PHYSICAL REVIEW D 85, 114010 (2012)

Testing the anomalous color-electric dipole moment of the ¢ quark
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If the ¢ quark has an anomalous color-electric dipole moment (CEDM), it may serve as a new source of
CP violation. The strength of such a CP violation depends on the size of the CEDM, d... We propose two
effective ways of testing it from the large sample of ' — J/¢ + @ + 7~ at the Beijing Spectrometer,
and the obtained result, |d.| <3 X 107* ecm (95% confidence level), gives the first experimentally
determined upper bound on the CEDM of the ¢ quark.
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L. INTRODUCTION

Searching for new sources of CP violation beyond the
standard model (SM) is one of the currently interesting
projects in particle physics. It concerns the explanation of
the asymmetry between matter and antimatter in the
Universe. There have been a lot of experimental studies
on the CP violation in K-meson, B-meson, and D-meson
decays. So far, these experimental results are consistent
with the SM predictions [1].

There have been other possible new CP violation
sources under consideration, for example, the possible
electric dipole moments of quarks or leptons [1]. In
Ref. [2], the CP violation effects in Z boson decays were
studied. An effective interaction Lagrangian containing the
relevant CP-violating terms was presented. These included
the electric and weak dipole moments and the color-
electric dipole moment (CEDM) of the quarks. In the
present paper, we are concerned with the CEDM of the ¢
quark. We note that, to the CP-odd correlations considered
in Ref. [2], this CEDM does not contribute. Reference [3]
suggested a test via the decay J/¢ — yd ¢ based on a
naive quark model calculation. Unfortunately, there is no
experimental data on the process J/ ¢ — ydh¢ so far.
Reference [3] only estimated the testing sensitivity from
the statistics. In this paper, we propose a test via the
hadronic transition ' — J/¢ + w* + 7~ at the Beijing
Spectrometer (BES) based on the calculation of QCD
multipole expansion [4—7] which has proved to be success-
ful in many processes [7]. BES has accumulated a lot of '
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decays, and the branching ratio for ' — J/i + 7 + 7 is
about 50%, which gives a large sample for testing CEDM
effect with certain precision providing the first experimen-
tal determination of the CEDM of the ¢ quark.

The effective interaction Lagrangian including the
CEDM proposed in Ref. [2] is

P A,
Legpm = — Edéz//caﬂVy57 U .Gy (1)

where d.. is the strength of the CEDM, o = £[y#, y"],
vs = iyy'y?y3, A, is the Gell-Mann matrix for the color
SU(3), group, and G4, = 9,G% — 3,G% — g, furc.GLGS
is the field strength of the gluon field.

Lcppm affects the hadronic transition processes ' —
J/ + 7t + 7~ in two folds:

(1) It contributes to the static potential between ¢ and ¢,
which causes the mixing between CP-even and
CP-odd cc bound states, i.e., both ¢’ and J/
contain certain CP-odd ingredients such as (! P)).

(i) Lcgpm contributes to the vertices in QCD multi-
pole expansion, so that it affects the transition
amplitudes.

In this paper, we shall calculate the above two contribu-

tions systematically.

We first treat Lcppy as a perturbation to calculate its
contribution to the c-¢ static potential with which we
calculate the energy shifts and CP violating state mixings.

We then calculate the theoretical prediction for the
distribution dI'(¢y' — J/¢ + 7« + w~)/dM ,,,, and com-
pare the obtained result with the BES data, which leads to
an upper bound of d.. Finally we construct a CP-odd
operator O from the initial-state and final-state momenta
inete” — ¢/ — J/¢ + 7" + 7, and calculate its ex-
pectation value (@) under the amplitude of ete™ — ¢/ —
J/ + 7 + 7. Since the amplitude contains a CP-odd
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piece proportional to d’., (O) is proportional to d.. So
measuring (O) can provide another way of testing d... We
suggest BESIII to do this measurement.

The CEDM interaction Lcppy in (1) is a dimension-5
operator in an effective Lagrangian with a scale parameter
A ~ TeV beyond which the SM should be replaced by new
physics. The present study is at energies far below A and
also much below the electroweak symmetry breaking
scale. See Ref. [8] for a discussion of the effective
Lagrangian approach in such a case. In this paper, we
concentrate on studying the contribution of Lcgpy to the
hadronic transition ' — J /¢ war. Here we would like to
explain why other higher dimensional CP-odd operators,
such as the CP-odd 3-gluonic operator, Oy =
—(C/6)f G4, GoP G5 €27 [9], need not be included
in this study. In an effective Lagrangian theory, an operator
with dimension 4 + n is always matched by 1/A”" from its
coefficient. Let us first look at the dimension-5 operator
Lcgpm- Comparing it with the dimension-4 SM quark-
gluon interaction, we see that the extra dimension of
L cgpm comes from the extra derivative on the gluon field,
i.e., from the gluon momentum k. In the transition ¢’ —
J/Q[/7T7T, k< M(/// - Mj/,/, = 590 MeV. Thus ‘ECEDM is
suppressed by k/A relative to the SM quark-gluon inter-
action. Next we look at the dimension-6 CP-odd operator
Og. Comparing it with the dimension-4 SM triple-gluon
interaction, we see that the two extra dimensions of Og
come from two extra derivatives on 2 gluon fields. Thus
Og; is suppressed by k?/A? relative to the SM triple-gluon
interaction which is of the same order as the SM quark-
gluon interaction. So, O is suppressed by k/A < 5.9 X
10~* relative to Lcppy. There have been many papers
estimating the magnitude of the coefficient C in Og
[10,11], and showing that C is really very small. There-
fore, theoretically, it is reasonable to take only the leading
dimension-5 CP-odd operator Lcgpy into account, and
ignore all the higher dimensional CP-odd operators such as
Og in the present study.

This paper is organized as follows. In Sec. II, we calcu-
late the contribution of Lcgpy to the potential between
heavy quark and antiquark, and treat it as a perturbation to
calculate the energy shifts and state mixings caused by this
contribution. We shall see that both J/¢ and ' contain
the CP-violating ingredient (1'P,), etc. These mixed
quarkonium states define the initial- and final-state in the
transition ' — J/¢ + w* + 7. Then we study the con-
tribution of Lcgpy, as a new vertex, to the QCD multipole
expansion amplitudes, and calculate all the transition am-
plitudes up to O(d".) in Sec. III. In Sec. IV, we calculate the
total M ., distribution dI'(¢¢' — J /¢ + " + 77)/dM .,
and compare it with the BES measured result. This leads to
an upper bound of d’. which is the strongest bound obtained
so far. In Sec. V, we propose the alternative way of deter-
mining d’. from the experimental data on (O). Section IV is
a concluding remark.
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II. STATIC POTENTIAL AND STATE MIXING

A. Derivation of the potential

Since d.. is supposed to be small, the Lcgpy contribu-
tions to the potential between ¢ and ¢ can be calculated by
perturbation similar to the derivation of the Coulomb
potential in quantum electrodynamics [12]. Let the con-
ventional heavy quark potential be Vi, and the Lcgpym
contributed potential be V. The total potential is

V=V,+V,. )

In the following, we take V; to be a QCD motivated
potential, such as the Cornell potential (the simplest one)
[13] or the Chen-Kuang potential (more QCD, and better
phenomenological predictions) [14]. Note that the short
distance behavior of the Cornell potential is the hardest
(steepest) among the QCD motivated potentials, while that
of the CK potential is the softest (flattest). Thus comparing
the results in the two potential models, we can see the
model dependence of the result. Now we calculate V; to
lowest order perturbation. The Feynman diagrams for the
L cgpum contributions to V; are showm in Fig. 1, where the
normal vertex is —ig,y*(A,/2) for ¢ and ig,y”(A,/2) for
¢. The shaded circle stands for the CEDM vertex deter-
mined by ‘ECEDM'

In the static limit, the obtained V| in the momentum
representation is

Vv =i- . 3
Making the Fourier transformation, we finally obtain
4gs " _ 3)
Vi(r) = 3 d(o—a) ré(r)
4 g, (o—a)r/r
——es = 77 T 4
347 ¢ r? @

The first term serves as a repulsive core, while the second
term is an attractive force. We shall see later, especially

Pl Py P Py Pi Py Ph A
q q q q
1 [ + + + ]
2
P P2 P2 P1 P1 P2 P2 P1
Py P2
~ Vi(q)
P1 P2
FIG. 1. Lowest order Feynman diagrams for V,, where e is the

normal vertex and the shaded circle is the CEDM vertex.
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from Eq. (A10) in the Appendix, that to first order pertur-
bation, the first term does not make any contributions to the
energy level and the wave function corrections, so that only
the second term matters. Note that the dimension of d. is
m~L. So it is natrual to define

de =—=, (&)

where 8, is a dimensionless parameter. Then V,(r) can be
expressed by

4g. 0
Vi) = -85 2 (g — &) - r89(r)
3 m,

_‘_‘&i(i"_‘?"/f ©6)

347 m, r

B. Energy shift and state mixing

We see that V(r) contains a factor (o0 — &) - r which
flips the quarkonium spins by As = *=1 and the quark-
onium orbital angular momentum by Al = = 1. This does
not change the charge conjugation but changes the parity,
i.e., it violates CP. Take the 3S1 quarkonium as an ex-
ample. V,(r) changes this state to 'P,. Thus when the
potential contains V(r), the eigenstate is a mixture of the

CUPIV3S),

3 — |13
|1 S]> - |1 S[>0 EO] _E(l)3
1 Sy

1Py + -+
1P

ol 1P |V]23

S
1295, = 12353, + D011+ -
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3S, and the ' P, states. This affects the decays of the heavy
quarkonia.

Since 8, is supposed to be small, we can take V,(r) as a
perturbation. Let E%, and [n®*VL,), (s =0, 1) be the
energy eigenvalue and the wave function of the quark-
onium eigenstate with only V,(r).

To first order of &, the correction to the energy eigen-
value is

E, = E% + (n® VL,V |[n®FL ), @)

We know that [n®*VL ) is a CP eigenstate, and V,
violates CP. So that the diagonal matrix element in
Eq. (7) vanishes. Therefore there is no energy shift to
O(8,). The energy shift is of O(82).

The first order wave function correction is

|n(23+1)LJ> — |n(2s+1)LJ>0

N ZO<nl(2(si1)+1)(L + 1)J|V1 |n(2s+1)L1>0
! Egl - ES’, =1

X |n/CEEDED(L + 1)), ®)

For example,

—_ 50
E(2)3Sl El‘P] )
(13S, |V, [1'P)), 238, |v,|1'P)) (BD|V{|1'P,)
[11Py) = 1Py + S i 138 g — S g 11238 g = S R (19D ) + -+
EY  —EY E%. — EY, —E°
1'p, 1’s, 238, 1'p, 1°D, 1'p,
(1'P,|V{113D))
|13D,) = |1°D,)y +© 0 ! _1E0 OSSPy + - -
1°D, 1'P,
Here we see explicitly the mixing of the 3S, and ! P, states.
The above expressions for the mixed states are not normalized yet. The normalized states are
1138,) = CRI13S o + Clgl1' Py + - -
1238,y = C31238, ) + CLI1IP )y + - - - a0)

[1'P,) = CI1H1'P,)g + CIOI13S ) + CI23S,)o + CIFI13D ) + - - -

[1°D,) = Ci3]13D, )y + CIA11 P,y +

where

’
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o PIVHIES )y
E%  —E°
1 itp 13s 1
10 — 11 — _ 20 —
Cio = (1'P |V, 1135, o = <1IP|V|]15> €0 = (1'P,|V,1235,)
RGATIEA, 1+ @RSy |+ EPIE Sy
11P 133 11P 13s 2‘S llP
“<11L:1“P] Vi |%3S| )
—F
T 2s, Tile 1 _ 1
Czo— (1'P |V |12s> C“ B <1P|v|15> (1'P, V1238 ), (1'P,|V,|13D.), '
1+ (S P Sy 1+ L AMSIy2 o (PMES by . (AP,
3 1 3 EY, 5o E E; 1
2~s ip 15 ip 23y ip 13D ip
1 1 1 1 1 1 1
(1S, IV [1'P))o
0 1 1
10 ]lpliE?351
Ch =
1+ (0<1 P, |‘11|1 S >0)2 (0<1 P |V]|2 M >0)2 (0<1 P |V1|1 D, >0)2
1 s, llP 2 s, ]]P] 1 D, 11P
0<23051|V|1|5101P1>0
E —
23s ip
c-- - ,
1 3 1 3 1 3
1+ (0<1150P]|‘:11|51) Sl>0)2 + (0<;;0Pl|‘:11|;) S|>0)2 + (0<1150P]|‘EEOD1>0)2
13s1 1‘P1 2351 11131 13D1 11P1
0<13UD1|V1|101P1>0
E —F
130 1!
cft = - '
1+ (0<1 P |V1|1 S, )0)2 + (0<1 P |V1|2 S )0)2 + (0(1 P |V1|1 D, >0)2
l s, 1 Pl 23 lIPl l D1 l‘P1
oI"PUVIITED )
0
1 13p _EllP
ct - e
(1P IVi113D, Yo\ 2 (1P, IVi113D, )o\2
1+ (0 1 1 ) 1+ (r» 1 1 )
J E?3DI_E?1P] E?3DI_E?]PI

The detailed calculation of the matrix element o(1! P, |V, |2t 1)Ll)o is given in the Appendix. Expanding these mixing
coefficients up to O(8,./m,) and with the results given in Egs. (A15a) and (A15b), we obtain

Cly =1+ 0(82/m2),

CH =1+ 0(82/m2), Cho(mys, my) =

Cii = 1+ 0(8%/m7),  Ci(mp,my) =

CP =1+ 0(82/m?),

Cjz = 1+ 0(8%/m?),

C}(l)(mf: ms)

C}%(mf, m; +mg) =

8 26, I 11
C};(mf’ m; + mS) = C1%6mﬁmi+m; - _\/; .

T L I U | S S 0(8%/m?2)
10 my,m 3 3 mc M]P _ M]/,p my,my c c)
8 o n
Cé(l)é\mf,mx = ﬁé— mii Mz/f’ EOMIP Smf,mx + 0(5%/’"%),
8 &, 119
ClO08 = = e o5+ O(82/m),

33 m. Myp— My,

3V3m. Myp — Mp

8 26, 12
CloSm mtm. = — — 5, em, T O(8%/m2),
10Y myg,m;+mg 3\/;)’}1 MlD MlP mg,m;+mg ( c/mc)

5mf,mi+ms + 0(53/’"%),

(12)

where m;, ms, mg stands for the magnetic quantum numbers of the initial-state orbital angular momentum, the final-state
orbital angular momentum, and the initial-state spin, respectively. The numerical values of these mixing coefficients can be
obtained once a potential model is chosen. In the Chen-Kuang (CK) model [14] and Cornell model [13], the values are

given in Table L.
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TABLE I.  Values of the mixing coefficients C:IF ,IIF in the CK
and Cornell models.

CK model Cornell model
cll 0.11658, 0.11428,
ch —0.071195, —0.072095.
cll 0.15978, 0.16698,
cy —0.018635, —0.018245,
cl9 —0.039065, —0.040915,

Actually, even for 8. = 0, the states [23S,) and [1°D,) are
not just the experimentally observed |i') and |¢') since
the leptonic width of [13D,) is smaller than the experimen-
tally measured value by an order of magnitude. Usually
people believe that the observed |¢') and |¢') are mix-
tures of [23S,) and [13D,) [15,16]:

l4') = 123S,) cos® — 13D, ) siné,

(13)
|y = 12°S,)sind + |1°D) cosé.

The mixing angle # can be determined by fitting the
measured leptonic widths. The obtained values of 6 in
different models are [15,16]

Cornell model: 8 = 10°,

Chen-Kuang model: 8 = 12°. (1
Thus the physical |') and | ") are [cf. Eq. (10)]
[i4") = cosB(CRI23S,)o + CLITIP, )
- sinH(C}%|13D,)0 + C%é|11P1>O), (15)

Ly = sinB(CRI23S ) + CLI1'P,)o)
+ cos(CI3113D, )y + CHITIP, ).

So the hadronic transition ' — J/ + 77 + 7~ under
consideration is expressed as

[cosO(CI23S,)g + CLI1LP,)g) — sind(C13[1° D, )
+ CHIN'P D)=k,
— (CIOI3S)o + CLINP ) g, + 7+ 7. (16)

III. CALCULATION OF THE TRANSITION
RATES AND DETERMINATION OF THE
0(8!) SPA COEFFICIENTS

A. 0(8?) and O(8}) transitions

The hadronic transition process is dipicted in Fig. 2, in
which the transition amplitude contains two factors,

PHYSICAL REVIEW D 85, 114010 (2012)
h

FIG. 2. Diagram for a typical hadronic transition.

namely, the multipole gluon emission (MGE) factor and
the hadronization (H) factor. We shall treat the two factors
separately.

We first consider the MGE part. Let E¢ and B“ be the
color-electric and color-magnetic fields, respectively. In
the conventional CP-conserving transitions, the MGE
part contains certain quarkonium-gluon interaction verti-
ces, e.g., the color-electric dipole (El) interaction, the
color-magnetic dipole (M1) interaction, etc. [4—6,16]:

El: —d, - E‘X, 1),
A
d, = g f (c = X)W () 2 W, 0,
(17)
MI: m, - B4(X, 1),

m, = %M f(x - X) X Wi(x, t)%voy‘l’(x» Nd’x,

where gg and gy, are effective color-electric and color-
magnetic coupling strengths, respectively, X is the center-
of-mass coordinate of the quarkonium, and W(x, 7) is the
quarkonium wave function at the space-time point (x, ¢). For
the CP-violating CEDM interaction vertex. Equation (1)
can be written as

. A
L cepm = ld’c%”IYOU'Ok'YS 7‘1 ¢chk
. A
— id, 1700”757“ .Gy

50 1 ag; O
Ay

Ay "
—o; )7 lchi

.55 1 O O-i /\u a
gl S T) s s

l

The first term is just the interaction between the CEDM
and the color-electric field. The second term is off
diagonal, so that it is nonvanishing only when the lower
components of the quark spinor =(p - o)/(E + m) are
taken into account, i.e., when the quark is moving.
So the second term means the interaction between the
color current and the color-magnetic field. In the
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nonrelativistic limit, only the first term is nonvanishing,
and the interaction vertex is

CEDM:

5, (/\a A (19)

— i __c(a +7‘1—,Ea'
lmc 20' 20’)

As in the case of M1 transition given in Ref. [4], after
certain treatment of the color factor, the effective
CEDM vertex is

CEDM: — i;” (0 — &) E, (20)

me

where E = (A,/2)E“.
With these vertices, the transition (16) can be divided
into the 0(8%) terms and O(8!) terms. They are:
(i) 0(8Y%) term.—
(a) Ordinary E1-E1 transition of 25 — 1§ with the co-
efficients cosfC3)C1Y:
COS@C%8|23SI>O|E:E20 — C%8|1351>0|E:E10 + a7+ .

2

(b) Ordinary E1-E1l transition of 1D — 1§ with the
coefficient — sindC}3C}J:
_Sineci%l13D1>0|E=E20—’C18|1351>0|E=E10 + a7+

(22)

(ii) O(8)) terms.—

(a) Ordinary E1-M1 transition of 25 — 1P with the
coefficients cos@C3C1L:
COSQC%8|23SI>O|E=EZO i C%(1)|11P1>0|E:Em + 7+ .

(23)

(b) Ordinary E1-M1 transition of 1D — 1P with the
coefficients — sindC13C1):

_Singc}%l13D1>0|E:E20—’C}(])|11P1>0|E:E10 + a7+ .

(24)

(c) Ordinary E1-M1 transition of 1P — 1S with the
coefficients (cosfC)} — sindC}):

(cosdCLy — sinfCH)[1' P )olp—,,

— C%8|13SI>OIE:E]U + 7+ 7 (25)

(d) M1-CEDMI transition of 25 — 1§ with the coeffi-
cients cos@C3C1Y:

PHYSICAL REVIEW D 85, 114010 (2012)
COSGC%8|23S1>O|E=E20 - C%8|13S1>0|E=E10 + a7+ .

(26)

(e) E1-CEDM2 transitions of 2§ — 1S and 1D — 1S
with coefficients cosfC39C19 and — sindC13C1Y, re-
spectively:

COSQC%8|23S1>O|E=E20 - C}8|13S1>0|E=E|0 + a7+ 7

27)

_Sin0C{5|13D1>O|E=E20_)C{8|13S1>0|E=E|0 + T+

(28)

For a given potential model, there is a systematic way of
calculating the MGE factors [6,7].

Next we consider the H part, the matrix elements reflect-
ing the conversion of gluons into light hadrons. These
matrix elements are at the scale of a few hundred MeV,
and the calculation is thus highly nonperturbative. So far,
there is no reliable way of calculating them from the first
principles of QCD, so that we have to take certain phe-
nomenological approach. A conventionally used approach
is the soft-pion approach (SPA) in which the H-factor
matrix element is phenomenologically expressed in terms
of power expansion of the momenta of the two pions with
unknown coefficients [17]. To lowest nonvanishing order,
the number of unknown coefficients is usually not large,
so that they can be determined from taking certain
experimental input data. This approach has proved to be
successful in calculating the transition rates, the M,
distributions, etc. [6,7]. However, in the present case, it
will be difficult if we merely take this approach since there
are so many kinds of H-factor matrix elements listed in
(21)-(28) containing too many unknown coefficients.
There are not enough known input experimental data to
determine them. Another viable but cruder approach is the
two-gluon approach (2GA) proposed and used in
Refs. [6,7]. In this approach, the external pion-fields in
the H-factor are approximately replaced by two external
gluons, so that the matrix elements can be easily evaluated
as functions of the pion (gluon) momenta and the two
phenomenological coupling constants gg and gy which
can be determined by known experimental inputs. Of
course this is a crude order of magnitude estimate.
However, it has been shown that this crude approach
does give right order of magnitudes of transition rates for
many processes [6,7,18]. The shortcoming of the 2GA is
that it cannot give the correct angular-dependent distribu-
tions such as angular distributions, M ., distributions, etc.
This is because that the pion is spinless, while the gluon
spin is 1. In this situation, we shall take both SPA and 2GA
in this paper for complementarity.
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We can first take the 2GA to calculate all the transition
rates listed in (21)—(28) which contain two effective cou-
pling constants gg and gy;. Since the total transition rate
(' — J/ ) is essentially contributed by the O(89)
rate which only contains gg, we can take the experimental
value of I'(¢/ — J/ Y mar) [1],

Iy =304 =9 keV,
B(y'— J/patm) = (33.6=0.4)%, (29)
B(y' — J/pm’70) = (17.73 = 0.34)%,
as input to determine gg. For the determination of gy;, we
can take the 2GA calculated branching ratio B(y' —
h.7°) X B(h, — m.7y) [16] containing gy;/gg to compare
with the corresponding experimental value [19]. For ex-

ample, in the CK model and the Cornell model, the deter-
mined gg and g);/gg are:

CK model:
I an gy
ap=>E=0523, S ==0=236
dar ag 43
Cornell model:
2
ap = SE = 0.667, a—M—g—M—236
dar ag gE

(30)

With the determined g and gy, we can obtain all the
relative sizes of the transition rates in (21)-(28) with
only one undetermined parameter d.. (or 8.) left in the
O(8}) rates. Next, we can take the SPA to calculate all the
transition rates containing certain unknown coefficients.
As a perturbation calculation, we first obtain the O(8Y)
transition rate containing three unknown coefficients [17]
which can be determined by the data (29) and M . distri-
bution as what is conventionally done [20]. Then we
calculate the O(8!) transition rates containing several
new unknown coefficients. Comparing the SPA and 2GA
results, we can express these unknown coefficients in terms
of the known O(8?) coefficients, so the SPA results of the
O(8!) transition amplitudes contain only one undeter-
mined parameter d’. (or §,). We can then calculate the
total distribution dI'(¢' — J/¢ + 7" + 77)/dM,, to
compare with the BES data for testing d. (or §,.). We shall
see that the inclusion of the 0(8 ) contributions does
improve the fit, and the best fit value of &, is nonvanishing.
However, considering the experimental errors, &, is still
consistent with zero. So we can obtain an upper bound on
8. (or d..). The detailed analysis of this kind of study will
be given in Sec. I'V.

B. Transition rates of the O(6%) processes (21) and (22)

The O(8Y) transition rates in Eqgs. (21) and (22) have
been calculated in the published papers [6,7,15]. Here we
list the results.

PHYSICAL REVIEW D 85, 114010 (2012)

The transitions in (21) and (22) belong to the ordinary
E1-El transitions. The E1-El transition amplitude can be
written as [6,7]

(Prlr, IKL><KLIr P

8
6 Z — Ex

X{mm|EL,, 7m2|0>

MEIEI =

_ ~gE 111 . A .
- lf n,l,nplp<lFSF.]FmF|rm1rmzlllsl.flm[>

X{mm|EL,, E},10), 3D

where ®@;(®f) is the initial (final) quarkonium state; r is
the separation vector between the two heavy quarks; 7 is
the unit vector of r; r,, (r,,) is the component of r in
the spherical coordinate system with the magnetic quan-
tum number m,, (m,,) € {1,0, —1} [cf. Eq. (A3) in the
Appendix]; [, s.j.m are, respectively, the orbital angular
momentum, the spin, the total angular momentum, and the
total magnetic quantum numbers of the quarkonium state;
K (L) is the principal (orbital angular momentum) quan-
tum number of the intermediate state; and Eg; is the
energy eigenvalue of the intermediate vibrational state
|KL). The factor {lpspjrmp|?.#|l;s;j;m;) can be eval-
uated using the properties of the spherical harmonics [6],

and the reduced amplitude f!!1 s
nilinplp

fLPIPF
nilinglp

_ Z S Re(r)rPr Ry, (r)rtdr [ Ry, (X')r'PiR(¥)r2dr
M; — Egp

(32)

in which R;, Rr, and Rg; are radial wave functions of the
initial, final, and intermediate vibrational states, respec-
tively. These radial wave functions are calculated from the
Schrodinger equation with a given potential model. The
values of various fn 11n Fl in the CK and Cornell models are
listed in Table II.

In the following, we consider the approaches to the
hadronization factor (7| E{E¢|0).

TABLE II. Values of the reduced amplitudes Nty

ey in the
CK and Cornell models.

CK model Cornell model

fholo (GeV3) 8.8715 6.9330
3% (Gevh) 0.3869 0.3709
fiilo (GeV—?) -11.2507 —8.7701
o (Gev—2) —3.31446 ~2.9040

1% (GeV™2) —6.8977 —6.1708
fiody (Gev™2) 4.8399 49801
f9%1 (Gev2) 4.5643 40379
19 (Gev2) —5.8859 —5.1934

29, (GeV™2) —4.1087 —3.6324
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(i) SPA.—In the SPA, the hadronization factor can be generally parametrized as [17]

1)
ap
\/(20)1)(2602)
Ab . B c 2
m{&nlmz[% qap +ﬁwlw2] +ﬁ(qlm|q2mz + G 1m,92m, _§5m|m2ql "Iz)},
(33)

2
gE <7T (QI)WB(QZ)lE—m] (im2|0> = {5mlm2[ﬂqq‘quu, + Bwle] + C(‘]lml ('IZmz + (’IImz CIZm] _§6m1m2q1 qZ)}

where A, B, and C are phenomenological constants, and g, = (w,, q,) is the four momentum of 7. For a given
invariant mass M., the ‘A term is angular independent, while the B and C terms are angular dependent [17].

For |23§ 0= [138 yarar, the main contributions to the total transition rate are from the /A and B terms [20], while for
[1°D,) — [13S,)7r, the main contribution is from the C term [6]. Thus the M. distribution is [6]

dU(y' — J/pmm) (¥ ()
T = | AR costo SEAEL it () + sinto T 14 ()
MM M B |2
= | A|*cos?0 o MJM{ (M7, —2m72)* Fo + ﬁ(M%ﬂT —2mZ)F + |ﬁ | .Tz}|f§(l)}o(¢/)|2
: M., Myy | C |2 1
+ 511126?225773 M, a {[3m%7(m%7 - K3) + Z(M%W - 2m3,)2j|f0
+ (8w~ ML) Ty + ATl (4
where
K 1 K2 1
:FO = ]\|4 l M%T‘IT - 4m3,, j:l :FOI:6 MZO (M%'ﬂ' + 27}1%7.) + E(M%rn' - 4m%r):|;
T T 35
Fol8 K3 2 o 4K o 2\( 142 2 2 22 )
o= o[ ars e + 2V + 6md) 45 ST (2, — 4202, + 6mi2) + (2, — 4m |
in which (K, K) is the four momentum of the 77 system,
1
|K| {[(Mz//’ + M7777) M%/w][(M(//’ - M7T7T)2 - M3/¢]}1/2r KO = Ml// (Mlzp/ + M72777 - Mf/w) (36)
The determination of A, B/ A, and C/ A will be discussed in Sec. IV.
Integrating over dM .. in (34), we obtain the transition rate
Ly — J/pmm)sppn = | APLecos?0G az(d) fo10(#)? + sinOHc ()] f1210(4 7] (37)
where
1 M M 1 B B |2
Gaz = g 2L dM%m{— 082, ~ 28R Fy + 003~ 22)Fy + | 7 | 72}
87 My Jom, 4 A A (38)
1 M C |2 1
He = 45073 MJ://I . dM%m' a | {[3’"37(’"37 - K(z)) + Z(Mazrﬂ' - 2m37)2i|f0 + (8m37 - M72777):]:1 + 4:7:2},

in which AM =My — M,,,,

Although this approach can give the reliable M. distribution, it cannot be applied to other processes in (21)—(28) since
other processes contain new unknown parameters in their hadronization factors, and there are not enough experimental
data to determine them. So we have to take the help of the 2GA.
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(ii) 2GA.—The hadronization factor can be further writ- where w (') and € (€’) are the energy and polar-
ten as ization vector of the gluon, respectively. After
(7| EX m EC m2|0> _ z< 7| NYN|E< B9 m2|0>’ lengthy but elementary calculations, we obtain
N
39) Upigi (¢ — J/pmm)a6a
where |N) denotes a complete set of intermediate _ (g_lzi)z 8 (AM)’ [ cos20|f1A1 |2
states. The 2GA assumes that the color-singlet 2- 6/ 277 140 2010

gluon state [N) = |g¢g¢) dominates. In general, the ,
clens . . + Zsin?@|F1M |2 (42)
factor (7rr|g€g€) is a function of the pion momenta. 5 12100 |
Considering the fact that the hadronization factors
in most hadronic transition processes are all at the

few hundred MeV scale, the running of <7T77'|g ‘8 ‘) In the following we shall take the 2GA to calculate
with the momentum in such a range of scale is mild. other transition rates in (21)—(28), and compare

1 CH5C\ ~
So that we approximately take <”7|g 8") = const, them with (42) to determine their relative sizes.
and this constant can be absorbed into the redefini-
tion of the effective coupling constant gg. Thus we
have

(mm|EL,, E2,,0) =~ (g°g°|EL,, E2,,]0).  (40)

C. Transition rates of the O(6!) E1-M1
processes (23)—(25)

These processes contain &, through the mixing coeffi-

This approximation can be extended to other hadro- ~ cients C3, Clo» and (cosfCly — sinfCyy), respectively
nization factors containing color-magnetic field(s). [cf. Egs. (11)]. The transition amplitudes are [2°S,) —
The matrix element (g°g|E%, E<, |0) can be WPy +a" +a, [1'P)—|1°S)+ 7" + 7, and
easily evaluated: [13D,) — [1'P|) + @ + 7. They all belong to the ordi-
nary E1-M1 transitions which have been calculated in

<8C80|E'1ml Elim2 |0) Refs. [6,16,18]. Here we present the results as follows.
Sup For these three processes, let us denote the initial and
- m[wlel,*ml()‘1)“’262,*"12()‘2) final quarkonium states by ®; and ®, and the spins of ¢
and ¢ by s, and sz. Then the EI-M1 transition amplitude

t o€ (A)orer (1)) (41) can be generally written as

M _ lgEgM <q)F|rml |KLMs><KLMs|(S¢ - SE)mzlq)I> + <CI)F|(SC - SE)n12|KLMs><KLMs|rm1 |q)l>
EIM1 —

12mc KLM, Mw! - EKL

X(ata|E_,, B_,,0). (43)

Taking the technique of evaluating the spin matrix elements in the MGE factors (cf. the Appendix), and after certain
lengthy calculations, we obtain
(@ 1238) = 11'P)) + 7 + 7.

5, .
M (23S, — 1P ) = Z8ESM (4110 4 001 ) S™ L0 (mp)aty,, (m)KmmlE_ B, |O), (44)

6\/§mc myny

where the definitions of ¢* and a are Pgiven in Eq. (A5), m; and my are the magnetic quantum numbers of the initial- and
final-state, and the definition of fﬁl};l’n:lF is given in Eq. (32).
) [1'P)y— |13S) + 7 + 7.

0up8E8 .
Mg (1'P, — 138, 7rm) = =L2EM (0010 4 #1090 ) S {as, (mp)ay, (m)K7mwlE_,, B_,,]0). (45)
6\/§mc mymy
and
() 1’°D)) = 1'P)) + 7 + .

5, .
Mg (13D, — 1'P 7rm) = %(ﬂi‘ﬁ + 190 S {as, (mp)ay, (m)Kwm|E_,, B_,,|0). (46)
c mym;
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Next we take the SPA and 2GA to evaluate the hadronization factor (w#|E_,, B, |0).

(i) SPA.—The hadronization factor (w#|E_,, B_,, |0) is a second rank pseudotensor which is to be expressed in terms
of the pion momenta in the SPA. To lowest order, the expression is of the form
W192,my T ©2q1,m,

gEgM<7T7T|E*m]B*m2|O> = KElMlefml,*mz,*nh m ’ (47)

where K is a phenomenological constant. With this expression for the hadronization factor, the amplitudes (44)—(46),
after certain evaluation, are

1 1

m;tmg —m —my

\/ij(ElMl 5ab

Mo (238, = 1Py = e
1 2

0s0C14(f30) +f(2)(0)h)(_1)1+m’< )(611(02"‘%(”1)"1, (48)

\/zj{ElMléab . o 1 1 |
T eae, SmOCi( T il (— 1

M (1'P,— 178 ) = — e —m
i f s

)(511 Wyt qr0y),,  (49)

ME1M1(13D1 - 11P1)

K 8, , |
- Tl cosoct ~ smoct i, + )0

where the matrices are the Wigner 3 — j symbols.
Then, after certain calculations, we get the M .. distributions

)(%wz + Gwi)y  (50)
m; +m

i s —m —mf

dUgivi (23S, = 1'P)spa | K I?

M,
l C{O(fZOII + f(z)gh)lz M;/l//j MW#-IFOTB:

am.,, 5407 m
dlgy (1'P) — 13S1)SPA |~7<E1M1| M,y (51
7 |sin noCH (1% + fii0) 7 Mar Fo Fs,
am ... 5407 m M,
dlg i (1PDy — 1'P))spa |-7<E1M1| . My,
o 1080mI €ON0CH ~SNOCEFih + AP M Fo s
where
K¢ K? K3 ( K2
Fa= O —and2 4 =300 — 1|+ a0, w2 (50— 1), (52)
Integrating (51) over dM ., we obtain the transition rates. For example,
| K ? M,
Teini (2°S) = 1'P))spa = 545(;1\/113 | cos@CHo(f3001 + 01017 :jllp . Mmfof3de- (53)

Now the problem is to determine the unknown constant Ky . So far there is no accurate enough data to determine it, so
we should take the help of the 2GA.
(i) 2GA.—In the 2GA, the hadronization factor can be expressed as

we_,, (Mg X €))-, + '€, (V)(g X (),
VoV ’

<7T7T|E7sz*m| |O> = <gg|E7szfml |O> = (54)

After certain calculations, we obtain
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1 N2_1 gEEM 2]2877 AM
I‘14:11\/11(2351 - 11P17T7T)ZGA = 2 Q2m) (4ch> 9 | co C%o(fzon + fg(onll)|2{[0 CUS(AM - a))3da)}
55
_ 6(N2 - 1)<gEgM> lco OCIL(F110 +f001 )|2 (AM)7 (55)
2777_3 4ch 10V 2011 2011 140 .
Compared with Eq. (42), we have the ratio
RZGA — FE1M1(23S1 - 11P17T7T) =6 M 2 |COS9C%(1)(«f%(I)(1)l + f88{1)|2 (56)
EIM1 r (23S . 13S ) 2m. | 20 111 +g - 20 111 |2»
EIEI 1 17T7T) 1 2GA m.ge/ 1cos 0 f5019 + 551070151y
From (53) and (37) we can get the corresponding ratio
Ko M
RSPA FE1M1(23S1 - 1]P17T7T) . |54OE7;'Mm|- |C0S0C10 éé(l)l + fg(())%l 2 //V/ f%nlz, M7T7T~TO~T3dM7T7T (57)
EIME T T 60 (23S, — 3S,7m) |sea [ AP[cos?6G 4 5(p ) fAdlo (w2 + s1n20Hg<(¢’)|fB}0(¢’)|2]'
As has been argued [6,18], we expect RE5y, = RPia;,- Thus from (56) and (57) we have
2 .
Ko | = 6(z,, %) IﬂlIz[coszt‘)GﬂB(91/’)|f2‘<')}0(¢f’)|2 + sin®0Hc ()| f1210(¢)I] (58)
EMIIT = .
|C0820f;(1){0 + 551n29‘f{é{0|2 54077» MJN/ ]2 77T0f3dM7T7T

So | K |? is expressed in terms of A, B, and C appearing in G 4 g and H, [cf. (38)] which will be determined in Sec. IV.

D. Transition rates of the O(61) M1CEDMI1 processes (26)

In this transition, &, is from the CEDM1 Vertex The transition amplitude is

gm0,
MMICEDMI = 2N 2 ab <CI)F|(SC - sé)mleLMs><KLMs|(sc - Sé)mllq)]>
24m KZLM My — Eg,

HAPpl(se = 56)m, [KLMXKLM (s = 52), | P K| E_, B, 10)

5
= MO 3 Bt ()5, )+ O ), () K|, B, 10) 69

The last step is obtained after certain evaluations of the MGE factor.

(i) SPA.—In (59), the hadronization factor is the same as in the E1-M1 transition. If we take the lowest order SPA
expression (47), we see that it is antisymmetric in m; and m,. However, the MGE factor in (59) is now symmetric in
m; and m,, so that the lowest order SPA does not contribute to (59). In this case, we should consider the next term in
the SPA for the hadronization factor in (59), i.e., the O(g?) term. Considering that (7| E —myB—m, |0) is a second rank
pseudotensor, we have

. Kwicepmi
24 Supmm|E_,, B_, |0) = m[(% = q2) =, (@1 X q2)—p, + (g1 — q2) =, (@1 X @), ]

*:K:MICEDMI [(q |

B lAM\/ZwIsz

- CIZ)fm] € —my,—ms, —my 91my 42m, + (611 - q2)7m2E*ml,*m3,fm4('I1m3q2m4]-
(60)

Here we have put a factor i reflecting @ ~ iq in the expansion for convenience, and have introduced a scale parameter
AM =My — M,;, = max(®; + w,) for making Ky cepm; dimensionless like other SPA coefficients. This expression
is symmetric in m; and m, respecting the Bose symmetry between the two pions. It gives nonvanishing contribution
to (59).

With (60), after certain calculations, we obtain

dUyiicepw (2°S) — 138 7m)spa _ 8| Kmticepmi 1> 82 My |Fo% 12 F, (61)

dM ., O 3PAMPE mE My, 00
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_ o 20000 5 (ii) 2GA.—The 2GA expression for (zw7|E_,, B_,, |0)
Fa= MW{ Men Fo + LK (Mo + 4z has already been given in (54). After certain calcu-
+ M2 (M2, — 4m2)]Fy — (K(z) + M2 — 4m) lations, we have
Tymicepmi (2°S) = 1S, 7m)564

_ 32 (gM5C)2|fooo 2 (Am)’

1
<[ gMaa, )+ i [ Fo) @)
93\ 6m2 ) Y2100 140 ¢ 64

Integrating (61) over dM,,., we obtain the transition Compared with Eq. (42), we get the ratio

rate
Rificepm (28, — 1°S,7m)
3 3
Dniicepmn (278 — 128, m7r)spa _ Tyuceomi (2°S, — 138, 7m)
8 Kyicepmi I 82 MJ/(// 5, [AM Fgig (23S, — 138, 7m)
= _c dM ... (63 E1El 1 1 2GA
37PN|AMP> mi M |f(2)010| fz,n, FadMpr. (63) 2,62 7000 |2
=128 2010 . (65)

gEm4 lcos?0 301y + Zsin?0f 131>

To determine JCpicepmi> We do the calculation with the

help of the 2GA. Taking Rfi¢epm1 = RMicepmi» We determine
|
oS AMPUBE I APLos0G sl (0P s 0H O O]
MICEDM1I™ = _4|coszt9f”l +Zsin20 11 2 8 My 2000 |2 [AM . (66
8E 2010 75 1210 %3 W, /501! e FadM

in which | Iy cepmi |? is expressed in terms of A, B, and C appearing in G 45 and H [cf. (38)].

E. Transition rates of the O(5!) E1-CEDM2 processes (27) and (28)

The two processes (27) and (28) for 23S, — 13§, 77 and 1°D, — 135,77 belong to the E1-CEDM?2 transitions (the
definition of CEDM2 is similar to that of M2 in % (7r)-transitions [5-7,18]). The transition amplitude is of the form

o,
MEicepmz = gE 8ap Yy —————@pmwlS - E(r- 8)|[KLMXKLM,|r' - E|®;)
KLM, My — EKL

+ ((qum-lr . EIKLM XKLM|S - E(r' - 9)|®))}

_ 889,
- 4Nm angl M\Iﬂ — {<q)F|Sm]rm;|KLM ><KLM Ir |(I)I><7T7T|(afm3E7m|)E7m2|0>
+ <CI)F|rm] |KLMs><KLMs|Sm2 r£n3 |(D1><7T7T|E—ml a—m3E—m2|0>}’ (67)

where § is the total spin operator of ¢ and ¢. The matrix element of S between two quarkonium spin states can be evaluated
by using Eq. (A20) in the Appendix.
As before, we express the hadronzation factor in SPA and 2GA, respectively.
(i) SPA.—In this kind of transition, the hadronization factor is a third rank tensor. Considering the Bose symmetry
between the two pions, its general form in the SPA is

S ATTIE 00, B |0) = S 7l(3- 0, - ) E-, [0)

. Keicepmz
= lm(ﬁh,—mz%,—ml T Q1 -m @2 -m) Q1 —my T Q2 —my)- (68)

Here we also put a factor i reflecting @ ~ ig for convenience.
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After certain evaluations, we obtain

dUgicepma(2°S) — 138 7 )spa 8| Keicepma|* 62 My i s
- — + 2 69
dM7T7T 2773 mg M(//' |f2010 [j:S :Fé] (69)

dr 13D, — 138,77 8| K 2 82 M
e (100 = DS 2 eiceba 2 W VBPISKAFy + Fo) =~ 13Fs + 2F @0

where

M 1 M4
Fs = Mo 2K3F — [ 227 4 03 KG Zm%Ké]fl [ M0 + ant)KG — s~ P | Fol

M3
:F6 = M7r7r K(Z):FZ - I:(Mzrw - m%r)K(z) ilfl + < M2 (M%T’iT - Zm%)(ZKg - M?T?T):FO}
_ 2 2 L 232 7D
:F7 - M7r7r :F2 - (M7T7T - zmw)fl +Z(M7T7T - 2m7T) :FO
Fs =M AF> +2m3 F + mi(m7 — K§) Fo}.
Integrating (69) over dM .., we obtain the transition rate of (23S,) — ¥ (13S,)7m,
8| K |2 82 M,
Teicepm2 (23S, — 138 7m)spp = ;;SE?MZ ) M/l// ééhﬂzf [Fs +2FeldM . (72)
Next, we determine the unknown constant Kg;cgpyve With the help of the 2GA.
(i) 2GA.—In the 2GA
10w
(mmlE,, d_, E",, 0) = ﬁ[ 1=y (A1) €2, (A2) G2~y + €2, (A2) € —p (A1) 1~ ], .
—i6p0
<7T7T|(amg *ml)E7m7|0> = ﬁ[el,fmz(Al)elml(AZ)ql,fm3 + EZ,*;nz(AZ)El,fml()ll)qZ,*m3]'
With this, we obtain
g2 82 (AM)°
Ceicepm2 (23S, = 138 7m)ya = (?E) W|f§(l)}o|251037r3- (74)
Compared with Eq. (42), we have the ratio
r (238, — 138, 7m) 10 /AMY? 82 |F1d1 12
RIGA (03§ — 138, )y = ~EICEDM2 ( ) 2010 (5
EICEDM21= =1 TTRGA T (23S, — BS,rm) |aoa 27 m? |cos?Oflat, + Zsin®0f 111 12
Taking RE{Cepvy = R CepMma» We have
Korcrmnl? = (AM) £30101” | APLeos?0G an()\folo (W) + sin*6Hoc (W13t (WIF] -
4 lcos®6 f391 + 3sin*0f 131 #%lfé(l)%olz SMIFs+2FldM .,

So Kgicepmo is expressed in terms of A, B, and C appearing in G 45 and H, [cf. (38)].

Now, in the SPA, we have expressed all the unknown constants | Kg w12, | Kyiceomel?s and | K g cepme > occurring in the
O(8}) transitions in terms of A, B, and C in the O(8?) transitions. The values of Kgiv1, Kymiceomz and Kgicepma from
the values of A, B and C obtained from the best fit of the O(8%) contribution to the experimental data are listed in Table III.
Therefore, the magnitudes of the O(8)) transitions are characterized by only one parameter §..
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TABLE III.  Values of the SPA hadronization factor coeffi-
cients |Kgmil- [Kyiicepmi| and | Kg cepma| obtained from
the best fit values of | A|, B/ A, and C/A in the CK and
Cornell models.

CK model Cornell model
| Keimil 3.289 4.208
| Kmicepmi | 2318 2.625
| Keicepme | 0.532 0.602

IV. DETERMINATION OF 6, FROM THE BESII
DATAOF ' — J/ + &t + &~

In Sec. III, we calculated the transition rates contributed
by the mechanisms (21)—(28) individually, and expressed
all the unknown coefficients in the SPA in terms of the

PHYSICAL REVIEW D 85, 114010 (2012)

parameters A, B, and C. Now we are going to determine
the parameters A, B, C, and 8. from the best fit of the
theoretical prediction to the experimental data.

The transition amplitudes are functions of the two pion
momenta q; and q,. For two transition amplitudes, if their
pion momenta dependence belong to the same representa-
tion of the spacial rotation and reflection symmetries, they
may have nonvanishing interference term in the M,
distribution. So that we should take account of such inter-
ference terms in calculating the M, distribution.
Specifically, there are three kinds of interference terms to
be considered, namely, (i) EIMI-CEDM?2 interference,
(i1) CEDM2-MI1CEDM| interference, and (iii) interference
between the 23S, — 138, and 1>*D, — 13§, 7 ampli-
tudes in EICEDM?2. So we should consider the following
total transition amplitude:

Mo (' — J/para) = [cosOCI)CIO Mg g1 (23S, — 138)) — sindC3CI) Mg g (13D, — 135))]
+ [cosOCRCI Mypicepmi (23S, — 138,) + cosOCIHCIO Mg cepmp (23S, — 138))
— sinfCECIS Mg cepaa (13D — 138)) + cosfCLLCIO Mg v (23S, — 11P))
+ (cosfCL) — sinfCH)CIO Mg\ (1'P, — 13S,)) — sindC} . C3 Mg\ (13D, — 11P)]. (77)

We see from Egs. (34), (51), (61), (69), and (70) that
the CEDM contributions to dI'(¢' — J/mm)/dM,,
are of O(82). So that the mixing coefficients C19, C39,
and C}3 in the first square bracket on the right-hand
side of Eq. (77) should be expanded up to their O(52)
terms which give the CEDM contributions through the
normalization of the mixing coefficients, i.e., we should
take

O — T
1+ (M)z 2
E°  —E°,
1 Pl 1 S]
20 ! Lo 4
G5 = XN =1 _Elczol + 0(8%), (78)
1P |v[238
1+ (0 1M1 1 0)2
J E(2)3SI_E(1)]P]
Cci2= : =1 —llc11 2+ 0(87)
12 1 + (0<11P1|V]|13D1>0)2 2 12 c/)
E?3D|_E?1P|

in the first square bracket on the right-hand-side of (77).

The contributions to [d' (' — J/ ¢ mwa)]/(dM ] from
individual mechanisms have been given in Eqgs. (34), (51),
(61), (69), and (70). Now we consider the contributions
from the interference terms. By the same approach as in
Sec. 111, we obtain

(i) EIMI1-E1CEDM2:

dUgivi-E1cEDM?
aM ..

SPA
2\6M,;, M

= Ke K S {#cosﬂ 111
EIM1 JCEICEDM2YEIMI 27W3m§M¢/ f2010F 9
2\3My M.,

+ T coshf L] } 79

457T3m%M¢/ fa010F 10 (79)

where

Seim1 = \/ECOSGCH) %6(1)1 + fgg}l
- \/-Z—(COSQC% —sinfCI)(FI0, + 919
- sinﬁC}(l)(f}é?l + f%glll ) (80)

Fo = Ko[4f2 — QM2 — 42 F,

1
+ (Mt - miK%)fo ] 81)
1
Fro= g Ko 16F: — (112, — 2302) F,
7
+ (Mt - 3mt, — m2KE)Fs |

(82)
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(i1)) M1CEDM1-E1CEDM2:

derCEDM 1-EICEDM2
am T SPA

C2V2ZMy M, 82 X %
57T3M¢/AM mg MICEDMI1 ~“MEICEDM2
X o6 sind f500 f 1310 T 11, (83)
where

1
Fn Eg{_4M72m.T2 +[K§ (M2, +4m?)

+ 2M%T7T(M72777 - 4m%r)]j:1
— (K3 + M2, —4m?)

1
X[ M0y — ) 4 2 KE | T (89

(iii) EICEDM2-E1CEDM2:

dl'g1cEDM2-EICEDM2
M .,

_ _8\/§MJ/¢M7T7T 5% |:]< 2
457T3Ml/,/ m% E1CEDM2

X cosO sindf3 L 1Mo F o, (85)

SPA

where

1
Fi= g{_4M$mf2 + (KgMZ%, + 2M3

+4mL K5 — 8my Mz ) Fy — (M7,
M4
—4m? + Kg)( L m2|1<|2) j—"o}.

(86)

With all these results, we are ready to determine the
unknown parameters by the best fit of the theoretical
prediction to the experimental data. We take the BESII
data on ' — J/ymt 7~ [21] based on 1.4 X 107 '
events. We proceed the determination by taking the
CEDM effect as a perturbation. We first take the Oth order
0(8%) contribution to fit the BESII data. There are three
unknown parameters A, B and C in the Oth order contri-
bution in which A is an overall normalization factor
irrelevant to the M . distribution. Itis determined by fitting
the total transition rate with the experimental value [1]. The
ratios B/ A and C/ A do affect the M, distribution, and
they are determined by the best fit of the theoretical M.
distribution with the BESII data. The best fit curve in the CK
model, as an example, is shown by the red dashed line in
Fig 3 together with the BESII data.

The values of | A | determined from (29) and the values
of B/A and C/ A determined from the best fit of the
0(8Y) contribution to the M distribution are:

PHYSICAL REVIEW D 85, 114010 (2012)
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FIG. 3 (color online). The best fit theoretical curves of the Oth
order contribution (red dashed line) and the total contribution
(dark solid line) in the CK model together with the BESII data on
dU(y' — J/pmm)/dM 5, [21].

CK Model: | A| = 1.641 = 0.036
B/ A = —0.372 *+ 0.006,
|IC/A| = 0.855 = 0.020,
Cornell model: | A| = 2.09 = 0.05
B/A = —0.371 = 0.006,
|C/ Al = 1.000 = 0.166.

(87)

The values of the SPA coefficients JKg - Kyiicepmi and
Keicepme obtained from the best fit values (87) are listed
in Table III.

As an example, we plot the contributions from various
0(8%) CEDM terms to the M, distribution in the CK
model in Fig. 4 with 6, = 1 (the §_.-independent part). We
see that the CEDM contribution increases the low M.
distribution and reduces the high M. distribution, which
is just the opposite to the Oth order distribution. This is the
reason why the M. distribution of ¢/ — J/7m" 7~ can
sensitively determine the CEDM parameter 0.

Next we take into account the CEDM contributions
Egs. (34), (51), (61), (69), (70), (78), (79), (83), and (85)
to make the best fit of the total contribution. The best fit
curve of the total contribution is shown by the dark solid
line in Fig. 3. The numerical result shows that the dark
solid curve improves the fit a little bit (with slightly re-
duced y? value) although the difference between the two
curves is too small to be visible in Fig. 3. The best fit dark
solid curve determines the best fit value of 8. (d..) listed in
Table IV in which the error bars of 8, (d.) are determined
from the experimental error bars in the M. distribution.
Note that the best fit value of &, is nonvanishing. However,
considering the error bars in Table IV, the obtained &, is
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TABLE IV. The best fit values of 8. (d.) in the CK model and the Cornell model.

CK model
68% C.L.

95% C.L.

Cornell model

68% C.L. 95% C.L.

.| 0.025 + 0.295
|d.| (e. cm) (0.110 = 1.300) X 10~

0.025 + 0.420
(0.110 += 1.851) x 10~ 14

0.078 + 0.373
(0.276 = 1.320) X 10714

0.078 =+ 0.544
(0.276 = 1.926) X 10714

still consistent with zero. So the model dependence of the
present approach is not serious.

For instance, the 95% confidence level (C.L.) upper
bound of d.. is

CK model: |d.| <1.96 X 107* e - cm,

(88)
Cornell model: |d.| <2.20 X 107 e - cm.

So the model dependence of the present approach is
roughly 12%.

We would like to mention that, in Egs. (58), (66), and (76)
, only the absolute values of the SPA coefficients Kgmi,
I vicepmi» and K cepme are determined. So that there is
still an uncertain sign in (79) and (83). Actually, If we were
able to calculate the hadronization matrix elements from the
first principles of QCD, there would not be such sign
uncertainties. The present sign uncertainties are due to the
phenomenological approach to the haronization factors
taken in this paper as lacking of reliable QCD evaluation
of the hadronization matrix elements. In Table IV, we only
take the simple case that all the SPA coefficients are of the
same sign. Now we consider how will the final result
affected if they have different signs. First we see from
Fig. 4 that the contributions of (83) is so small that its
uncertain sign only causes negligible effect in the total
M .. distribution. Thus only the uncertain sign in (79)
matters. If we take Kgiv Keicepve < 0 in (79), the total
CEDM contribution to M .. distribution will be reduced, and
thus the determined |8, |(|d’.|) will be larger. Fortunately, we
see from Fig. 4 that the EI-M1 CEDMI1 contribution is
smaller than the individual CEDM contributions. Our calcu-

Total
— =E1CEDM2
- <E1E1
— - E1M1-E1CEDM2
= - - M1CEDM1
=== M1CEDM1-E1CEDM2

dr/dMnan

0.000006 —

0.000004 —

0.000002

-
- —_—

0.000000
-0.000002
-0.000004

-0.000006

-0.000008

-0.000010

T T T T T
0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Mnn(GeV)

FIG. 4 (color online). Various CEDM contributions to the M .
distribution for a given J. in the CK model.

lation shows that the determined | 8| at 68% C.L. will change
to 0.047 = 0.383 for the CK model and 0.123 = 0.511 for
the Cornell model. Then the upper bound of |d’.| will change
to 2.63 X 107 * ecm for the CK models and 3.09 X
10~ '* ecm, i.e., the uncertainty of the upper bound is 34%
and 40% for the CK model and the Cornell model, respec-
tively. Therefore the effect of the uncertain signs is not so
serious. We conclude that the 95% C.L. upper bound of |d".|
determined from the BESII data is

|d.| <3 X107 ecm. (89)

This is the first experimentally determined upper bound of
the CEDM of the ¢ quark.

The BES detector has already been updated to BESIII
with the efficiency of measuring low momentum pions
significantly improved relative to BESII. So far BESIII
has accumulated 1.06 X 10® ' events, and will be able
to accumulate (7 — 10) X 10% ' events in 2012. That will
be a huge sample. We expect that the new BESIII data may
determine &, to a higher precision.

V. THE CP-ODD OPERATOR O

We can propose another way of determining 8,(d’.) line-
arly from the data of ' — J /s 7rar. Consider the process

ete” > ' = J/ymta. (90)

Let p(—p), 4,, and §, be the unit vectors of the momenta
of the positron (electron), 7+, and 7, respectively. For
unpolarized e” and e~ in the overall c.m. system, the initial
state is then—in the sense of the density matrix—CP-even.
Therefore any nonzero expectation value of a CP-odd corre-
lation of the final-state particles is an unambiguous indication
of CP violation. With our assumption of the CEDM of the ¢
quark, the expectation values of the C P-odd operators will be
linear in §.(d’.). On the other hand, to the expectation values
of CP-even operators, the CEDM can only contribute in
0(82) or higher even powers. We shall now construct a
CP-odd operator for the reaction (90) following Egs. (3.20)
in Ref. [2],

s s 41X 4
O=p @~ 7 oD
141 X gl
Then we define its expectation value which is an experimen-
tal observable:

1
(0) = N [PM'M@dFMM’(W — J/ ),
(92)
N = fPM/MdFMM/(‘l’/_'J/QIIWW)y

114010-16



TESTING THE ANOMALOUS COLOR-ELECTRIC DIPOLE ...

where p,;,, is the density matrix, and M(M') stands for the
magnetic quantum numbers of ¢'. At the ¢’ resonance,
the energy of e*(e™) is M, /2 which is much larger than
the electron mass. Thus the colliding e (¢~ ) behaves essen-
tially as a massless fermion. With the standard couplings for
the process ete™ — y* — ¢/, a right-handed e* can only
annihilate with a left-handed ¢~ and vice versa. The resulting
density matrix for ¢/ is
M, M e{1,0,—1}.
93)
See Sec. 2.1 in Ref. [2] for the analogous process et e~ — Z
and set g4, = O there to obtain Eq. (93). In this case the
normalization constant N in (92) is just the total transition

rate I'(¢y’ — J /) obtained in Sec. IV. Since the CEDM

contributions to I'(¢y' — J/ mr) is negligibly small as can
|

Pu'm = %(5M/M — Sp100mo0)

A

O = = J/pmm

PHYSICAL REVIEW D 85, 114010 (2012)

be seen in Fig. 3, we can simply take the Oth order transition
rate (37) or even the experimental value I'(y/ —
J/ ) = 156.04 = 5.78 keV [cf. Eq. (29)] for the nor-
malization constant in the following calculation.

Since O is CP-0dd, a nonzero (O) can only be contrib-
uted from the CP-odd part of dTl'y;,, (' — J/ymm), ie.,
the interference terms between the E1EI transition ampli-
tude and the CEDM transition amplitudes. From the angu-
lar part of the phase-space integration, we can see that only
the 13D, — 13§, 77 part in the E1El transition gives
nonvanishing contribution to the E1E1-EIMI1 interfer-
ence term in (92), while both the 23S, — 13§, 77 and
13D, — 138,77 parts in the E1EI transition can give
nonvanishing contributions to the EIE1-M1CEDMI
and E1E1-E1CEDM?2 interference terms. Thus the result
will take the form

C

25—185—-25—18 25—1S—1D—1S8 1D—1S8
{KMICEDM]IEIEI—MICEDMI + Keiceome Liie riceoae T 75 [Keivi Tele Seimi

A

1D—15-25—1S8 1D—15-25—1S8
+ Kiiceomi Zerg1—wmicepm + Keicepm2 TErg1—E1CEDM2 }50, 94

where the I’s are the phase-space integrations of the interference terms which can be calculated from the approach similar
to those in Sec. IV. So, with the measured value of (@), we can determine &, from (94). Our obtained results are:

256‘ M‘]/w

J25—15-25—1S
157m? AM

E1E1-MICEDMI

= cos?6

J25=1S—1D—1S Mf/t// S, 111 ¢l111

) B
Fho10/5010 fsm,B(l —cosB)(q195 + %ﬁ)(cﬁqh + —wlwz)da)ldwz,

A

: . B
EIEI-EICEDM2 — Sinf cosfd 7523 m, ) 2010/ 1210 fSIHB(l —cosB)(q1q5 + ‘1%‘12)(CI¢‘12M + ﬁ‘”l‘”Z)d“’ld‘”%

. 3 . My uSeiv .
]]IE?EII,SE”V“ = —‘/;Slnﬁ/w—f}éllofsmﬂ(l - COSB)qqu(C()IQ2 + wqu)d(uld(uz,

90073 m,
95)
_ . 2M;y 8 .
JIDoIS 2SS = — sinf) COS@T# m—éf{é}o 00 fsmB(3 —2cosB — cos?B)q2q3(q) + gr)dw dw,,
C

L, (V3- M,y
EIEI—EICEDM2 in?f ——— "~

22507

2 2
(M, — M),

IlD—»lS—ZS—*lS —

q1 9>

0 .
2 |fdlol [ sin'Bladat + iaddw dws,

+ 21’}’1%. - 2M¢/(a)1 + a)2) + 2(1)1(()2]

s

COS = =
S PATPN

2 _ 2 [ 2 2
2\/a)1 mﬂ/(u2 ms.

where Sgv 18 given in (80). The complicated integrations can be carried out numerically, and they lead to the following

numerical results in the CK and Cornell models:

A C
CK model: <O> = 1_03{2'534‘7<M1CEDM1 - 0'964:]<:EICEDM2 + ﬁ[00123‘7<E1M1 + 0'0715‘7<M1CEDM1

+ 0-321-7<E1CEDM2]}5w

Cornell model: {(O) = A

+ 0-321~7<E1CEDM2]}‘SC’

C
1—03{1.2435<MICEDM1 = 0397 Kpicuoma + 7 [0.00508 Kgina1 + 0.0290 Knicepwn

(96)

in which the values of | A| and |C/A]| in the two models are given in (87), and the values of JKgvi, Knviicepmis

Keicepm are given in Table III.
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Now we come again to the problem of the uncertain sign
similar to those discussed in Sec. IV. We know that, in
QCD, there is in principle no sign ambiguity in the various
contributions in (O) in (96). But in the present phenome-
nological approach to the hadronization factors, only the
absolute values of the parameters, | A|, |C/Al, | Kgimil,
| Ksiicepmil, and | Kgicepmel can be determined as in
Sec. III. So, in practice, each of the five parameters has
an uncertain sign. The uncertain sign of A serves as an
overall uncertain sign on the right-hand-side (rhs) of (96),
which makes us unable to determine the sign of §,.. Despite
of the overall uncertain sign, the values of the curly brack-
ets on the rhs of (96) will be affected by the uncertain signs
of C/ A, Kemi» Kniceomi» and Kgjcepmp. The largest
term in the curly brackets in (96) is the first term. Without
losing generality, we can always take JKyi;cepy > 0 with
the uncertain sign of A taken into account. If we take
C/ A, Keimi» Keicepmz < 0, the curly brackets in (96)
will take their largest value, 6.43 (CK model) and 3.53
(Cornell model). If we take C/A <0 while Kgium,
Keicepmz > 0, the curly brackets will take their smallest
value, 5.50 (CK model) and 3.08 (Cornell model). So the
uncertainty of the values of the curly brackets caused by
the uncertain signs of the SPA coefficients is 25% (CK
model) and 13% (Cornell model). This is better than that
obtained in Sec. IV. Note that the uncertainties in Sec. [V
and V are caused by the uncertain signs of different terms.

Moreover, we may define another related observable.
Define the asymmetry based on the CP-odd operator O as

Nevents(@ > 0) - jvevents((9 < 0)

Ap = .
o Nevems((o > 0) + Nevems((o < 0)

o7

This may also be used to determine 8,.(d.) experimentally.
So far there is no data on (@). We expect BESIII to
measure it.

IV. SUMMARY AND DISCUSSIONS

If the c-quark has an anomalous color-electric dipole
moment (CEDM), it will serve as a new source of CP
violation. In this paper, we study the determination of size
8.(d.) of the CEDM from the BESII data on the M
distribution in ¢’ — J/¢ 77 within the framework of
QCD.

We have first studied the contributions of the CEDM to
the hadronic transition process ¢y’ — J/ 7, and deter-
mined the size 8.(d..) of the CEDM by fitting the theoreti-
cal prediction to the BESII experimental data. The
contributions are in two folds, namely, the contribution
of CEDM to the cc interaction potential which causes
CP-even and CP-odd states mixing, and the contribution
of CEDM to the vertices in the hadronic transition which
affect the M. distribution in the transition. Both contri-
butions lead to CP violation. Since CP violation is
supposed to be small, we treat the CEDM effect as a

PHYSICAL REVIEW D 85, 114010 (2012)

perturbation throughout this paper. We studied these two
kinds of contributions separately.

The perturbation calculations of the CEDM contribution
to the cc potential and state mixings are given in Sec. II.
The potential is the sum of the conventional potential V|
and the CEDM contribution V;. For V,, we take two
extreme QCD motivated potentials, namely, the CK poten-
tial and the Cornell potential to show the model depen-
dence of the present approach. The expression for V| is
shown in Eq. (6) in which only the second term contributes
to state mixings. The obtained normalized state-mixing
coefficients are given in Eq. (11) [see also (12)], and their
numerical values are shown in Table I.

The CEDM contribution to hadronic transition vertices
is more complicated. The Oth order transitions are shown
in Egs. (21) and (22) with C}) = C3) = C}5 = 1. The
O(8)) transitions are shown in Eqgs. (23)—(28). The tran-
sition amplitudes of O(8!) transitions are proportional to
8., and their transition rates are proportional to 2. To
the same order, we must also take account the transitions
in (21) and (22) with the mixing coefficients of O(52)
in (78).

The calculation of the M .. distribution is quite subtle. A
transition amplitude contains two factors, namely, the
MGE factor and the hadronization (H) factor. For a given
potential model, there is a systematic way of calculating
the MGE factor [6,7]. The calculation of the H-factor is a
highly nonperturbative problem in QCD. There are two
approximation methods which can lead to the right order of
magnitude of the transition rates [6,7,15,18], namely, the
SPA and the 2GA. The SPA is a phenomenological ap-
proach which can correctly describe the angular relation
between the two pions but it contains unknown constant
coefficient(s) related to the hadronic matrix element in the
H factor. The 2GA is a crude approximation which is easy
to calculate but cannot describe the angular relation be-
tween the two pions correctly. Since we are dealing with
the M. distribution which concerns the angular relation
between the two pions, we have to take the SPA. However,
to our experience, the ratios between two transition rates in
SPA and 2GA are quite close to each other [6,18]. Thus we
can use this approximate relation and the 2GA calculation
to express the O(8!) SPA coefficients in terms of the O(82)
SPA coefficients [cf. Egs. (58), (66), and (76) in Sec. III].
Then we can predict the M. distribution by treating the
CEDM contribution as perturbation. The O(8%) and
0(8?) contributions to the M, distribution are given in
Egs. (34), (51), (61), (69), (70), (79), (83), and (85).

We then made a best fit of our Oth order prediction (34)
to the BESII data (cf. Fig. 3), which determines the best fit
values of the SPA parameters | A|, B/ A, and |C/A|
shown in Eq. (87). Various CEDM contributions to
the M .. distribution are shown in Fig. 4. We see that the
behaviors of the CEDM contributions are just the opposite
to that of the Oth order contribution (cf. Fig. 3). This is why
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the process ' — J/¢y 7w can sensitively constrain
6.(d.). Next we included the CEDM contributions to
make the best fit up to the O(82). It is shown that, with
the CEDM contribution, the fit is slightly improved (with
slightly smaller x?), and the best fit values of |5.| and |d|
are listed in Table IV. We see that the best fit value of
|5.1(ld.]) is nonvanishing. However, considering the ex-
perimental errors, it is still consistent with zero. The
95% C.L. upper bound of |d’| is shown in Eq. (88) which
shows that the model dependence of the present approach
is quite mild. Note that in the present approach, only the
absolute values of the SPA coefficients in the CEDM
contribution can be determined. So that each SPA coeffi-
cient still has an uncertain sign which may affect the result.
This uncertainty is just due to the present phenomenologi-
cal approach to the hadronization matrix element. We have
discussed this uncertainty in Sec. I'V, and the conclusion is
that the uncertainty of the upper bound is (34-40)% which
is not so serious. Thus, taking this theoretical uncertainty
into account, we conclude that the 95% C.L. upper bound
of |d.| in the present approach is |d.] <3 X 107'* ecm
[cf. Eq. (89)] which is the first experimentally determined
upper bound of the CEDM of the ¢ quark.

We have also proposed a second method for determining
5.(d) linearly by introducing a CP-odd operator @ and
measuring its expectation value (O) in Sec. V. We have
shown in Sec. V that this is a better way of determining
8.(d") experimentally. So far there is no such a measure-
ment. We suggest BESIII to do this experiment.

The state mixings caused by the CEDM of the ¢ quark
makes the transition rates ' — h.7° and ' — J/pa°
related to each other. Hence, in principle, the experimen-
tal data of these two transition rates may give another
constraint on d.. However, the latest BESIII sample
of ' — h.m* based on 106 M of ¢’ events is still
rather small since the branching ratio of ¢/ — h.7° is
8 X 107* [19], i.e., the statistical error in this transition
rate is significantly larger than that in the present study.
Furthermore, the transition ' — J/ ¢/7T° is dominated
by EIM2 multipole gluon emissions, and the calculation
of this kind of hadronization matrix element is not so
certain [22]. Therefore the data of these two transition
rates cannot provide a strong enough constraint on d’,
comparable to the one obtained in the present study. So
far the best experiment for determining the bound on d’.
is ¢/ — J/yam at BES.

The BES detector has already been updated to BESIII
with the efficiency of measuring low momentum pions
significantly improved relative to BESII. So far BESIII
has accumulated 1.06 X 103 ' events, and will be able
to increase to (7-10) X 10 ' events in 2012. That will be
a huge sample. We expect that the new BESIII data may
determine &, to a higher precision.

Estimating the CEDM from some UV theories may be
interesting for future studies.
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APPENDIX: CALCULATION OF THE MATRIX
ELEMENT (1'P,|V{[n®*VL ),

We show here the explicit expression for the relevant
matrix element ((1'P,|V,[n®*DL, ). In the nonrelativis-
tic limit, the state [n®*V(L,),), can be decomposed into
the radial, angular, and spin factors

D, (1, 6, §) = Ry (Y10, $)XET,

where R,;(r) is the radial wave function obtained from
solving the Schrodinger equation with a potential without

V,, and the spin state X,(éfﬂ) is

_ 1 1
X§3) = X12X12 = (0)(0)

1 _ _
—2[X1/2X—1/2 + X-12X1,2]

O O]
X2 = X2 X-1 = (?)G)

1
X0 =[x —1/2%_1/2 = X-1)2X
\/i[X /2x 12— X 1/2X1/2]

_ 1 [ 1\/0) (0)/1
V2L\O/\ 1 1)\0/]
There is a spin-dependent factor (o — &) - r/r in V;. We
can take the spherical coordinate
Ty I x; +ix;

’477
r \/z r - ?Yll (0: ¢);
r_ 1 x; —ix ’477' _
7 = 1 - 2 _ TY1 1(0) d))’

(Al

Xy =

S

(A2)

>

4 1
@Ex—:ﬂ/{y?(e, O oo=lo xioy)
5’1EL(0_'1J—“162), 0y = 03 0y =03

V2
0 2 0 O
0'+(0_'+):<O \{)_), 0'(5'):(\/5 0),
1
ao(ay) = ( 0 ) (A3)
0 —1
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and express it as

_ r _ ro _ r_
(0—0) —= (09— 09—+ (0p —F4)—
r r r

p
+ (o —a_)—=
p

= \/%{(Uo — a0)Y)(6, ¢)

+ (o — )Y (6, ¢)

— (o= —3)Y[(6, $)} (A4)

It is easy to see that

(0- - 6-)m)(31X = 2am(ms)Xl)
1—m

am(ms) = <_ms 2
m= +

(o0 —a),X' = Za“;n(ms)Xf,,j,

1+m 1—m
afn(ms) = (_msis: 1 - Imslx —my TS):
m= +

¢ 1+ my
21— |mgl, —my 5 )

m=20 m= —

2

m=0 m= — (AS)

and a,,(my), a,,(m,) satisfies

> anlm)a,(m) =3, Y a,(m)ay(m,) =3,

mmg mmg (A6)
3 at(mya,(mg) = 1.
Thus
(0= 0)2X;, = \/g{zao(mx)y?w, ¢)
+ 2a,(m,)Y; (6, ¢)
= 2a_(m,)Y{(6, $)}X'
(A7)

(o — o) - ;Xl = \/g{hls(ms)y?(e, ®)
+ 2a% (m) Y 1(6, @)
— 2a* (my)Y1 (0, ¢)}X31x

This explicitly shows that (& — &) - r/r flips the quark-
onium spin.

Next we evaluate the angular integration. What we need
to evaluate is the integration of the product of 3 spherical
harmonics. According to the property of the spherical
harmonics, we have
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[ ¥ 01116, 017, 6. 4100

_ _1_mi\/3(21i+1)(21f+1)/zf 1l
- 4 \o 0 0

/ 1 l;
X 4 .
( my m. —m )
The values of some relevant 3 — j symbols are
110 =(_1)1+m§m.f’7’”
my m 0 V3
112y [2
000 15

I 1 2
= (_ l)mf+m6m,-,—mf—m

my m m;

(A8)

Q+mp+m)(2—mp—m)!
30(1+mp)!(1—mp)!(1+m)!(1—m)!

(A9)

Finally we evaluate the radial integration. There are two
terms in V(r) [cf. Eq. (6)]. We first look at the first term:

48, [=gir) . . 8(r) )
Sy am RNOS R 0rdr
8 g,(r) 8. .
3 g477 TR (DR, (D=0 = 0. (A10)

Here we have considered the running of the QCD coupling
constant g,(r) in the radial integration. Note that g,(r) is
governed by asymptotic freedom as r — 0, i.e. g2(r) ~
(1/1n(Aggr)) as r — 0 [cf. Egs. (A14) and (A13) below].
Equation (A10) shows that the first term in Eq. (6) actually
does not contribute. We should only take into account the
contribution of the second term in Eq. (6) to the matrix
element. The radial integration from the second term con-
tribution is

46, [=gr)

3m, Jo 4m

©gi(r) .
I =j(; g47T R} ()R, (r)dr.

nil;

11

n;ly?

45,
3

me

Ri (DR, (r)dr = —

(A11)

The radial wave function R(r) is to be obtained by solving
the Schrodinger equation.

To include nonperturbative contributions to g,(r) near
the J/¢ and ¢’ scales phenomenologically, we take the
CK potential model which has both a clear QCD interpre-
tation and successful phenomenological predictions. The
CK potential reads [14]
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53
2yg + 32

v=s 70

16771[

462 Inf(r)
25 () B ] Tk

625 £(r)
(A12)

where k = 0.1491 GeV? is the string tension related to the
Regge slope, yg is the Euler constant, and f(r) is

1 1 Ay
flr) = ln[ +4.62 — (1 - - ﬂ)
AL
1 —exp{—[153 % — DAz
X s ] . (A13)
AM_Sr

in which A]’\/I_S = 180 MeV. The nonperturbative effects
resides in the phenomenological function f(r). Writing

the potential (A12) in the standard form V(r) = —(4/3) X
[a (r)/r] + kr, we read from (A12) that
_g&n_ 127 1 29 +3 462 Inf(r)
) =5 =5 7l T s o |
(A14)

This running formula will be used in the calculation of / ,111_1,i
in (A11).

Putting all the above results together, we obtain the
expressions for ((1'P,|V[n;>S, )y and ((1'P,|V,|13D))y:
|

my, = +1

—(1+19)
11—
0

/\/lm\. = 1 lel\
2
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8 0.
BEN R
(Al5a)

ok L'P Vi In?S Yo(my, my) =

29,
<11P |V1|1 D1>0(mfvm +m) 3\/; 1126111fm+mY
(A15b)

With these two matrix elements calculated, we can obtain
all the mixing coefficients in (11) [cf. Eq. (12)].

For the spin-1 states. The conventional Cartesian coor-
dinate representation of the spin = 1 operators are:

(0 0 O 0 0 i
Si;=10 0 —il, S$5=10 0 0}
0 i 0) -i 0 0
(0 —i O
S3=1i 0 0]}, (A16)
0 0 0/
ie.,
(S)jx = —i€jjk. (Al7)
The eigenvectors of, for example, S5 are:
mg; = —1 mg; =0
1+ 0
=i[i- Y=o (A18)
0 1

where the column is ordered according to i = 1, 2, 3 from top to bottom. In the polar coordinate system, we should make

the linear combination for the component index (i, )+

eigenvectors in the polar coordinate system:

= +1
0
/Ylms_ 1+i 0 leS:
2
—1

where the column is ordered according tom = +1,0, —1
top to bottom. Compared with Eq. (AS5), we see that

1+
(lex)m = \/5 am(ms) - Nam(m ) (A19)
where N = (1 + i)/+/2 is the normalization factor, and

N*N = 1.
Now the term (x7,,, );(S?) jx(X1m )i E; in the EI-CEDM2
transition amplitude can be evaluated as

=[(xim )1 = i(le\_)z]/\/i. Thus we obtain the following

mg = —1 =0
0 ! (A19)
1+i Ximg = 14
Lt Ll o
0 0
[
(X7 ,) 1S ik (X 1m i Ei
_ieijk()(Tmsz)j(leﬂ)kEi
~iX iy, X Ximy)  E
= e—ml,—mz,—m3(/\/Tmyz)mz(leﬁ)ngml
(A19)
= *m,,*mz,*mgamz(mSZ)aln3(ms3)Em|
= —ila(my) X a(mg)) - E. (A20)
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