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We investigate the Oð�sv
2Þ correction to the eþe� ! J=c þ �c process in the nonrelativistic QCD

(NRQCD) factorization approach. Within some reasonable choices of the relative order-v2 NRQCD

matrix elements, we find that including this new ingredient of correction only mildly enhances the existing

NRQCD predictions. We have also deduced the asymptotic expressions for the Oð�sv
2Þ short-distance

coefficients, and reconfirm the early speculation that at next-to-leading order in �s, the double logarithm

of type ln2ðs=m2
cÞ appearing in various NRQCD short-distance coefficients is always associated with the

helicity-suppressed channels.
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I. INTRODUCTION

One of the most intensively studied hard exclusive re-
actions in recent years is perhaps the double-charmonium
production process eþe� ! J=c þ �c at the B factory
energy

ffiffiffi
s

p ¼ 10:58 GeV [1]. It was initially measured by
the Belle experiment in 2002 with �½eþe� ! J=c þ
�c� �B�4 ¼ 33þ7

�6 � 9 fb [2], where B�4 is the branch-

ing ratio of �c into 4 or more charged tracks. The first
theoretical predictions [3–5], built on the lowest-order
(LO) calculation in the nonrelativistic QCD (NRQCD)
factorization approach [6], were scattered in the range
2.3–5.5 fb, almost one order of magnitude smaller
than the Belle data. Later, Belle Collaboration refined
their measurement and gave �½J=c þ �c� �B>2 ¼
25:6� 2:8� 3:4 fb [7], where B>2 denotes the branching
fraction for the �c into more than two charged tracks.
In 2005, BABAR Collaboration also measured the same
observable and obtained 17:6� 2:8þ1:5

�2:1 fb [8].

The disquieting discrepancy between experiment and
the LO NRQCD predictions has spurred a great amount
of theoretical endeavors in the following years. Roughly
speaking, most works can be divided into two major cat-
egories, either based on the light-cone factorization [9–12],
or based on the NRQCD factorization approach [13–16]
(for the investigations from other theoretical approaches,
see Refs. [17–20]).

One crucial step toward alleviating the tension between
data and theory is the discovery of the positive and signifi-
cant Oð�sÞ correction to the eþe� ! J=c þ �c process
[13,14]. This next-to-leading order (NLO) perturbative
calculation was performed in the NRQCD factorization
framework (a similarly large positive Oð�sÞ correction
has also later been found for the eþe� ! J=c þ �c0

process [21,22]). In contrast, due to some long-standing
theoretical difficulty inherent to the helicity-suppressed
process, by far no one has successfully conducted the
corresponding Oð�sÞ correction to this process in the
light-cone approach. In a sense, for the eþe� ! J=c þ
�c process, NRQCD approach seems more systematic and
maneuverable than the light-cone approach.
The relativeOðv2Þ correction to eþe� ! J=c þ �c has

also been addressed [3,15,16], where v denotes the typical
velocity of the c quark in a charmonium. Notwithstanding
the large uncertainty inherent to relativistic correction, it
was believed that [15,16], including both NLO perturbative
and (a partial resummation of) relativistic corrections,
one may achieve the reasonable agreement, albeit with
large uncertainties, between the NRQCD prediction and
B factory data.
The goal of this work is to address the Oð�sv

2Þ correc-
tion to eþe� ! J=c þ �c in the NRQCD factorization
approach. It is curious to examine its phenomenological
impact. On the other hand, thus far there are only very few
basic quarkonium decay processes whoseOð�sv

2Þ correc-
tions have been calculated, e.g. J=c ! eþe� [23], and
�c ! �� [24,25]. Therefore, it is also theoretically inter-
esting to know the Oð�sv

2Þ effect for the exclusive quark-
onium production process in the first time.
The rest of the paper is structured as follows. In Secs. II

and III, we express the product rate for eþe� ! J=c þ
�c in terms of the J=c þ �c electromagnetic (EM) form
factor, and present the NRQCD factorization formulas for
both quantities, accurate through relative order-v2. In
Sec. IV, we list the tree-level short-distance coefficients
through relativeOðv2Þ. In Sec. V, we first sketch some key
technical steps about the NLO perturbative calculations,
then present the asymptotic expressions for the matching
coefficients. We devote Sec. VI to exploring the phe-
nomenological impact of our new Oð�sv

2Þ correction
on the B factory measurement. Finally, we summarize
in Sec. VII.
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II. J=c þ �c EM FORM FACTOR

Suppose we work in the e� and eþ center-of-mass frame
with invariant mass of

ffiffiffi
s

p
. Let P1 (�) denote the momen-

tum (helicity) of the J=c , and P2 the momentum of the �c,
respectively. This process simply probes the J=c þ �c

electromagnetic form factor in the timelike region, referred
to as GðsÞ hereafter:

hJ=c ðP1; �Þ þ �cðP2ÞjJ�EMj0i
¼ iGðsÞ��	
�P1	P2
"

�
�ð�Þ; (1)

where J�EM is the electromagnetic current. The tensor
structure specified in (1) is uniquely dictated by the
Lorentz and parity invariance. As a result, the outgoing
J=c must be transversely polarized, i.e., � ¼ �1.

The cross section can be expressed as

�½eþe� ! J=c þ �c� ¼ 4��2

3

�jPjffiffiffi
s

p
�
3jGðsÞj2; (2)

where jPj signifies the magnitude of the 3-momentum
carried by the J=c (�c) in the center-of-mass frame. The
cubic power of jPj is reminiscent of the fact that J=c and
�c are in the relative P-wave orbital state.

It is worth recalling the asymptotic behavior of (2) for
this helicity-flipped process. The helicity selection rule
[26] dictates that GðsÞ � 1=s2 as

ffiffiffi
s

p � mc [10], hence
�½J=c þ �c� � 1=s4. Evidently, the charm quark mass
may serve as the agent of violating the hadron helicity
conservation. As will be examined in Sec. V, this power-
law scaling is subject to double-logarithmic modification
once beyond LO in �s.

III. NRQCD FACTORIZATION FORMULA FOR
J=c þ �c PRODUCTION RATE

According to NRQCD factorization formula, the J=c þ
�c EM form factor in (1) can be factorized as

GðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4MJ=cM�c

q
hJ=c jc y� 	 ��j0ih�cjc y�j0i

� ½c0 þ c2;1hv2iJ=c þ c2;2hv2i�c
þ 	 	 	�; (3)

where c0 and c2 are the corresponding short-distance co-
efficients. We have adopted relativistic normalization for
the quarkonia states appearing in the left side, while using
the nonrelativistic normalization for those in the NRQCD
matrix elements. For simplicity, we have introduced the
following dimensionless ratios of NRQCD matrix ele-
ments to characterize the Oðv2Þ corrections:

hv2iJ=c ¼ hJ=c ð�Þjc yð� i
2D
$Þ2� 	 �ð�Þ�j0i

m2
chJ=c ð�Þjc y� 	 �ð�Þ�j0i ; (4a)

hv2i�c
¼ h�cjc yð� i

2D
$Þ2�j0i

m2
ch�cjc y�j0i ; (4b)

where c yD$� 
 c yD�� ðDc Þy�.

Substituting Eq. (3) into (2), one can decompose the
cross section into the Oðv0Þ and Oðv2Þ pieces:

�½eþe� ! J=c þ �c� ¼ �0 þ �2 þOð�0v
4Þ; (5)

where

�0 ¼ 8��2m2
cð1� 4rÞ3=2
3

hO1iJ=c hO1i�c
jc0j2; (6a)

�2 ¼ 4��2m2
cð1� 4rÞ3=2
3

hO1iJ=c hO1i�c

�
��
1� 10r

1� 4r
jc0j2 þ 4Re½c0c�2;1�

�
hv2iJ=c

þ
�
1� 10r

1� 4r
jc0j2 þ 4Re½c0c�2;2�

�
hv2i�c

�
: (6b)

In deriving (6), we have employed the Gremm-Kapustin
relation [27]M2

H � 4m2
cð1þ hv2iHÞ to eliminate the explicit

occurrences of MJ=c and M�c
. For notational brevity, we

have introduced the following symbols: r ¼ 4m2
c

s , hO1iJ=c ¼
jhJ=c jc y� 	 ��j0ij2, and hO1i�c

¼ jh�cjc y�j0ij2.
It is convenient to organize the short-distance coeffi-

cients ci in power series of the strong coupling constant,

i.e., ci ¼ cð0Þi þ �s

� cð1Þi þ 	 	 	 . Accordingly, we may de-

compose the cross section �i into �ð0Þ
i þ �ð1Þ

i (i ¼ 0, 2).

Our primary goal in this work is to calculate �ð1Þ
2 .

IV. TREE-LEVEL NRQCD SHORT-DISTANCE
COEFFICIENTS

It is straightforward to employ the perturbative matching
method to determine the short-distance coefficients, by

replacing the J=c and �c states with the free c �cð3Sð1Þ1 Þ
and c �cð1Sð1Þ0 Þ pairs, and enforcing that both perturbative

QCD and NRQCD calculations in (3) yield the same
answer, order by order in �s.
There are in total 4 diagrams at LO in �s, one of which is

depicted inFig. 1(a). The tree-level short-distance coefficients
throughOðv2Þ have been available long ago [3]. Here, we list
their values at D ¼ 4� 2� spacetime dimension:

cð0Þ0 ¼ 32�CFec�s

Ncmcs
2

; (7a)

cð0Þ2;1 ¼ cð0Þ0

�
3� 10r

6
þ

�
1� 16

9
r

�
�þOð�2Þ

�
; (7b)

cð0Þ2;2 ¼ cð0Þ0

�
2� 5r

3
þ

�
10

9
� 16

9
r

�
�þOð�2Þ

�
; (7c)

where ec ¼ 2
3 is the electric charge of the charm quark,

Nc ¼ 3 is the number of colors, and CF ¼ N2
c�1
2Nc

.

V. NLO PERTURBATIVE NRQCD SHORT-
DISTANCE COEFFICIENTS

In this section, we first sketch some technical issues
about the NLO perturbative calculations, then present the
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analytic expressions of the NLO corrections to the match-
ing coefficients c0 and c2. Technical details will be ex-
pounded in a long write-up [28].

A. Description of the calculation

The main technical difficulty is to identify the relativis-

tic effects in the quark amplitude �� ! c �cðP1;
3Sð1Þ1 Þ þ

c �cðP2;
1Sð1Þ0 Þ through NLO in �s. The momenta of c and

�c inside each pair are assigned as pi ¼ 1
2Pi þ qi, �pi ¼

1
2Pi � qi for i ¼ 1, 2. The total momentum Pi and relative

momentum qi are chosen to be orthogonal. In the rest
frame of each c �c pair, the total and relative 4-momenta
read P�

i ¼ ð2Eqi ; 0Þ, q�i ¼ ð0;qiÞ, respectively, where

Eqi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ q2
i

q
.

We first employ the MATHEMATICA package FEYNARTS

[29,30] to generate Feynman diagrams and amplitudes
for the process �� ! cðp1Þ �cð �p1Þ þ cðp2Þ �cð �p2Þ to NLO
in �s. In total, there are 20 two-point, 20 three-point,
18 four-point, and 6 five-point one-loop diagrams, some
of which have been illustrated in Figs. 1(b)–1(f ). We
then apply the covariant spin projector [31] to enforce
two c �c pairs to form the spin-triplet/singlet, color-
singlet states, with the Dirac and color traces handled
by FEYNCALC [32].

We then expand the amplitude in powers of the quark
relative momenta, qi, up to the quadratic order. We then
make the following substitution to project out the S-wave
states:

q�i q
	
i ! q2

i

D� 1

�
�g�	 þ P

�
i P

	
i

P2
i

�
; (8)

for i ¼ 1, 2, and q2
i is understood to be defined in the rest

frame of each c �c pair.
In conventional matching procedure, one expands the

relative momentum qi only after completing the loop

integrations in the QCD amplitude, which is a daunting
task in our case since the entanglement of three disparate
scales,

ffiffiffi
s

p
, mc, qi, in a loop integral. In this work, we

employ a much simpler shortcut suggested by the method
of region [33], i.e., making expansion in qi prior to carrying
out the loop integration. This amounts to directly extract-
ing the NRQCD short-distance coefficients, i.e., the con-
tributions solely arising from the hard region (k2 � m2

c).
Consequently, we will no longer be distracted by the
effects from the low-energy regions such as the potential
(k0 �mv2, jkj �mv) region.
To proceed, we use the MATHEMATICA packages FIRE

[34] and APART [35] to reduce the general higher-point one-
loop tensor integrals into a set of master integrals. As a
bonus of having expanded the integrand in powers of qi,
and utilized a trick of rescaling the pair momentum Pi to
make some hidden relativistic effects explicit, it turns out
that all the required master integrals are just the usual 1-, 2-
and 3-point scalar integrals, all of which can be found in
the Appendix of Ref. [14].
We adopt the dimensional regularization to regularize

both UV and IR singularities, with spacetime dimension
D ¼ 4� 2�. We use ’t Hooft-Veltman scheme to handle
�5 [36,37]. After summing the contributions from all the
diagrams, and incorporating mass and coupling constant
renormalization, we find that the ultimate NLO expres-
sions for the Oðv0Þ QCD amplitude are both UV and IR
finite, while the Oðv2Þ amplitude is UV finite albeit IR
divergent.
The occurrence of the IR divergences in the hard

region at Oð�sv
2Þ is just as expected. From the pull-

up mechanism, one can identify the IR divergences
encountered in the hard-region calculation with those
would arise from the soft (k� �mv) region in a literal
QCD-side calculation, which must be canceled out
upon matching. In fact, these IR divergences can be
reconstructed with the knowledge of the Oð�sv

2Þ cor-
rection to the perturbative NRQCD matrix elements

hc �cð3S1Þjc y� 	 ��j0ið1Þ [23], hc �cð1S0Þjc y�j0ið1Þ [24],

as well as cð0Þ0 [28]. Thus, we finally end up with the

both UV-, IR-finite short-distance coefficients cð1Þi (i ¼
0, 2). Our finding is consistent with the all-order-in-�s

proof outlined in [38], that NRQCD factorization holds
for the exclusive production of one S-wave quarkonium
plus any higher orbital angular momentum quarkonium
in eþe� annihilation.

B. Asymptotic expressions of NLO
short-distance coefficients

The NRQCD short-distance coefficients cð1Þ0 and cð1Þ2 are

in general complex-valued. Their analytic expressions are
somewhat lengthy and will not be reproduced here.
Nevertheless, it is enlightening to know their asymptotic
expressions in the limit

ffiffiffi
s

p � mc:

(a) (b) (c)

(d) (e) (f)

FIG. 1. One sample LO diagram and five sample NLO dia-
grams that contribute to �� ! J=c þ �c.
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cð1Þ0

�
r;
�2

r

s

�
asym

¼ cð0Þ0 �
�
�0

�
� 1

4
ln

s

4�2
r

þ 5

12

�
þ

�
13

24
ln2rþ 5

4
ln2 lnr� 41

24
lnr� 53

24
ln22þ 65

8
ln2

� 1

36
�2 � 19

4

�
þ i�

�
1

4
�0 þ 13

12
lnrþ 5

4
ln2� 41

24

��
; (9a)

cð1Þ2;1

�
r;
�2

r

s
;
�2

f

m2
c

�
asym

¼ 1

2
cð0Þ0 �

�
16

9
ln
�2

f

m2
c

þ �0

�
� 1

4
ln

s

4�2
r

þ 11

12

�
þ

�
3

8
ln2rþ 19

12
ln2 lnrþ 31

24
lnr

� 1

24
ln22þ 893

216
ln2� 5

36
�2 � 497

72

�
þ i�

�
1

4
�0 þ 3

4
lnrþ 19

12
ln2þ 9

8

��
; (9b)

cð1Þ2;2

�
r;
�2

r

s
;
�2

f

m2
c

�
asym

¼ 2

3
cð0Þ0 �

�
4

3
ln
�2

f

m2
c

þ �0

�
� 1

4
ln

s

4�2
r

þ 2

3

�
þ

�
1

12
ln2rþ 11

12
ln2 lnr� 1

24
lnr

� 11

8
ln22þ 241

144
ln2� 1

8
�2 � 99

16

�
þ i�

�
1

4
�0 þ 1

6
lnrþ 11

12
ln2� 1

24

��
; (9c)

where �0 ¼ 11
3 CA � 2

3nf is the one-loop coefficient of the
QCD � function, and nf ¼ 4 denotes the number of active
quark flavors. �r denotes the renormalization scale, with
the natural magnitude of order

ffiffiffi
s

p
; and �f is identified

with the factorization scale in theMS scheme, whose value
lies in somewhere between mcv and mc, the UV cutoff
scale of NRQCD.

It has been pointed out [39] that a peculiar double-

logarithmic correction / ln2r arises in cð1Þ0 for this

helicity-flipped process, and our (9a) exactly agrees with
the corresponding expression there. Equations (9) imply
that the presence of the double logarithm persists to Oðv2Þ
as well. Presumably, provided that

ffiffiffi
s

p � mc, one must
resum these types of large logarithms to all orders to obtain
a reliable prediction. Unfortunately, due to our incapability
for the light-cone approach to dealing with the helicity-
suppressed hard exclusive processes beyond LO in �s,
currently it remains to be an open question how to fulfill
such a resummation.

VI. PHENOMENOLOGY

In the numerical analysis, we take
ffiffiffi
s

p ¼ 10:58 GeV,
and the QED coupling constant �ð ffiffiffi

s
p Þ ¼ 1=130:9 [16].

The running strong coupling constant is evaluated by using

the two-loop formula with�ð4Þ
MS

¼ 0:338 GeV [13,14]. The

LO NRQCD matrix elements are taken from [22]:
hO1iJ=c � hO1i�c

¼ 0:387 GeV3. If we choose mc ¼
1:4 GeV (r ¼ 0:0700), the Gremm-Kapustin relation im-
plies that hv2iJ=c ¼ 0:223 and hv2i�c

¼ 0:133. We will

take �f ¼ mc.

We are ready to carry out a detailed analysis for the
processes eþe� ! J=c þ �c and confront the B factory
measurements. One important source of theoretical uncer-
tainties comes from the scale setting for the strong cou-
pling constant. There is no way to circumvent the scale
ambiguity problem within the confine of NRQCD factori-
zation, and we proceed to estimate the cross section by

affiliating all the occurring �s with a common scale, �r,
and choosing�r ¼

ffiffiffi
s

p
=2 and�r ¼ 2mc, respectively. It is

hoped that the less biased results interpolate between these
two sets of predictions.

With r ¼ 0:07, for �r ¼
ffiffiffi
s

p
=2, we find cð1Þ0 =cð0Þ0 ¼

8:83� 6:02i, cð1Þ2;1=c
ð0Þ
2;1 ¼ �5:09þ 8:89i, and cð1Þ2;2=c

ð0Þ
2;2 ¼

�5:15þ 8:99i; for �r ¼ 2mc we have c
ð1Þ
0 =cð0Þ0 ¼ 6:18�

6:02i, cð1Þ2;1=c
ð0Þ
2;1 ¼ �7:74þ 8:89i, and cð1Þ2;2=c

ð0Þ
2;2 ¼

�7:80þ 8:99i. Since Re½cð1Þ2;i =c
ð0Þ
2;i � is large and negative

for i ¼ 1, 2, in conjunction with (7), one may think that the
new Oð�sv

2Þ correction would dilute the known Oðv2Þ
effect.
Table I lists the predicted cross sections for eþe� !

J=c þ �c in double expansions of �s and v, with two sets
of �r. We reproduce the well-known results, i.e., the
positive and significant Oð�sÞ correction [13,14], and the
positive but less pronounced Oðv2Þ correction [3,15,16].

The new Oð�sv
2Þ ingredient, �ð1Þ

2 , is positive but modest.

It may be attributed to the near cancelation between the
two terms in the prefactor of hv2iH in (6b).
In Fig. 2, we plot the �½eþe� ! J=c þ �c� as a func-

tion of �r. Whether including the contribution of �ð1Þ
2 or

not clearly does not make a big difference. When �r is
relatively small, the state-of-the-art NRQCD prediction
converges to the BABAR measurement within errors. Had
we taken somewhat larger values of the NRQCD matrix
elements hO1iH as in [15,16], the agreement with the two B
factories measurements would be better.

TABLE I. Individual contributions to the predicted �½eþe� !
J=c þ �c� at

ffiffiffi
s

p ¼ 10:58 GeV, labeled by powers of �s and v.
The cross sections are in units of fb.

�sð�rÞ �ð0Þ
0 �ð1Þ

0 �ð0Þ
2 �ð1Þ

2

�sð
ffiffi
s

p
2 Þ ¼ 0:211 4.40 5.22 1.72 0.73

�sð2mcÞ ¼ 0:267 7.00 7.34 2.73 0.24
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VII. SUMMARY

In this work, we have computed the Oð�sv
2Þ correction

to the helicity-suppressed process eþe� ! J=c þ �c in
the NRQCD factorization framework. The corresponding

NLO perturbative short-distance coefficients associated
with the J=c þ �c EM form factor are directly extracted
from the hard loop-momentum region through relative
order v2. By examining the asymptotic form of these
coefficients, we reconfirm the pattern recognized in
[22,39]: The hard exclusive processes involving double-
charmonium at higher twist in general are plagued with
double logarithms of form ln2s=m2

c once beyond LO in �s.
When

ffiffiffi
s

p � mc, in order to obtain the reliable predictions
for such types of processes, one is enforced to resum these
potentially large double logarithms to all orders in �s,
which so far remains to be an open challenge.
At the B factory energy, we found that incorporating this

new piece of correction only modestly enhances the exist-
ing NRQCD predictions. This may be ascribed to some
accidental cancellation between two different sources of
relativistic corrections. At much higher

ffiffiffi
s

p
, this Oð�sv

2Þ
correction would be much more relevant.
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