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If the c quark has an anomalous color-electric dipole moment (CEDM), it may serve as a new source of

CP violation. The strength of such a CP violation depends on the size of the CEDM, d0c. We propose two

effective ways of testing it from the large sample of c 0 ! J=c þ �þ þ �� at the Beijing Spectrometer,

and the obtained result, jd0cj< 3� 10�14 e cm (95% confidence level), gives the first experimentally

determined upper bound on the CEDM of the c quark.
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I. INTRODUCTION

Searching for new sources of CP violation beyond the
standard model (SM) is one of the currently interesting
projects in particle physics. It concerns the explanation of
the asymmetry between matter and antimatter in the
Universe. There have been a lot of experimental studies
on the CP violation in K-meson, B-meson, and D-meson
decays. So far, these experimental results are consistent
with the SM predictions [1].

There have been other possible new CP violation
sources under consideration, for example, the possible
electric dipole moments of quarks or leptons [1]. In
Ref. [2], the CP violation effects in Z boson decays were
studied. An effective interaction Lagrangian containing the
relevant CP-violating terms was presented. These included
the electric and weak dipole moments and the color-
electric dipole moment (CEDM) of the quarks. In the
present paper, we are concerned with the CEDM of the c
quark. We note that, to the CP-odd correlations considered
in Ref. [2], this CEDM does not contribute. Reference [3]
suggested a test via the decay J=c ! ��� based on a
naive quark model calculation. Unfortunately, there is no
experimental data on the process J=c ! ��� so far.
Reference [3] only estimated the testing sensitivity from
the statistics. In this paper, we propose a test via the
hadronic transition c 0 ! J=c þ �þ þ �� at the Beijing
Spectrometer (BES) based on the calculation of QCD
multipole expansion [4–7] which has proved to be success-
ful in many processes [7]. BES has accumulated a lot of c 0

decays, and the branching ratio for c 0 ! J=c þ �þ � is
about 50%, which gives a large sample for testing CEDM
effect with certain precision providing the first experimen-
tal determination of the CEDM of the c quark.
The effective interaction Lagrangian including the

CEDM proposed in Ref. [2] is

LCEDM ¼ � i

2
d0c �c c�

���5

�a

2
c cG

a
��; (1)

where d0c is the strength of the CEDM, ��� ¼ i
2 ½��; ���,

�5 ¼ i�0�1�2�3, �a is the Gell-Mann matrix for the color
SUð3Þc group, and Ga

�� ¼ @�G
a
� � @�G

a
� � gsfabcG

b
�G

c
�

is the field strength of the gluon field.
LCEDM affects the hadronic transition processes c 0 !

J=c þ �þ þ �� in two folds:
(i) It contributes to the static potential between c and �c,

which causes the mixing between CP-even and
CP-odd c �c bound states, i.e., both c 0 and J=c
contain certain CP-odd ingredients such as c ð1P1Þ.

(ii) LCEDM contributes to the vertices in QCD multi-
pole expansion, so that it affects the transition
amplitudes.

In this paper, we shall calculate the above two contribu-
tions systematically.
We first treat LCEDM as a perturbation to calculate its

contribution to the c- �c static potential with which we
calculate the energy shifts and CP violating state mixings.
We then calculate the theoretical prediction for the

distribution d�ðc 0 ! J=c þ �þ þ ��Þ=dM�� and com-
pare the obtained result with the BES data, which leads to
an upper bound of d0c. Finally we construct a CP-odd
operator O from the initial-state and final-state momenta
in eþe� ! c 0 ! J=c þ �þ þ ��, and calculate its ex-
pectation value hOi under the amplitude of eþe� ! c 0 !
J=c þ �þ þ ��. Since the amplitude contains a CP-odd
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piece proportional to d0c, hOi is proportional to d0c. So
measuring hOi can provide another way of testing d0c. We
suggest BESIII to do this measurement.

The CEDM interaction LCEDM in (1) is a dimension-5
operator in an effective Lagrangian with a scale parameter
�� TeV beyond which the SM should be replaced by new
physics. The present study is at energies far below � and
also much below the electroweak symmetry breaking
scale. See Ref. [8] for a discussion of the effective
Lagrangian approach in such a case. In this paper, we
concentrate on studying the contribution of LCEDM to the
hadronic transition c 0 ! J=c��. Here we would like to
explain why other higher dimensional CP-odd operators,
such as the CP-odd 3-gluonic operator, OG ¼
�ðC=6ÞfabcGa

��G
b
�
�Gc

��	
���� [9], need not be included

in this study. In an effective Lagrangian theory, an operator
with dimension 4þ n is always matched by 1=�n from its
coefficient. Let us first look at the dimension-5 operator
LCEDM. Comparing it with the dimension-4 SM quark-
gluon interaction, we see that the extra dimension of
LCEDM comes from the extra derivative on the gluon field,
i.e., from the gluon momentum k. In the transition c 0 !
J=c��, k <Mc 0 �MJ=c ¼ 590 MeV. Thus LCEDM is

suppressed by k=� relative to the SM quark-gluon inter-
action. Next we look at the dimension-6 CP-odd operator
OG. Comparing it with the dimension-4 SM triple-gluon
interaction, we see that the two extra dimensions of OG

come from two extra derivatives on 2 gluon fields. Thus
OG is suppressed by k2=�2 relative to the SM triple-gluon
interaction which is of the same order as the SM quark-
gluon interaction. So, OG is suppressed by k=�< 5:9�
10�4 relative to LCEDM. There have been many papers
estimating the magnitude of the coefficient C in OG

[10,11], and showing that C is really very small. There-
fore, theoretically, it is reasonable to take only the leading
dimension-5 CP-odd operator LCEDM into account, and
ignore all the higher dimensionalCP-odd operators such as
OG in the present study.

This paper is organized as follows. In Sec. II, we calcu-
late the contribution of LCEDM to the potential between
heavy quark and antiquark, and treat it as a perturbation to
calculate the energy shifts and state mixings caused by this
contribution. We shall see that both J=c and c 0 contain
the CP-violating ingredient c ð11P1Þ, etc. These mixed

quarkonium states define the initial- and final-state in the
transition c 0 ! J=c þ �þ þ ��. Then we study the con-
tribution ofLCEDM, as a new vertex, to the QCD multipole
expansion amplitudes, and calculate all the transition am-
plitudes up toOðd0cÞ in Sec. III. In Sec. IV, we calculate the
totalM�� distribution d�ðc 0 ! J=c þ �þ þ ��Þ=dM��

and compare it with the BES measured result. This leads to
an upper bound of d0c which is the strongest bound obtained
so far. In Sec. V, we propose the alternative way of deter-
mining d0c from the experimental data on hOi. Section IV is
a concluding remark.

II. STATIC POTENTIAL AND STATE MIXING

A. Derivation of the potential

Since d0c is supposed to be small, the LCEDM contribu-
tions to the potential between c and �c can be calculated by
perturbation similar to the derivation of the Coulomb
potential in quantum electrodynamics [12]. Let the con-
ventional heavy quark potential be V0, and the LCEDM

contributed potential be V1. The total potential is

V ¼ V0 þ V1: (2)

In the following, we take V0 to be a QCD motivated
potential, such as the Cornell potential (the simplest one)
[13] or the Chen-Kuang potential (more QCD, and better
phenomenological predictions) [14]. Note that the short
distance behavior of the Cornell potential is the hardest
(steepest) among the QCD motivated potentials, while that
of the CK potential is the softest (flattest). Thus comparing
the results in the two potential models, we can see the
model dependence of the result. Now we calculate V1 to
lowest order perturbation. The Feynman diagrams for the
LCEDM contributions to V1 are showm in Fig. 1, where the
normal vertex is �igs�

�ð�a=2Þ for c and igs�
�ð�b=2Þ for

�c. The shaded circle stands for the CEDM vertex deter-
mined by LCEDM.
In the static limit, the obtained V1 in the momentum

representation is

V1ðqÞ ¼ i
4

3

gsd
0
c

2

ð� � ��Þ � q
jqj2 � i	

: (3)

Making the Fourier transformation, we finally obtain

V1ðrÞ ¼ 4gs
3

d0cð� � ��Þ � r
ð3ÞðrÞ

� 4

3

gs
4�

d0c
ð� � ��Þ � r=r

r2
: (4)

The first term serves as a repulsive core, while the second
term is an attractive force. We shall see later, especially

FIG. 1. Lowest order Feynman diagrams for V1, where � is the
normal vertex and the shaded circle is the CEDM vertex.
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from Eq. (A10) in the Appendix, that to first order pertur-
bation, the first term does not make any contributions to the
energy level and the wave function corrections, so that only
the second term matters. Note that the dimension of d0c is
m�1. So it is natrual to define

d0c � 
c

mc

; (5)

where 
c is a dimensionless parameter. Then V1ðrÞ can be
expressed by

V1ðrÞ ¼ 4gs
3


c

mc

ð� � ��Þ � r
ð3ÞðrÞ

� 4

3

gs
4�


c

mc

ð� � ��Þ � r=r
r2

: (6)

B. Energy shift and state mixing

We see that V1ðrÞ contains a factor ð� � ��Þ � r which
flips the quarkonium spins by �s ¼ �1 and the quark-
onium orbital angular momentum by �l ¼ �1. This does
not change the charge conjugation but changes the parity,
i.e., it violates CP. Take the 3S1 quarkonium as an ex-
ample. V1ðrÞ changes this state to 1P1. Thus when the
potential contains V1ðrÞ, the eigenstate is a mixture of the

3S1 and the
1P1 states. This affects the decays of the heavy

quarkonia.
Since 
c is supposed to be small, we can take V1ðrÞ as a

perturbation. Let E0
nl and jnð2sþ1ÞLJi0 (s ¼ 0, 1) be the

energy eigenvalue and the wave function of the quark-
onium eigenstate with only V0ðrÞ.
To first order of 
c, the correction to the energy eigen-

value is

Enl ¼ E0
nl þ 0hnð2sþ1ÞLJjV1jnð2sþ1ÞLJi0: (7)

We know that jnð2sþ1ÞLJi0 is a CP eigenstate, and V1

violates CP. So that the diagonal matrix element in
Eq. (7) vanishes. Therefore there is no energy shift to
Oð
cÞ. The energy shift is of Oð
2

cÞ.
The first order wave function correction is

jnð2sþ1ÞLJi ¼ jnð2sþ1ÞLJi0
þX

n0

0hn0ð2ðs�1Þþ1ÞðL� 1ÞJjV1jnð2sþ1ÞLJi0
E0
nl � E0

n0; l�1

� jn0ð2ðs�1Þþ1ÞðL� 1ÞJi0: (8)

For example,

j13S1i ¼ j13S1i0 � 0h11P1jV1j13S1i0
E0
11P

1

� E0
13S

1

j11P1i0 þ � � �

j23S1i ¼ j23S1i0 þ 0h11P1jV1j23S1i0
E0
23S

1

� E0
11P

1

j11P1i0 þ � � �

j11P1i ¼ j11P1i0 þ 0h13S1jV1j11P1i0
E0
11P1

� E0
13S1

j13S1i0 � 0h23S1jV1j11P1i0
E0
23S1

� E0
11P1

j23S1i0 � 0h13D1jV1j11P1i0
E0
13D1

� E0
11P1

j13D1i0 þ � � �

j13D1i ¼ j13D1i0 þ 0h11P1jV1j13D1i0
E0
13D

1

� E0
11P

1

� j11P1i0 þ � � � :

(9)

Here we see explicitly the mixing of the 3S1 and
1P1 states.

The above expressions for the mixed states are not normalized yet. The normalized states are

j13S1i ¼ C10
10j13S1i0 þ C11

10j11P1i0 þ � � �
j23S1i ¼ C20

20j23S1i0 þ C11
20j11P1i0 þ � � �

j11P1i ¼ C11
11j11P1i0 þ C10

11j13S1i0 þ C20
11j23S1i0 þ C12

11j13D1i0 þ � � �
j13D1i ¼ C12

12j13D1i0 þ C11
12j11P1i0 þ � � � ;

(10)

where
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C10
10 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð0h11P1

jV1j13S1i0
E0

11P
1

�E0

13S
1

Þ2
s ; C11

10 ¼ �
0
h11P

1
jV1j13S1i0

E0

11P
1

�E0

13S
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð0h11P1
jV1j13S1i0

E0

11P
1

�E0

13S
1

Þ2
s ; C20

20 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð0h11P1
jV1j23S1i0

E0

23S
1

�E0

11P
1

Þ2
s ;

C11
20 ¼

0
h11P

1
jV1j23S1i0

E0

23S
1

�E0

11P
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð0h11P1
jV1j23S1i0

E0

23S
1

�E0

11P
1

Þ2
s ; C11

11 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð0h11P1
jV1j13S1i0

E0

13S
1

�E0

11P
1

Þ2 þ ð0h11P1
jV1j23S1i0

E0

23S
1

�E0

11P
1

Þ2 þ ð0h11P1
jV1j13D1

i0
E0

13D
1

�E0

11P
1

Þ2
s ;

C10
11 ¼

0
h13S

1
jV1j11P1

i0
E0

11P
1

�E0

13S
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð0h11P1jV1j13S1i0
E0

13S
1

�E0

11P
1

Þ2 þ ð0h11P1jV1j23S1i0
E0

23S
1

�E0

11P
1

Þ2 þ ð0h11P1jV1j13D1i0
E0

13D
1

�E0

11P
1

Þ2
s ;

C20
11 ¼ �

0h23S1jV1j11P1i0
E0

23S
1

�E0

11P
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð0h11P1
jV1j13S1i0

E0

13S
1

�E0

11P
1

Þ2 þ ð0h11P1
jV1j23S1i0

E0

23S
1

�E0

11P
1

Þ2 þ ð0h11P1
jV1j13D1

i0
E0

13D
1

�E0

11P
1

Þ2
s ;

C12
11 ¼ �

0
h13D

1
jV1j11P1

i0
E0

13D
1

�E0

11P
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð0h11P1
jV1j13S1i0

E0

13S
1

�E0

11P
1

Þ2 þ ð0h11P1
jV1j23S1i0

E0

23S
1

�E0

11P
1

Þ2 þ ð0h11P1
jV1j13D1

i0
E0

13D
1

�E0

11P
1

Þ2
s

C12
12 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð0h11P1

jV1j13D1
i0

E0

13D
1

�E0

11P
1

Þ2
s ; C11

12 ¼
0
h11P

1
jV1j13D1

i0
E0

13D
1

�E0

11P
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð0h11P1
jV1j13D1

i0
E0

13D
1

�E0

11P
1

Þ2
s :

(11)

The detailed calculation of the matrix element 0h11P1jV1jnð2sþ1ÞL1i0 is given in the Appendix. Expanding these mixing

coefficients up to Oð
c=mcÞ and with the results given in Eqs. (A15a) and (A15b), we obtain

C10
10 ¼ 1þOð
2

c=m
2
cÞ; C11

10ðmf;msÞ � C11
10
mf;ms

¼ 8

3
ffiffiffi
3

p 
c

mc

I1110
M1P �MJ=c


mf;ms
þOð
2

c=m
2
cÞ;

C20
20 ¼ 1þOð
2

c=m
2
cÞ; C11

20ðmf;msÞ � C11
20
mf;ms

¼ � 8

3
ffiffiffi
3

p 
c

mc

I1120
Mc 0 �M1P


mf;ms
þOð
2

c=m
2
cÞ;

C11
11 ¼ 1þOð
2

c=m
2
cÞ; C10

11ðmf;msÞ � C10
11
mf;ms

¼ � 8

3
ffiffiffi
3

p 
c

mc

I1011
M1P �MJ=c


mf;ms
þOð
2

c=m
2
cÞ;

C20
11 ¼ 1þOð
2

c=m
2
cÞ; C12

11ðmf;mi þmsÞ � C11
10
mf;miþms

¼ � 8

3

ffiffiffi
2

3

s

c

mc

I1211
M1D �M1P


mf;miþms
þOð
2

c=m
2
cÞ;

C12
12 ¼ 1þOð
2

c=m
2
cÞ; C11

12ðmf;mi þmsÞ � C11
12
mf;miþms

¼ 8

3

ffiffiffi
2

3

s

c

mc

I1112
M1D �M1P


mf;miþms
þOð
2

c=m
2
cÞ;

(12)

where mi, mf, ms stands for the magnetic quantum numbers of the initial-state orbital angular momentum, the final-state
orbital angular momentum, and the initial-state spin, respectively. The numerical values of these mixing coefficients can be
obtained once a potential model is chosen. In the Chen-Kuang (CK) model [14] and Cornell model [13], the values are
given in Table I.
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Actually, even for 
c ¼ 0, the states j23S1i and j13D1i are
not just the experimentally observed jc 0i and jc 00i since
the leptonic width of j13D1i is smaller than the experimen-
tally measured value by an order of magnitude. Usually
people believe that the observed jc 0i and jc 00i are mix-
tures of j23S1i and j13D1i [15,16]:

jc 0i ¼ j23S1i cos�� j13D1i sin�;
jc 00i ¼ j23S1i sin�þ j13D1i cos�:

(13)

The mixing angle � can be determined by fitting the
measured leptonic widths. The obtained values of � in
different models are [15,16]

Cornell model: � ¼ 10	;

Chen-Kuang model: � ¼ 12	:
(14)

Thus the physical jc 0i and jc 00i are [cf. Eq. (10)]

jc 0i ¼ cos�ðC20
20j23S1i0 þ C11

20j11P1i0Þ
� sin�ðC12

12j13D1i0 þ C11
12j11P1i0Þ;

jc 00i ¼ sin�ðC20
20j23S1i0 þ C11

20j11P1i0Þ
þ cos�ðC12

12j13D1i0 þ C11
12j11P1i0Þ:

(15)

So the hadronic transition c 0 ! J=c þ �þ þ �� under
consideration is expressed as

½cos�ðC20
20j23S1i0 þ C11

20j11P1i0Þ � sin�ðC12
12j13D1i0

þ C11
12j11P1i0Þ�jE¼E20

! ðC10
10j13S1i0 þ C11

10j11P1i0ÞjE¼E10
þ �þ �: (16)

III. CALCULATION OF THE TRANSITION
RATES AND DETERMINATION OF THE

Oð�1
cÞ SPA COEFFICIENTS

A. Oð�0
cÞ and Oð�1

cÞ transitions
The hadronic transition process is dipicted in Fig. 2, in

which the transition amplitude contains two factors,

namely, the multipole gluon emission (MGE) factor and
the hadronization (H) factor. We shall treat the two factors
separately.
We first consider the MGE part. Let Ea and Ba be the

color-electric and color-magnetic fields, respectively. In
the conventional CP-conserving transitions, the MGE
part contains certain quarkonium-gluon interaction verti-
ces, e.g., the color-electric dipole (E1) interaction, the
color-magnetic dipole (M1) interaction, etc. [4–6,16]:

E1: � da �EaðX; tÞ;

da � gE
Z
ðx�XÞ�yðx; tÞ�a

2
�ðx; tÞd3x;

M1: ma �BaðX; tÞ;

ma � gM
2

Z
ðx� XÞ ��yðx; tÞ�a

2
�0��ðx; tÞd3x;

(17)

where gE and gM are effective color-electric and color-
magnetic coupling strengths, respectively, X is the center-
of-mass coordinate of the quarkonium, and �ðx; tÞ is the
quarkoniumwave function at the space-time point ðx; tÞ. For
the CP-violating CEDM interaction vertex. Equation (1)
can be written as

L CEDM ¼ id0cc
y
c �0�0k�5

�a

2
c cG

a
0k

� id0cc
y
c �0�ij�5

�a

2
c cGij

¼ � 
c

mc

c y
c

�i 0
0 ��i

� �
�a

2
c cE

a
i

� i

c

mc

c y
c

0 �i

��i 0

� �
�a

2
c cB

a
i : (18)

The first term is just the interaction between the CEDM
and the color-electric field. The second term is off
diagonal, so that it is nonvanishing only when the lower
components of the quark spinor �ðp � �Þ=ðEþmÞ are
taken into account, i.e., when the quark is moving.
So the second term means the interaction between the
color current and the color-magnetic field. In the

FIG. 2. Diagram for a typical hadronic transition.

TABLE I. Values of the mixing coefficients CnFlF
nIlI

in the CK
and Cornell models.

CK model Cornell model

C11
10 0:1165
c 0:1142
c

C11
20 �0:07119
c �0:07209
c

C11
12 0:1597
c 0:1669
c

C10
20 �0:01863
c �0:01824
c

C10
12 �0:03906
c �0:04091
c
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nonrelativistic limit, only the first term is nonvanishing,
and the interaction vertex is

CEDM : � i

c

mc

�
�a

2
� þ

��a

2
��

�
�Ea: (19)

As in the case of M1 transition given in Ref. [4], after
certain treatment of the color factor, the effective
CEDM vertex is

CEDM : � i

c

2mc

ð� � ��Þ �E; (20)

where E � ð�a=2ÞEa.
With these vertices, the transition (16) can be divided

into the Oð
0
cÞ terms and Oð
1

cÞ terms. They are:
(i) Oð
0

cÞ term.—
(a) Ordinary E1-E1 transition of 2S ! 1S with the co-

efficients cos�C20
20C

10
10:

cos�C20
20j23S1i0jE¼E20

! C10
10j13S1i0jE¼E10

þ �þ �:

(21)

(b) Ordinary E1-E1 transition of 1D ! 1S with the
coefficient � sin�C12

12C
10
10:

�sin�C12
12j13D1i0jE¼E20

!C10
10j13S1i0jE¼E10

þ�þ�:

(22)

(ii) Oð
1
cÞ terms.—

(a) Ordinary E1-M1 transition of 2S ! 1P with the
coefficients cos�C20

20C
11
10:

cos�C20
20j23S1i0jE¼E20

! C11
10j11P1i0jE¼E10

þ �þ �:

(23)

(b) Ordinary E1-M1 transition of 1D ! 1P with the
coefficients � sin�C12

12C
11
10:

�sin�C12
12j13D1i0jE¼E20

!C11
10j11P1i0jE¼E10

þ�þ�:

(24)

(c) Ordinary E1-M1 transition of 1P ! 1S with the
coefficients ( cos�C11

20 � sin�C11
12):

ðcos�C11
20 � sin�C11

12Þj11P1i0jE¼E20

! C10
10j13S1i0jE¼E10

þ �þ �: (25)

(d) M1-CEDM1 transition of 2S ! 1S with the coeffi-
cients cos�C20

20C
10
10:

cos�C20
20j23S1i0jE¼E20

! C10
10j13S1i0jE¼E10

þ �þ �:

(26)

(e) E1-CEDM2 transitions of 2S ! 1S and 1D ! 1S
with coefficients cos�C20

20C
10
10 and � sin�C12

12C
10
10, re-

spectively:

cos�C20
20j23S1i0jE¼E20

! C10
10j13S1i0jE¼E10

þ �þ �:

(27)

�sin�C12
12j13D1i0jE¼E20

!C10
10j13S1i0jE¼E10

þ�þ�:

(28)

For a given potential model, there is a systematic way of
calculating the MGE factors [6,7].
Next we consider the H part, the matrix elements reflect-

ing the conversion of gluons into light hadrons. These
matrix elements are at the scale of a few hundred MeV,
and the calculation is thus highly nonperturbative. So far,
there is no reliable way of calculating them from the first
principles of QCD, so that we have to take certain phe-
nomenological approach. A conventionally used approach
is the soft-pion approach (SPA) in which the H-factor
matrix element is phenomenologically expressed in terms
of power expansion of the momenta of the two pions with
unknown coefficients [17]. To lowest nonvanishing order,
the number of unknown coefficients is usually not large,
so that they can be determined from taking certain
experimental input data. This approach has proved to be
successful in calculating the transition rates, the M��

distributions, etc. [6,7]. However, in the present case, it
will be difficult if we merely take this approach since there
are so many kinds of H-factor matrix elements listed in
(21)–(28) containing too many unknown coefficients.
There are not enough known input experimental data to
determine them. Another viable but cruder approach is the
two-gluon approach (2GA) proposed and used in
Refs. [6,7]. In this approach, the external pion-fields in
the H-factor are approximately replaced by two external
gluons, so that the matrix elements can be easily evaluated
as functions of the pion (gluon) momenta and the two
phenomenological coupling constants gE and gM which
can be determined by known experimental inputs. Of
course this is a crude order of magnitude estimate.
However, it has been shown that this crude approach
does give right order of magnitudes of transition rates for
many processes [6,7,18]. The shortcoming of the 2GA is
that it cannot give the correct angular-dependent distribu-
tions such as angular distributions, M�� distributions, etc.
This is because that the pion is spinless, while the gluon
spin is 1. In this situation, we shall take both SPA and 2GA
in this paper for complementarity.
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We can first take the 2GA to calculate all the transition
rates listed in (21)–(28) which contain two effective cou-
pling constants gE and gM. Since the total transition rate
�ðc 0 ! J=c��Þ is essentially contributed by the Oð
0

cÞ
rate which only contains gE, we can take the experimental
value of �ðc 0 ! J=c��Þ [1],

�c 0 ¼ 304� 9 keV;

Bðc 0 ! J=c�þ��Þ ¼ ð33:6� 0:4Þ%;

Bðc 0 ! J=c�0�0Þ ¼ ð17:73� 0:34Þ%;

(29)

as input to determine gE. For the determination of gM, we
can take the 2GA calculated branching ratio Bðc 0 !
hc�

0Þ � Bðhc ! �c�Þ [16] containing gM=gE to compare
with the corresponding experimental value [19]. For ex-
ample, in the CK model and the Cornell model, the deter-
mined gE and gM=gE are:

CKmodel:


E � g2E
4�

¼ 0:523;

M


E

¼ g2M
g2E

¼ 2:36;

Cornell model:


E � g2E
4�

¼ 0:667;

M


E

¼ g2M
g2E

¼ 2:36:

(30)

With the determined gE and gM, we can obtain all the
relative sizes of the transition rates in (21)–(28) with
only one undetermined parameter d0c (or 
c) left in the
Oð
1

cÞ rates. Next, we can take the SPA to calculate all the
transition rates containing certain unknown coefficients.
As a perturbation calculation, we first obtain the Oð
0

cÞ
transition rate containing three unknown coefficients [17]
which can be determined by the data (29) and M�� distri-
bution as what is conventionally done [20]. Then we
calculate the Oð
1

cÞ transition rates containing several
new unknown coefficients. Comparing the SPA and 2GA
results, we can express these unknown coefficients in terms
of the known Oð
0

cÞ coefficients, so the SPA results of the
Oð
1

cÞ transition amplitudes contain only one undeter-
mined parameter d0c (or 
c). We can then calculate the
total distribution d�ðc 0 ! J=c þ �þ þ ��Þ=dM�� to
compare with the BES data for testing d0c (or 
c). We shall
see that the inclusion of the Oð
1

CÞ contributions does

improve the fit, and the best fit value of 
c is nonvanishing.
However, considering the experimental errors, 
c is still
consistent with zero. So we can obtain an upper bound on

c (or d

0
c). The detailed analysis of this kind of study will

be given in Sec. IV.

B. Transition rates of the Oð�0
cÞ processes (21) and (22)

The Oð
0
cÞ transition rates in Eqs. (21) and (22) have

been calculated in the published papers [6,7,15]. Here we
list the results.

The transitions in (21) and (22) belong to the ordinary
E1-E1 transitions. The E1-E1 transition amplitude can be
written as [6,7]

M E1E1 ¼ i
g2E
6

X
KL

h�Fjrm1
jKLihKLjrm2

j�Ii
EI � EKL

�h��jEa�m1
Ea�m2

j0i

¼ i
g2E
6
f111nIlInFlF

hlFsFjFmFjr̂m1
r̂m2

jlIsIjImIi
� h��jEa�m1

Ea
m2
j0i; (31)

where �Ið�FÞ is the initial (final) quarkonium state; r is
the separation vector between the two heavy quarks; r̂ is
the unit vector of r; rm1

ðrm2
Þ is the component of r in

the spherical coordinate system with the magnetic quan-
tum number mm1

ðmm2
Þ 2 f1; 0;�1g [cf. Eq. (A3) in the

Appendix]; l, s:j:m are, respectively, the orbital angular
momentum, the spin, the total angular momentum, and the
total magnetic quantum numbers of the quarkonium state;
K (L) is the principal (orbital angular momentum) quan-
tum number of the intermediate state; and EKL is the
energy eigenvalue of the intermediate vibrational state
jKLi. The factor hlFsFjFmFjr̂kr̂ljlIsIjImIi can be eval-
uated using the properties of the spherical harmonics [6],
and the reduced amplitude f111nIlInFlF

is

fLPIPF

nIlInFlF

� X
K

R
RFðrÞrPFR


KLðrÞr2dr
R
R

KLðr0Þr0PIRIðr0Þr02dr0

MI � EKL

;

(32)

in which RI, RF, and RKL are radial wave functions of the
initial, final, and intermediate vibrational states, respec-
tively. These radial wave functions are calculated from the
Schrödinger equation with a given potential model. The

values of various fLPIPF

nIlInFlF
in the CK and Cornell models are

listed in Table II.
In the following, we consider the approaches to the

hadronization factor h��jEa
kE

a
l j0i.

TABLE II. Values of the reduced amplitudes fLPIPF

nIlInFlF
in the

CK and Cornell models.

CK model Cornell model

f1112010 (GeV�3) 8.8715 6.9330

f0002010 (GeV�1) 0.3869 0.3709

f1111210 (GeV�3) �11:2507 �8:7701
f1011110 (GeV�2) �3:31446 �2:9040
f0101110 (GeV�2) �6:8977 �6:1708
f1102011 (GeV�2) 4.8399 4.2801

f0012011 (GeV�2) 4.5643 4.0379

f1101211 (GeV�2) �5:8859 �5:1934
f2011211 (GeV�2) �4:1087 �3:6324
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(i) SPA.—In the SPA, the hadronization factor can be generally parametrized as [17]

g2E
6
h�
ðq1Þ��ðq2ÞjEa�m1

Ea�m2
j0i¼ 

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2!1Þð2!2Þ

p �

m1m2

½Aq�1 q2�þB!1!2�þC
�
q1m1

q2m2
þq1m2

q2m1
�2

3

m1m2

q1 �q2
��

¼ A

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!12!2

p
�

m1m2

�
q
�
1 q2�þ

B
A

!1!2

�
þ C
A

�
q1m1

q2m2
þq1m2

q2m1
�2

3

m1m2

q1 �q2
��
;

(33)

where A, B, and C are phenomenological constants, and q
 ¼ ð!
; q
Þ is the four momentum of �
. For a given
invariant mass M��, the A term is angular independent, while the B and C terms are angular dependent [17].
For j23S1i ! j13S1i��, the main contributions to the total transition rate are from the A and B terms [20], while for
j13D1i ! j13S1i��, the main contribution is from the C term [6]. Thus the M�� distribution is [6]

d�ðc 0 ! J=c��ÞSPA
dM��

¼ jAj2
�
cos2�

dGABðc 0Þ
dM��

jf1112010ðc 0Þj2 þ sin2�
dHCðc 0Þ
dM��

jf1111210ðc 0Þj2
�

¼ jAj2cos2�M��

4�3

MJ=c

Mc 0

�
1

4
ðM2

�� � 2m2
�Þ2F 0 þ B

A
ðM2

�� � 2m2
�ÞF 1 þ

��������B
A

��������2

F 2

�
jf1112010ðc 0Þj2

þ sin2�
M��

225�3

MJ=c

Mc 0

�������� C
A

��������2
��
3m2

�ðm2
� � K2

0Þ þ
1

4
ðM2

�� � 2m2
�Þ2

�
F 0

þ ð8m2
� �M2

��ÞF 1 þ 4F 2

�
jf1111210ðc 0Þj2; (34)

where

F 0 ¼ jKj
M��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

�� � 4m2
�

q
; F 1 ¼ F 0

�
1

6

K2
0

M2
��

ðM2
�� þ 2m2

�Þ þ 1

12
ðM2

�� � 4m2
�Þ
�
;

F 2 ¼ F 0

80

�
8

3

K4
0

M4
��

ðM4
�� þ 2M2

��m
2
� þ 6m4

�Þ þ 4

3

K2
0

M2
��

ðM2
�� � 4m2

�ÞðM2
�� þ 6m2

�Þ þ ðM2
�� � 4m2

�Þ2
�
;

(35)

in which ðK0;KÞ is the four momentum of the �� system,

jKj � 1

2Mc 0
f½ðMc 0 þM��Þ2 �M2

J=c �½ðMc 0 �M��Þ2 �M2
J=c �g1=2; K0 � 1

Mc 0
ðM2

c 0 þM2
�� �M2

J=c Þ: (36)

The determination of A, B=A, and C=A will be discussed in Sec. IV.
Integrating over dM�� in (34), we obtain the transition rate

�ðc 0 ! J=c��ÞSPA ¼ jAj2½cos2�GABðc 0Þjf1112010ðc 0Þj2 þ sin2�HCðc 0Þjf1111210ðc 0Þj2�; (37)

where

GAB � 1

8�3

MJ=c

Mc 0

Z �M

2m�

dM2
��

�
1

4
ðM2

�� � 2m2
�Þ2F 0 þ B

A
ðM2

�� � 2m2
�ÞF 1 þ

��������B
A

��������2

F 2

�
;

HC ¼ 1

450�3

MJ=c

Mc 0

Z �M

2m�

dM2
��

�������� C
A

��������2
��
3m2

�ðm2
� � K2

0Þ þ
1

4
ðM2

�� � 2m2
�Þ2

�
F 0 þ ð8m2

� �M2
��ÞF 1 þ 4F 2

�
;

(38)

in which �M � Mc 0 �MJ=c ,
Although this approach can give the reliable M�� distribution, it cannot be applied to other processes in (21)–(28) since
other processes contain new unknown parameters in their hadronization factors, and there are not enough experimental
data to determine them. So we have to take the help of the 2GA.
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(ii) 2GA.—The hadronization factor can be further writ-
ten as

h��jEa�m1
Ea�m2

j0i ¼ X
N

h��jNihNjEa�m1
Ea�m2

j0i;

(39)

where jNi denotes a complete set of intermediate
states. The 2GA assumes that the color-singlet 2-
gluon state jNi ¼ jgcgci dominates. In general, the
factor h��jgcgci is a function of the pion momenta.
Considering the fact that the hadronization factors
in most hadronic transition processes are all at the
few hundred MeV scale, the running of h��jgcgci
with the momentum in such a range of scale is mild.
So that we approximately take h��jgcgci � const,
and this constant can be absorbed into the redefini-
tion of the effective coupling constant gE. Thus we
have

h��jEa�m1
Ea�m2

j0i � hgcgcjEa�m1
Ea�m2

j0i: (40)

This approximation can be extended to other hadro-
nization factors containing color-magnetic field(s).
The matrix element hgcgcjEa�m1

Ea�m2
j0i can be

easily evaluated:

hgcgcjEa�m1
Eb�m2

j0i
¼ � 
abffiffiffiffiffiffiffiffiffi

2!1

p ffiffiffiffiffiffiffiffiffi
2!2

p ½!1	1;�m1
ð�1Þ!2	2;�m2

ð�2Þ

þ!1	1;�m2
ð�1Þ!2	2;�m1

ð�2Þ�; (41)

where ! ð!0Þ and � ð�0Þ are the energy and polar-
ization vector of the gluon, respectively. After
lengthy but elementary calculations, we obtain

�E1E1ðc 0 ! J=c��Þ2GA
¼
�
g2E
6

�
2 8

27�3

ð�MÞ7
140

�
cos2�jf1112010j2

þ 2

5
sin2�jf1111210j2

�
: (42)

In the following we shall take the 2GA to calculate
other transition rates in (21)–(28), and compare
them with (42) to determine their relative sizes.

C. Transition rates of the Oð�1
cÞ E1-M1

processes (23)–(25)

These processes contain 
c through the mixing coeffi-
cients C11

20, C11
10, and ðcos�C11

20 � sin�C11
12Þ, respectively

[cf. Eqs. (11)]. The transition amplitudes are j23S1i !j11P1i þ �þ þ ��, j11P1i ! j13S1i þ �þ þ ��, and
j13D1i ! j11P1i þ �þ þ ��. They all belong to the ordi-
nary E1-M1 transitions which have been calculated in
Refs. [6,16,18]. Here we present the results as follows.
For these three processes, let us denote the initial and

final quarkonium states by �I and �F, and the spins of c
and �c by sc and s �c. Then the E1-M1 transition amplitude
can be generally written as

M E1M1 ¼ i
gEgM
12mc

X
KLMs

h�Fjrm1
jKLMsihKLMsjðsc � s �cÞm2

j�Ii þ h�Fjðsc � s �cÞm2
jKLMsihKLMsjrm1

j�Ii
Mc 0 � EKL

�h�þ��jE�m1
B�m2

j0i: (43)

Taking the technique of evaluating the spin matrix elements in the MGE factors (cf. the Appendix), and after certain
lengthy calculations, we obtain

(a) j23S1i ! j11P1i þ �þ �.

M E1M1ð23S1 ! 11P1��Þ ¼

abgEgM

6
ffiffiffi
3

p
mc

ðf1102011 þ f0012011Þ
X
m1m2

fa
m1
ðmFÞam2

ðmIÞgh��jE�m1
B�m2

j0i; (44)

where the definitions of a
 and a are given in Eq. (A5), mI and mF are the magnetic quantum numbers of the initial- and
final-state, and the definition of fLPIPF

nIlInFlF
is given in Eq. (32).

(b) j11P1i ! j13S1i þ �þ �.

M E1M1ð11P1 ! 13S1��Þ ¼

abgEgM

6
ffiffiffi
3

p
mc

ðf0101110 þ f1011110Þ
X
m1m2

fa
m1
ðmFÞam2

ðmIÞgh��jE�m1
B�m2

j0i: (45)

and
(c) j13D1i ! j11P1i þ �þ �.

M E1M1ð13D1 ! 11P1��Þ ¼

abgEgMffiffiffi

6
p

mc

ðf1101211 þ f2011211Þ
X
m1m2

fa
m1
ðmFÞam2

ðmIÞgh��jE�m1
B�m2

j0i: (46)
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Next we take the SPA and 2GA to evaluate the hadronization factor h��jE�m1
B�m2

j0i.

(i) SPA.—The hadronization factor h��jE�m1
B�m2

j0i is a second rank pseudotensor which is to be expressed in terms

of the pion momenta in the SPA. To lowest order, the expression is of the form

gEgMh��jE�m1
B�m2

j0i ¼ KE1M1	�m1;�m2;�m3

!1q2;m3
þ!2q1;m3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!2!0p ; (47)

whereKE1M1 is a phenomenological constant. With this expression for the hadronization factor, the amplitudes (44)–(46),
after certain evaluation, are

ME1M1ð23S1!11P1Þ¼
ffiffiffi
2

p
KE1M1
abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!12!2

p cos�C11
10ðf1102011þf0012011Þð�1Þ1þmf

1 1 1

miþms �m �mf

 !
ðq1!2þq2!1Þm; (48)

ME1M1ð11P1!13S1Þ¼�
ffiffiffi
2

p
KE1M1
abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!12!2

p sin�C11
10ðf0101110þf1011110Þð�1Þmfþms

1 1 1

mi �m �mf�ms

 !
ðq1!2þq2!1Þm; (49)

ME1M1ð13D1 ! 11P1Þ

¼ KE1M1
abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!12!2

p ðcos�C11
20 � sin�C11

12Þðf1102011 þ f2012011Þð�1Þ1þmf
1 1 1

mi þms �m �mf

 !
ðq1!2 þ q2!1Þm; (50)

where the matrices are the Wigner 3� j symbols.
Then, after certain calculations, we get the M�� distributions

d�E1M1ð23S1 ! 11P1ÞSPA
dM��

¼ jKE1M1j2
540�3m2

c

j cos�C11
10ðf1102011 þ f0012011Þj2

MJ=c

Mc 0
M��F 0F 3;

d�E1M1ð11P1 ! 13S1ÞSPA
dM��

¼ jKE1M1j2
540�3m2

c

j sin�C11
10ðf0101110 þ f1011110Þj2

MJ=c

Mc 0
M��F 0F 3;

d�E1M1ð13D1 ! 11P1ÞSPA
dM��

¼ jKE1M1j2
1080�3m2

c

jðcos�C11
20 � sin�C11

12Þðf1101211 þ f2011211Þj2
MJ=c

Mc 0
M��F 0F 3;

(51)

where

F 3 ¼ ðM2
�� � 4m2

�Þ2
�
4

K4
0

M4
��

� 3
K2

0

M2
��

� 1

�
þ 40ðM2

�� �m2
�Þm2

�

K2
0

M2
��

�
K2

0

M2
��

� 1

�
: (52)

Integrating (51) over dM��, we obtain the transition rates. For example,

�E1M1ð23S1 ! 11P1ÞSPA ¼ jKE1M1j2
540�3

j cos�C11
10ðf1102011 þ f0012011Þj2

MJ=c

Mc 0

Z �M

2m�

M��F 0F 3dM��: (53)

Now the problem is to determine the unknown constantKE1M1. So far there is no accurate enough data to determine it, so
we should take the help of the 2GA.

(ii) 2GA.—In the 2GA, the hadronization factor can be expressed as

h��jE�m2
B�m1

j0i � hggjE�m2
B�m1

j0i ¼ !	�m2
ð�Þðq0 � �0ð�0ÞÞ�m1

þ!0	0�m2
ð�0Þðq� �ð�ÞÞ�m1ffiffiffiffiffiffiffi

2!
p ffiffiffiffiffiffiffiffi

2!0p : (54)

After certain calculations, we obtain
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�E1M1ð23S1 ! 11P1��Þ2GA ¼ 1

2

N2 � 1

ð2�Þ5
�
gEgM
4Nmc

�
2 128�2

9
j cos�C11

10ðf1102011 þ f0012011Þj2
�Z �M

0
!3ð�M�!Þ3d!

�

¼ 6
ðN2 � 1Þ
27�3

�
gEgM
4Nmc

�
2j cos�C11

10ðf1102011 þ f0012011Þj2
ð�MÞ7
140

:
(55)

Compared with Eq. (42), we have the ratio

R2GA
E1M1 ¼

�E1M1ð23S1 ! 11P1��Þ
�E1E1ð23S1 ! 13S1��Þ

��������2GA
¼ 6

�
gM

2mcgE

�
2 j cos�C11

10ðf1102011 þ f0012011Þj2
jcos2�f1112010 þ 2

5 sin
2�f1111210j2

: (56)

From (53) and (37) we can get the corresponding ratio

RSPA
E1M1 ¼

�E1M1ð23S1 ! 11P1��Þ
�E1E1ð23S1 ! 13S1��Þ

��������SPA
¼

jKE1M1j2
540�3m2

c
j cos�C11

10ðf1102011 þ f0012011Þj2 MJ=c

Mc 0

R
�M
2m�

M��F 0F 3dM��

jAj2½cos2�GABðc 0Þjf1112010ðc 0Þj2 þ sin2�HKðc 0Þjf1111210ðc 0Þj2� : (57)

As has been argued [6,18], we expect R2GA
E1M1 � RSPA

E1M1. Thus from (56) and (57) we have

jKE1M1j2 ¼
6ð gM

2mcgE
Þ2

jcos2�f1112010 þ 2
5 sin

2�f1111210j2
jAj2½cos2�GABðc 0Þjf1112010ðc 0Þj2 þ sin2�HCðc 0Þjf1111210ðc 0Þj2�

1
540�3

MJ=c

Mc 0

R
�M
2m�

M��F 0F 3dM��

: (58)

So jKE1M1j2 is expressed in terms ofA,B, and C appearing inGAB andHC [cf. (38)] which will be determined in Sec. IV.

D. Transition rates of the Oð�1
cÞ M1CEDM1 processes (26)

In this transition, 
c is from the CEDM1 vertex. The transition amplitude is

MM1cEDM1 ¼ gM
c

24m2
c


ab

X
KLMs

1

Mc 0 � EKL

fh�Fjðsc � s �cÞm2
jKLMsihKLMsjðsc � s �cÞm1

j�Ii

þ h�Fjðsc � s �cÞm1
jKLMsihKLMsjðsc � s �cÞm2

j�Iigh��jE�m2
B�m1

j0i
¼ gM
c

6m2
c


abf
000
2010fam2

ðmfÞa
m1
ðmiÞ þ am1

ðmfÞa
m2
ðmiÞgh��jE�m2

B�m1
j0i: (59)

The last step is obtained after certain evaluations of the MGE factor.

(i) SPA.—In (59), the hadronization factor is the same as in the E1-M1 transition. If we take the lowest order SPA
expression (47), we see that it is antisymmetric inm1 andm2. However, the MGE factor in (59) is now symmetric in
m1 andm2, so that the lowest order SPA does not contribute to (59). In this case, we should consider the next term in
the SPA for the hadronization factor in (59), i.e., theOðq3Þ term. Considering that h��jE�m2

B�m1
j0i is a second rank

pseudotensor, we have

gM
24


abh��jE�m2
B�m1

j0i ¼ i
KM1CEDM1

�M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!12!2

p ½ðq1 � q2Þ�m1
ðq1 � q2Þ�m2

þ ðq1 � q2Þ�m2
ðq1 � q2Þ�m1

�

¼ i
KM1CEDM1

�M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!12!2

p ½ðq1 � q2Þ�m1
	�m2;�m3;�m4

q1m3
q2m4

þ ðq1 � q2Þ�m2
	�m1;�m3;�m4

q1m3
q2m4

�:
(60)

Here we have put a factor i reflecting @� iq in the expansion for convenience, and have introduced a scale parameter
�M � Mc 0 �MJ=c ¼ maxð!1 þ!2Þ for makingKM1CEDM1 dimensionless like other SPA coefficients. This expression
is symmetric in m1 and m2 respecting the Bose symmetry between the two pions. It gives nonvanishing contribution
to (59).
With (60), after certain calculations, we obtain

d�M1CEDM1ð23S1 ! 13S1��ÞSPA
dM��

¼ 8jKM1CEDM1j2
3�3j�Mj2


2
c

m4
c

MJ=c

Mc 0
jf0002010j2F 4; (61)
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F 4 � M��

�
�4M2

��F 2 þ ½K2
0ðM2

�� þ 4m2
�Þ

þ 2M2
��ðM2

�� � 4m2
�Þ�F 1 � ðK2

0 þM2
�� � 4m2

�Þ
�
�
1

4
M2

��ðM2
�� � 4m2

��Þ þm2
�K

2
0

�
F 0

�
: (62)

Integrating (61) over dM��, we obtain the transition
rate

�M1CEDM1ð23S1!13S1��ÞSPA
¼8jKM1CEDM1j2

3�3j�Mj2

2
c

m4
c

MJ=c

Mc 0
jf0002010j2

Z �M

2m�

F 4dM��: (63)

To determine KM1CEDM1, we do the calculation with the
help of the 2GA.

(ii) 2GA.—The 2GA expression for h��jE�m2
B�m1

j0i
has already been given in (54). After certain calcu-
lations, we have

�M1CEDM1ð23S1 ! 13S1��Þ2GA
¼ 32

9�3

�
gM
c

6m2
c

�
2jf0002010j2

ð�MÞ7
140

: (64)

Compared with Eq. (42), we get the ratio

R2GA
M1CEDM1ð23S1 ! 13S1��Þ

¼ �M1CEDM1ð23S1 ! 13S1��Þ
�E1E1ð23S1 ! 13S1��Þ

��������2GA

¼ 12
g2M


2
c

g4Em
4
c

jf0002010j2
jcos2�f1112010 þ 2

5 sin
2�f1111210j2

: (65)

Taking R2GA
M1CEDM1 � RSPA

M1CEDM1, we determine

jKM1CEDM1j2¼12
g2M
g4E

j�Mj2jf0002010j2
jcos2�f1112010þ 2

5sin
2�f1111210j2

jAj2½cos2�GABðc 0Þjf1112010ðc 0Þj2þsin2�HKðc 0Þjf1111210ðc 0Þj2�
8

3�3

MJ=c

Mc 0 jf0002010j2
R
�M
2m�

F 4dM��

; (66)

in which jKM1CEDM1j2 is expressed in terms of A, B, and C appearing in GAB and HC [cf. (38)].

E. Transition rates of the Oð�1
cÞ E1-CEDM2 processes (27) and (28)

The two processes (27) and (28) for 23S1 ! 13S1�� and 13D1 ! 13S1�� belong to the E1-CEDM2 transitions (the
definition of CEDM2 is similar to that of M2 in �ð�Þ-transitions [5–7,18]). The transition amplitude is of the form

ME1CEDM2 ¼ gE
c

12mc


ab

X
KLMs

1

M�0 � EKL

fh�F��jS �Eðr � @ÞjKLMsihKLMsjr0 �Ej�Ii

þ h�F��jr �EjKLMsihKLMsjS �Eðr0 � @Þj�Iig
¼ gE
c

4Nmc


ab

X
KLMs

1

M�0 � EKL

fh�FjSm1
rm3

jKLMsihKLMsjr0m2
j�Iih��jð@�m3

E�m1
ÞE�m2

j0i

þ h�Fjrm1
jKLMsihKLMsjSm2

r0m3
j�Iih��jE�m1

@�m3
E�m2

j0ig; (67)

where S is the total spin operator of c and �c. The matrix element of S between two quarkonium spin states can be evaluated
by using Eq. (A20) in the Appendix.

As before, we express the hadronzation factor in SPA and 2GA, respectively.

(i) SPA.—In this kind of transition, the hadronization factor is a third rank tensor. Considering the Bose symmetry
between the two pions, its general form in the SPA is

gE
12

h��jE�m1
@�m3

E�m2
j0i ¼ gE

12
h��jð@�m3

E�m1
ÞE�m2

j0i

¼ i
KE1CEDM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!12!2

p ðq1;�m2
q2;�m1

þ q1;�m1
q2;�m2

Þðq1;�m3
þ q2;�m3

Þ: (68)

Here we also put a factor i reflecting @� iq for convenience.
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After certain evaluations, we obtain

d�E1CEDM2ð23S1 ! 13S1��ÞSPA
dM��

¼ 8jKE1CEDM2j2
27�3


2
c

m2
c

MJ=c

Mc 0
jf1112010j2½F 5 þ 2F 6� (69)

d�E1CEDM2ð13D1 ! 13S1��ÞSPA
dM��

¼ 8jKE1CEDM2j2
2700�3


2
c

m2
c

MJ=c

Mc 0
jf1111210j2f18K2ðF 7 þF 8Þ � 13F 5 þ 22F 6g; (70)

where

F 5 ¼ M��

�
2K2

0F 2 �
�
M4

��

2
þM2

��K
2
0 � 2m2

�K
2
0

�
F 1 þ

�
1

4
M2

��ðM2
�� þ 4m2

�ÞK2
0 �m2

�K
4
0 �

M4
��

2
m2

�

�
F 0

�
;

F 6 ¼ M��

�
K2

0F 2 �
�
ðM2

�� �m2
�ÞK2

0 �
M4

��

4

�
F 1 þ 1

8
M2

��ðM2
�� � 2m2

�Þð2K2
0 �M2

��ÞF 0

�

F 7 ¼ M��

�
F 2 � ðM2

�� � 2m2
�ÞF 1 þ 1

4
ðM2

�� � 2m2
�Þ2F 0

�
F 8 ¼ M��fF 2 þ 2m2

�F 1 þm2
�ðm2

� � K2
0ÞF 0g:

(71)

Integrating (69) over dM��, we obtain the transition rate of c ð23S1Þ ! c ð13S1Þ��,

�E1CEDM2ð23S1 ! 13S1��ÞSPA ¼ 8jKE1CEDM2j2
27�3


2
c

m2
c

MJ=c

Mc 0
jf1112010j2

Z �M

2m�

½F 5 þ 2F 6�dM��: (72)

Next, we determine the unknown constant KE1CEDM2 with the help of the 2GA.
(ii) 2GA.—In the 2GA

h��jEa�m1
@�m3

Eb�m2
j0i ¼ �i
ab!1!2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!12!2

p ½	1;�m2
ð�1Þ	2;m1

ð�2Þq2;�m3
þ 	2;�m2

ð�2Þ	1;�m1
ð�1Þq1;�m3

�;

h��jð@m3
Ea�m1

ÞEb�m2
j0i ¼ �i
ab!1!2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!12!2

p ½	1;�m2
ð�1Þ	2;m1

ð�2Þq1;�m3
þ 	2;�m2

ð�2Þ	1;�m1
ð�1Þq2;�m3

�:
(73)

With this, we obtain

�E1CEDM2ð23S1 ! 13S1��Þ2GA ¼
�
gE
3

�
2 
2

c

m2
c

jf1112010j2
ð�MÞ9
5103�3

: (74)

Compared with Eq. (42), we have the ratio

R2GA
E1CEDM2ð23S1 ! 13S1��Þ2GA ¼ �E1CEDM2ð23S1 ! 13S1��Þ

�E1E1ð23S1 ! 13S1��Þ
��������2GA

¼ 10

27

�
�M

gE

�
2 
2

c

m2
c

jf1112010j2
jcos2�f1112010 þ 2

5 sin
2�f1111210j2

: (75)

Taking R2GA
E1CEDM2 � RSPA

E1CEDM2, we have

jKE1CEDM2j2¼5

4

�
�M

gE

�
2 jf1112010j2
jcos2�f1112010þ 2

5sin
2�f1111210j2

jAj2½cos2�GABðc 0Þjf1112010ðc 0Þj2þsin2�HKðc 0Þjf1111210ðc 0Þj2�
1
�3

MJ=c

Mc 0 jf1112010j2
R
�M
2m�

½F 5þ2F 6�dM��

: (76)

So KE1CEDM2 is expressed in terms of A, B, and C appearing in GAB and HC [cf. (38)].
Now, in the SPA, we have expressed all the unknown constants jKE1M1j2, jKM1CEDM2j2, and jKE1CEDM2j2 occurring in the
Oð
1

cÞ transitions in terms ofA,B, and C in theOð
0
cÞ transitions. The values ofKE1M1,KM1CEDM2 andKE1CEDM2 from

the values ofA,B and C obtained from the best fit of theOð
0
cÞ contribution to the experimental data are listed in Table III.

Therefore, the magnitudes of the Oð
1
cÞ transitions are characterized by only one parameter 
c.
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IV. DETERMINATION OF �c FROM THE BESII
DATA OF c 0 ! J=c þ �þ þ ��

In Sec. III, we calculated the transition rates contributed
by the mechanisms (21)–(28) individually, and expressed
all the unknown coefficients in the SPA in terms of the

parameters A, B, and C. Now we are going to determine
the parameters A, B, C, and 
c from the best fit of the
theoretical prediction to the experimental data.
The transition amplitudes are functions of the two pion

momenta q1 and q2. For two transition amplitudes, if their
pion momenta dependence belong to the same representa-
tion of the spacial rotation and reflection symmetries, they
may have nonvanishing interference term in the M��

distribution. So that we should take account of such inter-
ference terms in calculating the M�� distribution.
Specifically, there are three kinds of interference terms to
be considered, namely, (i) E1M1-CEDM2 interference,
(ii) CEDM2-M1CEDM1 interference, and (iii) interference
between the 23S1 ! 13S1�� and 13D1 ! 13S1�� ampli-
tudes in E1CEDM2. So we should consider the following
total transition amplitude:

Mtotðc 0 ! J=c��Þ ¼ ½cos�C20
20C

10
10ME1E1ð23S1 ! 13S1Þ � sin�C12

12C
10
10ME1E1ð13D1 ! 13S1Þ�

þ ½cos�C20
20C

10
10MM1CEDM1ð23S1 ! 13S1Þ þ cos�C20

20C
10
10ME1CEDM2ð23S1 ! 13S1Þ

� sin�C12
12C

10
10ME1CEDM2ð13D1 ! 13S1Þ þ cos�C11

10C
20
20ME1M1ð23S1 ! 11P1Þ

þ ðcos�C11
20 � sin�C11

12ÞC10
10ME1M1ð11P1 ! 13S1Þ � sin�C11

10C
12
12ME1M1ð13D1 ! 11P1Þ�: (77)

We see from Eqs. (34), (51), (61), (69), and (70) that
the CEDM contributions to d�ðc 0 ! J=c��Þ=dM��

are of Oð
2
cÞ. So that the mixing coefficients C10

10, C
20
20,

and C12
12 in the first square bracket on the right-hand

side of Eq. (77) should be expanded up to their Oð
2
cÞ

terms which give the CEDM contributions through the
normalization of the mixing coefficients, i.e., we should
take

C10
10¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð0h11P1

jV1j13S1i0
E0

11P
1

�E0

13S
1

Þ2
s ¼1�1

2
jC11

10j2þOð
4
cÞ;

C20
20¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð0h11P1

jV1j23S1i0
E0

23S
1

�E0

11P
1

Þ2
s ¼1�1

2
jC11

20j2þOð
4
cÞ;

C12
12¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð0h11P1

jV1j13D1
i0

E0

13D
1

�E0

11P
1

Þ2
s ¼1�1

2
jC11

12j2þOð
4
cÞ;

(78)

in the first square bracket on the right-hand-side of (77).
The contributions to ½d�ðc 0 ! J=c��Þ�=ðdM��� from

individual mechanisms have been given in Eqs. (34), (51),
(61), (69), and (70). Now we consider the contributions
from the interference terms. By the same approach as in
Sec. III, we obtain

(i) E1M1-E1CEDM2:

d�E1M1�E1CEDM2

dM��

��������SPA

¼KE1M1KE1CEDM2SE1M1

�
2

ffiffiffi
6

p
MJ=cM��

27�3m2
cMc 0

cos�f1112010F 9

þ2
ffiffiffi
3

p
MJ=cM��

45�3m2
cMc 0

cos�f1112010F 10

�
; (79)

where

SE1M1 �
ffiffiffi
2

p
cos�C11

10ðf1102011 þ f0012011Þ
� ffiffiffi

2
p ðcos�C11

20 � sin�C11
12Þðf1011110 þ f0101110Þ

� sin�C11
10ðf1101211 þ f2011211Þ; (80)

F 9 � K0

�
4F 2 � ð2M2

�� � 4m2
�ÞF 1

þ
�
1

4
M4

�� �m2
�K

2
0

�
F 0

�
; (81)

F 10 � 1

6
K0

�
16F 2 � ð11M2

�� � 23m2
�ÞF 1

þ
�
7

4
M4

�� � 3m2
�M

2
�� �m2

�K
2
0

�
F 0

�
:

(82)

TABLE III. Values of the SPA hadronization factor coeffi-
cients jKE1M1j. jKM1CEDM1j and jKE1CEDM2j obtained from
the best fit values of jAj, B=A, and C=A in the CK and
Cornell models.

CK model Cornell model

jKE1M1j 3.289 4.208

jKM1CEDM1j 2.318 2.625

jKE1CEDM2j 0.532 0.602
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(ii) M1CEDM1-E1CEDM2:

d�M1CEDM1�E1CEDM2

dM��

��������SPA

¼ 2
ffiffiffi
2

p
MJ=cM��

5�3Mc 0�M


2
c

m3
c

KM1CEDM1KE1CEDM2

� cos� sin�f0002010f
111
1210F 11; (83)

where

F 11�1

3

�
�4M2

��F 2þ½K2
0ðM2

��þ4m2
�Þ

þ2M2
��ðM2

���4m2
�Þ�F 1

�ðK2
0þM2

���4m2
�Þ

�
�
1

4
M2

��ðM2
���4m2

�Þþm2
�K

2
0

�
F 0

�
: (84)

(iii) E1CEDM2-E1CEDM2:

d�E1CEDM2�E1CEDM2

dM��

��������SPA

¼ � 8
ffiffiffi
2

p
MJ=cM��

45�3Mc 0


2
c

m2
c

jKE1CEDM2j2

� cos� sin�f1112010f
111
1210F 12; (85)

where

F 12 � 1

3

�
�4M2

��F 2 þ ðK2
0M

2
�� þ 2M4

��

þ 4m2
�K

2
0 � 8m2

�M
2
��ÞF 1 � ðM2

��

� 4m2
� þ K2

0Þ
�
M4

��

4
þm2jKj2

�
F 0

�
:

(86)

With all these results, we are ready to determine the
unknown parameters by the best fit of the theoretical
prediction to the experimental data. We take the BESII
data on c 0 ! J=c�þ�� [21] based on 1:4� 107 c 0
events. We proceed the determination by taking the
CEDM effect as a perturbation. We first take the 0th order
Oð
0

cÞ contribution to fit the BESII data. There are three
unknown parameters A, B and C in the 0th order contri-
bution in which A is an overall normalization factor
irrelevant to theM�� distribution. It is determined by fitting
the total transition rate with the experimental value [1]. The
ratios B=A and C=A do affect the M�� distribution, and
they are determined by the best fit of the theoretical M��

distributionwith theBESII data. The best fit curve in theCK
model, as an example, is shown by the red dashed line in
Fig 3 together with the BESII data.

The values of jAj determined from (29) and the values
of B=A and C=A determined from the best fit of the
Oð
0

cÞ contribution to the M�� distribution are:

CKModel: jAj ¼ 1:641� 0:036

B=A ¼ �0:372� 0:006;

jC=Aj ¼ 0:855� 0:020;

Cornell model: jAj ¼ 2:09� 0:05

B=A ¼ �0:371� 0:006;

jC=Aj ¼ 1:000� 0:166:

(87)

The values of the SPA coefficientsKE1M1.KM1CEDM1 and
KE1CEDM2 obtained from the best fit values (87) are listed
in Table III.
As an example, we plot the contributions from various

Oð
2
cÞ CEDM terms to the M�� distribution in the CK

model in Fig. 4 with 
c ¼ 1 (the 
c-independent part). We
see that the CEDM contribution increases the low M��

distribution and reduces the high M�� distribution, which
is just the opposite to the 0th order distribution. This is the
reason why the M�� distribution of c 0 ! J=c�þ�� can
sensitively determine the CEDM parameter 
c.
Next we take into account the CEDM contributions

Eqs. (34), (51), (61), (69), (70), (78), (79), (83), and (85)
to make the best fit of the total contribution. The best fit
curve of the total contribution is shown by the dark solid
line in Fig. 3. The numerical result shows that the dark
solid curve improves the fit a little bit (with slightly re-
duced �2 value) although the difference between the two
curves is too small to be visible in Fig. 3. The best fit dark
solid curve determines the best fit value of 
c (d

0
c) listed in

Table IV in which the error bars of 
c (d
0
c) are determined

from the experimental error bars in the M�� distribution.
Note that the best fit value of 
c is nonvanishing. However,
considering the error bars in Table IV, the obtained 
c is

FIG. 3 (color online). The best fit theoretical curves of the 0th
order contribution (red dashed line) and the total contribution
(dark solid line) in the CK model together with the BESII data on
d�ðc 0 ! J=c��Þ=dM�� [21].
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still consistent with zero. So the model dependence of the
present approach is not serious.

For instance, the 95% confidence level (C.L.) upper
bound of d0c is

CKmodel: jd0cj< 1:96� 10�14 e � cm;

Cornell model: jd0cj< 2:20� 10�14 e � cm:
(88)

So the model dependence of the present approach is
roughly 12%.

Wewould like tomention that, in Eqs. (58), (66), and (76)
, only the absolute values of the SPA coefficients KE1M1,
KM1CEDM1, andKE1CEDM2 are determined. So that there is
still an uncertain sign in (79) and (83). Actually, If we were
able to calculate the hadronizationmatrix elements from the
first principles of QCD, there would not be such sign
uncertainties. The present sign uncertainties are due to the
phenomenological approach to the haronization factors
taken in this paper as lacking of reliable QCD evaluation
of the hadronization matrix elements. In Table IV, we only
take the simple case that all the SPA coefficients are of the
same sign. Now we consider how will the final result
affected if they have different signs. First we see from
Fig. 4 that the contributions of (83) is so small that its
uncertain sign only causes negligible effect in the total
M�� distribution. Thus only the uncertain sign in (79)
matters. If we take KE1M1KE1CEDM2 < 0 in (79), the total
CEDMcontribution toM�� distributionwill be reduced, and
thus the determined j
cjðjd0cjÞwill be larger. Fortunately, we
see from Fig. 4 that the E1-M1 CEDM1 contribution is
smaller than the individual CEDM contributions. Our calcu-

lation shows that the determined j
cj at 68%C.L.will change
to 0:047� 0:383 for the CK model and 0:123� 0:511 for
the Cornell model. Then the upper bound of jd0cjwill change
to 2:63� 10�14 e cm for the CK models and 3:09�
10�14 e cm, i.e., the uncertainty of the upper bound is 34%
and 40% for the CK model and the Cornell model, respec-
tively. Therefore the effect of the uncertain signs is not so
serious. We conclude that the 95% C.L. upper bound of jd0cj
determined from the BESII data is

jd0cj< 3� 10�14 e cm: (89)

This is the first experimentally determined upper bound of
the CEDM of the c quark.
The BES detector has already been updated to BESIII

with the efficiency of measuring low momentum pions
significantly improved relative to BESII. So far BESIII
has accumulated 1:06� 108 c 0 events, and will be able
to accumulate ð7� 10Þ � 108 c 0 events in 2012. That will
be a huge sample. We expect that the new BESIII data may
determine 
c to a higher precision.

V. THE CP-ODD OPERATOR O

We can propose another way of determining 
cðd0cÞ line-
arly from the data of c 0 ! J=c��. Consider the process

eþe� ! c 0 ! J=c�þ��: (90)

Let p̂ð�p̂Þ, q̂1, and q̂2 be the unit vectors of the momenta
of the positron (electron), �þ, and ��, respectively. For
unpolarized eþ and e� in the overall c.m. system, the initial
state is then—in the sense of the density matrix—CP-even.
Therefore any nonzero expectation value of aCP-odd corre-
lationof thefinal-state particles is anunambiguous indication
of CP violation. With our assumption of the CEDM of the c
quark, the expectationvalues of theCP-odd operatorswill be
linear in 
cðd0cÞ. On the other hand, to the expectation values
of CP-even operators, the CEDM can only contribute in
Oð
2

cÞ or higher even powers. We shall now construct a
CP-odd operator for the reaction (90) following Eqs. (3.20)
in Ref. [2],

O � p̂ � ðq̂1 � q̂2Þp̂ � q̂1 � q̂2
jq̂1 � q̂2j : (91)

Then we define its expectation value which is an experimen-
tal observable:

hOi � 1

N

Z
�M0MOd�MM0 ðc 0 ! J=c��Þ;

N �
Z

�M0Md�MM0 ðc 0 ! J=c��Þ;
(92)

FIG. 4 (color online). Various CEDM contributions to theM��

distribution for a given 
c in the CK model.

TABLE IV. The best fit values of 
c (d0c) in the CK model and the Cornell model.

CK model Cornell model

68% C.L. 95% C.L. 68% C.L. 95% C.L.

j
cj 0:025� 0:295 0:025� 0:420 0:078� 0:373 0:078� 0:544
jd0cj (e. cm) ð0:110� 1:300Þ � 10�14 ð0:110� 1:851Þ � 10�14 ð0:276� 1:320Þ � 10�14 ð0:276� 1:926Þ � 10�14
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where �M0M is the density matrix, andMðM0Þ stands for the
magnetic quantum numbers of c 0. At the c 0 resonance,
the energy of eþðe�Þ is Mc 0=2 which is much larger than

the electron mass. Thus the colliding eþðe�Þ behaves essen-
tially as a massless fermion. With the standard couplings for
the process eþe� ! �
 ! c 0, a right-handed eþ can only
annihilatewith a left-handed e� and viceversa. The resulting
density matrix for c 0 is

�M0M ¼ 1
2ð
M0M � 
M00
M0Þ M0;M 2 f1; 0;�1g:

(93)

See Sec. 2.1 in Ref. [2] for the analogous process eþe� ! Z
and set gAe ¼ 0 there to obtain Eq. (93). In this case the
normalization constant N in (92) is just the total transition
rate�ðc 0 ! J=c��Þ obtained in Sec. IV. Since the CEDM
contributions to �ðc 0 ! J=c��Þ is negligibly small as can

be seen in Fig. 3, we can simply take the 0th order transition
rate (37) or even the experimental value �ðc 0 !
J=c��Þ ¼ 156:04� 5:78 keV [cf. Eq. (29)] for the nor-
malization constant in the following calculation.
Since O is CP-odd, a nonzero hOi can only be contrib-

uted from the CP-odd part of d�MM0 ðc 0 ! J=c��Þ, i.e.,
the interference terms between the E1E1 transition ampli-
tude and the CEDM transition amplitudes. From the angu-
lar part of the phase-space integration, we can see that only
the 13D1 ! 13S1�� part in the E1E1 transition gives

nonvanishing contribution to the E1E1-E1M1 interfer-
ence term in (92), while both the 23S1 ! 13S1�� and

13D1 ! 13S1�� parts in the E1E1 transition can give

nonvanishing contributions to the E1E1-M1CEDM1
and E1E1-E1CEDM2 interference terms. Thus the result
will take the form

hOi ¼ A
�ðc 0 ! J=c��Þ

�
KM1CEDM1I2S!1S�2S!1S

E1E1�M1CEDM1 þKE1CEDM2I2S!1S�1D!1S
E1E1�E1CEDM2 þ

C
A

½KE1M1I1D!1S
E1E1�E1M1

þKM1CEDM1I1D!1S�2S!1S
E1E1�M1CEDM1 þKE1CEDM2I1D!1S�2S!1S

E1E1�E1CEDM2�
�

c; (94)

where the I’s are the phase-space integrations of the interference terms which can be calculated from the approach similar
to those in Sec. IV. So, with the measured value of hOi, we can determine 
c from (94). Our obtained results are:

I2S!1S�2S!1S
E1E1�M1CEDM1 ¼ cos2�

2
c

15�3m2
c

MJ=c

�M
f1112010f

000
2010

Z
sin�ð1� cos�Þðq1q22 þ q2q

2
1Þ
�
q
�
1 q2� þ B

A
!1!2

�
d!1d!2;

I2S!1S�1D!1S
E1E1�E1CEDM2 ¼ sin� cos�

MJ=c

75
ffiffiffi
2

p
�3


c

mc

f1112010f
111
1210

Z
sin�ð1� cos�Þðq1q22 þ q21q2Þ

�
q
�
1 q2� þ B

A
!1!2

�
d!1d!2;

I1D!1S
E1E1�E1M1 ¼ �

ffiffiffi
3

2

s
sin�

MJ=c SE1M1

900�3mc

f1111210

Z
sin�ð1� cos�Þq1q2ð!1q2 þ!2q1Þd!1d!2;

I1D!1S�2S!1S
E1E1�M1CEDM1 ¼ � sin� cos�

ffiffiffi
2

p
MJ=c

1575�3


c

m3
c

f1111210f
000
2010

Z
sin�ð3� 2 cos�� cos2�Þq21q22ðq1 þ q2Þd!1d!2;

I1D!1S�2S!1S
E1E1�E1CEDM2 ¼ sin2�

ð ffiffiffi
3

p � 1ÞMJ=c

2250�3


c

mc

jf1111210j2
Z

sin3�ðq32q21 þ q31q
2
2Þd!1d!2;

cos� � q1 � q2
jq1jjq2j ¼

½M2
c 0 �M2

J=c þ 2m2
� � 2Mc 0 ð!1 þ!2Þ þ 2!1!2�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

1 �m2
�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

2 �m2
�

q ;

(95)

where SE1M1 is given in (80). The complicated integrations can be carried out numerically, and they lead to the following
numerical results in the CK and Cornell models:

CKmodel: hOi ¼ A
103

�
2:534KM1CEDM1 � 0:964KE1CEDM2 þ C

A
½0:0123KE1M1 þ 0:0715KM1CEDM1

þ 0:321KE1CEDM2�
�

c;

Cornell model: hOi ¼ A
103

�
1:243KM1CEDM1 � 0:397KE1CEDM2 þ C

A
½0:00508KE1M1 þ 0:0290KM1CEDM1

þ 0:321KE1CEDM2�
�

c; (96)

in which the values of jAj and jC=Aj in the two models are given in (87), and the values of KE1M1, KM1CEDM1,
KE1CEDM2 are given in Table III.
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Now we come again to the problem of the uncertain sign
similar to those discussed in Sec. IV. We know that, in
QCD, there is in principle no sign ambiguity in the various
contributions in hOi in (96). But in the present phenome-
nological approach to the hadronization factors, only the
absolute values of the parameters, jAj, jC=Aj, jKE1M1j,
jKM1CEDM1j, and jKE1CEDM2j can be determined as in
Sec. III. So, in practice, each of the five parameters has
an uncertain sign. The uncertain sign of A serves as an
overall uncertain sign on the right-hand-side (rhs) of (96),
which makes us unable to determine the sign of 
c. Despite
of the overall uncertain sign, the values of the curly brack-
ets on the rhs of (96) will be affected by the uncertain signs
of C=A, KE1M1, KM1CEDM1, and KE1CEDM2. The largest
term in the curly brackets in (96) is the first term. Without
losing generality, we can always takeKM1CEDM1 > 0 with
the uncertain sign of A taken into account. If we take
C=A, KE1M1, KE1CEDM2 < 0, the curly brackets in (96)
will take their largest value, 6.43 (CK model) and 3.53
(Cornell model). If we take C=A< 0 while KE1M1,
KE1CEDM2 > 0, the curly brackets will take their smallest
value, 5.50 (CK model) and 3.08 (Cornell model). So the
uncertainty of the values of the curly brackets caused by
the uncertain signs of the SPA coefficients is 25% (CK
model) and 13% (Cornell model). This is better than that
obtained in Sec. IV. Note that the uncertainties in Sec. IV
and V are caused by the uncertain signs of different terms.

Moreover, we may define another related observable.
Define the asymmetry based on the CP-odd operator O as

AO � NeventsðO> 0Þ � NeventsðO< 0Þ
NeventsðO> 0Þ þ NeventsðO< 0Þ : (97)

This may also be used to determine 
cðd0cÞ experimentally.
So far there is no data on hOi. We expect BESIII to

measure it.

IV. SUMMARYAND DISCUSSIONS

If the c-quark has an anomalous color-electric dipole
moment (CEDM), it will serve as a new source of CP
violation. In this paper, we study the determination of size

cðd0cÞ of the CEDM from the BESII data on the M��

distribution in c 0 ! J=c�� within the framework of
QCD.

We have first studied the contributions of the CEDM to
the hadronic transition process c 0 ! J=c��, and deter-
mined the size 
cðd0cÞ of the CEDM by fitting the theoreti-
cal prediction to the BESII experimental data. The
contributions are in two folds, namely, the contribution
of CEDM to the c �c interaction potential which causes
CP-even and CP-odd states mixing, and the contribution
of CEDM to the vertices in the hadronic transition which
affect the M�� distribution in the transition. Both contri-
butions lead to CP violation. Since CP violation is
supposed to be small, we treat the CEDM effect as a

perturbation throughout this paper. We studied these two
kinds of contributions separately.
The perturbation calculations of the CEDM contribution

to the c �c potential and state mixings are given in Sec. II.
The potential is the sum of the conventional potential V0

and the CEDM contribution V1. For V0, we take two
extreme QCD motivated potentials, namely, the CK poten-
tial and the Cornell potential to show the model depen-
dence of the present approach. The expression for V1 is
shown in Eq. (6) in which only the second term contributes
to state mixings. The obtained normalized state-mixing
coefficients are given in Eq. (11) [see also (12)], and their
numerical values are shown in Table I.
The CEDM contribution to hadronic transition vertices

is more complicated. The 0th order transitions are shown
in Eqs. (21) and (22) with C10

10 ¼ C20
20 ¼ C12

12 ¼ 1. The

Oð
1
cÞ transitions are shown in Eqs. (23)–(28). The tran-

sition amplitudes of Oð
1
cÞ transitions are proportional to


c, and their transition rates are proportional to 
2
c. To

the same order, we must also take account the transitions
in (21) and (22) with the mixing coefficients of Oð
2

cÞ
in (78).
The calculation of theM�� distribution is quite subtle. A

transition amplitude contains two factors, namely, the
MGE factor and the hadronization (H) factor. For a given
potential model, there is a systematic way of calculating
the MGE factor [6,7]. The calculation of the H-factor is a
highly nonperturbative problem in QCD. There are two
approximation methods which can lead to the right order of
magnitude of the transition rates [6,7,15,18], namely, the
SPA and the 2GA. The SPA is a phenomenological ap-
proach which can correctly describe the angular relation
between the two pions but it contains unknown constant
coefficient(s) related to the hadronic matrix element in the
H factor. The 2GA is a crude approximation which is easy
to calculate but cannot describe the angular relation be-
tween the two pions correctly. Since we are dealing with
the M�� distribution which concerns the angular relation
between the two pions, we have to take the SPA. However,
to our experience, the ratios between two transition rates in
SPA and 2GA are quite close to each other [6,18]. Thus we
can use this approximate relation and the 2GA calculation
to express theOð
1

cÞ SPA coefficients in terms of theOð
0
cÞ

SPA coefficients [cf. Eqs. (58), (66), and (76) in Sec. III].
Then we can predict the M�� distribution by treating the
CEDM contribution as perturbation. The Oð
0

cÞ and
Oð
2

cÞ contributions to the M�� distribution are given in
Eqs. (34), (51), (61), (69), (70), (79), (83), and (85).
We then made a best fit of our 0th order prediction (34)

to the BESII data (cf. Fig. 3), which determines the best fit
values of the SPA parameters jAj, B=A, and jC=Aj
shown in Eq. (87). Various CEDM contributions to
the M�� distribution are shown in Fig. 4. We see that the
behaviors of the CEDM contributions are just the opposite
to that of the 0th order contribution (cf. Fig. 3). This is why
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the process c 0 ! J=c�� can sensitively constrain

cðd0cÞ. Next we included the CEDM contributions to
make the best fit up to the Oð
2

cÞ. It is shown that, with
the CEDM contribution, the fit is slightly improved (with
slightly smaller �2), and the best fit values of j
cj and jd0cj
are listed in Table IV. We see that the best fit value of
j
cjðjd0cjÞ is nonvanishing. However, considering the ex-
perimental errors, it is still consistent with zero. The
95% C.L. upper bound of jd0cj is shown in Eq. (88) which
shows that the model dependence of the present approach
is quite mild. Note that in the present approach, only the
absolute values of the SPA coefficients in the CEDM
contribution can be determined. So that each SPA coeffi-
cient still has an uncertain sign which may affect the result.
This uncertainty is just due to the present phenomenologi-
cal approach to the hadronization matrix element. We have
discussed this uncertainty in Sec. IV, and the conclusion is
that the uncertainty of the upper bound is (34–40)% which
is not so serious. Thus, taking this theoretical uncertainty
into account, we conclude that the 95% C.L. upper bound
of jd0cj in the present approach is jd0cj< 3� 10�14 e cm
[cf. Eq. (89)] which is the first experimentally determined
upper bound of the CEDM of the c quark.

We have also proposed a second method for determining

cðd0cÞ linearly by introducing a CP-odd operator O and
measuring its expectation value hOi in Sec. V. We have
shown in Sec. V that this is a better way of determining

cðd0cÞ experimentally. So far there is no such a measure-
ment. We suggest BESIII to do this experiment.

The state mixings caused by the CEDM of the c quark
makes the transition rates c 0 ! hc�

0 and c 0 ! J=c�0

related to each other. Hence, in principle, the experimen-
tal data of these two transition rates may give another
constraint on d0c. However, the latest BESIII sample
of c 0 ! hc�

0 based on 106 M of c 0 events is still
rather small since the branching ratio of c 0 ! hc�

0 is
8� 10�4 [19], i.e., the statistical error in this transition
rate is significantly larger than that in the present study.
Furthermore, the transition c 0 ! J=c�0 is dominated
by E1M2 multipole gluon emissions, and the calculation
of this kind of hadronization matrix element is not so
certain [22]. Therefore the data of these two transition
rates cannot provide a strong enough constraint on d0c
comparable to the one obtained in the present study. So
far the best experiment for determining the bound on d0c
is c 0 ! J=c�� at BES.

The BES detector has already been updated to BESIII
with the efficiency of measuring low momentum pions
significantly improved relative to BESII. So far BESIII
has accumulated 1:06� 108 c 0 events, and will be able
to increase to ð7–10Þ � 108 c 0 events in 2012. That will be
a huge sample. We expect that the new BESIII data may
determine 
c to a higher precision.

Estimating the CEDM from some UV theories may be
interesting for future studies.
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APPENDIX: CALCULATION OF THE MATRIX
ELEMENT 0h11P1jV1jnð2sþ1ÞL1i0

We show here the explicit expression for the relevant

matrix element 0h11P1jV1jnð2sþ1ÞL1i0. In the nonrelativis-

tic limit, the state jnð2sþ1ÞðLiÞ1i0 can be decomposed into
the radial, angular, and spin factors

�nlmms
ðr; �; �Þ ¼ RnlðrÞYm

l ð�;�ÞXð2sþ1Þ
ms

; (A1)

where RnlðrÞ is the radial wave function obtained from
solving the Schrödinger equation with a potential without

V1, and the spin state Xð2sþ1Þ
Ms

is

Xð3Þ
1 ¼ �1=2 ��1=2 ¼ 1

0

� �
1
0

� �
;

Xð3Þ
0 ¼ 1ffiffiffi

2
p ½�1=2 ���1=2 þ ��1=2 ��1=2�

¼ 1ffiffiffi
2

p
�

1
0

� �
0
1

� �
þ 0

1

� �
1
0

� ��
;

Xð3Þ
�1 ¼ ��1=2 ���1=2 ¼ 0

1

� �
0
1

� �
;

Xð0Þ ¼ 1ffiffiffi
2

p ½�� 1=2 ���1=2 � ��1=2 ��1=2�

¼ 1ffiffiffi
2

p
�

1
0

� �
0
1

� �
� 0

1

� �
1
0

� ��
:

(A2)

There is a spin-dependent factor ð� � ��Þ � r=r in V1. We
can take the spherical coordinate

rþ
r

� 1ffiffiffi
2

p x1 þ ix2
r

¼ �
ffiffiffiffiffiffiffi
4�

3

s
Y1
1ð�;�Þ;

r�
r

� 1ffiffiffi
2

p x1 � ix2
r

¼
ffiffiffiffiffiffiffi
4�

3

s
Y�1
1 ð�;�Þ;

r0
r
� x3

r
¼

ffiffiffiffiffiffiffi
4�

3

s
Y0
1ð�;�Þ; �� � 1ffiffiffi

2
p ð�1 � i�2Þ;

��� � 1ffiffiffi
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p ð ��1 � i ��2Þ; �0 � �3 ��0 � ��3
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ffiffiffi
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p

0 0
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1 0

0 �1

 !
; (A3)
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and express it as

ð� � ��Þ � r
r
¼ ð�0 � ��0Þ r0r þ ð�þ � ��þÞ r�r

þ ð�� � ���Þ rþr

¼
ffiffiffiffiffiffiffi
4�

3

s
fð�0 � ��0ÞY0

1ð�;�Þ
þ ð�þ � ��þÞY�1

1 ð�;�Þ
� ð�� � ���ÞY1

1ð�;�Þg: (A4)

It is easy to see that

ð�� ��ÞmX3
ms

¼ 2amðmsÞX1;

amðmsÞ ¼
�
�ms

1�ms

2
; 1� jmsj;�ms

1þms

2

�
;

m ¼ þ m ¼ 0 m ¼ �
ð�� ��ÞmX1 ¼ 2a
mðmsÞX3

ms
;

a
mðmsÞ ¼
�
�ms

1þms

2
; 1� jmsj;�ms

1�ms

2

�
;

m ¼ þ m ¼ 0 m ¼ � (A5)

and amðmsÞ, a
mðmsÞ satisfies
X
mms

amðmsÞamðmsÞ ¼ 3;
X
mms

a
mðmsÞa
mðmsÞ ¼ 3;

X
mms

a
mðmsÞamðmsÞ ¼ 1:
(A6)

Thus

ð� � ��Þ � r
r
X3
ms

¼
ffiffiffiffiffiffiffi
4�

3

s
f2a0ðmsÞY0

1ð�;�Þ

þ 2aþðmsÞY�1
1 ð�;�Þ

� 2a�ðmsÞY1
1ð�;�ÞgX1

ð� � ��Þ � r
r
X1 ¼

ffiffiffiffiffiffiffi
4�

3

s
f2a
0ðmsÞY0

1ð�;�Þ

þ 2a
þðmsÞY�1
1 ð�;�Þ

� 2a
�ðmsÞY1
1ð�;�ÞgX3

ms
:

(A7)

This explicitly shows that ð� � ��Þ � r=r flips the quark-
onium spin.

Next we evaluate the angular integration. What we need
to evaluate is the integration of the product of 3 spherical
harmonics. According to the property of the spherical
harmonics, we have

Z
Y
mf

lf
ð�;�ÞYm

1 ð�;�ÞY�mi

li
ð�;�Þd�

¼ ð�1Þ�mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2li þ 1Þð2lf þ 1Þ

4�

s
lf 1 li

0 0 0

 !

� lf 1 li

mf m �mi

 !
: (A8)

The values of some relevant 3� j symbols are

1 1 0

mf m 0

 !
¼ð�1Þ1þm


mf;�mffiffiffi
3

p ;

1 1 2

0 0 0

 !
¼

ffiffiffiffiffiffi
2

15

s
;

1 1 2

mf m mi

 !
¼ð�1Þmfþm
mi;�mf�m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2þmfþmÞ!ð2�mf�mÞ!
30ð1þmfÞ!ð1�mfÞ!ð1þmÞ!ð1�mÞ!

vuut :

(A9)

Finally we evaluate the radial integration. There are two
terms in V1ðrÞ [cf. Eq. (6)]. We first look at the first term:

4

3


c

mc

Z 1

0

gsðrÞ
4�

R

11ðrÞ


ðrÞ
r

RniliðrÞr2dr

¼ 8

3

gsðrÞ
4�


c

mc

rR

11ðrÞRniliðrÞjr¼0 ¼ 0: (A10)

Here we have considered the running of the QCD coupling
constant gsðrÞ in the radial integration. Note that gsðrÞ is
governed by asymptotic freedom as r ! 0, i.e. g2sðrÞ �
ð1= lnð�MSrÞÞ as r ! 0 [cf. Eqs. (A14) and (A13) below].

Equation (A10) shows that the first term in Eq. (6) actually
does not contribute. We should only take into account the
contribution of the second term in Eq. (6) to the matrix
element. The radial integration from the second term con-
tribution is

� 4

3


c

mc

Z 1

0

gsðrÞ
4�

R

11ðrÞRniliðrÞdr ¼ � 4

3


c

mc

I11nili ;

I11nili �
Z 1

0

gsðrÞ
4�

R

11ðrÞRniliðrÞdr: (A11)

The radial wave function RðrÞ is to be obtained by solving
the Schrödinger equation.
To include nonperturbative contributions to gsðrÞ near

the J=c and c 0 scales phenomenologically, we take the
CK potential model which has both a clear QCD interpre-
tation and successful phenomenological predictions. The
CK potential reads [14]
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VðrÞ ¼ � 16�

25

1

rfðrÞ
�
1þ 2�E þ 53

75

fðrÞ � 462

625

lnfðrÞ
fðrÞ

�
þ kr;

(A12)

where k ¼ 0:1491 GeV2 is the string tension related to the
Regge slope, �E is the Euler constant, and fðrÞ is

fðrÞ ¼ ln

�
1

�MSr
þ 4:62�

�
1� 1

4

�MS

�I
MS

�

�
1� expf�½15ð3 �I

MS

�
MS

� 1Þ�MSr�2g
�MSr

�
2
; (A13)

in which �I
MS

¼ 180 MeV. The nonperturbative effects

resides in the phenomenological function fðrÞ. Writing
the potential (A12) in the standard form VðrÞ ¼ �ð4=3Þ�
½
sðrÞ=r� þ kr, we read from (A12) that


sðrÞ � g2sðrÞ
4�

¼ 12�

25

1

fðrÞ
�
1þ 2�E þ 53

75

fðrÞ � 462

625

lnfðrÞ
fðrÞ

�
:

(A14)

This running formula will be used in the calculation of I11nili
in (A11).

Putting all the above results together, we obtain the
expressions for 0h11P1jV1jni3S1i0 and 0h11P1jV1j13D1i0:

0h11P1jV1jni3S1i0ðmf;msÞ ¼ � 8

3
ffiffiffi
3

p 
c

mc

I11ni0
mfms
;

(A15a)

0h11P1jV1j13D1i0ðmf;mi þmsÞ ¼ 8

3

ffiffiffi
2

3

s

c

mc

I1112
mf;miþms
:

(A15b)

With these two matrix elements calculated, we can obtain
all the mixing coefficients in (11) [cf. Eq. (12)].
For the spin-1 states. The conventional Cartesian coor-

dinate representation of the spin ¼ 1 operators are:

S1 ¼
0 0 0

0 0 �i

0 i 0

0
BB@

1
CCA; S2 ¼

0 0 i

0 0 0

�i 0 0

0
BB@

1
CCA;

S3 ¼
0 �i 0

i 0 0

0 0 0

0
BB@

1
CCA; (A16)

i.e.,

ðSiÞjk ¼ �i	ijk: (A17)

The eigenvectors of, for example, S3 are:

�1ms
¼

ms ¼ þ1

1
2

�ð1þ iÞ
1� i

0

0
BB@

1
CCA �1ms

¼

ms ¼ �1

1
2

1þ i

1� i

0

0
BB@

1
CCA �1ms

¼

ms ¼ 0

1
2

0

0

1

0
BB@

1
CCA; (A18)

where the column is ordered according to i ¼ 1, 2, 3 from top to bottom. In the polar coordinate system, we should make
the linear combination for the component index ð�1ms

Þ�1 ¼ ½ð�1ms
Þ1 � ið�1ms

Þ2�=
ffiffiffi
2

p
. Thus we obtain the following

eigenvectors in the polar coordinate system:

�1ms
¼

ms ¼ þ1

1þiffiffi
2

p
0

0

�1

0
BB@

1
CCA �1ms

¼

ms ¼ �1

1þiffiffi
2

p
0

1

0

0
BB@

1
CCA �1ms

¼

ms ¼ 0

1þiffiffi
2

p
1

0

0

0
BB@

1
CCA; (A19)

where the column is ordered according to m ¼ þ1, 0, �1
top to bottom. Compared with Eq. (A5), we see that

ð�1ms
Þm ¼ 1þ iffiffiffi

2
p amðmsÞ � NamðmsÞ; (A19)

where N � ð1þ iÞ= ffiffiffi
2

p
is the normalization factor, and

N
N ¼ 1.
Now the term ð�


1ms2
ÞjðSiÞjkð�1ms3

ÞkEi in the E1-CEDM2

transition amplitude can be evaluated as

ð�

1ms2

ÞjðSiÞjkð�1ms3
ÞkEi

¼ �i	ijkð�

1ms2

Þjð�1ms3
ÞkEi

¼ �ið�

1ms2

� �1ms3
Þ �E

¼ 	�m1;�m2;�m3
ð�


1ms2
Þm2

ð�1ms3
Þm3

Em1

¼ðA19Þ 	�m1;�m2;�m3
am2

ðms2Þam3
ðms3ÞEm1

¼ �iðaðms2Þ � aðms3ÞÞ �E: (A20)
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