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We study the scattering of a single parton state with a multiparton state to derive the complete results of

perturbative coefficient functions at leading order, which appear in the collinear factorization for single

transverse-spin asymmetry (SSA) in Drell-Yan processes with a transversely polarized hadron in the

initial state. We find that the factorization formula of SSA contains hard-pole, soft-quark-pole, and soft-

gluon-pole contributions. It is interesting to note that the leading-order perturbative coefficient functions

of soft-quark-pole and soft-gluon-pole contributions are extracted from parton-scattering amplitudes at

one-loop, while the functions of hard-pole contributions are extracted from the tree-level amplitudes at

tree-level. Our method to derive the factorization of SSA is different than the existing one in literature.

A comparison of our results with those obtained by other methods is made here.
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I. INTRODUCTION

In scattering processes with a transversely polarized
hadron in the initial state, single transverse-spin asymme-
try (SSA) relative to the spin direction can be nonzero. SSA
has been observed in various experiments: A review of the
phenomenologies can be found in [1]. Theoretically, SSA
can be predicted with the concept of QCD factorization if
momentum transfers are large. In the factorization of SSA,
nonperturbative effects of the transversely polarized had-
ron are factorized into matrix elements of the hadron,
therefore, providing a new way to study the inner-structure
of hadron by studying SSA. In this work we study the
collinear factorization of SSA in Drell-Yan processes.

From general principles SSA can be generated if the
strong interaction changes the helicities of hadrons in a
scattering and the scattering amplitude has an absorptive
part. In the scattering involving a transversely polarized
heavy quark, the helicity is not conserved in QCD because
of the heavy mass. The related SSA can be calculated with
the perturbative theory of QCD, e.g., see [2,3]. For light
hadrons in high-energy processes, one can neglect the mass
of light quarks. The helicity of a massless quark is con-
served in QCD but this does not mean that the helicity of a
light hadron is conserved in QCD because the helicity is
not just a sum of helicities of light quarks.

The collinear factorization for describing SSA has been
proposed in [4,5]. With the collinear factorization, SSA in
various processes has been studied in [6–13]. In such a
factorization, the nonperturbative effects of the trans-
versely polarized hadron are factorized into twist-3 matrix
elements, also called ETQS matrix elements. Taking Drell-
Yan processes as an example, SSA is factorized as a
convolution of three parts: The first part is the standard
parton-distribution function of the unpolarized hadron de-
fined with twist-2 operators. The second part consists of

matrix elements of the polarized hadron defined with twist-
3 operators. The third part consists of perturbative coeffi-
cient functions describing the hard scattering of partons. If
the factorization can be proven, the coefficient functions
are free from any soft divergence-like collinear and infra-
red divergence. In this approach the effects of helicity flip
are parametrized with twist-3 matrix elements, while the
absorptive part of the scattering amplitude is generated in
the hard scattering of partons.
A widely used method to derive the factorization of

SSA at the leading-order of �s is the diagram expansion
at hadron level. All existing results are derived with this
method except for those in [14–17]. This method has been
also used for analyzing higher-twist effects, e.g., see
[18,19]. We take the Drell-Yan process hA þ hB !
‘þ‘� þ X as an example to illustrate the method. In the
process, hA is transversely polarized with the spin-vector
s?. The spin-dependent part of the differential cross sec-
tion can be given by Fig. 1. In Fig. 1, the gray box
represents Feynman diagrams for various contributions of
forward parton-scattering with the cut. The lower, black
box represents the density matrix of the polarized hadron
defined with quark and gluon fields, and the upper, black
box represents the quark-density matrix of the unpolarized
hadron. The three parts are connected with parton lines. A
collinear expansion of the momenta carried by the parton
lines is performed to pick up the leading-power contribu-
tions. For the partons from hA the momentum is expanded
around PA, while the expansion for the partons from hB is
around PB. After the expansion, one obtains an approxi-
mated form of density matrices parametrized with various
nonperturbative functions, i.e., parton distributions func-
tions and twist-3 matrix elements and the perturbative
coefficient functions of the factorization. It is interesting
to note that SSA in the factorization contains not only the
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so-called hard-pole (HP) contributions in which all three
patrons from hA carry nonzero momentum fraction, but
also the so-called soft-pole contributions in which one of
the three partons can have zero momentum fraction.

It should be noted that QCD factorizations, if they are
proven, are general properties of QCD. These factoriza-
tions hold not only at hadron level but also when one
replaces the hadron states with parton states. The pertur-
batively calculable parts in factorizations, i.e., the pertur-
bative coefficient functions, do not depend on hadrons and
are completely determined by the scattering of partons. To
derive the factorization of SSA, one can replace hadrons
with parton states and calculate SSA perturbatively. The
relevant twist-2 and twist-3 matrix elements can also be
calculated with the parton states. In general, the obtained
results will contain soft divergences which usually appear
beyond leading order. By writing SSA as a convolution of
these matrix elements and perturbative coefficient func-
tions, one can determine the functions. In this work we will
take this approach to derive at leading-order all perturba-
tive coefficient functions appearing in the collinear facto-
rization of SSA in Drell-Yan processes.

We notice that the approach taken here has been used to
study factorizations only involving twist-2 operators.
Applying the approach for SSA, i.e., factorizations with
twist-3 operators, will provide an alternative way to derive
the factorization or to calculate perturbative coefficient
functions. This will also give an independent verification
of results derived with other approaches. It is not the
intention here to prove the factorization or that the pertur-
bative coefficient functions are free from soft divergences
at any order. This is beyond the scope of the present work.
However, as we will see, we already have at leading order
some perturbative coefficient functions obtained by sub-
traction of collinear divergences with twist-3 matrix ele-
ments, in contrast to the case only with twist-2 operators.

For the factorization that only involves twist-2 operators,
e.g., for the unpolarized differential cross section one can
simply replace each hadron state with a single parton state

to derive the factorization. But for SSA, because of the
helicity conservation of QCD, it is not possible to obtain
nonzero SSA and the relevant twist-3 matrix elements by
replacing the transversely polarized hadron with a single
quark state. But, one can construct multiparton states to
replace the polarized hadron. With the multiparton states,
SSA and relevant twist-3 matrix elements are nonzero
because the helicity-flip effects can be generated through
correlations between these partons.
In [14,15] we have used multiparton states to study the

factorization. We have found [14] that with tree-level
results of SSA and twist-3 matrix elements there are only
hard-pole contributions. Later, in [15] it is realized that
there is a special class of one-loop contributions to SSA,
which cannot be factorized as one-loop corrections to the
hard-pole contributions at tree-level. These one-loop con-
tributions can only be factorized with some special twist-3
matrix elements at one-loop. These contributions are just
the so-called soft-pole contributions. Their perturbative
functions, although extracted from parton-scattering am-
plitudes at one-loop, are at the same order as the hard-pole
contributions derived from tree-level amplitudes.
In this work, we will use multiparton states to derive

all contributions in the factorization formula for SSA in
Drell-Yan processes. They are hard-pole contributions,
soft-quark-pole (SQP) contributions and soft-gluon-pole
(SGP) contributions. There are two types of SGP contri-
butions. One is from the case as given in Fig. 1, where the
gluon from the polarized hadron has zero-momentum frac-
tion. Another is from a case where three gluons are from
the polarized hadron and one of them carries zero momen-
tum. The twist-3 matrix elements for the three-gluon case
have been defined in [20].
It should be mentioned that besides the collinear facto-

rization, there is another factorization for SSA in limited
regions of kinematics. If the transverse momentum of the
lepton pair is small, one can use the transverse-momentum-
dependent (TMD) factorization. The TMD factorization
for unpolarized cases has been studied in [21–25]. For
SSA nonperturbative effects of the polarized hadron are
factorized into Sivers function [26]. The properties of
Sivers function and SSA with it have been studied exten-
sively [27–36]. In [14,16,17]we have also examined the
TMD factorization of SSAwith parton states and found an
agreement with existing results.
Our work is organized as follows: In Sec. II we give our

notations for Drell-Yan processes and the definitions of
relevant twist-3 matrix elements. In Sec. III we introduce
our multiparton states: With these states one can define
corresponding spin-density matrices in helicity space. The
nondiagonal parts of the matrices are relevant for calculat-
ing SSA and twist-3 matrix elements. In Sec. IV we study
SSA in the scattering of multiparton state at tree-level.
With tree-level results we can derive HP contributions. In
Secs. Vand VI we consider SSA at one-loop level. We find

FIG. 1. The cut diagram for the differential cross section of
hadron scattering, where the lower hadron is transversely polar-
ized. The broken line is the cut. The black boxes represent parton
density matrices of corresponding hadrons, the gray box is the
forward scattering amplitude of partons.
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a special class of one-loop contributions, which give the
SQP and SGP contributions. Sec. VII is our summary.

II. SSA IN DRELL-YAN PROCESSES AND
DEFINITIONS OF TWIST-3 MATRIX ELEMENTS

Wewill use the light-cone coordinate system, in which a

vector a� is expressed as a�¼ðaþ;a�; ~a?Þ¼ðða0þ
a3Þ= ffiffiffi

2
p

;ða0�a3Þ= ffiffiffi
2

p
;a1;a2Þ and a2?¼ða1Þ2þða2Þ2. Other

notations are

g��
? ¼ g�� � n�l� � n�l�; ���

? ¼ �����l�n�;

����� ¼ ������; �0123 ¼ 1 (1)

with the light-cone vectors l and n defined as l� ¼
ð1; 0; 0; 0Þ and n� ¼ ð0; 1; 0; 0Þ, respectively. We consider
the Drell-Yan process

hAðPA; sÞ þ hBðPBÞ ! ��ðqÞ þ X ! ‘� þ ‘þ þ X; (2)

where hA is a spin-1=2 hadron with the spin-vector s. We
take a light-cone coordinate system in which the momenta
and the spin are

P�
A � ðPþ

A ; 0; 0; 0Þ; P�
B � ð0; P�

B ; 0; 0Þ;
s� ¼ ð0; 0; ~s?Þ: (3)

The mass of hadrons are neglected. The spin of hB is
averaged. The invariant mass of the observed lepton pair
isQ2 ¼ q2. We are interested in the spin-dependent part of
the differential cross section, which can be written as

d�

d2q?dqþdq�
ð ~s?Þ � d�

d2q?dqþdq�
ð�~s?Þ

¼ 8��2
em

3SQ2
���? s?�q?�W T; (4)

in which S ¼ 2Pþ
A P

�
B . We parametrize the momentum of

the lepton pair as

q� ¼ ðxPþ
A ; yP

�
B ; ~q?Þ: (5)

The structure function W Tðx; y; q?Þ is related to the spin-
dependent part of the hadronic tensor

W�� ¼X
X

Z d4x

ð2�Þ4 e
iq�xhhAðPA;s?Þ;hBðPBÞj �qð0Þ��qð0ÞjXi

� hXj �qðxÞ��qðxÞjhBðPBÞ;hAðPA;s?Þi; (6)

by �
�g�� þ

q�q�

q2

�
W�� ¼ ���? s?�q?�W T þ � � � ; (7)

where � � � stands for the spin-independent part.
For large Q2, the structure function W T can be factor-

ized in the form of a convolution of perturbative functions
with the standard parton distribution functions of hB and
twist-3 matrix elements of hA. The definitions of standard

parton distribution functions with twist-2 operators can be
found in literature. Here, we discuss the definitions of
twist-3 matrix elements of the transversely polarized had-
ron. The quark-gluon twist-3 matrix elements have been
introduced in [4,5] first. We take a variant form and define
them in the light-cone gauge n �G ¼ 0,

Tqþðx1; x2Þ ¼ s?�

Z dy1dy2
4�

e�iy2ðx2�x1ÞPþ�iy1x1P
þ

� hP; ~s?j �c ðy1nÞ�þð ~Gþ�ðy2nÞ
þ i�5G

þ�ðy2nÞÞc ð0ÞjP; ~s?i;
Tq�ðx1; x2Þ ¼ s?�

Z dy1dy2
4�

e�iy2ðx2�x1ÞPþ�iy1x1P
þ

� hP; ~s?j �c ðy1nÞ�þð ~Gþ�ðy2nÞ
� i�5G

þ�ðy2nÞÞc ð0ÞjP; ~s?i; (8)

with ~Gþ� ¼ ���
? Gþ

�. In other gauges, gauge links along

the direction n should be added to make the definitions
gauge-invariant. One can also use the projection �þ or
�þ�5 to define twist-3 matrix element TqFðx1; x2Þ and

Tq�;Fðx1; x2Þ, respectively, as in [4]. The relations between
these twist-3 matrix elements are

Tqþðx1; x2Þ ¼ TqFðx1; x2Þ þ Tq�;Fðx1; x2Þ;
Tq�ðx1; x2Þ ¼ TqFðx1; x2Þ � Tq�;Fðx1; x2Þ:

(9)

One can show that the function TqFðx1; x2Þ is symmetric in

x1 and x2, and Tq�;Fðx1; x2Þ is antisymmetric in x1 and x2.

The twist-3 matrix elements Tq�ðx1; x2Þ with x1;2 > 0

describe the correlation of those partons from hA, which
enter a hard scattering, e.g., the gray part of Fig. 1. In the
hard scattering, the initial quark carries the momentum
faction x2, the gluon carries the momentum fraction
x1 � x2 and the final quark carries the momentum fraction
x1. If the gluon-momentum fraction is x1 � x2 ¼ 0, the
corresponding hard scattering introduces the SGP contri-
bution to SSA. If a quark carries zero momentum, i.e.,
x1 ¼ 0 or x2 ¼ 0, the corresponding hard scattering intro-
duces the SQP contribution to SSA. It is clear that the SGP
contributions are related to Tqþðx; xÞ with Tqþðx; xÞ ¼
Tq�ðx; xÞ ¼ TqFðx; xÞ, while the SQP contributions are

related to Tq�ð0; xÞ or Tq�ðx; 0Þ. There are contributions

with nonzero x1;2 and x1 � x2. These contributions are HP
contributions. For the case x1 < 0 or x2 < 0, the corre-
sponding quark fields in the definition represent antiquarks.
Instead of two quarks combined with one gluon entering

the hard scattering, there can be three gluons entering the
hard scattering [20]. The corresponding contributions can
be factorized with matrix elements defined with twist-3
gluonic operators. In this case, as we will show, there is a
leading contribution of �s in the factorization of SSA. The
contribution is a SGP contribution in which one of the three
gluons carries a zero-momentum fraction. In general, there
are two types of twist-3 gluonic operators distinguished by
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the color structure. One can define them in the gauge
n � G ¼ 0,

O���ðx1; x2Þ ¼ gs
Pþ dbca

Z dy1dy2
4�

e�iy1x1P
þ�iy2ðx2�x1ÞPþ

� hP; s?jGb;þ�ðy1nÞGc;þ�ðy2nÞ
�Ga;þ�ð0ÞjP; s?i;

N���ðx1; x2Þ ¼ i
gs
Pþ fbca

Z dy1dy2
4�

e�iy1x1P
þ�iy2ðx2�x1ÞPþ

� hP; s?jGb;þ�ðy1nÞGc;þ�ðy2nÞ
�Ga;þ�ð0ÞjP; s?i; (10)

There are two scalar functions which can be defined for
each type of color structure in the case of x1 ¼ x2 ¼ x for
SGP contributions,

O���ðx; xÞ ¼ g��? ~s�xGd1ðxÞ þ ½g��? ~s� þ g��? ~s��xGd2ðxÞ;
N���ðx; xÞ ¼ g��? ~s�xGf1ðxÞ þ ½g��? ~s� þ g��? ~s��xGf2ðxÞ:

(11)

In general, the function W T in the collinear factoriza-
tion can be divided into four parts,

W T ¼ W TjHP þW TjSQP þW TjSGPF þW TjSGPG:
(12)

The third term in the right-hand side of Eq. (12) denoted by
a subscript SGPF is the SGP contribution which should be
factorized with the quark-gluon twist-3 matrix elements.
The fourth term denoted by a subscript SGPG is the SGP
contribution which should be factorized with the purely
gluonic twist-3 matrix elements. Each of the four parts can
be expressed as convolutions of parton distributions, twist-
3 matrix elements discussed in the above, and perturbative
coefficient functions. Details of the convolutions will be
given in the following sections.

The goal of our work is to derive all perturbative func-
tions at leading-order of �s. For HP contributions at lead-
ing order we only need to calculate with parton states
parton-scattering amplitudes and twist-3 matrix elements
at tree-level. At one-loop level, there are, in general, col-
linear divergences inW T . As observed in [15], at one-loop
there is a class of contributions whose collinear divergen-
ces cannot be subtracted by using one-loop results of twist-
3 matrix elements in the factorized-HP contributions
derived with tree-level results. These contributions, hence,
cannot be taken as one-loop corrections to the perturbative
coefficient functions in HP contributions. In fact, the col-
linear divergences can be subtracted by the so-called soft-
pole twist-3 matrix elements in which one parton carries
zero-momentum fraction. This is the origin of the soft-pole
contributions. The soft-pole matrix elements are zero at
tree-level but nonzero at one-loop. This results in the
perturbative coefficient functions of the soft-pole contri-
butions are at the same order of those of the HP contribu-
tions derived from tree-level.

III. SPIN-DENSITY MATRICES AND
MULTI-PARTON STATES

We consider a system jN½	�i with total spin 1=2. The
system moves in the z direction with the helicity 	 ¼ �
and can be a superposition of various multiparton states.
We consider a forward scattering of the system through
some operator O, which does not change helicity of
quarks. The operator can be those used to define twist-3
matrix elements or the hadronic tensor. In the latter, the
forward scattering is with some additional particles which
are unpolarized. The transition amplitude is given as

M 	2	1
¼ hN½	2�jOjN½	1�i: (13)

We use 	1;2 ¼ � to denote the helicity of the initial and

final state, respectively. The transition amplitude in the
helicity space is 2� 2 matrix and can be expanded as

M 	2	1
¼ ½aþ ~b � ~��	2	1

; (14)

or it can also be described with a spin-vector s� ¼ ðs0; ~sÞ,

M ðsÞ ¼ ½aþ ~b � ~s�; s2 ¼ �1: (15)

From Eq. (14) and Eq. (15), the transverse spin-dependent

part is determined by ~b?, i.e., the nondiagonal part in the
helicity space. SSA appears if the nondiagonal part of the
hadronic tensor in Eq. (6) in the helicity space is nonzero.
Because of helicity conservation of QCD, the nondiag-

onal part ofM in Eq. (14) is zero if jN½	�i is a single quark
state. Instead of a single quark, one can consider the
following multiparton state:

jN½	�i ¼ jq½	�i þ c1jqg½	�i þ c2jqq �q½	�i þ c3jqgg½	�i
þ � � � ; (16)

where all partons move in the z direction, and the sum of
helicities of partons is 1=2 or �1=2. Later, we will give
details about the momenta and color structure of these
partons. The � � � stands for possible states with more
than three partons. We do not need to consider the states
with more than three partons because the leading-power
contributions to SSA come from those parton-scattering
processes in which only three patrons from the polarized
hadrons are involved. We call these involved partons active
partons. Certainly, there can be more than three partons as
active partons. The resulted contributions are power-
suppressed and may be factorized with operators with
twists larger than 3. In the leading-power contributions,
the three active partons can be combinations of quarks and
gluons. They are qqg, q �qg, and ggg. Charge-conjugated
combinations should also be included. In the case de-
scribed by Fig. 1, the active partons are qqg. It is clear
that with the first three states in Eq. (16) one can have all
combinations by taking some partons as spectators.
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If we calculate the nondiagonal part of M in Eq. (14)
with the multiparton state in Eq. (16), one finds with the
helicity conservation of quarks nonzero contributions only
from the interference between different states in the right-
hand side of Eq. (16). If we replace hA with the above state
and hB with a single unpolarized parton in Eq. (6), we also
get a nonzero result for the spin-dependent part of W�� or
forW T . Similarly, the defined twist-3 matrix elements are
also nonzero with the state jN½	�i. These nonzero results
allow us to study the factorization of SSA.

In [16,17] factorizations of SSA in Drell-Yan processes
were studied with the first two terms in Eq. (16) in the
kinematical region q2?=Q

2 � 1. In this case, all three

partons in the first two terms in Eq. (16) were active.
None of them were a spectator parton. But for interferences
between other states, some partons can be spectators be-
cause we only need to consider those interferences with
three active partons. The existence of possible spectators
only affects overall factors of interested quantities like
W T and twist-3 matrix elements, it has no effect on the
derivation of perturbative coefficient functions. Hence, for
our purpose we only need to consider those matrix ele-
ments habjOjci or hcjOjabi, where a, b, and c are quarks
or gluons. These matrix elements can be obtained from the
interferences between different states in Eq. (16) by taking
out some partons as spectators. We will illustrate this in the
following.

For the interference between the q and the qg compo-
nent, none of partons can be a spectator. We define the state
jq½	�i and the state jqg½	�i as

jqðp;	qÞi¼byicðp;	qÞj0i;
jqðp1;	qÞgðp2;	gÞi¼Ta

jcic
byjcðp1;	qÞaya ðp2;	gÞj0i;

p�¼ðpþ;0;0;0Þ; p�
1 ¼x0p

�;

p2¼ð1�x0Þp�¼ �x0p
�;

(17)

where byi is the quark-creation operator with i as the color

index, and aya is the gluon-creation operator with a as the
color index. 	qð	gÞ is the helicity of the quark (gluon). To

simplify the notations we write pþ ¼ Pþ
A and �p� ¼ P�

B . It
is straightforward to obtain the nondiagonal part as

MðqgÞ
þ� ¼ Cqg½hqðp;þÞjOjqðp1;þÞgðk;�Þi

þ hqðp1;�Þgðk;þÞjOjqðp;�Þi�;
MðqgÞ

�þ ¼ Cqg½hqðp;�ÞjOjqðp1;�Þgðk;þÞi
þ hqðp1;þÞgðk;�ÞjOjqðp;þÞi�: (18)

In Eq. (18) we use the index qg to denote this type of
interference contribution. We also introduce the coefficient
Cqg in the nondiagonal part of the spin-density matrix.
Contributions of this type to twist-3 matrix elements and
W T will be proportional to Cqg and will be called qg

contributions. The derived perturbative function will not
depend on Cqg.
For the contribution from the qq �q state we note that the

interference with the single quark state is zero if the total
helicity is changed. The interference with the qgg state
does not need to be considered because at least four partons
must be active and one quark is a spectator. Hence, we only
need to consider the interference with the qg state in which
one quark is a spectator and three partons are active. In this
case, the forward scattering is participated by a gluon and a
q �q pair. In order to have �	 ¼ �1, the total helicity 	 of
the q �q pair must be zero. There can be two states with
	 ¼ 0 for the q �q pair. We denote the two states as

jðq �qÞ�i ¼ Ta
jcic

½byjcðp1;þÞdyicðp2;�Þ
� byjcðp1;�Þdyicðp2;þÞ�j0i; (19)

and the single-gluon state as jgð	gÞi. The gluon carries the
same color index a and the momentum p. 	g is the helicity.

dy is the creation operator for the antiquark. With these
states one can construct the nondiagonal part of the spin-

density matrix Mðq �qÞ as

Mðq �qÞ
þ� ¼ Cq �qþ ½hðq �qÞþjOjgð�Þi þ hgðþÞjOjðq �qÞþi�

þ Cq �q� ½hðq �qÞ�jOjgð�Þi � hgðþÞjOjðq �qÞ�i�;
Mðq �qÞ

�þ ¼ Cq �qþ ½hðq �qÞþjOjgðþÞi þ hgð�ÞjOjðq �qÞþi�
� Cq �q� ½hðq �qÞ�jOjgðþÞi � hgð�ÞjOjðq �qÞ�i�:

(20)

In the above we have introduced two coefficients Cq �q� to
distinguish the contributions from the two q �q states. We
note that there is a sign difference for the terms with Cq �q�
between the first and the second equation. This difference
can be easily found by requiring that the state jðq �qÞ�i
becomes a spin-1=2 system by adding a quark. Again, we
will call all contributions from this matrix as q �q contribu-

tions. They are linear in the two coefficients Cq �q� . The

derived perturbative functions will not depend on Cq �q� .
For the contribution from the qgg state in Eq. (16), only

the interference with the qg state and with the qgg state
need to be considered here, where one quark can be taken
as a spectator. In this case, one has the forward scattering as
gg ! g or g ! gg. The color of the two-gluon state must
be the same as the color of the one-gluon state. The total
helicity 	 of the two gluons must be zero. There are two
states with 	 ¼ 0 for a given color structure. We denote

jðggÞ�i ¼ ifabc½ayb ðp1;þÞayc ðp2;�Þ
� ayb ðp1;�Þayc ðp2;þÞ�j0i: (21)

With these states one can construct the nondiagonal ele-

ment of the spin-density matrix MðggFÞ as
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M ðggFÞ
þ� ¼ F gg

þ ½hðggÞþjOjgð�Þi þ hgðþÞjOjðggÞþi�
�F gg� ½hðggÞ�jOjgð�Þi � hgðþÞjOjðggÞ�i�;

MðggFÞ
�þ ¼ F gg

þ ½hðggÞþjOjgðþÞi þ hgð�ÞjOjðggÞþi�
þF gg� ½hðggÞ�jOjgðþÞi � hgð�ÞjOjðggÞ�i�:

(22)

In Eq. (22) we introduce two coefficients F gg
� to distin-

guish the contributions from the two states in Eq. (21).

Another spin-density matrix MðggDÞ can be constructed in
this case by replacing ifabc in Eq. (21) with dabc, and F gg

�
with Dgg

� in Eq. (22). We will call all contributions from
these two spin-density matrices gg contributions. They are
linear in the four coefficients F gg

� and Dgg
� .

With the constructed spin-density matrices in this sec-
tion one can calculate twist-3 matrix elements and the
structure functions W T by taking correspond operator
O. It is straightforward to obtain the twist-3 matrix ele-
ments Tq� at tree-level. The results from the qg contribu-

tions are

Tqþðx1; x2Þ ¼ Cqg�gs
ffiffiffiffiffiffiffiffi
2x0

p ðN2
c � 1Þðx2 � x1Þ

� 
ð1� x1Þ
ðx2 � x0Þ þOðg3sÞ;
Tq�ðx1; x2Þ ¼ �Cqg�gs

ffiffiffiffiffiffiffiffi
2x0

p ðN2
c � 1Þðx2 � x1Þ

� 
ð1� x2Þ
ðx1 � x0Þ þOðg3sÞ: (23)

The results from the q �q contributions are

Tqþðx1; x2Þ ¼ �gsðN2
c � 1Þ ffiffiffiffiffiffiffiffiffiffiffiffi

2x0 �x0
p ½ðCq �qþ � Cq �q� Þ

� 
ðx1 þ �x0Þ
ðx2 � x0Þ þ ðCq �qþ þ Cq �q� Þ
� 
ðx2 þ �x0Þ
ðx1 � x0Þ� þOðg3sÞ;

Tq�ðx1; x2Þ ¼ �gsðN2
c � 1Þ ffiffiffiffiffiffiffiffiffiffiffiffi

2x0 �x0
p ½ðCq �qþ þ Cq �q� Þ

� 
ðx1 þ �x0Þ
ðx2 � x0Þ þ ðCq �qþ � Cq �q� Þ
� 
ðx2 þ �x0Þ
ðx1 � x0Þ� þOðg3sÞ: (24)

With W T calculated in the next section at leading order,
one can find the factorized form of W T in terms of Tq�
with the above results. This is for HP contributions. In
Secs. V and VI we will also give the results of Tq�ðx; xÞ,
Tq�ð0; xÞ and these gluonic twist-3 matrix elements. These

results are at order of g3s and will be used to factorize the
soft-pole contributions.

IV. HARD-POLE CONTRIBUTIONS

As discussed in the last section, we replace the polarized
hadron hA with the multiparton state in Eq. (16) to calcu-
late the nondiagonal part of the constructed spin-density
matrices for W T . We replace the unpolarized hadron hB
with single parton states. In this section we will work at
tree-level.

We first consider the qg contributions. If we
replace hB with an antiquark �q with the momentum

�p� ¼ ð0; �p�; 0; 0Þ, the leading-order contribution to W T

comes from diagrams in Fig. 2. The complex conjugated
diagrams should be included in order to obtain the non-

diagonal part of the spin-density matrix MðqgÞ given in
Eq. (18). In the diagrams of Fig. 2 the broken line divides
each diagram into a left and a right part. Each part repre-
sents a scattering amplitude. The short bar cutting a
quark propagator is in fact a physical cut of the amplitude
represented by the left part. It means that only the absorp-
tive part of the cutting propagator is taken into account,

Abs

�
i� � kq
k2q þ i"

�
¼ �
ðk2qÞ� � kq: (25)

It is straightforward to calculate these diagrams, and we
obtain

W TjFig:2 ¼ �Cqge2q
gs�s

4�

ffiffiffiffiffiffiffiffi
2x0

p
q2?

N2
c � 1

N2
c


ð �x� y �x0Þ

� 
ðsð1� xÞð1� yÞ � q2?ÞðN2
c þ y� 1Þ

� 1

1� y
½y2 þ x0 � j	qjðy2 � x0Þ�; (26)

with s ¼ 2pþ �p�. eq is the electric charge of the quark q in

unit e. The 
 function of 1� x� y �x0 is from the cutting
quark propagator. The terms with j	qj ¼ 1 are quark spin-

dependent because the external quark lines are extracted
with 	q�5� � p.
With the qg contributions of Tq� one can write the

above W T into a factorized form. The terms with
j	qj ¼ 1 should be factorized with Tqþ � Tq� or Tq�;F

because �þ�5 is used to define them. The other terms
should be factorized with ðTqþ þ Tq�Þ or TqF. With Tq�
in Eq. (23) we have the factorized form

W TjFig:2 ¼
e2q�s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2

f �qðy2Þ
ðŝð1� �1Þ

� ð1� �2Þ � q2?Þ � ½H qþð�1; �2ÞTqþðy1; xBÞ
þH q�ð�1; �2ÞTq�ðy1; xBÞ�; (27)

FIG. 2. The diagrams for the amplitude �qþ ðqþ GÞ ! �� þ
X ! �qþ q at tree-level. The black dots denote the insertion of
electromagnetic-current operator. Broken lines represent the cut.
For the propagators with a short bar only the absorptive part of
the propagator is taken into account.
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with

H qþð�1; �2Þ ¼ N2
c þ�2 � 1

2Nc�2ð1��1Þð1��2Þ ð�2 þ�1 � 1Þ;

H q�ð�1; �2Þ ¼ N2
c þ�2 � 1

2Ncð1��1Þð1��2Þ�
2
2; �1 ¼ x

y1
;

�2 ¼ y

y2
; xB ¼ q2

2q �p; ŝ¼ y1y2s:

(28)

The function f �qðy2Þ is the antiquark distribution function

of hB. For hB ¼ �q, we have f �qðy2Þ ¼ 
ð1� y2Þ þOð�sÞ.
It is noted that the derived perturbative coefficient func-
tions do not depend on Cqg. One can also replace hB with a
quark. In this case the results can be obtained by reversing
the directions of quark lines in Fig. 2. They can be obtained
from the above results through charge conjugation. Wewill
give them at the end of this section by combining all parton
flavors.
If we replace the unpolarized hadron hB with a gluon

carrying the momentum �p, the leading contributions to
W T comes from Fig. 3. The calculation of these diagrams
is similar to the calculation of Fig. 2. Here, we have the
sum of Fig. 3,

W TjFig:3 ¼ Cqge2q
gs�s

4�Nc

ffiffiffiffiffiffiffiffi
2x0

p

ðsð1� xÞð1� yÞ � q2?Þ

� 
ð �x� y �x0Þ 1þ ðy� 1ÞN2
c

q2?
½x0ð1� yÞ2

þ y2 þ j	qjðx0ð1� yÞ2 � y2Þ�: (29)

This result can be factorized in the following form:

W TjFig:3 ¼
e2q�s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2

fgðy2Þ
ðŝð1� �1Þð1� �2Þ � q2?Þ½H gþð�1; �2ÞTqþðy1; xBÞ

þH g�ð�1; �2ÞTq�ðy1; xBÞ�;

H gþð�1; �2Þ ¼ 1þ ð�2 � 1ÞN2
c

2ðN2
c � 1Þð1� �1Þ�2

ð1� �2Þ2ð1� �1 � �2Þ; H g�ð�1; �2Þ ¼ � 1þ ð�2 � 1ÞN2
c

2ðN2
c � 1Þð1� �1Þ

�2
2; (30)

where fgðy2Þ is the gluon distribution function. For hB ¼ g we have fgðyÞ ¼ 
ð1� yÞ þOð�sÞ.
By replacing hB with an antiquark �qð �pÞ, the q �q contributions for W T are also at leading order. They are given by the

diagrams in Fig. 4. In the first four diagrams the antiquark �qð �pÞ in the initial single parton state must have the same flavor as
the quark in the multiparton state, while in the last four diagrams �qð �pÞ can have different flavor. The results are

W Tj4aþ4bþ4cþ4d ¼ e2q
gs�s

2�q2?

ffiffiffiffiffiffiffiffiffiffiffiffi
2x0 �x0

p N2
c � 1

N2
c

ðCq �q� þ Cq �qþ ð1� 2x0ÞÞ
ðsð1� xÞð1� yÞ � q2?Þ

� y

�

ð �x� y �x0Þ

1� y
� ð1� yÞ2
ð �x� yx0Þ

�
;

W Tj4eþ4fþ4hþ4i ¼ �e2q
gs�s

2�q2?

ffiffiffiffiffiffiffiffiffiffiffiffi
2x0 �x0

p N2
c � 1

Nc

ðCq �q� þ Cq �qþ ð1� 2x0ÞÞ
ðsð1� xÞð1� yÞ � q2?Þ½
ð �x� y �x0Þ þ 
ðx� y �x0Þ�

� ðy2 � 2yþ 2Þ: (31)

With the tree-level results of the q �q contributions for the twist-3 matrix elements, we can derive the following factorized
form:

W Tj4aþ4bþ4cþ4d ¼
e2q�s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2

f �qðy2Þ
ðŝð1� �1Þð1� �2Þ � q2?ÞfH q �qþð�1; �2ÞTqþð�ŷ1; xBÞ

þH q �q�ð�1; �2ÞTq�ð�ŷ1; xBÞ þ ½H �qqþð�1; �2ÞTqþð�xB; ŷ1Þ þH �qq�ð�1; �2ÞTq�ð�xB; ŷ1Þ�g;

W Tj4eþ4fþ4hþ4i ¼
e2q�s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2

f �q0 ðy2Þ
ðŝð1� �1Þð1� �2Þ � q2?ÞfH q �q0ð�1; �2Þ½Tqþð�ŷ1; xBÞ

� Tq�ð�xB; ŷ1Þ� þH �qq0ð�1; �2Þ½Tqþð�xB; ŷ1Þ � Tq�ð�ŷ1; xBÞ�g; (32)

FIG. 3. The diagrams for the amplitude Gþ ½qþG� ! �� þ
X ! Gþ q at tree-level.
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with ŷ1 ¼ y1 � xB and the perturbative functions

H q �qþð�1; �2Þ ¼ 1� �1 � �2

2Nc�2ð1� �2Þ ; H q �q�ð�1; �2Þ ¼ 1� �1

2Nc�2ð1� �2Þ ; H �qqþð�1; �2Þ ¼ ð1� �2Þ2ð1� �1Þ
2Nc�2

;

H �qq�ð�1; �2Þ ¼ ð1� �1 � �2Þ ð1� �2Þ2
2Nc�2

; H q �q0ð�1; �2Þ ¼ ��2
2 � 2�2 þ 2

2�2
2

ð1� �1 � �2Þ;

H �qq0ð�1; �2Þ ¼ �2
2 � 2�2 þ 2

2�2
2

ð1� �1Þ:

(33)

f �q0 ðy2Þ is the antiquark distribution function for the flavor, which does not need to be the same as the flavor of quarks used
to calculate the twist-3 matrix element Tq�.

The studied contributions plus charge-conjugated processes give the all-leading HP contributions for SSA. All
perturbative coefficient functions are at order �s. Combining all possible parton flavors we obtain the factorized HP
contributions as

W TjHP ¼ �s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2


ðŝð1� �1Þð1� �2Þ � q2?Þ
�
H qþð�1; �2Þ

X
½q�
e2qf �qðy2ÞTqþðy1; xBÞ

þH q�ð�1; �2Þ
X
½q�
e2qf �qðy2ÞTq�ðy1; xBÞ þH q �qþð�1; �2Þ

X
½q�
e2qf �qðy2ÞTqþð�ŷ1; xBÞ þH q �q�ð�1; �2Þ

�X
½q�
e2qf �qTq�ð�ŷ1; xBÞ þH �qqþð�1; �2Þ

X
½q�
e2qf �qðy2ÞTqþð�xB; ŷ1Þ þH �qq�ð�1; �2Þ

X
½q�
e2qf �qðy2ÞTq�ð�xB; ŷ1Þ

þH q �q0ð�1; �2Þ
X
½q;q0�

e2qf �q0 ðy2Þ½Tqþð�ŷ1; xBÞ � Tq�ð�xB; ŷ1Þ� þH �qq0ð�1; �2Þ
X
½q;q0�

e2qf �q0 ðy2Þ½Tqþð�xB; ŷ1Þ

� Tq�ð�y1 þ xB; xBÞ� þH gþð�1; �2Þ
X
½q�
e2qfgðy2ÞTqþðy1; xBÞ þH g�ð�1; �2Þ

X
½q�
e2qfgðy2ÞTq�ðy1; xBÞ

�
; (34)

where the notation for summing over flavors is defined as

X
½q�
e2qf �qðy2ÞTq�ðz1; z2Þ ¼

X
q¼u;d;s;���

e2q½f �qðy2ÞTq�ðz1; z2Þ � fqðy2ÞTq	ð�z2;�z1Þ�;
X
½q;q0�

e2qf �q0 ðy2ÞTq�ðz1; z2Þ ¼
X

q¼u;d;s;���;q0¼u;d;s;���
e2q½f �q0 ðy2ÞTq�ðz1; z2Þ � fq0 ðy2ÞTq	ð�z2;�z1Þ�;

X
½q�
e2qfgðy2ÞTq�ðz1; z2Þ ¼

X
q¼u;d;s;���

e2qfgðy2Þ½Tq�ðz1; z2Þ � Tq	ð�z2;�z1Þ�:

(35)

It is interesting to study the limit q2?=Q
2 � 1 by using

ŝ
ðŝð1� �1Þð1� �2Þ � q2?Þ �

ð1� �1Þ
ð1� �2Þþ þ 
ð1� �2Þ

ð1� �1Þþ � 
ð1� �1Þ
ð1� �2Þ ln
q2?
Q2

: (36)

In this limit, the above contribution to W T becomes

FIG. 4. The diagrams for the amplitude �qþ ½qþ �q� ! �� þ X ! �qþG at tree-level.
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W TjHP ¼ �s

2�2ðq2?Þ2
Z 1

x

dy1
y1

Z 1

y

dy2
y2

�
�

ð1� �2Þ
ð1� �1Þþ

�
�1

X
½q�
e2qf �qðy2ÞTqþðy1; xÞ þ

X
½q�
e2qf �qðy2ÞTq�ðy1; xÞ

�

þ 
ð1� �1Þ
�

1þ �2
2

ð1� �2Þþ
�
1þ �2 � 1

N2
c

�
� 2
ð1� �2Þ ln

q2?
Q2

�X
½q�
e2qf �qðy2ÞTqþðy1; y1Þ

þ 
ð1� �1Þ
NcðN2

c � 1Þ ðN
2
cð1� �2Þ � 1Þðð1� �2Þ2 þ �2

2Þ
X
½q�
e2qfgðy2ÞTqþðy1; y1Þ þ 
ð1� �2Þ

N2
c

�
�
ð1� �1Þ

X
½q�
e2qf �qðy2ÞTq�ð�y1 þ x; xÞ � �1

X
½q�
e2qf �qðy2ÞTqþð�y1 þ x; xÞ

��
½1þOðq2?=Q2Þ�: (37)

It is noted that in the limit SGP contributions appear. If we
take the limit q2?=Q

2 � 1 in the tree-level results for the
parotnic W Ts in Eqs. (26) and (29) instead of the factor-
ized results in Eqs. (27) and (30), we will not obtain the
SGP contributions. However, the SGP contributions can be
derived by using partonic W Ts in the limit beyond tree-
level [17].

The factorized results of Figs. 2 and 3 have been derived
in [11] with the method of the diagram expansion men-
tioned in the Introduction. By rewriting the above results
with partonic variables, which are defined as

t̂ ¼ ðy1PA � qÞ2 ¼ �ŝ�2ð1� �1Þ � q2?; ŝ ¼ y1y2s;

û ¼ ðy2PB � qÞ2 ¼ �ŝ�1ð1� �2Þ � q2?;

Q2 ¼ q2 ¼ �1�2ŝ� q2?; (38)

we find that our results agreewith those in [11]. Recently, the
results corresponding to the contributions from Fig. 4 have
been derived with the method of the diagram expansion in
[8]. Again our results in Eq. (32) agree with those in [8].

V. SOFT-GLUON-POLE CONTRIBUTIONS

The SGP contributions come from the case when
one gluon with zero momentum enters hard scattering.
They may come from the qg, q �q, and the gg contributions.
The qg and q �q contributions are factorized with the quark-
gluon correlator Tqþðx; xÞ ¼ Tq�ðx; xÞ. Later we will show
that the q �q contributions need not to be studied because it
is automatically included in the factorized form obtained
from the qg contributions. The gg contributions are fac-
torized with the purely gluonic correlator defined in Eq.
(12). We will discuss these two types of contributions in
this section separately.

A. The qg contributions

We have given the results of the qg contributions for
Tq�ðx1; x2Þ at tree-level in Eq. (23). At this order one

simply has Tq�ðx; xÞ ¼ 0. However, beyond the tree-level,

Tq�ðx; xÞ can be nonzero. As found in [16,17], at one-loop

level there is only one diagram giving nonzero contribution
to Tq�ðx; xÞ in the light-cone or Feynman gauge. The

calculation of the diagram is straightforward. The contri-
bution has a UV and a collinear divergence. Both are
regularized with the dimensional regularization as poles
of � ¼ 4� d. After extracting the UV pole we have
[16,17]

Tq�ðx; x;�Þ ¼ �Cqg
gs�s

4
NcðN2

c � 1Þx0
ffiffiffiffiffiffiffiffi
2x0

p

ðx0 � xÞ

�
��

� 2

�c

�
þ ln

e��2

4��2
c

�
þOðgs�2

sÞ; (39)

where the pole is the collinear divergence with the index c.
� is the renormaliation scale related to the UV pole, and
�c is that related to the collinear pole.
To find out the SGP contributions it is convenient to

work with the light-cone gauge n � G ¼ 0. We consider a
special class of diagrams which represent a part of one-
loop corrections to those given in Fig. 2. These diagrams
are obtained from Fig. 2 by adding a gluon. They are given
in Fig. 6. In the first four diagrams the gluon is emitted by
the initial gluon and is absorbed by the final quark. In the
last four diagrams the initial gluon goes across the cut
represented by the broken line and emits a virtual gluon
absorbed by the outgoing quark.
The contributions from Fig. 6 contain a collinear diver-

gence. In the first four diagrams, the divergence appears
when the lowest gluon crossing the cut is collinear to theþ
direction. In the last four diagrams it appears when the
gluon emitted by the outgoing quark is collinear. Because
the contributions from Fig. 6 are one-loop corrections to
Fig. 2, one may expect that the collinearly divergent parts
of the contributions can be reproduced in the factorized
form of the contributions from Fig. 2 in Eq. (27), where one
replaces Tq�ðx1; x2Þ with the corresponding one-loop

Tq�ðx1; x2Þ. As discussed in detail in [17], this is not the

case because the color factor here does not match. Even if
one neglects the color factor, the divergences still cannot
be reproduced.
Analyzing the collinear divergences in the contributions

of Fig. 6, one finds that the collinear divergences should be
factorized with Tqþðx; xÞ ¼ Tq�ðx; xÞ. Taking Fig. 6(a) as

an example, the added gluon is with momentum k1. If k1 is
collinear to the þ direction, i.e., k�1 
 ð1; 	2; 	; 	Þ with
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	 � 1, one can find that the gluon exchanged between the
initial gluon and the initial antiquark is soft with the on
shell condition of the cut propagator. In fact, this gluon is a
Glauber gluon with the momentum 
ð	2; 	2; 	; 	Þ.
Comparing Fig. 6(a) with Fig. 5, one can identify that the
gluon crossing the cut in Fig. 5 corresponds to the collinear
gluon with k1 in Fig. 6(a). If the collinear gluon is con-
tained in Tq�, the Glauber gluon should be taken as the

gluon entering hard scattering. Since it is a Glauber gluon
with vanishing momentum, the divergent parts of Fig. 6
should be factorized with Tqþðx; xÞ. This is the reason why
the SGP contributions appear.

Performing the same analysis for Figs. 6(b)–6(d) in the
case that the gluon crossing the cut is collinear, one will
find that the gluon exchanged between the initial antiquark
and the initial gluon is a Glauber gluon. For the last four
diagrams the gluon emitted by the outgoing antiquark in
the right part is a Glauber gluon, if the gluon emitted by the
outgoing quark is collinear. Therefore, the collinear diver-
gences in these diagrams are related to the Glauber gluon.
It should be noted that only the diagrams in Fig. 6 contain
such a collinear divergence related to a Glauber gluon.

Before giving the results, the following facts should be
pointed out. In Feynman gauge, one has to consider more
diagrams which contain the collinear divergence, e.g.,
instead of the collinear gluon attached to the initial gluon
in the left part of Fig. 6, the gluon can also be attached to
the initial antiquark. Such diagrams are finite in the light-
cone gauge, at least for most cases studied here with the
exception to be discussed in Sec. VI. In the following, we
will work in the light-cone gauge n � G ¼ 0.
The contributions of Fig. 6 contain an integration

of a loop momentum. It is easy to find the collinearly
divergent part of the contributions by expanding the inte-
grand in 	, where the collinear gluon has the momentum

ð1; 	2; 	; 	Þ. We find the collinearly divergent part of the
contributions from Fig. 6 as

W TjFig:6 ¼ Cqg
e2qgs�

2
s

2�2

N2
c � 1

2Nc

ffiffiffiffiffiffiffiffi
2x0

p
x0

�
�
� 2

�c

�
�
�
x2 � 2xx0 � x20y

ðx0 � xÞ2ð1� yÞs 
ðuÞ

þ x2 þ x20y
2

ðx0 � xÞð1� yÞ

0ðuÞ

�
;


ðuÞ ¼ 
ðsðx0 � xÞð1� yÞ � q2?Þ: (40)

In the above, the pole in �c ¼ 4� d represents the col-
linear divergence. The 
 function from the on shell condi-
tion of the intermediate gluon exchanged between quarks
also depends on the loop momentum and needs to be
expanded in 	. This results in the terms with the derivative
of the 
 function. The last four diagrams do not contain
terms with the derivative of the 
 function. With the result
of Tqþðx; xÞ from the qg contribution in Eq. (39), we can

derive the factorized form

FIG. 5. The diagram for Tq�ðx; xÞ at one-loop. The black dots
denote the insertion of operators used to define Tq�ðx1; x2Þ in
Eq. (8).

FIG. 6. The diagrams for the amplitude �qþ ½qþ G� ! �� þ X ! �qþ q for SGP contributions. The black dots represent the
insertion of electromagnetic current operator.
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W TjFig:6 ¼
e2q�s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2

f �qðy2Þ
ðŝð1� �1Þð1� �2Þ � q2?Þ �
�
~SGqð�1; �2Þ

�
y1

@Tqþðy1; y1Þ
@y1

�

þ SGqð�1; �2ÞTqþðy1; y1Þ
�
;

~SGqð�1; �2Þ ¼ �2
1 þ �2

2

Ncð1� �2Þ ; SGqð�1; �2Þ ¼ 2�1ð1� �1Þ2 � �3
2 � �1�2ð2� �1Þ

Ncð1� �1Þð1� �2Þ : (41)

We note that the perturbative coefficeint function here is at the same order of �s as those of HP contributions because
Tqþðy1; y1Þ is at the order of gs�s.

If we replace hB with a gluon, one obtains similar diagrams from the SGP contributions from the qg contributions. These
diagrams are given in Fig. 7. The collinearly divergent part of the contributions belong to the SGP contributions. We have
calculated the collinear divergences in these diagrams in the light-cone gauge and in Feynman gauge. The same results are
obtained. This corresponds to the situation with Tq�ðx; xÞ in Fig. 5, only the same diagram in the two gauges gives the

result in Eq. (39). From Fig. 7 we have

W TjFig:7 ¼ Cqg
e2qgs�

2
sN

2
c

4�2

ffiffiffiffiffiffiffiffi
2x0

p �
� sð1� yÞðx2 þ 2xx0ðy� 2Þ þ 2x20ðy2 � 2yþ 2ÞÞ

q2?

0ðuÞ

þ sð1� yÞ
ðuÞ
x0ðq2?Þ2

ððx0 � xÞð�xyþ 2xþ 3x0y� 4x0Þ � x20yðy2 þ ð1� yÞ2ÞÞ
��

� 2

�c

�
: (42)

With the result of Tqþðx; xÞ from the qg contribution in Eq. (39) we can derive the factorized form

W TjFig:7 ¼
e2q�s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2

fgðy2Þ
ðŝð1� �1Þð1� �2Þ � q2?Þ
�
~SGgð�1; �2Þ

�
y1

@Tqþðy1; y1Þ
@y1

�

þ SGgð�1; �2ÞTqþðy1; y1Þ
�
;

~SGgð�1; �2Þ ¼ � N2
c

N2
c � 1

ð�2
1 þ 2�1ð�2 � 2Þ þ 2ð�2

2 � 2�2 þ 2ÞÞ;

SGgð�1; �2Þ ¼ � N2
c

N2
c � 1

�
�3�1�2 þ 6�1 � 2�2

1 þ 3�2 � 4� �2ð�2
2 þ ð1� �2Þ2Þ
1� �1

�
: (43)

The factorized results have also been derived with the method of diagram expansion in [11].
In the case when hB is replaced by a gluon, one can have the SGP contribution from the q �q contributions. A typical

diagram is given in Fig. 8. One can also obtain Tq�ðx; xÞ from the q �q contributions at this order; the diagram is given by

Fig. 8(b). It is easy to find that the SGP contribution is included in the factorized form in Eq. (43).
Combining contributions of all flavors, the SGP contributions can be factorized with the quark-gluon twist-3 matrix

element as

FIG. 7. The diagrams for the amplitude gþ ½qþ G� ! �� þ X ! gþ q for SGP contributions. The black dots represent the
insertion of electromagnetic current operator.
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W TjSGPF ¼ �s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2


ðŝð1� �1Þð1� �2Þ � q2?Þ
�
~SGqð�1; �2Þ

X
½q�
e2qf �qðy2Þ

�
y1

@Tqþðy1; y1Þ
@y1

�

þ SGqð�1; �2Þ
X
½q�
e2qf �qðy2ÞTqþðy1; y1Þ þ ~SGgð�1; �2Þ

X
½q�
e2qfgðy2Þ

�
y1

@Tqþðy1; y1Þ
@y1

�

þ SGgð�1; �2Þ
X
½q�
e2qfgðy2ÞTqþðy1; y1Þ

�
: (44)

The above results agree with those in [8,11] derived with another method. Again, in the case of q2?=Q
2 � 1 this

contribution takes a simplified form,

W TjSGPF ¼ �s

�2N2
cðq2?Þ2

Z 1

x

dy1
y1

Z 1

y

dy2
y2

�
�
ð1þ �2

1Þ
ð1� �2Þ
X
½q�
e2qf �qðy2Þ

�
y1

@Tqþðy1; y1Þ
@y1

�

þ
�

ð1� �2Þ
ð1� �1Þþ ð2�3

1 � 3�2
1 � 1Þ � 
ð1� �1Þ

ð1� �2Þþ �2ð1þ �2
2Þ þ 2
ð1� �1Þ
ð1� �2Þ ln

q2?
Q2

�

�X
½q�
e2qf �qðy2ÞTqþðy1; y1Þ þ N3

c�2

N2
c � 1

ð�2
2 þ ð1� �2Þ2Þ
ð1� �1Þ

X
½q�
e2qfgðy2ÞTqþðy1; y1Þ

�
þ � � � (45)

where � � � stands for contributions suppressed by q2?=Q
2.

B. The gg contributions

At the order we consider, there is no HP contribution
from the gg contributions. But, it is possible that there are
leading-SGP contributions from W T at one-loop level,
similar to cases considered in the above. We consider first
the gluonic twist-3 matrix elements in Eq. (11). These
functions are zero at tree-level.

At one-loop level, the functions become nonzero. They
receive nonzero contributions from the diagrams given in
Fig. 9 in the light-cone gauge. In Feynman gauge there are
more diagrams. In this subsectionwewill workwith the light-
cone gauge. For the factorization studied belowwe only need
to calculate Fig. 9(a) and the corresponding diagrams for
W T . The contributions from Fig. 9(b) and the corresponding
contributions toW T can be obtained from the permutation of
the two initial gluons.Wewill only give results from Fig. 9(a)
and the corresponding results ofW T . We obtain

Gd1ðxÞ ¼ � gs�s

2
ffiffiffi
2

p ðN2
c � 4ÞðN2

c � 1Þ
ðx� �x0Þ
��

� 2

�c

�
þ ln

e��2

4��2
c

�
d1;

Gd2ðxÞ ¼ gs�s

4
ffiffiffi
2

p ðN2
c � 4ÞðN2

c � 1Þ
ðx� �x0Þ
��

� 2

�c

�
þ ln

e��2

4��2
c

�
d2;

Gf1ðxÞ ¼ gs�s

2
ffiffiffi
2

p N2
cðN2

c � 1Þ
ðx� �x0Þ
��

� 2

�c

�
þ ln

e��2

4��2
c

�
f1;

Gf2ðxÞ ¼ � gs�s

4
ffiffiffi
2

p N2
cðN2

c � 1Þ
ðx� �x0Þ
��

� 2

�c

�
þ ln

e��2

4��2
c

�
f2;

(46)

with the parameters d1;2 and f1;2 related to F gg
� in Eq. (22) and Dgg

� as

FIG. 9. The diagrams for Gd1;f1ðxÞ and Gd2;f2ðxÞ in the light-
cone gauge.

FIG. 8. (a). The possible SGP contributions from the q �q con-
tributions. (b). The diagram for Tq�ðx; xÞ in the gauge n �G ¼ 0

from the q �q contributions. See the discussion in text.
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d1 ¼ ð1� x0Þðx0Dgg
þ þDgg� Þ; d2 ¼Dgg

þ þDgg� ; f1 ¼ ð1� x0Þðx0F gg
þ þF gg� Þ; f2 ¼Dgg

þ þDgg� : (47)

The corresponding contributions toW T are given by diagrams in Fig. 10. The results for the color antisymmetric-gluon
state are

W TjFig:10 ¼ � e2qgs�
2
s

4
ffiffiffi
2

p
�2Nc

N2
cðN2

c � 1Þ
�x30ð1� yÞ

�
� 2

�c

��

0ðuÞ½2f1ð2x2 þ 2x �x0ðy� 2Þ þ �x20ðy� 2Þ2Þ � f2ð4x2 þ 4x �x0ðy� 2Þ

þ �x20ðy2 � 6yþ 6ÞÞ� � 
ðuÞ
s

�
4f1ð2xþ �x0ðy� 2ÞÞ þ 2f2

xð5y� 4Þ þ �x0ð3y2 � 7yþ 4Þ
1� y

��
;

u ¼ sð �x0 � xÞð1� yÞ � q2?: (48)

Replacing the color factor N2
cðN2

c � 1Þ with �ðN2
c � 4ÞðN2

c � 1Þ and f1;2 with d1;2, respectively, one obtains W T from
Fig. 10 with the color structure of dabc. With the results of the gluonic twist-3 matrix elements in Eq. (46) we can derive the
factorized form from the SGP contribution from Fig. 10 by combining all flavors as

W TjSGPG ¼ �s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2


ðŝð1� �1Þð1� �2Þ � q2?Þ
� X
i¼1;2

~SGið�1; �2Þ
X
q

e2q

�
f �qðy2Þ

�
y1

@Gfiðy1; y1Þ
@y1

þ y1
@Gdiðy1; y1Þ

@y1

�
þ fqðy2Þ

�
y1

@Gfiðy1; y1Þ
@y1

� y1
@Gdiðy1; y1Þ

@y1

��
þ X

i¼1;2

SGið�1; �2Þ
X
q

e2q½f �qðy2ÞðGfiðy1; y1Þ

þGdiðy1; y1ÞÞ þ fqðy2ÞðGfiðy1; y1Þ �Gdiðy1; y1ÞÞ�
�

(49)

with the perturbative functions

~SG1ð�1; �2Þ ¼ 1� �1

1� �2

ð2�2
1 þ 2�1ð�2 � 2Þ þ ð�2 � 2Þ2Þ;

~SG2ð�1; �2Þ ¼ 1� �1

1� �2

ð4�2
1 þ 4�1ð�2 � 2Þ þ �2

2 � 6�2 þ 6Þ;

SG1ð�1; �2Þ ¼ � 1� �1

1� �2

ð6�2
1 þ 4�1ð2�2 � 3Þ þ 3�2

2 � 10�2 þ 8Þ;

SG2ð�1; �2Þ ¼ � 1� �1

1� �2

ð12�2
1 þ 6�1ð3�2 � 4Þ þ 7�2

2 � 20�2 þ 14Þ:

(50)

From the above results we can derive the result in the limit q? ! 0 as

W TjSGPG ¼ �s

�2Ncðq2?Þ2
Z 1

x

dy1
y1

Z 1

y

dy2
y2

ð1� �1Þ
ð1� �2Þ
� X
i¼1;2

~S?ið�1; �2Þ
X
q

e2q

�
f �qðy2Þ

�
y1

@Gfiðy1; y1Þ
@y1

þ y1
@Gdiðy1; y1Þ

@y1

�
þ fqðy2Þ

�
y1

@Gfiðy1; y1Þ
@y1

� y1
@Gdiðy1; y1Þ

@y1

��
þ X

i¼1;2

S?ið�1; �2Þ
X
q

e2q½f �qðy2ÞðGfiðy1; y1Þ

þGdiðy1; y1ÞÞ þ fqðy2ÞðGfiðy1; y1Þ �Gdiðy1; y1ÞÞ�
�

(51)

with

FIG. 10. The diagrams for the amplitude �qþ ðGþGÞ ! �� þ X ! �qþG at one-loop for possible SGP contributions.
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~S?1 ¼ 2�2
1 � 2�1 þ 1; ~S?2 ¼ 4�2

1 � 4�1 þ 1;

S?1 ¼�ð6�2
1 � 4�2

1 þ 1Þ; S?2 ¼�ð12�2
1 � 6�2

1 þ 1Þ:
(52)

The above SGP contributions are leading contributions in
the limit.

VI. SQP CONTRIBUTIONS

Similarly to the twist-3 matrix elements for SGP contri-
butions, the twist-3 matrix elements for SQP contributions
are zero at tree-level because one can not define a quark state
with zero momentum. Beyond tree-level, they can be non-
zero. In the light-cone gauge n �G ¼ 0, one can find two
possible diagrams at one-loop for the qg contributions and
the q �q contributions. They are given in Fig. 11. It is easy to
find that Figs. 11(b) and 11(d)will give zero contribution.We
have for the qg contributions from Fig. 11(a),

Tqþðx; 0Þ ¼ Cqggs�s

N2
c � 1

4Nc

x
ffiffiffiffiffiffiffiffi
2x0

p
x0


ðx� �x0Þ

�
�
�
�
2

�c

�
þ ln

e��2

4��2
c

�
;

Tq�ðx; 0Þ ¼ 0: (53)

We have for the q �q contributions from Fig. 11(c),

Tqþðx; 0Þ ¼ ðCq �qþ � Cq �q� Þgs�s
ðxþ �x0ÞNcðN2
c � 1Þ
4

�
ffiffiffiffiffiffiffiffiffiffiffiffi
2x0 �x0

p
x0

�
�
�
2

�c

�
þ ln

e��2

4��2
c

�
;

Tq�ðx; 0Þ ¼ ðCq �qþ þ Cq �q� Þgs�s
ðxþ �x0ÞNcðN2
c � 1Þ
4

�
ffiffiffiffiffiffiffiffiffiffiffiffi
2x0 �x0

p
x0

�x20

�
�
�
2

�c

�
þ ln

e��2

4��2
c

�
: (54)

It is noted that in the above x is negative. It implies that an
antiquark with the momentum fraction �x enters a hard
scattering.

The SQP contributions from the qg contributions toW T

are given by diagrams in Fig. 12 in the gauge n �G ¼ 0.
Following the analysis similar to that of Fig. 6, one can see
that the vertical quark line in the left part of diagram carries
the momentum kq at the order of k

�
q 
 ð	2; 	2; 	; 	Þ, if the

gluon at the bottom crossing the cut is collinear, i.e., its
momentum scales like ð1; 	2; 	; 	Þ. Factorizing the col-
linear gluon into the corresponding twist-3 matrix ele-
ments, one can realize that in the left part of diagram,
there is a gluon combined with a soft quark entering the
hard scattering. Therefore, the collinearly divergent con-
tributions are SQP contributions.
It is straightforward to find the divergent contributions

from Fig. 12 as

W TjFig:12 ¼ Cqg
e2qgs�

2
s

16�2N2
c

ffiffiffiffiffiffiffiffi
2x0

p

ðsð �x0 � xÞð1� yÞ � q2?Þ

q2?ð1� x0Þ
�

�ðxð2x� 3ðx0 � 1Þðy� 2ÞÞ
1� x0

þ ð1� x0Þ
� ðy2 � 5yþ 5Þ � j	qjðxðy� 2Þ � ðx0 � 1Þ
� ðy2 � 3yþ 3ÞÞ

��
� 2

�c

�
: (55)

Again the quark-spin-independent part should be
factorized with the combination Tþqðx; 0Þ þ T�qðx; 0Þ,
and the contribution with j	qj should be factorized with

Tþqðx; 0Þ � T�qðx; 0Þ. With the results in Eq. (53) we have

W TjFig:12 ¼
e2q�s

2�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2

fgðy2Þ
ðŝð1� �1Þð1� �2Þ � q2?Þ½SQqþð�1; �2ÞTqþðy1; 0Þ

þ SQq�ð�1; �2ÞTq�ðy1; 0Þ�;
SQqþð�1; �2Þ ¼ 1

N2
c � 1

ð�2
1 þ �1�2 � 2�1 � �2 þ 1Þ; SQq�ð�1; �2Þ ¼ 1

N2
c � 1

ðð�1 þ �2Þ2 þ 4ð1� �1 � �2ÞÞ: (56)

FIG. 11. The diagrams for the twist-3 matrix elements with
x2 ¼ 0 in the gauge n �G ¼ 0. The first two diagrams are for
x1 > 0 in qg contributions. The later two diagrams are for x1 < 0
in q �q contributions.

FIG. 12. The diagrams in the n �G ¼ 0 gauge, which give the soft-fermion-pole contributions to SSA.
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We turn to the q �q contributions. The contributions are given
by diagrams in Fig. 13 in the light-cone gauge. We need to
find the collinear divergences related to the collinear gluon
crossing the cut in these diagrams. But, a direct calculation of
the collinear divergences in these diagramswill give incorect
results. This is the exception mentioned in Sec. VA before
Eq. (40).Wewill explain this with Fig. 13(a), as an example.
In this diagram, the collinear divergence appears when the
gluon attached to the initial quark is collinear to the þ
direction. Insteadof attaching the collinear gluon to the initial
quark, it can also be attached to other places. There are two
examples given by the diagrams in Fig. 14.

As discussed in Sec. VA, one may expect that these two
diagrams in Fig. 14 do not have the discussed collinear
divergence in the gauge n �G ¼ 0. Because of the struc-
ture of the color factor, Fig. 14(b) is always zero. But,
through an explicit calculation one finds that Fig. 14(a)
also contains the collinear divergence. Similar to the way
we get Fig. 14(a) from Fig. 13(a), we can get three dia-
grams from Figs. 13(b)–13(d) and name them Figures 14c,
14d, and 14e. The three diagrams are not drawn in Fig. 14,
but one may visualize them without difficulty They also
contain collinear divergences. If the divergences survive in
the end results, it implies that the factorization is broken.
This needs to be carefully examined.

We use k to denote the momentum carried by the gluon
crossing the broken-line. If the gluon is collinear, k has the
pattern

k� 
 ð1; 	2; 	; 	Þ; 	 � 1: (57)

We use kg to denote the momentum carried by the gluon-

propagator with the short bar. The propagator has three
terms in the light-cone gauge,

�
ðk2gÞ
�
�g�� þ n�k�g

n � kg þ
n�k�g
n � kg

�
: (58)

In the above, � is the index contracted with that in the
vertex left to the short bar and � is contracted with that in
the vertex right to the short bar. The first term will not give
collinear divergence in Fig. 14(a), but the second and third
term will give collinear divergences with the collinear
power-counting because the denominator of the terms is
at order of 	2, i.e., n � kq 
 	2 derived from the on shell

condition 
ðk2qÞ with Eq. (57).

The propagator in Eq. (58) also appears in Fig. 13(a).
The second term gives no contribution because of

�vð �pÞn � � ¼ 0. The contributions from the first and third
term contain the collinear divergences. It is easy to show
that the divergence from the third term is canceled by that
from the third term in Fig. 14(a). This also happens for
other diagrams in Fig. 13 in a similar way. Through explicit
calculation we find that the divergence introduced by the
second term in Figs. 14(a) and Fig. 14(c) are canceled by
that in Fig. 14(d) and Fig. 14(e), respectively. Therefore,
only the collinear divergences in Fig. 13 introduced by the
first term in Eq. (58) survive at the end, if we include all
diagrams from Figs. 13 and 14 in the gauge n � G ¼ 0.
When changing the attachment of the collinear gluon in
the right part of the diagrams in Fig. 13, the diagrams in the
light-cone gauge do not contain collinear divergences. This
has the implication for using the diagram expansion in the
light-cone gauge, where one will have the uncanceled di-
vergences from the cut gluon-propagator. With the method
in Feynman gauge one will not have such divergences.
From the above discussion the correct result is obtained

by taking only the first term in Eq. (58) to calculate the
diagrams in Fig. 13, or by taking all terms in Eq. (58) to
calculate all diagrams in Figs. 13 and 14. We obtain

W TjFig:13¼�e2qgs�
2
s

8�2

N2
c�1

Nc

�
� 2

�c

� ffiffiffiffiffiffiffiffiffiffiffiffi
2x0 �x0

p
x0 �x0q

2
?

ðsð �x0�xÞ

�ð1�yÞ�q2?Þ
�ð1�yÞ �x0�x

�x20
ð �x0�xÞ

�ðCq �qþ �Cq �q� Þþðxþ �x0y�2�x0Þ2ðCq �qþ þCq �q� Þ
�
:

(59)

With the results of relevant twist-3 matrix element in
Eq. (54) one can derive the following factorized form:

FIG. 13. The diagrams in the gauge n �G ¼ 0 for the amplitude �qþ ðqþ �qÞ ! �� þ X ! �qþ G at one-loop for possible SFP
contributions.

FIG. 14. The diagrams obtained from Fig. 13(a) by changing
the attachment of the collinear gluon.
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W TjFig:13 ¼
e2q�s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2

�qðy2Þ
ðŝð1� �1Þð1� �2Þ � q2?Þ½SQq �qþð�1; �2ÞTqþð�y1; 0Þ

þ SQq �q�ð�1; �2ÞTq�ð�y1; 0Þ�;

SQq �qþð�1; �2Þ ¼ � 1� �1

2Nc

ð1� �1 � �2Þ; SQq �q�ð�1; �2Þ ¼ � ð2� �1 � �2Þ2
2Nc

: (60)

For the gg contributions there is also a SQP contribution, where one can obtain Tq�ðx; 0Þ from the gg contributions at
one-loop. The SQP contribution in W T is obtained by replacing hB with a gluon at one-loop. This contribution is in fact
contained in the factorized form in Eq. (56). This is similar to the case in q �q contributions for the SGP contributions with
Fig. 8 discussed in Sec. VA.

Combining all flavors we then obtain the factorized SQP contributions as

W TjSQP ¼ �s

�2Ncq
2
?

Z 1

x

dy1
y1

Z 1

y

dy2
y2


ðŝð1� �1Þð1� �2Þ � q2?Þ
�
SQqþð�1; �2Þ

X
½q�
e2qfgðy2ÞTqþðy1; 0Þ

þ SQq�ð�1; �2Þ
X
½q�
e2qfgðy2ÞTq�ðy1; 0Þ þ SQq �qþð�1; �2Þ

X
½q�
e2qf �qðy2ÞTqþð�y1; 0Þ

þ SQq �q�ð�1; �2Þ
X
½q�
f �qðy2ÞTq�ð�y1; 0Þ

�
: (61)

In comparison with the existing results in [8] derived with
the method of diagram expansion our results of SQP con-
tributions are different. The difference is of an overall
factor of �2. We note that the SQP contribution is propor-
tional to q�2

? in the limit q2? ! 0. Hence, it is not a leading
contribution in the limit q2?=Q

2 � 1.

VII. SUMMARY

We have studied the collinear factorization of SSA in
Drell-Yan processes. To derive all perturbative coefficient
functions at leading-order of �s in the factorization, we
have studied the scattering with multiparton states, in
which the helicity of the states are flipped. SSA in such a
scattering is nonzero. This is in contrast to the scattering
with a transversely polarized single quark. In this case SSA
is always zero because of the helicity conservation of QCD
for massless quarks.

We have calculated SSA in the multiparton scattering
processes and the relevant twist-3 matrix elements of mul-
tiparton states. By using the results from our calculation,
SSA has been factorized as convolutions of twist-3 matrix
elements of the polarized hadron, parton distribution func-
tions of the unpolarized hadron, and perturbative coeffi-
cient functions. All perturbative coefficient functions of
these contributions are derived here at the leading-order of
�s. In the factorization there are HP, SGP, and SFP con-
tributions. From our results, we find that SSA at tree-level
is factorized as the HP contributions. But the SGP and SFP
contributions are from a class of one-loop contributions to
SSA. These one-loop contributions contain collinear diver-
gences and they can only be factorized with the soft-pole
twist-3 matrix elements in which one of the active patrons
carries zero momentum. These soft-pole twist-3 matrix
elements are zero at tree-level but nonzero at one-loop.

This results in the perturbative coefficient functions of
SGP and SQP contributions at the same order as those of
HP contributions. Hence, in the collinear factorization
there is a nontrivial order-mixing. Such an order-mixing
does not happen in the factorization involving only twist-
2 operators.
It is interesting to note that at one-loop SSA contains

divergences caused by exchanges of a Glauber gluon, as
discussed in Sec. V. The divergences are factorized with
the soft-gluon-pole matrix elements. This is in contrast to
the factorization of an unpolarized cross section with only
twist-2 operators where it is well-known that the divergen-
ces from exchanges of Glauber gluons are canceled
[37–39]. In the case of SSA studied here with twist-3
operators, such divergences are not canceled and need to
be factorized. This will have some implications for the
study of factorizations in the framework of soft collinear
effective theories of QCD [40].
Our results for the collinear factorization of SSA in

Drell-Yan processes agree with those derived with the
method of diagram expansion, except the SQP contribu-
tions studied in Sec. VI. Comparing with diagram expan-
sion, our multiparton method has advantages in analyzing
factorizations of SSA and calculating higher-order
corrections because with this method what we need to
calculate is the standard scattering amplitudes. The ap-
proach we have taken here provides another way to
derive the collinear factorization of SSA in various pro-
cesses. It will be useful to solve the discrepancy between
results for SSA in [41], where the momentum of a lepton
in Drell-Yan processes is measured. It will also be useful
for solving the discrepancy of evolutions of twist-3 ma-
trix elements derived in [42–44]. We leave these for
future work.

J. P. MA, H. Z. SANG, AND S. J. ZHU PHYSICAL REVIEW D 85, 114011 (2012)

114011-16



ACKNOWLEDGMENTS

This work is supported by National Nature Science
Foundation of P.R. China (No. 10975169 and
No. 11021092). The work of H. Z. Sang is supported by
the Fundamental Research Funds for the Central

Universities (WM1114025) and by National Nature
Science Foundation of P.R. China (No. 11147168).
Note Added.—During the preparation of the paper the

results of the SGP contributions with gluonic twist-3 ma-
trix elements reported in [45] agreed with our results, as
shown in Sec. VB.

[1] U. D’Alesio and F. Murgia, Prog. Part. Nucl. Phys. 61, 394
(2008).

[2] G. L. Kane, J. Pumplin, and W. Repko, Phys. Rev. Lett. 41,
1689 (1978).

[3] W.G.D.Dharmaratna andG. R.Goldstein, Phys.Rev.D 41,
1731 (1990); W. Bernreuther, J. P. Ma, and T. Schroder,

Phys. Lett. B 297, 318 (1992);W. Bernreuther, J. P.Ma, and

B.H. J. McKellar, Phys. Rev. D 51, 2475 (1995).
[4] J.W. Qiu and G. Sterman, Phys. Rev. Lett. 67, 2264

(1991); Nucl. Phys. B378, 52 (1992); Phys. Rev. D 59,
014004 (1998).

[5] A. V. Efremov and O.V. Teryaev, Sov. J. Nucl. Phys. 36,
142 (1982); Phys. Lett. B 150, 383 (1985).

[6] Y. Kanazawa and Y. Koike, Phys. Lett. B 478, 121 (2000);
Phys. Rev. D 64, 034019 (2001).

[7] H. Eguchi, Y. Koike, and K. Tanaka, Nucl. Phys. B752, 1
(2006); B763, 198 (2007); Y. Koike and K. Tanaka, Phys.

Rev. D 76, 011502 (2007); Y. Koike and T. Tomita, Phys.

Lett. B 675, 181 (2009); H. Beppu, Y. Koike, K. Tanaka,

and S. Yoshida, Phys. Rev. D 82, 054005 (2010).
[8] K. Kanazawa and Y. Koike, Phys. Lett. B 701, 576 (2011).
[9] J.W. Qiu, W. Vogelsang, and F. Yuan, Phys. Lett. B 650,

373 (2007); Phys. Rev. D 76, 074029 (2007); Z.-B Kang

and J.W. Qiu, Phys. Rev. D 78, 034005 (2008).
[10] F. Yuan, Phys. Rev. D 78, 014024 (2008); C. J. Bomhof,

P. J. Mulders, W. Vogelsang, and F. Yuan, Phys. Rev. D 75,
074019 (2007); C. Kouvaris, J.W. Qiu, W. Vogelsang,

and F. Yuan, Phys. Rev. D 74, 114013 (2006); F. Yuan

and J. Zhou, Phys. Lett. B 668, 216 (2008).
[11] X. D. Ji, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev.

Lett. 97, 082002 (2006); Phys. Rev. D 73, 094017 (2006).
[12] X. D. Ji, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys. Lett.

B 638, 178 (2006).
[13] Y. Koike, W. Vogelsang, and F. Yuan, Phys. Lett. B 659,

878 (2008).
[14] H. G. Cao, J. P. Ma, and H. Z. Sang, Commun. Theor.

Phys. 53, 313 (2010).
[15] J. P. Ma and H. Z. Sang, J. High Energy Phys. 04 (2011)

062.
[16] J. P.Ma andH. Z. Sang, J. High EnergyPhys. 11 (2008) 090.
[17] J. P. Ma and H. Z. Sang, Phys. Lett. B 676, 74 (2009).
[18] J.W. Qiu and G. F. Sterman, Nucl. Phys. B353, 105

(1991); B353, 137 (1991).
[19] J.W. Qiu, Phys. Rev. D 42, 30 (1990).
[20] X. D. Ji, Phys. Lett. B 289, 137 (1992).
[21] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381

(1981); B213, 545 (1983); B197, 446 (1982); B194, 445
(1982).

[22] J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys.

B250, 199 (1985).
[23] X. D. Ji, J. P. Ma, and F. Yuan, Phys. Rev. D 71, 034005

(2005); Phys. Lett. B 597, 299 (2004).
[24] X. D. Ji, J. P. Ma, and F. Yuan, J. High Energy Phys. 07

(2005) 020.
[25] J. C. Collins and A. Metz, Phys. Rev. Lett. 93, 252001

(2004).
[26] D. Sivers, Phys. Rev. D 41, 83 (1990); 43, 261 (1991).
[27] J. C. Collins, Nucl. Phys. B396, 161 (1993); Phys. Lett. B

536, 43 (2002).
[28] S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne, and F.

Sannino, Phys. Rev. D 65, 114025 (2002).
[29] X.D. Ji and F. Yuan, Phys. Lett. B 543, 66 (2002); A.V.

Belitsky,X.D. Ji, andF.Yuan,Nucl. Phys.B656, 165 (2003).
[30] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998);

P. J. Mulders and R.D. Tangerman, Nucl. Phys. B461, 197
(1996); B484, 538 (1997).

[31] D. Boer, P. J. Mulders, and F. Pijlman, Nucl. Phys. B667,
201 (2003).

[32] M. Anselmino, M. Boglione, and F. Murgia, Phys. Lett. B

362, 164 (1995); M. Anselmino and F. Murgia, Phys. Lett.

B 442, 470 (1998); 483, 74 (2000); M. Anselmino, U.

D’Alesio, and F. Murgia, Phys. Rev. D 67, 074010 (2003);
U. D’Alesio and F. Murgia, Phys. Rev. D 70, 074009
(2004); Anselmino, M. Boglione, U. D’Alesio, E.

Leader, S. Melis,and F. Murgia, Phys. Rev. D 73,
014020 (2006).

[33] D. Boer, Phys. Rev. D 60, 014012 (1999).
[34] E. De Sanctis, W.D. Nowak, and K.A. Oganesian, Phys.

Lett. B 483, 69 (2000); V.A. Korotkov, W.-D. Nowak, and

K.A. Oganesian, Eur. Phys. J. C 18, 639 (2001); K. A.

Oganessyan, N. Bianchi, E. De Sanctis, and W.-D. Nowak,

Nucl. Phys. A689, 784 (2001).
[35] A. V. Efremov, K. Goeke, M.V. Polyakov, and D. Urbano,

Phys. Lett. B 478, 94 (2000); A. V. Efremov, K. Goeke,

and P. Schweitzer, Eur. Phys. J. C 24, 407 (2002); Nucl.

Phys. A711, 84 (2002); Phys. Lett. B 522, 37 (2001); 544,
389(E) (2002); 568, 63 (2003).

[36] B. Q. Ma, I. Schmidt, and J. J. Yang, Phys. Rev. D 66,
094001 (2002); 65, 034010 (2002).

[37] G. T. Bodwin, S. J. Brodsky, and G. P. Lepage, Phys. Rev.

Lett. 47, 1799 (1981); G. T. Bodwin, Phys. Rev. D 31,
2616 (1985); G. T. Bodwin, S. J. Brodsky, and G. P.

Lepage, Phys. Rev. D 39, 3287 (1989); J. C. Collins and

D. E. Soper, Nucl. Phys. B185, 172 (1981).
[38] J. C. Collins, D. E. Soper, and G. Sterman, Phys. Lett. B

109, 388 (1982); 134, 263 (1984).

COLLINEAR FACTORIZATION FOR SINGLE . . . PHYSICAL REVIEW D 85, 114011 (2012)

114011-17

http://dx.doi.org/10.1016/j.ppnp.2008.01.001
http://dx.doi.org/10.1016/j.ppnp.2008.01.001
http://dx.doi.org/10.1103/PhysRevLett.41.1689
http://dx.doi.org/10.1103/PhysRevLett.41.1689
http://dx.doi.org/10.1103/PhysRevD.41.1731
http://dx.doi.org/10.1103/PhysRevD.41.1731
http://dx.doi.org/10.1016/0370-2693(92)91269-F
http://dx.doi.org/10.1103/PhysRevD.51.2475
http://dx.doi.org/10.1103/PhysRevLett.67.2264
http://dx.doi.org/10.1103/PhysRevLett.67.2264
http://dx.doi.org/10.1016/0550-3213(92)90003-T
http://dx.doi.org/10.1103/PhysRevD.59.014004
http://dx.doi.org/10.1103/PhysRevD.59.014004
http://dx.doi.org/10.1016/0370-2693(85)90999-2
http://dx.doi.org/10.1016/S0370-2693(00)00261-6
http://dx.doi.org/10.1103/PhysRevD.64.034019
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.036
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.036
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.016
http://dx.doi.org/10.1103/PhysRevD.76.011502
http://dx.doi.org/10.1103/PhysRevD.76.011502
http://dx.doi.org/10.1016/j.physletb.2009.04.017
http://dx.doi.org/10.1016/j.physletb.2009.04.017
http://dx.doi.org/10.1103/PhysRevD.82.054005
http://dx.doi.org/10.1016/j.physletb.2011.06.021
http://dx.doi.org/10.1016/j.physletb.2007.05.023
http://dx.doi.org/10.1016/j.physletb.2007.05.023
http://dx.doi.org/10.1103/PhysRevD.76.074029
http://dx.doi.org/10.1103/PhysRevD.78.034005
http://dx.doi.org/10.1103/PhysRevD.78.014024
http://dx.doi.org/10.1103/PhysRevD.75.074019
http://dx.doi.org/10.1103/PhysRevD.75.074019
http://dx.doi.org/10.1103/PhysRevD.74.114013
http://dx.doi.org/10.1016/j.physletb.2008.08.045
http://dx.doi.org/10.1103/PhysRevLett.97.082002
http://dx.doi.org/10.1103/PhysRevLett.97.082002
http://dx.doi.org/10.1103/PhysRevD.73.094017
http://dx.doi.org/10.1016/j.physletb.2006.05.044
http://dx.doi.org/10.1016/j.physletb.2006.05.044
http://dx.doi.org/10.1016/j.physletb.2007.11.096
http://dx.doi.org/10.1016/j.physletb.2007.11.096
http://dx.doi.org/10.1088/0253-6102/53/2/21
http://dx.doi.org/10.1088/0253-6102/53/2/21
http://dx.doi.org/10.1007/JHEP04(2011)062
http://dx.doi.org/10.1007/JHEP04(2011)062
http://dx.doi.org/10.1088/1126-6708/2008/11/090
http://dx.doi.org/10.1016/j.physletb.2009.04.071
http://dx.doi.org/10.1016/0550-3213(91)90503-P
http://dx.doi.org/10.1016/0550-3213(91)90503-P
http://dx.doi.org/10.1016/0550-3213(91)90504-Q
http://dx.doi.org/10.1103/PhysRevD.42.30
http://dx.doi.org/10.1016/0370-2693(92)91375-J
http://dx.doi.org/10.1016/0550-3213(81)90339-4
http://dx.doi.org/10.1016/0550-3213(81)90339-4
http://dx.doi.org/10.1016/0550-3213(82)90453-9
http://dx.doi.org/10.1016/0550-3213(82)90021-9
http://dx.doi.org/10.1016/0550-3213(82)90021-9
http://dx.doi.org/10.1016/0550-3213(85)90479-1
http://dx.doi.org/10.1016/0550-3213(85)90479-1
http://dx.doi.org/10.1103/PhysRevD.71.034005
http://dx.doi.org/10.1103/PhysRevD.71.034005
http://dx.doi.org/10.1016/j.physletb.2004.07.026
http://dx.doi.org/10.1088/1126-6708/2005/07/020
http://dx.doi.org/10.1088/1126-6708/2005/07/020
http://dx.doi.org/10.1103/PhysRevLett.93.252001
http://dx.doi.org/10.1103/PhysRevLett.93.252001
http://dx.doi.org/10.1103/PhysRevD.41.83
http://dx.doi.org/10.1103/PhysRevD.43.261
http://dx.doi.org/10.1016/0550-3213(93)90262-N
http://dx.doi.org/10.1016/S0370-2693(02)01819-1
http://dx.doi.org/10.1016/S0370-2693(02)01819-1
http://dx.doi.org/10.1103/PhysRevD.65.114025
http://dx.doi.org/10.1016/S0370-2693(02)02384-5
http://dx.doi.org/10.1016/S0550-3213(03)00121-4
http://dx.doi.org/10.1103/PhysRevD.57.5780
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1016/S0550-3213(96)00648-7
http://dx.doi.org/10.1016/S0550-3213(03)00527-3
http://dx.doi.org/10.1016/S0550-3213(03)00527-3
http://dx.doi.org/10.1016/0370-2693(95)01168-P
http://dx.doi.org/10.1016/0370-2693(95)01168-P
http://dx.doi.org/10.1016/S0370-2693(98)01267-2
http://dx.doi.org/10.1016/S0370-2693(98)01267-2
http://dx.doi.org/10.1016/S0370-2693(00)00519-0
http://dx.doi.org/10.1103/PhysRevD.67.074010
http://dx.doi.org/10.1103/PhysRevD.70.074009
http://dx.doi.org/10.1103/PhysRevD.70.074009
http://dx.doi.org/10.1103/PhysRevD.73.014020
http://dx.doi.org/10.1103/PhysRevD.73.014020
http://dx.doi.org/10.1103/PhysRevD.60.014012
http://dx.doi.org/10.1016/S0370-2693(00)00596-7
http://dx.doi.org/10.1016/S0370-2693(00)00596-7
http://dx.doi.org/10.1007/s100520100564
http://dx.doi.org/10.1016/S0370-2693(00)00296-3
http://dx.doi.org/10.1007/s100520200918
http://dx.doi.org/10.1016/S0370-2693(01)01258-8
http://dx.doi.org/10.1016/S0370-2693(02)02518-2
http://dx.doi.org/10.1016/S0370-2693(02)02518-2
http://dx.doi.org/10.1016/j.physletb.2003.06.016
http://dx.doi.org/10.1103/PhysRevD.66.094001
http://dx.doi.org/10.1103/PhysRevD.66.094001
http://dx.doi.org/10.1103/PhysRevD.65.034010
http://dx.doi.org/10.1103/PhysRevLett.47.1799
http://dx.doi.org/10.1103/PhysRevLett.47.1799
http://dx.doi.org/10.1103/PhysRevD.31.2616
http://dx.doi.org/10.1103/PhysRevD.31.2616
http://dx.doi.org/10.1103/PhysRevD.39.3287
http://dx.doi.org/10.1016/0550-3213(81)90370-9
http://dx.doi.org/10.1016/0370-2693(82)91097-8
http://dx.doi.org/10.1016/0370-2693(82)91097-8
http://dx.doi.org/10.1016/0370-2693(84)90684-1


[39] J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys.
B261, 104 (1985); B308, 833 (1988).

[40] F. Liu and J. P. Ma, arXiv:0802.2973.
[41] N. Hammon, O. Teryaev, and A. Schäfer, Phys. Lett. B
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