54 1364� i58 1346� i46 1360� i66 1354� i40
1=2� 1414� i12 1418� i12 1406� i10 1422� i8 1404� i16
1=2� 1746� i28 1752� i26 1740� i30 1762� i28 1730� i28
1=2� 1929� i48 1939� i46 1915� i51 1928� i49 1930� i48
3=2� 1760� i0 1767� i0 1733� i0 NC NC

3=2� 1893� i1 1909� i1 1869� i1 NC NC

3=2� 2149� i17 2163� i16 � � � NC NC

I ¼ 1 1=2� 1427� i145 � � � 1408� i135 1423� i158 1429� i132
1=2� 1438� i198 1460� i219 � � � � � � 1443� i184
1=2� 1821� i16 1830� i14 1808� i20 1821� i16 1821� i17
1=2� 1873� i88 � � � 1850� i108 1873� i91 1871� i85
1=2� 1936� i132 1908� i146 1955� i120 1929� i136 1941� i128
3=2� 1929� i48 1939� i46 1915� i51 NC NC
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from Table XIII that the poles which couple more to PB
systems depend strongly on �PB but weakly on �VB and
vice versa. In other words, a state dominated by PB(VB)
channels is more sensitive to �PBð�VBÞ. In this way, the
cutoff dependence can be used to identify the dominant
contribution giving rise to a dynamically generated state.

V. SUMMARY

We have studied the generation of baryon resonances in
a wide energy range (1300–2200 MeV) in pseudoscalar-
baryon and vector meson-baryon strangeness �1 coupled
channels. We find ten states in our work which are sum-
marized in Table XIV, together with their quantum num-
bers and with the possible corresponding known states. In
Table XIV, we list the pole positions found in the complex
plane as well as the masses and widths deduced from the
peaks found in the squared amplitudes calculated on the
real axis. It is important to give this latter information since
the calculations are done in the complex plane assuming
zero width for the � and K� mesons due to the complica-
tions explained in Refs. [20,24]. Thus, it is more mean-
ingful to compare the masses and widths of the states
obtained from the amplitudes calculated on the real axis
with the properties of the known resonances. However, we
find it difficult to obtain this information clearly in the case
of the isospin 1 poles found near 1430 MeV and hence we
do not give it. As can be seen in Table XIV, apart from the
relatively well-known low-lying resonances, we find clear
evidence for�ð2000Þ,�ð1750Þ,�ð1940Þ, and�ð2000Þ, the
last of which can be related to two poles. Our work can be
helpful in determining the unknown spin-parity of�ð2000Þ

to be 1=2�. In addition to this, we predict the existence of
three ��’s and a ��.
We have estimated the theoretical uncertainties involved

in the present work and we found that a�10% variation of
the cutoffs leads to modifications of the masses and widths
of the states by 	 5% (see Table XIII).
Further, we find that the VB interaction obtained from

t-channel diagrams is reliable to study their couplings to
the low-lying PB resonances. However, in agreement with
the results found in Ref. [22] for the strangeness 0 case, the
other sources of diagrams discussed in Sec. II play a very
important role in understanding the properties of the VB
resonances. Another finding of our work is that the
pseudoscalar-baryon channels couple very weakly to sev-
eral resonances found to get generated in VB systems,
which implies that it is not suitable to study these reso-
nances by analyzing the reactions with pseudoscalar
meson-baryon final states. Rather, it is desired to consider
the reactions producing vector mesons to scrutinize these
resonances.
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TABLE XIV. A summary of strangeness �1 baryon resonances found in the present work together with the corresponding known
��, ��’s. We list the pole positions found in the complex plane as well as the peak position and half-width obtained from the
amplitudes calculated on the real axis. The source of the difference between the two comes from the ((non)consideration of the width
of the vector mesons in the (former) latter case.

E �i�=2 (MeV)

Spin-parity (J�) In the complex plane On the real axis Related known states

Isospin 0 1=2� 1358� i53, 1414� i12 1370� i36, 1412� i12 �ð1405Þ
1=2� 1746� i28 1739� i28 �ð1670Þ
3=2� 1760� i0 1754� i2 �?
3=2� 1893� i1 1862� i33 �?
1=2� 1929� i48 1903� i60 �ð2000Þ
3=2� 2149� i17 2139� i16 �?

Isospin 1 1=2� 1427� i145, 1438� i198 � � � �?
1=2� 1821� i16 1800� i28 �ð1750Þ
1=2� 1873� i88, 1936� i132 �1920� i150 �ð2000Þ
3=2� 1947� i5 1918� i60 �ð1940Þ
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