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If the weak phase of B0
s - �B

0
s mixing (2�s) is found to be significantly different from zero, this is a clear

signal of new physics (NP). However, if such a signal is found, we would like an unambiguous

determination of 2�s in order to ascertain which NP models could be responsible. In addition, in the

presence of NP, the width difference ��s between the two Bs mass eigenstates can be positive or negative,

and ideally this sign ambiguity should be resolved experimentally. Finally, in order to see if the NP is

contributing to �s
12 in addition to Ms

12, the precise measurement of j�s
12j is crucial. In this paper, we

consider several different methods of measuring 2�s using penguin-free two- and three-body decays with
�b ! �cu �s and �b ! �uc�s transitions. We find that the most promising of these is a time-dependent Dalitz-

plot analysis of B0
sð �B0

sÞ ! D0
CPK

�K. With this decay, the unambiguous measurements of 2�s and ��s are

possible, and the weak phase � can also be extracted.
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I. INTRODUCTION

Over the past several years, a number of discrepancies
with the predictions of the standard model (SM) have been
observed in B decays, intriguingly all in �b ! �s transitions.
Some examples are: (i) in B ! �K decays, it is difficult to
account for all the experimental measurements within the
SM [1,2], (ii) the values of the B0

d-
�B0
d mixing phase sin2�

obtained from different penguin-dominated �b ! �s chan-
nels tend to be systematically smaller than that obtained
from B0

d ! J=cKS [3], (iii) the fractions of transversely

and longitudinally polarized decays in B ! �K� (fT and
fL, respectively) are observed to be roughly equal [4], in
contrast to the naive expectation that fT=fL � 1, (iv) the
differential forward-backward asymmetry of leptons in the
exclusive decay �B ! �K��þ�� is found to differ from
the SM expectations in both the low- and high-q2 regions
(q2 is the dilepton invariant mass) [5,6].

In light of this, it is particularly important to study �b ! �s
transitions and look for new-physics (NP) effects. Now, if
NP is present in �B ¼ 1 �b ! �s decays, it would be highly
unnatural for it not to also affect the �B ¼ 2 transition, in
particular, B0

s- �B
0
s mixing. In order to see where NP can

enter, we briefly review the mixing. In the Bs system, the
mass eigenstates BL and BH (L andH indicate the light and
heavy states, respectively) are admixtures of the flavor
eigenstates B0

s and �B0
s :

jBLi ¼ pjB0
si þ qj �B0

si; jBHi ¼ pjB0
si � qj �B0

si; (1)

with jpj2 þ jqj2 ¼ 1. As a result, the initial flavor eigen-
states oscillate into one another according to the
Schrödinger equation

i
d

dt

jB0
sðtÞi

j �B0
sðtÞi

 !
¼
�
Ms � i

�s

2

� jB0
sðtÞi

j �B0
sðtÞi

 !
; (2)

where M ¼ My and � ¼ �y correspond, respectively, to
the dispersive and absorptive parts of the mass matrix. The

off-diagonal elements,Ms
12 ¼ Ms�

21 and �
s
12 ¼ �s�

21, are gen-

erated by B0
s- �B

0
s mixing. We define

�s � �H þ�L

2
; �Ms �MH �ML; ��s � �L��H:

(3)

Expanding the mass eigenstates, we find, to a very good
approximation [7],

�Ms ¼ 2jMs
12j; ��s ¼ 2j�s

12j cos�s;

q

p
¼ e�2i�s

�
1� a

2

�
; (4)

where �s � argð�Ms
12=�

s
12Þ is the CP phase in �B ¼ 2

transitions. In Eq. (4) the small expansion parameter a is
given by

a ¼ �s
12

Ms
12

sin�s: (5)

This is expected to be � 1, and hence can be neglected in
the definition of q=p.
The weak phase 2�s appears in the indirect (mixing-

induced) CP asymmetries. For example, in B0
s ! J=c�,

2�c�
s ¼ arg

�
q

p

�A

A

�
; (6)

where A and �A are, respectively, the amplitudes for
B0
s ! J=c� and �B0

s ! J=c�. Now, the weak phases �s

and 2�s are independent—we have �s¼2�s�argð��s
12Þ

[7]. It is often said that, in the SM, �s ¼ �2�s. However,
strictly speaking, this is not true—it holds only in the limit
of �s and �2�s ’ 0 [8].
The precise measurement of �Ms determines jMs

12j [9].
However, because of hadronic uncertainties, the SM pre-
diction for �Ms is not very precise—in Ref. [10], it is
noted that the theoretical uncertainties still allow NP con-
tributions to jMs

12j of order 20%. In addition, �s
12 can be

calculated from the absorptive part of the B0
s- �B

0
s mixing
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box diagram, leading to ��s. Unlike the Bd system, where
��d is negligibly small, in the Bs system ��s is expected
to be reasonably large, which leads to certain advantages
for the search for CP-violating effects in the Bs system
over that of Bd system. The updated SM predictions of the
width difference and the CP phase �s are given by [10]

��SM
s ’ 2j�s

12j ¼ 0:087� 0:021 ps�1; �s � 0:22�:
(7)

The CDF [11] and DØ [12] collaborations have mea-
sured the CP asymmetry in B0

s ! J=c�, and found a hint
for indirect CP violation. In general, this result is inter-

preted as evidence for a nonzero value of 2�c�
s , and the

contributions of various NP models to the Bs mixing phase
have been explored [13–19]. It has also been pointed out
that NP in the decay �b ! �sc �c could also play an important
role [20]. Recently CDF and DØ updated their measure-
ments of the CP-violating phase. The 68% C.L. allowed
ranges are [21,22]1

2�c�
s 2 ½2:3�; 59:6�� [ ½123:8�; 177:6��; CDF;

2 ½9:7�; 52:1�� [ ½127:9�; 170:3��; D�:
(8)

Most of the values of 2�c�
s here suggest NP. Now, 2�c�

s

is obtained with a twofold ambiguity, i.e. the measurement

is insensitive to the transformation ð2�c�
s ;��sÞ $

ð�� 2�c�
s ;���sÞ. The problem here is that, in the pres-

ence of NP (either in Ms
12 or �s

12 or in both of them), the

sign of ��s can be positive or negative (in the SM,
��s > 0). The sign ambiguity in ��s will then always

lead to a twofold ambiguity in the extraction of 2�c�
s .

The complete differential decay rate for the process
B0
s ! J=c�ð! KþK�Þ including both the s-and p-wave

angular momentum states for the KþK� pair allows an

unbiased2 measurement of 2�c�
s [24]. In addition, the

interference of the s-and p-wave amplitudes is helpful
for removing the twofold ambiguity in the measurement

of 2�c�
s . On the other hand, as mentioned above, the

possibility of NP in the decay �b ! �sc �c cannot be ruled

out, so that the phase 2�c�
s extracted from B0

s ! J=c�
should not necessarily be taken as purely a mixing phase. It
is therefore worthwhile to look for a process in which NP in
the decay can essentially be neglected, and which permits
the determination of 2�s without any ambiguity. If the
measured value of 2�s is found to be significantly different

from that in B0
s ! J=c�, it will be clear signal of NP in

�b ! �sc �c.
In addition, the DØ Collaboration recently found a large

CP asymmetry in the like-sign dimuon signal, which they
attribute primarily to asSL, the semileptonic CP asymmetry

in B0
s ! Xs�� [25,26]. Now, the DØ result is less than 2�

away from zero and consequently to an excellent approxi-
mation also about 2� away from the SM prediction

(as;SMSL � 2	 10�5) [10]. Still, NP in B0
s- �B

0
s mixing can

explain the result (for example, see Ref. [27]). However, if
one wishes to reproduce the central value of asSL, one
requires NP specifically in �s

12 [28,29]. There are NP

models that can contribute to �s
12 through the decay

b ! s�þ�� [30,31], and a significant enhancement of its
magnitude over that of the SM [10] is possible.
Furthermore, the possibility of NP effects in �s

12 through

the decay �b ! �sc �c cannot be ruled out [29,30].
We therefore see that there are some hints of NP in the

Bs system, but nothing definitive yet. Thus, it is important
to look for additional methods of probing NP in B0

s- �B
0
s

mixing. Ideally, the new method(s) would allow an unam-
biguous determination of the mixing phase 2�s, even tak-
ing into account the possible sign ambiguity in ��s. Also
useful are methods which remove this sign ambiguity even
without providing any direct information on the CP phases
�s or 2�s. Finally, if NP is present in the mixing, we would
like to know if it contributes to �s

12 in addition to Ms
12.

Hence, along with the measurement of 2�s, independent
and unbiased measurements of j�s

12j and �s are essential.

To be specific: several years ago, the two-body decays
B0
sð �B0

sÞ ! D�
s K


; D��
s K
; . . . were examined with the

idea of extracting weak phases [32]. Because the final state
is accessible to both B0

s and �B0
s mesons, a mixing-induced

indirect CP asymmetry occurs. Using this, and assuming
that ��s is sizeable, the conclusion of Ref. [32] is that one
can measure the phase 2�s þ � with a twofold discrete
ambiguity, and that this ambiguity can be removed if
factorization is assumed. However, if there is NP in
B0
s- �B

0
s mixing, ��s < 0 is allowed as well. This implies

that, in fact, 2�s þ � can be obtained with a fourfold
discrete ambiguity (or twofold if factorization is assumed).
In Ref. [33] it was shown that the sign ambiguity in ��s

can be removed using B0
s ! D�

s K

 decays. Although the

method does not allow a direct determination of the phase
�s, it does discriminate between the two solutions with
cos�s > 0 and cos�s < 0, which then determines the sign
of ��s. However, the method is based on several assump-
tions: (i) the weak phase � is taken from the B-factory
measurements, (ii) factorization is assumed, i.e. the strong
phase is taken to be ’ 0, and (iii) the SM-predicted value of
�s
12 has been used in the analysis.

In 1991, the decays B0
sð �B0

sÞ ! D0
CP�, where D0

CP is a

neutral D-meson CP-eigenstate, were proposed to extract
the CKM angle � with a twofold ambiguity [34,35].
However, these methods assumed that the phase 2�s

1In Ref. [23], LHCb present their first CP-asymmetry mea-
surement in B0

s ! J=c� decays. With 0:37 fb�1 of data, and
considering only the positive solution for ��s, LHCb find
2�c�

s ¼ 0:15� 0:18ðstatÞ þ 0:06ðsystÞ and ��s ¼ 0:123�
0:029ðstatÞ � 0:011ðsystÞ ps�1. This is a substantial improve-
ment over the previous measurements of Refs. [21,22].

2If the s-wave components are neglected, the measurement of
2�c�

s would be biased by 7%–17% towards zero [24].
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is approximately zero (or known). The current experimen-
tal data [see Eq. (8)] is not completely in favor of this
assumption—there is the possibility that 2�s can be sig-
nificantly different from zero. In addition, at present 2�s is
measured with a twofold ambiguity, which adds a further
discrete ambiguity to the determination of �.

We therefore see that previous analyses of two-body B
decays only partially probe NP in B0

s- �B
0
s mixing—2�s is,

in general, not determined unambiguously, the sign ambi-
guity in ��s is generally unresolved, and the possibility of
NP affecting �s

12 has not been considered. In this paper we
go beyond the previous analyses to explore all of these
issues.

The measurement of ��s can be combined with the
measurement of the semileptonic asymmetry assl as follows
to obtain �s and j�s

12j. The expression for ��s is given in

Eq. (4); the semileptonic asymmetry is defined as

assl ¼ Im

�
�s
12

Ms
12

�
¼ 2j�s

12j
�Ms

sin�s: (9)

Combining Eqs. (4) and (9) we obtain

tan�s ¼ assl�Ms

��s

; j�s
12j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��s

2 þ assl
2�Ms

2
q

2
:

(10)

Now,�Ms is known very precisely—�Ms ¼ 17:77� 0:12
[9,36]—and so the precise measurements of assl and ��s

(without sign ambiguity) allow one to extract �s without
any ambiguity,3 as well as j�s

12j.
The comparison of the measured values of �s and j�s

12j
with those predicted by the SM [Eq. (7)] can reveal the
presence of NP. CDF and DØ have measured assl directly
and the average of their measurements is given by [36]

assl ¼ �0:0115� 0:0061: (11)

If we take j��sj ¼ 0:075� 0:04, as given by CDF [21],
we obtain

tan�s ¼ �2:72� 2:05; j�s
12j ¼ 0:11� 0:05 ps�1;

(12)

while j��sj ¼ 0:163þ0:065
�0:064, as given by DØ [22], yields

tan�s ¼ �1:25� 0:83; j�s
12j ¼ 0:13� 0:05 ps�1:

(13)

Although j�s
12j and �s can significantly deviate from their

SM predictions [Eq. (7)], both of them are consistent with
the SM within the error bar. Note that in the above numeri-
cal analysis we do not consider the negative solution for
��s, which introduces a sign ambiguity in the extraction of

�s. It is clear that improved measurements of both assl and
��s are essential in order to understand the underlying
physics of B0

s- �B
0
s mixing and the width difference. In this

paper we focus on the measurement of ��s from the
Dalitz-plot analysis of the three-body decays.
In Sec. II we review the two-body decays. In particular,

in Sec. II C, we update the analysis of B0
sð �B0

sÞ ! D0
CP�,

considering both ��s > 0 and ��s < 0. In Sec. III,
we present the Dalitz-plot analyses of three-body
decays. In particular, in Sec. III C, we focus on
B0
sð �B0

sÞ ! D�
s K


�0; D�
s �


K0; . . . , using the interference
between the different intermediate resonant decays to pro-
vide additional information. And in Sec. III D, we show
that a much greater improvement can be obtained by
performing a time-dependent Dalitz-plot analysis of the
decay B0

sð �B0
sÞ ! D0

CPK
�K. Finally, in Sec. IV, we present a

possible way to determine ��s, or equivalently j�s
12j and

�s, using three-body decays. We conclude in Sec. V.

II. TWO-BODY DECAYS

A. B0
s ð �B0

s Þ ! f , �f

Consider a final state f, not necessarily a CP eigenstate,
to which both B0

s and �B0
s can decay. In the presence of

B0
s- �B

0
s mixing, the time-dependent decay rates are given

by [37]

�ðB0
sðtÞ ! fÞ � 1

2
e��st

�
ðjAfj2 þ j �Afj2Þ coshð��st=2Þ

þ ðjAfj2 � j �Afj2Þ cos�mst

� 2 sinhð��st=2ÞRe
�
q

p
A�
f
�Af

�

� 2 sin�mstIm

�
q

p
A�
f
�Af

��
;

�ð �B0
sðtÞ ! fÞ � 1

2
e��st

�
ðjAfj2 þ j �Afj2Þ coshð��st=2Þ

� ðjAfj2 � j �Afj2Þ cos�mst

� 2 sinhð��st=2ÞRe
�
q

p
A�
f
�Af

�

þ 2 sin�mstIm

�
q

p
A�
f
�Af

��
; (14)

where Af � AðB0
s ! fÞ, �Af � Að �B0

s ! fÞ, and q=p ¼
e�2i�s . This yields

�ðB0
sðtÞ ! fÞ � �ð �B0

sðtÞ ! fÞ
� ðjAfj2 þ j �Afj2Þe��st½C cos�mst� S sin�mst�;

�ðB0
sðtÞ ! fÞ þ �ð �B0

sðtÞ ! fÞ
� ðjAfj2 þ j �Afj2Þe��st½coshð��st=2Þ

�A�� sinhð��st=2Þ�; (15)

where

3Knowledge of tan�s gives �s with a twofold ambiguity,
�s $ �þ�s. However, assl determines sin�s, which allows
one to differentiate �s and �þ�s.

B0
sð �B0

sÞ ! D0
CPK
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C � 1� j	j2
1þ j	j2 ; S � 2 Im	

1þ j	j2 ;

A�� � 2Re	

1þ j	j2 ; 	 � q

p

�Af

Af

: (16)

The idea is that, by fitting the data corresponding to the
difference (‘‘tagged’’) and sum (‘‘untagged’’) of decay
rates to the four time-dependent functions given on the
right-hand side of the equations in Eq. (15), the coefficients
of these functions can be obtained, from which C, S, and
A�� can be derived. However, there is a complication—in
the presence of NP in �B ¼ 2 transitions,��s is unknown
(though it is assumed to be reasonably large). Therefore,
for the untagged combination, both ��s andA�� must be
found in the fit. Still, though this will determine j��sj, its
sign will remain unknown. The reason is that only the
function sinhð��st=2Þ is sensitive to the sign of ��s, and
it is multiplied by A��. Thus, any change in the sign of
��s can be compensated for by changing the sign ofA��.
The bottom line is that any analysis which uses A�� will
have a discrete ambiguity due to the unknown sign of ��s.

Similarly,

�ðB0
sðtÞ ! �fÞ � 1

2
e��st

�
ðjA �fj2 þ j �A �fj2Þ coshð��st=2Þ

þ ðjA �fj2 � j �A �fj2Þ cos�mst

� 2 sinhð��st=2ÞRe
�
p

q
�A�
�f
A �f

�

þ 2 sin�mstIm

�
p

q
�A�
�f
A �f

��
;

�ð �B0
sðtÞ ! �fÞ � 1

2
e��st

�
ðjA �fj2 þ j �A �fj2Þ coshð��st=2Þ

� ðjA �fj2 � j �A �fj2Þ cos�mst

� 2 sinhð��st=2ÞRe
�
p

q
�A�
�f
A �f

�

� 2 sin�mstIm

�
p

q
�A�
�f
A �f

��
; (17)

where A �f � AðB0
s ! �fÞ and �A �f � Að �B0

s ! �fÞ. Then

�ðB0
sðtÞ ! �fÞ � �ð �B0

sðtÞ ! �fÞ
�ðB0

sðtÞ ! �fÞ þ �ð �B0
sðtÞ ! �fÞ

¼
�C cos�mstþ �S sin�mst

coshð��st=2Þ � �A�� sinhð��st=2Þ
; (18)

where

�C � 1� j �	j2
1þ j �	j2 ;

�S � 2 Im �	

1þ j �	j2 ;

�A�� � 2Re �	

1þ j �	j2 ;
�	 � p

q

A �f

�A �f

: (19)

B. B0
s ð �B0

s Þ ! D�
s K




Consider the decay B0
sð �B0

sÞ ! PP (P is a pseudoscalar),
in which the final state contains a single c quark.4

Excluding those final states involving 
’s, there are only
two decays in which the B0

s and �B0
s amplitudes are

of comparable size: B0
sð �B0

sÞ ! D�
s K

þ and B0
sð �B0

sÞ !
Dþ

s K
�. The B0

s decays are mediated by color-allowed
tree-level transitions �b ! �cu�s and �b ! �uc�s. Within the
SM, the amplitudes take the form5 (there is a minus sign
associated with the �u quark)

AðB0
s ! D�

s K
þÞ ¼ T0; AðB0

s ! Dþ
s K

�Þ ¼ � ~T0ei�;

Að �B0
s ! D�

s K
þÞ ¼ ~T0e�i�; Að �B0

s ! Dþ
s K

�Þ ¼ �T0:
(20)

We have explicitly written the weak-phase dependence,
while the diagrams contain strong phases. The magnitudes
of the Cabbibo-Kobayashi-Maskawa (CKM) matrix ele-
ments jV�

cbVusj and jV�
ubVcsj have been absorbed into the

diagrams T0 and ~T0, respectively. (As this is a �b ! �s
transition, the diagrams are written with primes.)
Using the amplitudes of Eq. (20), one obtains [see

Eqs. (16) and (19)]

C ¼ 1� j	j2
1þ j	j2 ; S ¼ � 2j	j

1þ j	j2 sinð2�s þ �� �Þ;

A�� ¼ 2j	j
1þ j	j2 cosð2�s þ �� �Þ;

�C ¼ 1� j	j2
1þ j	j2 ;

�S ¼ 2j	j
1þ j	j2 sinð2�s þ �þ �Þ;

�A�� ¼ 2j	j
1þ j	j2 cosð2�s þ �þ �Þ; (21)

where j	j ¼ ~T0=T0 (defined to be positive) and � is the
strong-phase difference between ~T0 and T0. j	j can be
obtained from the measurement of C. Using this, S and
A�� give sinð2�s þ �� �Þ and cosð2�s þ �� �Þ, re-
spectively. Thus, one obtains 2�s þ �� � with no dis-
crete ambiguity. Similarly, 2�s þ �þ � can be obtained

with no discrete ambiguity from �S and �A��. These can be
combined to give the phases (2�s þ �, �) with a twofold
ambiguity [(2�s þ �, �) or (2�s þ �þ �, �þ �)]. This
discrete ambiguity can be removed if one assumes facto-
rization, which predicts � to be near 0.
In fact, this is not quite correct. As discussed below

Eq. (16), in the presence of NP in B0
s- �B

0
s mixing there

is an additional discrete ambiguity due to the unknown
sign of ��s. Thus, the two-body decays B0

sð �B0
sÞ ! D�

s K



4Much of the discussion in this subsection can be found in
Ref. [32], except that here NP in ��s is considered.

5In Ref. [29], it is shown that NP in the decays �b ! �cu�s and
�b ! �uc�s are strongly constrained. Such NP contributions are
therefore neglected throughout this paper.
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permit the extraction of 2�s þ �with a fourfold ambiguity
(or twofold if factorization is assumed).

Now, the value of � can be taken from the independent
measurements at the B-factories. One then obtains 2�s

with a fourfold ambiguity. Alternatively, since � has not
been measured in Bs decays, it can be kept with the aim of
determining its value independently (this was the original
purpose of Ref. [32].) We adopt this latter approach in
much of the paper.

We therefore see that this method permits the extraction
of 2�s þ � with a fourfold ambiguity (or twofold if
factorization is assumed). It does not resolve the sign
ambiguity in ��s, and says nothing about the possibility
of NP affecting �s

12. In order to address these remaining

points, it is necessary to examine other methods. A first
step involves the decays B0

sð �B0
sÞ ! D0

CP�, discussed in the

next subsection.

C. B0
s ð �B0

s Þ ! D0
CP�

Another pair of decays to which the method of the
previous subsection can be applied is B0

sð �B0
sÞ ! D0�,

�D0�. Here the decays are mediated by color-suppressed
tree-level transitions. The amplitudes (of comparable size)
are given by

AðB0
s !D0�Þ ¼�C�

1 e
i�; AðB0

s ! �D0�Þ ¼C�
2 ;

Að �B0
s ! �D0�Þ ¼C�

1 e
�i�; Að �B0

s !D0�Þ ¼�C�
2 :

(22)

By measuring the time dependence of the decays, one can
obtain S, �S, A��, and �A�� as given in Eqs. (16) and (19).
Using these observables we define

sinð2�s þ �þ ��Þ ¼ � 1þ j	j2
2j	j S � SD;

sinð2�s þ �� ��Þ ¼ 1þ j	j2
2j	j

�S � �SD;

cosð2�s þ �þ ��Þ ¼ 1þ j	j2
2j	j A�� � AD

��;

cosð2�s þ �� ��Þ ¼ 1þ j	j2
2j	j

�A�� � �AD
��;

(23)

with �� ¼ argðC�
1 =C

�
2 Þ. The method of the previous sub-

section then allows us to obtain 2�s þ � with a twofold
ambiguity (for the moment, we put aside the ambiguity due
to the sign of ��s).

The advantage of these decays is that there is a third
decay which is related: B0

sð �B0
sÞ ! D0

CP�, where D0
CP is

a CP eigenstate (either CP-odd or CP-even). In our
analysis we consider D0

CP as the CP-even superposition

ðD0 þ �D0Þ= ffiffiffi
2

p
. The amplitudes for the decays are then

given by ffiffiffi
2

p
AðB0

s ! D0
CP�Þ ¼ �C�

1 e
i� þ C�

2 ;ffiffiffi
2

p
Að �B0

s ! D0
CP�Þ ¼ C�

1 e
�i� � C�

2 :
(24)

By measuring the time-dependent decay amplitudes of
B0
sð �B0

sÞ ! D� (D ¼ D0, �D0, D0
CP), one can extract the

magnitudes jC�
1 j, jC�

2 j, jADCP
j ¼ jAðB0

s ! D0
CP�Þj and

j �ADCP
j ¼ jAð �B0

s ! D0
CP�Þj (they are combinations of the

overall normalizations and the C parameters [Eq. (16)]).
Using the first equation of Eq. (24), we define

cosð�þ ��Þ ¼
2jADCP

j2 � jC�
1 j2 � jC�

2 j2
2jC�

1 jjC�
2 j

� �þ: (25)

Similarly, from the second equation of Eq. (24), we get

cosð�� ��Þ ¼
2j �ADCP

j2 � jC�
1 j2 � jC�

2 j2
2jC�

1 jjC�
2 j

� ��: (26)

Therefore, in the case of the B0
sð �B0

sÞ ! D� decays, we
have two more observables, �þ and ��. Combining
Eqs. (23), (25), and (26), it is straightforward to find
expressions for sin2�s, cos2�s, sinð2�s þ 2�Þ, and
cosð2�s þ 2�Þ in terms of the above observables:

sin2�s ¼ S2D � �S2D þ �þ2 ���2

2ðSD�þ � �SD�
�Þ ;

sinð2�s þ 2�Þ ¼ S2D � �S2D � �þ2 þ��2

2ðSD�� � �SD�
þÞ ;

cos2�s ¼ S2D � �S2D � �þ2 þ��2

2ð �AD
���

� � AD
���

þÞ ;

cosð2�s þ 2�Þ ¼ S2D � �S2D þ �þ2 ���2

2ð �AD
���

þ � AD
���

�Þ ; (27)

with

S2D � �S2D ¼ �ðAD
��Þ2 þ ð �AD

��Þ2: (28)

Many years ago, B0
sð �B0

sÞ ! D� decays were studied
[34], but without the dependence on ��s. It was found
that sin2�s and sinð2�s þ 2�Þ could be obtained, which
correspond to determining 2�s with a twofold ambiguity
and 2� with a fourfold ambiguity. In the present case, the
dependence on ��s is included. This allows us to obtain
AD
�� and �AD

��, which then permits us to measure cos2�s

and cosð2�sþ2�Þ, in addition to sin2�s and sinð2�sþ2�Þ
[Eq. (27)]. These measurements allow an unambiguous
determination of 2�s and 2�. We therefore see that a
nonzero ��s helps quite a bit in determining the weak
phases. As has been discussed above, the sign of��s is not
known, which implies that AD

�� and �AD
�� also have a sign

ambiguity. This means that, in fact, 2�s and � are deter-
mined up to a twofold and fourfold6 ambiguity, respec-
tively. Therefore, once we are able to fix the sign of ��s,

6Using Eq. (27), we can determine cos2� without any ambi-
guity, whereas, due to the unknown sign of AD

�� or �AD
��, sin2�

can be determined only with a twofold ambiguity. Combining
these two results, 2� can therefore be determined with a twofold
ambiguity (or � with a fourfold ambiguity).
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the B0
sð �B0

sÞ ! D� decays might be considered as an alter-
native mode to probe simultaneously � and 2�s.

We therefore see that two-body �b ! �cu �s= �b ! �uc�s de-
cays do not provide sufficient information to measure the
CP phases 2�s and 2� in an unambiguous manner. In the
next section we show that there are several ways to im-
prove upon the two-body decay methods by using a Dalitz-
plot analysis of the corresponding three-body decays.

III. THREE-BODY DECAYS

A. B0
s ð �B0

s Þ ! f , �f

In recent years, it has been shown that one can get
useful information from three-body B decays. For instance,
time-integrated Dalitz-plot analyses of B0

s ! K�� and
B0
s ! �K �K decays have been proposed as a probe of �

[38]. And various tests of the SM, as well as the extraction
of weak phases, have been examined in the context of
B ! K��, B ! K �KK, B ! � �KK, and B ! ��� decays
[39].

In the previous section we discussed two-body
�b ! �cu �s= �b ! �uc�s decays; in this section we examine
the corresponding three-body decays. In B0

sð �B0
sÞ ! PPP

decays which receive a tree contribution, there are 5
final-state ðf; �fÞ pairs: (D�

s K
þ�0, Dþ

s K
��0), (D�

s K
0�þ,

Dþ
s
�K0��), (D�Kþ �K0,DþK0K�), ( �D0KþK�,D0KþK�),

and ( �D0K0 �K0, D0K0 �K0). The CKM matrix elements of
these decays are the same as in the corresponding two-
body decay modes, and will therefore exhibit very similar
time-dependent CP asymmetries.

The decay amplitude of B0
sð �B0

sÞ ! PPP receives several
different contributions, both resonant and nonresonant. In
the following, we perform a time-dependent Dalitz-plot
analysis of the three-body decays. This permits the mea-
surement of each of the contributing amplitudes, as well as
their relative phases. As we will see below, the Dalitz-plot
analysis reduces the ambiguity in the measurement of �
and 2�s compared to the corresponding two-body decays.
We also show how this analysis resolves the sign ambiguity
in ��s.

B. Dalitz-plot analysis

Here we review certain aspects of the Dalitz-plot
analysis. We focus on the general three-body decay
B ! P1P2P3. We define the Dalitz-plot variables

s12 � ðp1þp2Þ2; s13 � ðp1þp3Þ2; s23 � ðp2þp3Þ2;
(29)

which are related by the conservation law

s12 þ s13 þ s23 ¼ m2
B þm2

1 þm2
2 þm2

3: (30)

This shows that there are only two independent variables
(below, we use s12 and s13).

B ! P1P2P3 can take place either via intermediate
resonances or nonresonant contributions. A widely used

approximation in the parametrization of the decay ampli-
tude is the isobar model. In this model, the individual terms
are interpreted as complex production amplitudes for
two-body resonances, and one also includes a term describ-
ing the nonresonant component. The amplitude is then
written as

A ðs12; s13Þ ¼
X
j

ajFjðs12; s13Þ; (31)

where the sum is over all decay modes (resonant and
nonresonant). Here, the aj are the complex coefficients

describing the magnitudes and phases of different decay
channels, while the Fjðs12; s13Þ contain the strong dynam-

ics. The CP-conjugate amplitude is given by

�Aðs12; s13Þ ¼
X
j

�aj �Fjðs13; s12Þ; (32)

where �Fjðs13; s12Þ ¼ Fjðs12; s13Þ.
Now, in the experimental analysis, the Fjðs12; s13Þ take

different (known) forms for the various contributions. By
performing a maximum likelihood fit over the entire Dalitz
plot, one can obtain the magnitudes and relative phases of
the aj, and similarly for the �aj. Thus, the full decay

amplitudes can be obtained.

C. B0
s ð �B0

s Þ ! D�
s K


�0

In this subsection we focus specifically on the decay
B0
sð �B0

sÞ ! D�
s K


�0, and use a modification of the method
elaborated in Ref. [40]. The Dalitz-plot variables are

sþ � ðpDs
þ p�Þ2;

s� � ðpK þ p�Þ2;
s0 � ðpDs

þ pKÞ2:
(33)

The amplitudes are written as

Aðsþ; s�Þ ¼X
j

ajFjðsþ; s�Þ;

�Aðsþ; s�Þ ¼X
j

�aj �Fjðs�; sþÞ: (34)

The time-dependent decay rates for the oscillating B0
sðtÞ

and �B0
sðtÞ mesons, decaying to the same final state f, are

given by

�ðB0
sðtÞ ! fÞ � 1

2
e��st½Achðsþ; s�Þ coshð��st=2Þ

� Ashðsþ; s�Þ sinhð��st=2Þ þ Acðsþ; s�Þ
	 cosð�mstÞ � Asðsþ; s�Þ sinð�mstÞ�;

�ð �B0
sðtÞ ! fÞ � 1

2
e��st½Achðs�; sþÞ coshð��st=2Þ

� Ashðs�; sþÞ sinhð��st=2Þ � Acðs�; sþÞ
	 cosð�mstÞ þ Asðs�; sþÞ sinð�mstÞ�:

(35)
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Here

Achðsþ; s�Þ ¼ jAðsþ; s�Þj2 þ j �Aðsþ; s�Þj2;
Acðsþ; s�Þ ¼ jAðsþ; s�Þj2 � j �Aðsþ; s�Þj2;
Ashðsþ; s�Þ ¼ 2Reðe�2i�s �Aðsþ; s�ÞA�ðsþ; s�ÞÞ;
Asðsþ; s�Þ ¼ 2 Imðe�2i�s �Aðsþ; s�ÞA�ðsþ; s�ÞÞ; (36)

where Aðsþ; s�Þ and �Aðsþ; s�Þ are given in Eq. (34).
Now, there are a number of resonances which contribute

to B0
sð �B0

sÞ ! D�
s K


�0. For illustrative purposes, we con-
sider just two of them: D�

s K
�
ð892Þ and D��

s K
. The
decays K�� ! K��0 and D��

s ! D�
s �

0 have already
been observed: BðK��ð892Þ ! K��0Þ ¼ 50%, BðD��

s !
D�

s �
0Þ ¼ ð5:8� 0:7Þ% [41]. B0

sð �B0
sÞ ! D�

s K
�
 and

B0
sð �B0

sÞ ! D��
s K
 are the B0

sð �B0
sÞ ! VP equivalents of

the decay discussed in Sec. II, B0
sð �B0

sÞ ! D�
s K


. The
additional ingredient here is that we also consider the

decay products of the V, so that we have the full decay
chain B0

sð �B0
sÞ ! VP ! PPP.

For these two resonances, we have

AK� ðB0
s ! D�

s K
�þ ! D�

s K
þ�0Þ ¼ aK

�
1 ei�FK� ;

�AK� ð �B0
s ! D�

s K
�þ ! D�

s K
þ�0Þ ¼ aK

�
2 FK� ;

AD�
s
ðB0

s ! D��
s Kþ ! D�

s K
þ�0Þ ¼ aD

�
s

1 ei�FD�
s
;

�AD�
s
ð �B0

s ! D��
s Kþ ! D�

s K
þ�0Þ ¼ a

D�
s

2 FD�
s
: (37)

Including both resonances, the amplitudes of B0
sð �B0

sÞ !
D�

s K
þ�0 are

A ¼ ei�ðaK�
1 FK� þ a

D�
s

1 FD�
s
Þ;

�A ¼ ðaK�
2 FK� þ aD

�
s

2 FD�
s
Þ: (38)

With these amplitudes, Ach, Ac, Ash and As [Eq. (36)]
take the forms

A
DsK�
ch ¼ ðjaK�

1 j2 þjaK�
2 j2ÞjFK� j2 þðjaD�

s

1 j2 þjaD�
s

2 j2ÞjFD�
s
j2 þ 2ReððaK�

1 FK� Þ�ðaD�
s

1 FD�
s
ÞÞþ 2ReððaK�

2 FK� Þ�ðaD�
s

2 FD�
s
ÞÞ;

ADsK�
c ¼ ðjaK�

1 j2 �jaK�
2 j2ÞjFK� j2 þðjaD�

s

1 j2 �jaD�
s

2 j2ÞjFD�
s
j2 þ 2ReððaK�

1 FK� Þ�ðaD�
s

1 FD�
s
ÞÞ� 2ReððaK�

2 FK� Þ�ðaD�
s

2 FD�
s
ÞÞ;

ADsK�
sh ¼ cosð2�s þ�þ�K� ÞjaK�

1 jjaK�
2 jjFK� j2 þ cosð2�s þ�þ�D�

s
ÞjaD�

s

1 jjaD�
s

2 jjFD�
s
j2 þ cosð2�s þ�þ�ÞjaK�

1 jjaD�
s

2 jRe
	ðF�

K�FD�
s
Þ� sinð2�s þ�þ�ÞjaK�

1 jjaD�
s

2 jImðF�
K�FD�

s
ÞþRe½e�ið2�sþ�ÞðaD�

s

1 FD�
s
Þ�ðaK�

2 FK� ÞÞ�;
ADsK�
s ¼� sinð2�s þ�þ�K� ÞjaK�

1 jjaK�
2 jjFK� j2 � sinð2�s þ�þ�D�

s
ÞjaD�

s

1 jjaD�
s

2 jjFD�
s
j2 � sinð2�s þ�þ�ÞjaK�

1 jjaD�
s

2 jRe
	ðF�

K�FD�
s
Þþ cosð2�s þ�þ�ÞjaK�

1 jjaD�
s

2 jImðF�
K�FD�

s
Þþ Im½e�ið2�sþ�ÞðaD�

s

1 FD�
s
Þ�ðaK�

2 FK� ÞÞ�; (39)

with �K� ¼ � argððaK�
1 Þ�aK�

2 Þ, �D�
s
¼ � argððaD�

s

1 Þ�aD�
s

2 Þ,
and � ¼ � argððaK�

1 Þ�aD�
s

2 Þ.
Above, in the discussion of the time-independent Dalitz-

plot analysis, we noted that the magnitudes and relative
phases of the aj can be obtained from a maximum like-

lihood fit over the entire Dalitz plot, given assumed forms
for the Fj’s. The same holds true for the time-dependent

Dalitz-plot analysis—the magnitudes and relative phases

of the contributing resonances, i.e. aK
�

1 , aK
�

2 , aD
�
s

1 , and aD
�
s

2 ,

can all be obtained. Indeed, such an analysis has been
performed by the BABAR and Belle collaborations for the
decay B0

dðtÞ ! KS�
þ�� [42]. In particular, all the coef-

ficients that multiply the F�
i Fj [Eq. (39)] bilinears can be

obtained from a maximum likelihood fit to the correspond-
ing Dalitz-plot PDFs.

This permits the extraction of the weak phases. For
example, we can extract 2�s þ �þ � without any ambi-

guity from the third and fourth terms of ADsK�
s . In a similar

manner, the time-dependent Dalitz-plot analysis of
B0
sð �B0

sÞ ! Dþ
s K

��0 allows the extraction of the phase
2�s þ �� �. The combination of these two results yields
2�s þ � and � with a twofold ambiguity. And if factoriza-
tion is imposed, the discrete ambiguity is removed entirely

(only the solution with � ’ 0 is kept). The key point here is

thatwe do not useADsK�
sh at all. As a consequence, there is no

discrete ambiguity due to the sign ambiguity of��s [see the
discussion following Eq. (36)]. This is to be contrasted with
two-body decays. There 2�s þ � can also be obtained with

a twofold ambiguity. However, becauseA�� and
�A�� are

used [Eq. (21)], there is an additional discrete ambiguity
due to the unknown sign of ��s.
We note that one can extract different trigonometric

functions such as j sinð2�s þ �þ �Þj, jcosð2�sþ�þ�Þj,
j cosð2�s þ �þ �iÞj, etc., from A

DsK�
sh [Eq. (39)]. Because

of the sign ambiguity of ��s, which can be viewed as the

sign ambiguity in ADsK�
sh , the sign of these trigonometric

functions cannot be determined. Depending on the sign of
��s, their sign could be positive or negative. Therefore, we
can determine the sign of ��s if we are able to fix the sign
of these trigonometric functions. Now, the functions
sinð2�s þ �þ �Þ and cosð2�s þ �þ �Þ can be extracted

without ambiguity from ADsK�
s , which fixes the sign of��s

and hence removes the discrete ambiguity in A
DsK�
sh .

Note that this can be done without measuring �s. This
method can therefore be used to determine the sign
of cos�s.
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In the above, we have concentrated on the decay
B0
sð �B0

sÞ ! D�
s K


�0. However, any of the decay pairs
discussed in Sec. III can be used. All that is necessary is
that there be at least two resonances contributing to the
decay. We therefore see that, by using such three-body
decays, one can obtain 2�s þ � (with a twofold ambiguity
if factorization is not assumed), as well as resolve the sign
ambiguity in ��s. The resolution of the ��s sign ambigu-
ity determines the sign of cos�s. The precise knowledge of
� from other measurements allows one to obtain 2�s with
a twofold ambiguity (since 2�s þ � can itself be extracted
with a twofold ambiguity), which can be compared with
the measurement of 2�s from B0

s ! J=c� [Eq. (8)].
Still, it is preferable to have a method that allows the

direct determination of 2�s and � individually. This can be
done by measuring the decay B0

sð �B0
sÞ ! D0

CPK
�K, which is

discussed in the next subsection.

D. B0
s ð �B0

s Þ ! D0
CPK

�K

In Sec. II C we discussed the two-body decays B0
sð �B0

sÞ !
D� (D ¼ D0, �D0, D0

CP), and showed that it is possible to

extract 2�s and 2� with a twofold ambiguity due to the
unknown sign of ��s. The time-dependent Dalitz-plot
analysis of B0

sð �B0
sÞ ! D0K �K, �D0K �K is similar to that of

the previous subsection, with the intermediate resonances
�ð1020Þ or f0ð1500Þ decaying to the final state K �K. In this
subsection we consider in addition the related three-body

decays B0
sð �B0

sÞ ! D0
CPK

�K, with D0
CP � 1=

ffiffiffi
2

p ðD0 � �D0Þ.
B0
sð �B0

sÞ ! D0
CPK

�K receives contributions from several

different intermediate resonances: �ð1020Þ, �ð1680Þ,
f0ð1500Þ, f0ð1710Þ, D��

sj , etc., which follow the decay

chains B0
sð �B0

sÞ ! D0
CP� ! D0

CPK
þK�, B0

sð �B0
sÞ !

D0
CPf0 ! D0

CPK
þK�, B0

sð �B0
sÞ ! D��

sj K

 ! D0

CPK
�K
.

To simplify our analysis, we consider only the �ð1020Þ
and f0ð1500Þ resonances. The amplitude with an inter-
mediate � resonance can be written as

ffiffiffi
2

p
A�ðB0

s ! D0
CP�ð! KþK�ÞÞ

¼ AðB0
s ! D0KþK�Þ þ AðB0

s ! �D0KþK�Þffiffiffi
2

p
�A�ð �B0

s ! D0
CP�ð! KþK�ÞÞ

¼ Að �B0
s ! D0KþK�Þ þ Að �B0

s ! �D0KþK�Þ; (40)

where

AðB0
s ! D0� ! D0KþK�Þ ¼ �C�

1 e
i�F�;

Að �B0
s ! D0� ! D0KþK�Þ ¼ �C�

2 F�;

AðB0
s ! �D0� ! D0KþK�Þ ¼ C�

2 F�;

Að �B0
s ! �D0� ! D0KþK�Þ ¼ C�

1 e
�i�F�: (41)

The amplitude with an intermediate f0 resonance is given
by a similar expression, with the replacement � ! f0.
Including the contributions from these two resonances,
the total amplitude can be written as

AðB0
s ! D0

CPK
þK�Þ ¼ A�ðB0

s ! D0
CPK

þK�Þ
þ Af0ðB0

s ! D0
CPK

þK�Þ;
�Að �B0

s ! D0
CPK

þK�Þ ¼ �A�ð �B0
s ! D0

CPK
þK�Þ

þ �Af0ð �B0
s ! D0

CPK
þK�Þ: (42)

With these, ADKK
c , ADKK

ch and ADKK
s can be computed

similarly to Eq. (39). First, we have

ADKK
c ¼ X

i¼�;f0

½ðjAij2 � j �Aij2Þ þ 2ReðA�A
�
f0
� �A�

�A�
f0
Þ�;

ADKK
ch ¼ X

i¼�;f0

½ðjAij2 þ j �Aij2Þ þ 2ReðA�A
�
f0
þ �A�

�A�
f0
Þ�;

(43)

in which

ReðA�A
�
f0
� �A�

�A�
f0
Þ ¼ jCf0

2 jjC�
2 j sin�½r�fsin�� ReðF�F

�
f0
Þ þ cos�� ImðF�F

�
f0
Þg

þ rf0fsin�f0 ReðF�F
�
f0
Þ � cos�f0 ImðF�F

�
f0
Þg�;

ReðA�A
�
f0
þ �A�

�A�
f0
Þ ¼ jCf0

2 jjC�
2 j½ReðF�F

�
f0
Þ � r� cos�fcos�� ReðF�F

�
f0
Þ � sin�� ImðF�F

�
f0
Þg

� rf0 cos�fcos�f0 ReðF�F
�
f0
Þ þ sin�f0 ImðF�F

�
f0
Þg

þ r�rf0fcosð�� � �f0ÞReðF�F
�
f0
Þ � sinð�� � �f0ÞImðF�F

�
f0
Þg�; (44)

where ri ¼ jCi
1j=jCi

2j and �i ¼ argðCi
1=C

i
2Þ (i ¼ �, f0).

Using Eq. (44) in Eq. (35), a maximum likelihood fit to the
Dalitz-plot PDFs allows one to extract

jCf0
2 jjC�

2 jri cos� cos�i � �i
c;

jCf0
2 jjC�

2 jri sin� cos�i � �i
s:

(45)

This gives the ratio

�i
s

�i
c

¼ tan�: (46)

Since the hadronic uncertainties cancel in the ratio, it
yields a theoretically clean determination of the angle �
with a twofold ambiguity, even without the knowledge of
the strong phases.
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Second, we have

ADKK
s ¼ Im½e�2i�sA� �A� ¼ Im½e�2i�sðA�

�
�A� þ A�

�
�Af0 þ A�

f0
�A� þ A�

f0
�Af0Þ�: (47)

The first and fourth terms of ADKK
s are given by

Im ½e�2i�sA�
i
�Ai� ¼ 1

2
Im½e�2i�s jCi

2j2jFij2ð1þ r2i e
�2i� þ riðeið����Þ þ e�ið��þ�ÞÞÞ�; (48)

which allows the extraction of sin2�s, sinð2�s þ 2�Þ, sinð2�s þ �� ��=f0Þ and sinð2�s þ �þ ��=f0Þ. The �-f0
interference terms are given by

Im½e�2i�sðA�
�
�Af0 þ A�

f0
�A�Þ� ¼ 1

2 Im½e�2i�s jC�
2 jjCf0

2 jf�ðF�
�Ff0 þ F�

f0
F�Þ þ r�ðe�ið�þ��ÞF�

�Ff0 þ e�ið����ÞF�
f0
F�Þ

þ rf0ðe�ið���f0
ÞF�

�Ff0 þ e�ið�þ�f0
ÞF�

f0
F�Þ � r�rf0ðe�ið2�þ����f0

ÞF�
�Ff0

þ e�ið2����þ�f0
ÞF�

f0
F�Þg�: (49)

This yields

Im½e�2i�sðA�
�
�Af0 þ A�

f0
�A�Þ� ¼ 1

2jC�
2 jjCf0

2 j½sin2�sfReðF�
�Ff0Þ þ ReðF�

f0
F�Þg � r�fsinð2�s þ �þ ��ÞReðF�

�Ff0Þ
� cosð2�s þ �þ ��ÞImðF�

�Ff0Þ þ sinð2�s þ �� ��ÞReðF�
f0
F�Þ

� cosð2�s þ �� ��ÞImðF�
f0
F�Þg � rf0fsinð2�s þ �þ �f0ÞReðF�

f0
F�Þ

� cosð2�s þ �þ �f0ÞImðF�
f0
F�Þ þ sinð2�s þ �� �f0ÞReðF�

�Ff0Þ
� cosð2�s þ �� �f0ÞImðF�

�Ff0Þg þ r�rf0fsinð�� � �f0 þ 2�s þ 2�ÞReðF�
�Ff0Þ

� cosð�� � �f0 þ 2�s þ 2�ÞImðF�
�Ff0Þ þ sinð�f0 � �� þ 2�s þ 2�ÞReðF�

f0
F�Þ

� cosð�f0 � �� þ 2�s þ 2�ÞImðF�
f0
F�Þg�: (50)

From the above, we can extract

�ri sinð2�s þ �� �iÞ � Si�DKK;

ri cosð2�s þ �� �iÞ � Ci�
DKK;

sin2�s � SDKK;

rij sinð2�s þ 2�� �ijÞ � Sij�DKK;

�rij cosð2�s þ 2�� �ijÞ � Cij�
DKK; (51)

where rij � rirj and the corresponding �ij � �i � �j (i,
j ¼ �, f0). It is straightforward to find expressions for
tanð2�s þ �Þ and tanð2�s þ 2�Þ in terms of the above
observables:

tanð2�s þ �Þ ¼ � SiþDKK þ Si�DKK

Ciþ
DKK þ Ci�

DKK

;

tanð2�s þ 2�Þ ¼ � SijþDKK þ Sij�DKK

Cijþ
DKK þ Cij�

DKK

:

(52)

With these, one can obtain the expression for tan� in terms
of the extracted observables:

tan� ¼ tanð2�s þ 2�Þ � tanð2�s þ �Þ
1� tanð2�s þ �Þ tanð2�s þ 2�Þ : (53)

This way of getting tan� uses ADKK
s [see also Eq. (46)].

Combining Eqs. (52) and (53), we obtain

tan2�s ¼ tanð2�s þ �Þ � tan�

1� tanð2�s þ �Þ tan� : (54)

This determines 2�s with the twofold ambiguity 2�s !
�þ 2�s. However, as we note in Eq. (51), we can extract
sin2�s without any sign ambiguity. This determines 2�s

with the twofold ambiguity 2�s ! �� 2�s, which is
different from that obtained in tan2�s. Therefore, the
combined measurements of tan2�s and sin2�s allow us
to extract 2�s without any ambiguity. The sign ambiguity
in��s can be resolved in a similar way to that discussed in
Sec. III C.
Above, we discussed the interference between the two

resonance states �ð1020Þ and f0ð1500Þ. However, the
analysis would hold equally for the interference between
any two resonances decaying to the same final state.
Similar information can also be obtained from the time-
dependent Dalitz-plot analysis of B0

sð �B0
sÞ ! D0

CPK
0 �K0.

IV. EXTRACTION OF ��s

In the previous section(s) we examined methods for
extracting the CP phase 2�s using various two- and
three-body decays. The idea is that if a nonzero value of
2�s is found, this will be clear evidence of NP in B0

s- �B
0
s

mixing. In addition, if such a value of 2�s is obtained, we
will want to know its exact value in order to ascertain

B0
sð �B0

sÞ ! D0
CPK
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which different models of NP could generate such mixing.
To this end, the best method will be that for which the
discrete ambiguity in 2�s is minimized. However, there is
one question which has not yet been addressed: if NP in
the mixing is found, does it contribute to �s

12 in addition

to Ms
12?

In this paper we have focused on methods for measuring
��s using three-body decays. In practice, this will be
carried out as follows. For definitiveness, consider the
decays B0

sð �B0
sÞ ! D0

CPK
þK�. Generalizing Eq. (35) to

B0
sð �B0

sÞ ! D0
CPK

þK�, the time-dependent untagged dif-

ferential decay distribution is given by

�untaggedðD0
CPK

þK�; tÞ ¼ d2�ðB0
s ! D0

CPK
þK�Þ

dsþds�

þ d2�ð �B0
s ! D0

CPK
þK�Þ

dsþds�

� e��st½ADKK
ch coshð��st=2Þ

þ ADKK
sh sinhð��st=2Þ�; (55)

where ADKK
ch and ADKK

sh are defined in Eq. (36). Neglecting

terms of order ð��s=�
2
sÞ2 and higher, the time-integrated

differential untagged decay distribution is given by

Z 1

0
dt�untaggedðD0

CPK
þK�; tÞ

¼ 1

4�s

�
ADKK
ch þ 2ADKK

sh

��s

�s

�
: (56)

For a single resonance, say �,

ADKK
ch ¼ A2

� þ �A2
�;

ADKK
sh ¼ Re½e�2i�s jC�

2 j2jF�j2f1þ r2�e
�2i�

þ r�ðe�ið�þ��Þ þ e�ið����ÞÞg�: (57)

As discussed in the previous section, ADKK
ch is fully known

from the CP-averaged branching fraction of the intermedi-
ate resonance �. Once we have enough precision, a fit to
the distribution given by Eq. (55) or (56) allows one to
obtain ��s and the various coefficients of jF�j2 (which

yields 2�s). Such a fit will not allow the determination of
the sign of ��s or cos�s, but Eq. (10) can still be used to
obtain �s (with a twofold ambiguity) and j�s

12j.
However, the above fit, though possible, is made difficult

due to the requirement of having to simultaneously extract
��s and the components of ADKK

ch . Given this, we would

rather propose an alternative procedure. Referring again to
Eq. (35), the time-dependent tagged differential decay
distribution is given by

�taggedðD0
CPK

þK�; tÞ ¼ d2�ðB0
s ! D0

CPK
þK�Þ

dsþds�

� d2�ð �B0
s ! D0

CPK
þK�Þ

dsþds�

� e��st½ADKK
c cosð�mst=2Þ

� ADKK
s sinð�mst=2Þ�; (58)

where ADKK
c and ADKK

s are defined in Eqs. (36), (43), and
(50). From a fit to the above distribution, one can extract
only the coefficients of different bilinears in ADKK

s and
ADKK
c , since �ms is known. Thus, this fit straightforwardly

gives information regarding ADKK
c and ADKK

s . As discussed
in the previous section, from ADKK

s alone we can extract
2�s and �þ 2�s � �� without any ambiguity, and � with

the ambiguity ½�;�þ ��. This permits the reconstruction
of ADKK

sh [Eq. (57)]. That is, all the coefficients of jF�j2 in
ADKK
sh can be obtained from a fit to Eq. (58). With this

knowledge, there is only one unknown in Eq. (55) or (56)
—��s—and this can be determined by a fit. This may be a
somewhat simpler procedure. Once we are able to measure
��s, then, as discussed in the introduction, along with assl
and �Ms, Eq. (10) can be used to obtain the CP phase �s

and j�s
12j. This can then reveal the presence of NP in the

mixing through a comparison with Eq. (7).
The above analysis is also applicable to the decays

B0
sð �B0

sÞ ! D�
s K


�0. However, as was discussed in
Sec. III C, for such decays all the trigonometric functions

in ADsK�
sh are not fully known—the only known functions

are those appearing as the coefficients of ImðFiF
�
j Þ or

ReðFiF
�
j Þ (i � j). Therefore, for such decays we can use

Eq. (55) to fit ��s, but we need at least two interfering
resonances, and only the terms proportional to ImðFiF

�
j Þ or

ReðFiF
�
j Þ are useful [see ADsK�

ch in Eq. (39)].

V. CONCLUSIONS

It is well known that the weak phase of B0
s- �B

0
s mixing is

very small in the SM: 2�s ’ 0. If this quantity is measured
to be significantly different from zero, this is a smoking-
gun signal of NP. However, in general we would like more
information from such a measurement. For instance, in
order to distinguish among potential NP models, it is
important to have an unambiguous determination of 2�s.
Similarly, although the width difference ��s between the
two Bs mass eigenstates is positive in the SM, it can take
either sign in the presence of NP. Ideally, a method probing
B0
s- �B

0
s mixing which relies on a nonzero ��s should be

able to remove its sign ambiguity. To date, 2�s has been
extracted from the measurement of the indirect CP asym-
metry in B0

s ! J=c� by the CDF, DØ, and LHCb
Collaborations. However, the possibility of NP in �b !
�sc �c decays cannot be ruled out, and it is hard to estimate
the size of the penguin pollution in such decays. It is
therefore important to have an independent measurement
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of 2�s from processes in which NP effects in the decay can
be neglected, and which are not polluted by incalculable
hadronic contributions. Finally, although it is usually as-
sumed that NP contributes only to Ms

12, it has been shown

that NP contributions to �s
12 can also be important. In order

to explore this possibility, it is necessary to measure theCP
phase �s and j�s

12j.
In this paper, we examine a variety of methods of

measuring B0
s- �B

0
s mixing with an eye to addressing the

above issues. We look at penguin-free two- and three-
body Bs decays with �b ! �cu�s and �b ! �uc�s transitions,
concentrating on those final states which are accessible to
both B0

s and �B0
s mesons (so that there is indirect CP

violation). The time-dependent decay rates include both
�mst and ��st terms.

We begin with a review of B0
sð �B0

sÞ ! D�
s K


 decays.
Considering sizeable ��s, we find that this method allows
the extraction of 2�s þ � with a fourfold ambiguity. We
then turn to B0

sð �B0
sÞ ! D0

CP� decays, where D0
CP is a CP

eigenstate. Here we find that 2�s and 2� can each be
determined up to a twofold ambiguity. Here, the ambiguity
is due to the unknown sign of ��s. Therefore, once we are
able to resolve the sign ambiguity in ��s by some other
means, the B0

sð �B0
sÞ ! D0

CP� decays are useful to measure

2�s and 2� without any ambiguity.
For unambiguous measurements of 2�s and �, it is

necessary to turn to Dalitz-plot analyses of three-body
decays. We begin with B0

sð �B0
sÞ ! D�

s K

�0. We find that

it is possible to obtain 2�s þ � with a twofold ambiguity,
and to remove the sign ambiguity in ��s (for this, it is not
necessary to determine �s). The most promising method
involves the decays B0

sð �B0
sÞ ! D0

CPK
�K, in which all issues

can be resolved. We find that 2�s can be obtained without
any ambiguity, and at the same we can remove the sign
ambiguity in ��s. In addition, � can be determined up to a
twofold ambiguity.
Finally, all such decays allow the extraction of ��s

directly from a fit to the time-dependent untagged differ-
ential decay rate distribution. Given the measurements of
�Ms, the semileptonic asymmetry assl, and ��s, the CP
phase �s and j�s

12j can be obtained, which can then reveal

the presence of NP in the mixing. In the case of three-body
decays the coefficients of sinh½��st=2� and cosh½��st=2�
can be found, either fully or partially, from a fit to the time-
dependent tagged differential decay rate distribution. (Of
the several three-body decays that we discuss, the decays
B0
sð �B0

sÞ ! D0
CPK

�K are the most promising, since in such

decays these coefficients can be fully reconstructed from
this fit.) Therefore, in three-body decays the only unknown
in the untagged rate distribution is ��s. This makes the fit
considerably simpler.
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Note added: recently, the LHCb Collaboration measured
the sign of ��s to be positive, and was therefore able to

measure 2�c�
s unambiguously [43]. In light of this, the

method for resolving the sign ambiguity in ��s described
in this paper can be considered as an independent cross-
check.

[1] S. Nandi and A. Kundu, arXiv:hep-ph/0407061; S.
Mishima and T. Yoshikawa, Phys. Rev. D 70, 094024
(2004); C. S. Kim, S. Oh, and C. Yu, Phys. Rev. D 72,
074005 (2005).

[2] In the latest update of the �K puzzle, it was seen that,
although NP was hinted at in B ! �K decays, it could be
argued that the SM can explain the data, see S. Baek, C.W.
Chiang, and D. London, Phys. Lett. B 675, 59 (2009).

[3] H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D 72,
094003 (2005); G. Buchalla, G. Hiller, Y. Nir, and G. Raz,
J. High Energy Phys. 09 (2005) 074; E. Lunghi and A.
Soni, J. High Energy Phys. 08 (2009) 051.

[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.
91, 171802 (2003); K. F. Chen et al. (Belle Collaboration),
Phys. Rev. Lett. 91, 201801 (2003).

[5] A. Ishikawa et al. (Belle Collaboration), Phys. Rev. Lett.
96, 251801 (2006); J. T. Wei et al. (BELLE
Collaboration), Phys. Rev. Lett. 103, 171801 (2009).

[6] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73,
092001 (2006); 79, 031102 (2009).

[7] I. Dunietz, R. Fleischer, and U. Nierste, Phys. Rev. D 63,
114015 (2001).

[8] A. Lenz, Nucl. Phys. B, Proc. Suppl. 177–178, 81 (2008)
(Note that this paper assumes negligibleNP contributions to
�s
12).

[9] V.M. Abazov et al. (DØ Collaboration), Phys. Rev.
Lett. 97, 021802 (2006); A. Abulencia et al. (CDF-Run
II Collaboration), Phys. Rev. Lett. 97, 062003
(2006).

[10] A. Lenz and U. Nierste, arXiv:1102.4274.
[11] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.

100, 161802 (2008).
[12] V.M. Abazov et al. (DØ Collaboration), Phys. Rev. Lett.

101, 241801 (2008).
[13] S. Nandi and J. P. Saha, Phys. Rev. D 74, 095007

(2006); A. Kundu and S. Nandi, Phys. Rev. D 78,
015009 (2008); G. Bhattacharyya, K. B. Chatterjee, and
S. Nandi, Phys. Rev. D 78, 095005 (2008).

[14] V. Barger, L. Everett, J. Jiang, P. Langacker, T. Liu, and
C. Wagner, Phys. Rev. D 80, 055008 (2009);

B0
sð �B0

sÞ ! D0
CPK

�K: . . . PHYSICAL REVIEW D 85, 114015 (2012)

114015-11

http://arXiv.org/abs/hep-ph/0407061
http://dx.doi.org/10.1103/PhysRevD.70.094024
http://dx.doi.org/10.1103/PhysRevD.70.094024
http://dx.doi.org/10.1103/PhysRevD.72.074005
http://dx.doi.org/10.1103/PhysRevD.72.074005
http://dx.doi.org/10.1016/j.physletb.2009.03.062
http://dx.doi.org/10.1103/PhysRevD.72.094003
http://dx.doi.org/10.1103/PhysRevD.72.094003
http://dx.doi.org/10.1088/1126-6708/2005/09/074
http://dx.doi.org/10.1088/1126-6708/2009/08/051
http://dx.doi.org/10.1103/PhysRevLett.91.171802
http://dx.doi.org/10.1103/PhysRevLett.91.171802
http://dx.doi.org/10.1103/PhysRevLett.91.201801
http://dx.doi.org/10.1103/PhysRevLett.96.251801
http://dx.doi.org/10.1103/PhysRevLett.96.251801
http://dx.doi.org/10.1103/PhysRevLett.103.171801
http://dx.doi.org/10.1103/PhysRevD.73.092001
http://dx.doi.org/10.1103/PhysRevD.73.092001
http://dx.doi.org/10.1103/PhysRevD.79.031102
http://dx.doi.org/10.1103/PhysRevD.63.114015
http://dx.doi.org/10.1103/PhysRevD.63.114015
http://dx.doi.org/10.1016/j.nuclphysbps.2007.11.089
http://dx.doi.org/10.1103/PhysRevLett.97.021802
http://dx.doi.org/10.1103/PhysRevLett.97.021802
http://dx.doi.org/10.1103/PhysRevLett.97.062003
http://dx.doi.org/10.1103/PhysRevLett.97.062003
http://arXiv.org/abs/1102.4274
http://dx.doi.org/10.1103/PhysRevLett.100.161802
http://dx.doi.org/10.1103/PhysRevLett.100.161802
http://dx.doi.org/10.1103/PhysRevLett.101.241801
http://dx.doi.org/10.1103/PhysRevLett.101.241801
http://dx.doi.org/10.1103/PhysRevD.74.095007
http://dx.doi.org/10.1103/PhysRevD.74.095007
http://dx.doi.org/10.1103/PhysRevD.78.015009
http://dx.doi.org/10.1103/PhysRevD.78.015009
http://dx.doi.org/10.1103/PhysRevD.78.095005
http://dx.doi.org/10.1103/PhysRevD.80.055008


[15] Some aspects of the 2HDM are discussed in A. S.
Joshipura and B. P. Kodrani, Phys. Rev. D 81, 035013
(2010); See also A. Datta and P. J. O’Donnell, Phys. Rev.
D 72, 113002 (2005); A. Datta, Phys. Rev. D 74, 014022
(2006).

[16] A. Datta and S. Khalil, Phys. Rev. D 80, 075006
(2009).

[17] M. Blanke, A. J. Buras, S. Recksiegel and C. Tarantino,
arXiv:0805.4393.

[18] A. Soni, A.K. Alok, A. Giri, R. Mohanta, and S. Nandi,
Phys. Lett. B 683, 302 (2010)arXiv:0807.1971; M.
Bobrowski, A. Lenz, J. Riedl, and J. Rohrwild, Phys.
Rev. D 79, 113006 (2009); A. Soni, A.K. Alok, A. Giri,
R. Mohanta, and S. Nandi, Phys. Rev. D 82, 033009
(2010); A. J. Buras, B. Duling, T. Feldmann, T.
Heidsieck, C. Promberger, and S. Recksiegel, J. High
Energy Phys. 09 (2010) 106;

[19] J. K. Parry and H. h. Zhang, Nucl. Phys. B802, 63 (2008);
B. Dutta and Y. Mimura, Phys. Rev. D 78, 071702 (2008);
Phys. Lett. B 677, 164 (2009); J. h. Park and M.
Yamaguchi, Phys. Lett. B 670, 356 (2009); P. Ko and
J. h. Park, Phys. Rev. D 80, 035019 (2009); N. Kifune,
J. Kubo, and A. Lenz, Phys. Rev. D 77, 076010 (2008);
K. Kawashima, J. Kubo, and A. Lenz, Phys. Lett. B 681,
60 (2009); F. J. Botella, G. C. Branco, and M. Nebot, Phys.
Rev. D 79, 096009 (2009).

[20] C.W. Chiang, A. Datta, M. Duraisamy, D. London,
M. Nagashima, and A. Szynkman, J. High Energy Phys.
04 (2010) 031.

[21] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 85,
072002 (2012).

[22] V.M. Abazov et al. (DØ Collaboration), Phys. Rev. D 85,
032006 (2012).

[23] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 108,
101803 (2012).

[24] Y. Xie, P. Clarke, G. Cowan, and F. Muheim, J. High
Energy Phys. 09 (2009) 074.

[25] V.M. Abazov et al. (DØ Collaboration), Phys. Rev. D 82,
032001 (2010).

[26] V.M. Abazov et al. (DØ Collaboration), Phys. Rev. Lett.
105, 081801 (2010).

[27] B. A. Dobrescu, P. J. Fox, and A. Martin, Phys. Rev. Lett.
105, 041801 (2010); C. H. Chen, C. Q. Geng, and W.
Wang, J. High Energy Phys. 11 (2010) 089; P. Ko and
J. h. Park, Phys. Rev. D 82, 117701 (2010); A. Lenz,
U. Nierste, J. Charles, S. Descotes-Genon, A. Jantsch,
C. Kaufhold, H. Lacker, S. Monteil, V. Niess, and S.
T’Jampens, Phys. Rev. D 83, 036004 (2011); S. Nandi
and A. Soni, Phys. Rev. D 83, 114510 (2011).

[28] A. Dighe, A. Kundu, and S. Nandi, Phys. Rev. D 82,
031502 (2010).

[29] C.W. Bauer and N.D. Dunn, Phys. Lett. B 696, 362 (2011).
[30] A. Dighe, A. Kundu, and S. Nandi, Phys. Rev. D 76,

054005 (2007).
[31] N. G. Deshpande, X. G. He, and G. Valencia, Phys. Rev. D

82, 056013 (2010); A. K. Alok, S. Baek, and D. London, J.
High Energy Phys. 07 (2011) 111.A. Datta, M. Duraisamy,
and S. Khalil, Phys. Rev. D 83, 094501 (2011).

[32] R. Fleischer, Nucl. Phys. B671, 459 (2003).
[33] S. Nandi and U. Nierste, Phys. Rev. D 77, 054010

(2008); S. Nandi, Nucl. Phys. B, Proc. Suppl. 209, 164
(2010).

[34] M. Gronau and D. London, Phys. Lett. B 253, 483 (1991).
[35] R. Fleischer, Phys. Lett. B 562, 234 (2003); Nucl. Phys.

B659, 321 (2003).
[36] D. Asner et al. (Heavy Flavor Averaging Group

Collaboration), arXiv:1010.1589.
[37] I. Dunietz, Phys. Rev. D 52, 3048 (1995).
[38] M. Ciuchini, M. Pierini, and L. Silvestrini, Phys. Lett. B

645, 201 (2007); M. Gronau, D. Pirjol, A. Soni, and
J. Zupan, Phys. Rev. D 75, 014002 (2007).

[39] N. R.-L. Lorier, M. Imbeault, and D. London, Phys. Rev. D
84, 034040 (2011); M. Imbeault, N. R.-L. Lorier, and
D. London, Phys. Rev. D 84, 034041 (2011).

[40] F. Polci, M.H. Schune, and A. Stocchi, arXiv:hep-ph/
0605129.

[41] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,
075021 (2010).

[42] B. Aubert et al. (BABAR Collaboration), arXiv:0708.2097;
J. Dalseno et al. (Belle Collaboration), Phys. Rev. D 79,
072004 (2009).

[43] R. Aaij et al. (LHCb Collaboration), arXiv:1202.4717.

SOUMITRA NANDI AND DAVID LONDON PHYSICAL REVIEW D 85, 114015 (2012)

114015-12

http://dx.doi.org/10.1103/PhysRevD.81.035013
http://dx.doi.org/10.1103/PhysRevD.81.035013
http://dx.doi.org/10.1103/PhysRevD.72.113002
http://dx.doi.org/10.1103/PhysRevD.72.113002
http://dx.doi.org/10.1103/PhysRevD.74.014022
http://dx.doi.org/10.1103/PhysRevD.74.014022
http://dx.doi.org/10.1103/PhysRevD.80.075006
http://dx.doi.org/10.1103/PhysRevD.80.075006
http://arXiv.org/abs/0805.4393
http://dx.doi.org/10.1016/j.physletb.2009.12.048
http://arXiv.org/abs/0807.1971
http://dx.doi.org/10.1103/PhysRevD.79.113006
http://dx.doi.org/10.1103/PhysRevD.79.113006
http://dx.doi.org/10.1103/PhysRevD.82.033009
http://dx.doi.org/10.1103/PhysRevD.82.033009
http://dx.doi.org/10.1007/JHEP09(2010)106
http://dx.doi.org/10.1007/JHEP09(2010)106
http://dx.doi.org/10.1016/j.nuclphysb.2008.05.010
http://dx.doi.org/10.1103/PhysRevD.78.071702
http://dx.doi.org/10.1016/j.physletb.2009.05.026
http://dx.doi.org/10.1016/j.physletb.2008.11.023
http://dx.doi.org/10.1103/PhysRevD.80.035019
http://dx.doi.org/10.1103/PhysRevD.77.076010
http://dx.doi.org/10.1016/j.physletb.2009.09.064
http://dx.doi.org/10.1016/j.physletb.2009.09.064
http://dx.doi.org/10.1103/PhysRevD.79.096009
http://dx.doi.org/10.1103/PhysRevD.79.096009
http://dx.doi.org/10.1007/JHEP04(2010)031
http://dx.doi.org/10.1007/JHEP04(2010)031
http://dx.doi.org/10.1103/PhysRevD.85.072002
http://dx.doi.org/10.1103/PhysRevD.85.072002
http://dx.doi.org/10.1103/PhysRevD.85.032006
http://dx.doi.org/10.1103/PhysRevD.85.032006
http://dx.doi.org/10.1103/PhysRevLett.108.101803
http://dx.doi.org/10.1103/PhysRevLett.108.101803
http://dx.doi.org/10.1088/1126-6708/2009/09/074
http://dx.doi.org/10.1088/1126-6708/2009/09/074
http://dx.doi.org/10.1103/PhysRevD.82.032001
http://dx.doi.org/10.1103/PhysRevD.82.032001
http://dx.doi.org/10.1103/PhysRevLett.105.081801
http://dx.doi.org/10.1103/PhysRevLett.105.081801
http://dx.doi.org/10.1103/PhysRevLett.105.041801
http://dx.doi.org/10.1103/PhysRevLett.105.041801
http://dx.doi.org/10.1007/JHEP11(2010)089
http://dx.doi.org/10.1103/PhysRevD.82.117701
http://dx.doi.org/10.1103/PhysRevD.83.036004
http://dx.doi.org/10.1103/PhysRevD.83.114510
http://dx.doi.org/10.1103/PhysRevD.82.031502
http://dx.doi.org/10.1103/PhysRevD.82.031502
http://dx.doi.org/10.1016/j.physletb.2010.12.039
http://dx.doi.org/10.1103/PhysRevD.76.054005
http://dx.doi.org/10.1103/PhysRevD.76.054005
http://dx.doi.org/10.1103/PhysRevD.82.056013
http://dx.doi.org/10.1103/PhysRevD.82.056013
http://dx.doi.org/10.1007/JHEP07(2011)111
http://dx.doi.org/10.1007/JHEP07(2011)111
http://dx.doi.org/10.1103/PhysRevD.83.094501
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.010
http://dx.doi.org/10.1103/PhysRevD.77.054010
http://dx.doi.org/10.1103/PhysRevD.77.054010
http://dx.doi.org/10.1016/j.nuclphysbps.2010.12.027
http://dx.doi.org/10.1016/j.nuclphysbps.2010.12.027
http://dx.doi.org/10.1016/0370-2693(91)91756-L
http://dx.doi.org/10.1016/S0370-2693(03)00582-3
http://dx.doi.org/10.1016/S0550-3213(03)00225-6
http://dx.doi.org/10.1016/S0550-3213(03)00225-6
http://arXiv.org/abs/1010.1589
http://dx.doi.org/10.1103/PhysRevD.52.3048
http://dx.doi.org/10.1016/j.physletb.2006.12.043
http://dx.doi.org/10.1016/j.physletb.2006.12.043
http://dx.doi.org/10.1103/PhysRevD.75.014002
http://dx.doi.org/10.1103/PhysRevD.84.034040
http://dx.doi.org/10.1103/PhysRevD.84.034040
http://dx.doi.org/10.1103/PhysRevD.84.034041
http://arXiv.org/abs/hep-ph/0605129
http://arXiv.org/abs/hep-ph/0605129
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://arXiv.org/abs/0708.2097
http://dx.doi.org/10.1103/PhysRevD.79.072004
http://dx.doi.org/10.1103/PhysRevD.79.072004

