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We investigate chiral symmetry breaking and strong CP violation effects in the phase diagram of

strongly interacting matter. We demonstrate the effect of strong CP violating terms on the phase structure

at finite temperature and densities in a three-flavor Nambu-Jona-Lasinio model including the Kobayashi-

Maskawa-t’ Hooft determinant term. This is investigated using an explicit structure for the ground state in

terms of quark-antiquark condensates for both the scalar and the pseudoscalar channels. CP restoring

transition with temperature at zero baryon density is found to be a second order transition at � ¼ � while

the same at finite chemical potential and small temperature turns out to be a first order transition. Within

the model, the tricritical point is found to be ð�c; TcÞ ’ ð273; 94Þ MeV at � ¼ � for such a transition.
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I. INTRODUCTION

Strong interaction is known to respect space and time
reflection symmetry to a very high degree. However, this is
not a direct consequence of laws of quantum chromody-
namics (QCD), which, in principle permit a parity violat-
ing term or the so-called � term given as

L � ¼ �

64�2
g2Fa

��
~Fa��: (1)

In the above, Fa
�� is the gluon field strength with ~F��

being its dual. This term, while being consistent with
Lorentz invariance and gauge invariance, violates charge
conjugation and parity unless � ¼ 0mod�. However, CP
symmetry conserving nature of QCD has been established
by precise experiments that set limit on the intrinsic elec-
tric dipole moment of a neutron. The current experimental
limit on this leads to a limit on the coefficient of the CP
violating term of the QCD Lagrangian density as � <
0:7� 10�11 [1]. This smallness of the CP violation term
or its complete absence is not understood completely
though a possible explanation is given in terms of sponta-
neous breaking of a new symmetry: the Peccei-Quinn
symmetry [2] that could give rise to axions. For zero
temperature and zero density, spontaneous parity violation
does not arise for � ¼ 0 by the well-known Vafa-Witten
theorem [3]. On the other hand for � ¼ � there could be
spontaneous CP violation by the so-called Dashen phe-
nomena [4]. Because of the nonperturbative nature of this �
term in QCD, the problem has been studied extensively in
low energy effective theories like chiral perturbation the-

ory [5], linear sigma model [6], and the Nambu-Jona-
Lasinio (NJL) model and its different extensions [7–10].
Even if CP is not violated for QCD vacuum, it is

possible that it can be violated for QCD matter at finite
temperature or density. It has been proposed that hot matter
produced in heavy ion collision experiments can give rise
to domains of metastable states that violate CP [11].
Experimental signatures for the existence of local CP
violation has been based on charge separation of hadronic
matter due to the strong magnetic field produced in non-
central heavy ion collision experiments by a mechanism
called chiral magnetic effect [12]. This mechanism may
explain the charge separation in the recent STAR (solenoi-
dal tracker At RHIC) results [13]. On the other hand, for
central collision, it has been recently suggested that local
parity violation leading to a formation of pseudoscalar
condensates can have possible consequences regarding
excess dilepton production in such collisions [14].
In the present work we focus our attention on how chiral

transition is affectedwhen there is aCPviolating term in the
Lagrangian. For this purpose, we adopt the three-flavor NJL
model as an effective theory for chiral symmetry breaking
in strong interaction [15,16]. The CP violating parameter �
is included in the Kobayashi-Maskawa-t’ Hooft (KMT)
determinant term. As we shall see, a nonzero theta term
leads to the possibility of a uniform P-violating quark-
antiquark condensate in the pseudoscalar channel. In this
contextwe note that the two-flavor scenario for spontaneous
CP violation for � ¼ � has been studied in this model [8].
This has been further extended to study the restoration of
CP at finite temperature [9]. The effect of the theta vacuum
on the deconfinement and chiral transition has also been
analyzed within a two flavor NJL model with Polyakov
loop [10].
We organize the present work as follows. In the follow-

ing section we discuss the three-flavor NJL model with a
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CP violating term. We consider a variational ground state
with quark-antiquark pairs that is related to chiral symme-
try breaking. The ansatz functions are to be determined
through minimization of the thermodynamic potential. The
ansatz is general enough to include both scalar as well as
pseudoscalar condensates. As we shall see the pseudosca-
lar condensates develop for nonzero values of � in the
KMT determinant term. In Sec. III we discuss the resulting
phase diagram at finite temperature as well as finite density
for different values of the CP violating parameter in the
Lagrangian. In Sec. IV we summarize our results and give
a possible outlook.

II. NJL MODELWITH CP VIOLATION AND AN
ANSATZ FOR THE GROUND STATE

To describe the chiral phase structure of strong interac-
tion including the CP violating effects, we use the three-
flavor NJL model along with the flavor mixing KMT
determinant interaction term. The Lagrangian density is
given by

L ¼ �c ði6@�mÞc þG
X8
A¼0

½ð �c�Ac Þ2þð �c i�5�Ac Þ2�

�K½ei�detf �c ð1þ�5Þc gþe�i�detf �c ð1��5Þc g�;
(2)

where c i;a denotes a quark field with color a (a ¼ r, g, b),
and flavor i (i ¼ u, d, s), indices. The matrix of current
quark masses is given by m̂ ¼ diagfðmu;md;msÞ in the

flavor space. In the present investigation, we shall assume
isospin symmetry with mu ¼ md. In Eq. (2), �A, A ¼
1; � � � 8 denote the Gell-Mann matrices acting in the flavor

space and �0 ¼
ffiffi
2
3

q
1f, where 1f is the unit matrix in the

flavor space. The four point interaction term �G is sym-
metric under SUð3ÞV � SUð3ÞA �Uð1ÞV �Uð1ÞA. The
determinant term �K, which generates a six point inter-
action for the case of three flavors, breaksUð1ÞA symmetry.
The effect of the topological term of Eq. (1) is simulated by
the determinant term of Eq. (2) in the quark sector. This can
be easily seen by taking the divergence of the flavor singlet
axial current

@�J
�
5 ¼2i �cm�5c þ2iNfKðei�det �c ð1þ�5Þc �H:c:Þ;

(3)

where J
�
5 ¼ �c���5c summed over all the flavors. This

equation may be compared with the usual anomaly equa-
tion written in terms of the topological term for the gluon
field arising from Eq. (1)

@�J
�
5 ¼ 2i �cm�5c þ 2Nf

�

32�2
g2Fa

��
~Fa��: (4)

Thus the effect of gluon operator �
32�2 g

2Fa
��

~Fa�� is simu-

lated by the imaginary part of the determinant term in
the quark sector. Such a term can lead to formation of

condensates in the pseudoscalar channel as we investigate
in the following.
We shall next consider an ansatz for the ground state

with quark-antiquark condensates that includes both the
scalar and theCP violating pseudoscalar channel. To make
notations clear, we first write down the field operator
expansion for the quark fields as [17,18]

c ðx; t ¼ 0Þ � 1

ð2�Þ3=2
Z

~c ðkÞeik�xdk

¼ 1

ð2�Þ3=2
Z
½U0ðkÞq0ðkÞ

þ V0ð�kÞ~q0ð�kÞ�eik�xdk; (5)

where U0ðkÞ and V0ð�kÞ are the four component spinors
that can be explicitly written as

U0ðkÞ ¼
cos

�
�0

2

�

� � k̂ sin
�
�0

2

�
0
BBB@

1
CCCA and

V0ð�kÞ ¼
�� � k̂ sin

�
�0

2

�

cos

�
�0

2

�
0
BBB@

1
CCCA: (6)

The superscript 0 indicates that the operators q0 ¼
q0IruIr and ~q0 ¼ ~q0IrvIr are the two component operators
for the quark annihilation and antiquark creation corre-
sponding to the perturbative or the chiral vacuum j0i. Here
we have suppressed the color and flavor indices of the
quark field operators. The function �0ðkÞ in the spinors
in Eq. (6) are given as cot�0

i ¼ mi=jkj, for free massive
fermion fields, i being the flavor index. For massless fields
�0ðjkjÞ ¼ �=2.
We next consider an ansatz of the ground state at zero

temperature as

j�i ¼ Uqj0i; (7)

where, Uq ¼ UqIUqII is a unitary operator. UqI and UqII

are unitary operators described in terms of quark-antiquark
creation and annihilation operators. Explicitly they are
given as

UqI¼ exp

�Z
dkq0IrðkÞyð� � k̂ÞrsfðkÞ~q0Isð�kÞ�H:c

�
; (8)

and

UqII ¼ exp

�Z
dkqIrðkÞyrgðkÞ~qI�rð�kÞ � H:c

�
; (9)

where fðkÞ and gðkÞ are the ansatz functions that are to be
determined later from the extremization of the thermo-
dynamic potential.
Finally, to include the effect of temperature and baryon

density, we use the techniques of thermofield dynamics
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(TFD) that is quite convenient while dealing with operators
and states [19,20]. Here, the statistical average of an
operator is given as an expectation value over a ‘‘thermal
vacuum.’’ The methodology of TFD involves the doubling
of the Hilbert space [19]. Explicitly, the thermal vacuum is
constructed from the ground state at zero temperature and
density through a thermal Bogoliubov transformation
given as

j�ð	;�Þi ¼ UFj�i ¼ eBð	;�Þy�Bð	;�Þj�i (10)

with

B yð	;�Þ ¼
Z
½��ðk; 	;�Þq0ðkÞyq0ð�kÞy

þ �þðk; 	;�Þ~q0ðkÞ~q0ð�kÞ�dk: (11)

In Eq. (11) the ansatz functions ��ðk; 	;�Þ are related
to the quark and antiquark thermal distributions, respec-
tively, as can be seen from the extremization of the ther-
modynamic potential, and the underlined operators are the
operators in the extended Hilbert space associated with
thermal doubling in the TFD method.

In the following section, we shall compute the thermo-
dynamic potential that involves calculating the thermal
average of different operators given by the expectation
values of the corresponding operator with respect to the
state given in Eq. (10). This can be evaluated directly by
realizing that the state j�ð	;�Þi is obtained from the state
j0i by successive Bogoliubov transformations. We have,
for example,

h�ð	�Þjc yia

 ðxÞc jb

	 ðyÞji�ð	�Þi

¼ �ij�ab
Z dk

ð2�Þ3 e
�ik�ðx�yÞ�iðk; 	;�Þ	
 (12)

where,

�iðk;	;�Þ¼1

2
½ðcos2�iþþsin2�i�Þþðsin2�i��sin2�iþÞ

�ð�0 cos�icos2giþ
 � k̂sin�icos2gi

� i�0�5 sin2gi� (13)

where, we have introduced a new function �iðkÞ ¼ �0 þ
2fiðkÞ in terms of the condensate function fiðkÞ of Eq. (8).
From Eq. (12), it is easy to calculate the scalar and pseu-
doscalar condensates. In terms of the ansatz functions
�iðkÞ and giðkÞ, the scalar and pseudoscalar condensates
for the ith flavor can be written as

h �c c ii¼� 2Nc

ð2�Þ3
Z
dkcos�icos2gið1�ni��niþÞ��Iis;

(14)

h �c�5c ii¼�i
2Nc

ð2�Þ3
Z
dksin2gið1�ni��niþÞ��iIip;

(15)

respectively, where ni� ¼ sin2�i�. Thus a nonvanishing Iis
will imply a chiral symmetry breaking phase, while a
nonvanishing Iip or equivalently giðkÞ will indicate a CP

violating phase. The condensate functions �iðkÞ, giðkÞ as
well as the thermal functions �i�ðk; 	;�Þ shall be deter-
mined by extremization of the thermodynamic potential
with respect to the corresponding functions. We shall carry
out these extremizations in the following section.

III. EVALUATION OF THERMODYNAMIC
POTENTIAL AND GAP EQUATIONS

As was already mentioned, we shall be considering the
chiral phase structure in the presence of the CP violating
terms within the framework of the NJL model given by
Eq. (2). The energy density is given by the expectation
value of the Hamiltonian corresponding to the Lagrangian
given in Eq. (2) with respect to the thermal ansatz of
Eq. (10). The energy density can be written as

 ¼ T þ V ¼ T þ VS þ VD; (16)

where T is the expectation value of the kinetic term in
Eq. (2) and can be calculated as

T¼hc yð�i� �rþ	mÞc i¼� 2Nc

ð2�Þ3
X
i

Z
dk

�ðmicos�iþjkjsin�iÞcos2gið1�ni��niþÞ (17)

by using Eq. (12). VS is the contribution from the four point
interaction term in Eq. (2) to the energy density and is
given as

VS ¼ �G

�X8
A¼0

½ð �c�Ac Þ2 þ ð �c i�5�
Ac Þ2�

�

¼ �2G
X
i

½Ii2s þ Ii2p �: (18)

Finally, VD denotes the contribution from the determi-
nant interaction term in Eq. (2) and is given as

VD ¼ Khei� detf �c ð1þ �5Þc g þ e�i� detf �c ð1� �5Þc gi

¼ 2K

�
cos�

�
�Y3

i¼1

Iis þ 1

2
jijkjIisIjpIkp

�

þ sin�

�
�Y3

i¼1

Iip þ 1

2
jijkjIisIjsIkp

�	
: (19)

The thermodynamic potential is given as

� ¼ ���� S

	
; (20)

where � is the quark chemical potential corresponding to
the quark number density � given as
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� ¼ X
i¼u;d;s

hc yc ii

¼ 2Nc

ð2�Þ3
X

i¼u;d;s

Z
dkð1� sin2�iþ þ sin2�i�Þ; (21)

and S is the entropy density given as

S ¼ 2Nc

ð2�Þ3
X

i¼u;d;s

Z
dkðcos2�i� lncos2�i�

þ sin2�i� lnsin2�i� þ cos2�iþ lncos2�iþ
þ sin2�iþ lnsin2�þÞ: (22)

Thus the thermodynamic potential given by Eq. (20) is
known in terms of the ansatz functions of Eq. (10).
Extremizing the thermodynamic potential with respect to
�iðkÞ and giðkÞ, respectively, leads to

tan�i ¼ jkj
Mi

s

and tan2gi ¼ Mi
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mi2
s þ jkj2p ; (23)

whereMi
s andM

i
p are, respectively, the contributions to the

constituent quark mass (for ith flavor) from the scalar and
pseudoscalar condensates, respectively, and they are given
by

Mi
s ¼ mi þ 4GIis þ Kjijkjfcos�ðIjsIks � IjpIkpÞ

� sin�ðIjsIkp þ IjpIks Þg; (24)

Mi
p ¼ 4GIip � Kjijkjfcos�ðIjsIkp þ IjpIks Þ

� sin�ðIjpIkp � IjsIks Þg: (25)

Finally extremizing the thermodynamic potential with
respect to the ansatz functions �i� leads to

sin 2�i� ¼ 1

expð!i ��iÞ þ 1
; (26)

where !iðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðMi2

s þMi2
p Þ

q
. Thus it is observed

that the constituent quark masses get contribution from
both the scalar and the pseudoscalar condensates.

Substituting the extremized solution for the condensate
functions tan�i and tan2gi in Eqs. (14) and (15), we have
the self-consistent equations for the scalar and pseudosca-
lar condensates,

Iis � �h �c c ii ¼ 2Nc

ð2�Þ3
Z

dkð1� ni� � niþÞ
Mi

s

!i ; (27)

Iip � ih �c�5c ii ¼ 2Nc

ð2�Þ3
Z

dkð1� ni� � niþÞ
Mi

p

!i : (28)

Thus with the scalar and the pseudoscalar condensates
given as above, Eqs. (24) and (25) are actually coupled
self-consistent equations for Mi

s and Mi
p.

Substituting the extremized solutions for the condensate
functions and using the gap equations Eqs. (24) and (25) in
Eq. (20), the thermodynamic potential becomes

� ¼ � 2Nc

ð2�Þ3
X
i

Z
dkð!i � jkjÞ þ 2Gs

X
i

½Ii2s � Ii2p �

þX
i

Mi
pI

i
p þ 4K cos�

Y3
i¼1

Iis

� 2K sin�

�Y3
i¼1

I1p þ 1

2
jijkjIisIjsIkp

	

� 2Nc

	ð2�Þ3
X
i

Z
dk½lnf1þ e�	ð!i��iÞg

þ lnf1þ e�	ð!iþ�iÞg�: (29)

In the above we have subtracted the perturbative vacuum
energy density contribution. Let us note that the effective
potential has been calculated using an explicit ansatz for
the condensate and not evaluating the effective potential at
a mean field level after performing a chiral transformation
for the quarks so as to remove it from the determinant term
as it has been computed in Refs. [8,10].
Equation (29) for the thermodynamic potential and the

gap equations for the scalar and pseudoscalar masses, i.e.
Eqs. (24) and (25), shall be the focus of our numerical
analysis that we discuss in the following section.

IV. RESULTS AND DISCUSSIONS

For numerical calculations, we have taken the values of
the parameters of the NJL model as follows. The coupling
constant Gs has the dimension of ½Mass��2 while the six-
fermion coupling K has a dimension ½Mass��5. To regu-
larize the divergent integrals we use a sharp cutoff � in
three-momentum space. Thus we have five parameters in
total, namely, the current quark masses for the nonstrange
and strange quarks, mq and ms, the two couplings Gs,

K, and the three-momentum cutoff �. We have chosen
here � ¼ 0:6023 GeV, Gs�

2 ¼ 1:835, K�5 ¼ 12:36,
mq ¼ 5:5 MeV, and ms ¼ 0:1407 GeV as was used in

Ref. [16]. After choosing mq ¼ 5:5 MeV, the remaining

four parameters are fixed by fitting to the pion decay
constant and the masses of pion, kaon, and �0. With this
set of parameters the mass of � is underestimated by about
6% and the constituent masses of the light quarks turn out
to be Mu;d ¼ 0:368 GeV for u-d quarks, while the same
for strange quark turns out as Ms ¼ 0:549 GeV, at zero
temperature and zero density.
For given temperature and chemical potential, we first

solve the coupled self-consistent gap equations (24) and
(25) with the parameters of the model as above. Since we
have assumed isospin symmetry and have mu ¼ md, these
are actually four coupled equations: two for the scalar
condensates related to the two masses Mu

s ¼ Md
s , M

s
s and

two equations for the pseudoscalar condensate related to
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the corresponding mass parameters Mu
p ¼ Md

p, M
s
p. The

solutions to these equations are then substituted in Eq. (29)
and checked whether they correspond to the minimum of
the thermodynamic potential. If there are more solutions to
the gap equation, the one with the minimum thermody-
namic potential is chosen.

Let us first discuss the ground state structure at zero
temperature and zero density. In Fig. [1(a)] we show the �
dependence of contributions to the mass of up quark from
the scalar as well as the pseudoscalar condensates. As is
clearly seen as � increases, the condensates in the two
channels behave in a complimentary manner. While the
magnitude of scalar condensates decreases with � (till � ¼
�), the magnitude of the pseudoscalar condensate increases

so that the total constituent quark mass M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ms

2 þMp
2

q
remains almost the same. Spontaneous CP violation is
clearly seen for � ¼ � with two degenerate solutions for
Mu

p differing by a sign. In Fig. [1(b)] we show the effective

potential as calculated above as a function of �. The effec-
tive potential is normalized with respect to the same at
� ¼ 0. The minimum of the potential is at � ¼ 0, which
is consistent with the Vafa-Witten theorem and has a cusp at
� ¼ � that has also been observed in the two-flavor NJL
model [8].

Next we consider the effects of nonzero values of den-
sity and temperature. In Fig. 2, we show the variation of
masses of the quarks with chemical potential at zero tem-
perature. In Fig. [2(a)] we show the variation of masses for
the case � ¼ 0. In this case the pseudoscalar condensates
vanish and the contribution to the masses of the quarks are
from the scalar condensates only. The (approximate) first
order chiral transition takes place at �� 361 MeV for u
and d quarks with their masses decreasing discontinuously
to about Mu;d � 52 MeV from their vacuum value of
Mu;d ¼ 368 MeV. Because of the flavor mixing KMT

term, this decrease is reflected also in the drop of the
strange quark mass to Ms ¼ 464 MeV from its vacuum
value of Ms ¼ 549 MeV. This result is similar to the
results obtained in the context of color superconductivity
in the NJL model with a determinant term [21] and in the
context of chiral symmetry breaking in a similar model
[22]. Similarly in Fig. [2(b)] we show the variation of
masses of up and strange quarks as well as the variation
of the contributions from the scalar and the pseudoscalar
condensates to the constituent mass of up quarks for
� ¼ �=2. Here the critical chemical potential for chiral
transition is �c � 375 MeV where the mass contributions
from the scalar and the pseudoscalar condensates are
modified to 24 and 12 MeV, respectively, from their vac-
uum values of 266 and 248 MeV. The total mass for the u
and d quarks drops to 27 MeV from its vacuum value of
364MeV. On the other hand, the contribution to the strange
mass from the pseudoscalar condensate is negligible
(�12 MeV) compared to the contribution from the scalar
condensate (�548 MeV). Such a behavior can be easily
understood when one examines the two mass gap equations
(24) and (25) for strange quarks. Because of the large
current quark mass of the strange quarks, the dominant
contribution to the thermodynamic potential and conse-
quently to the mass gap equations arises from the strange
quark condensate Iss in the scalar channel. The pseudosca-
lar condensate for the strange quarks gets contributions
from the light quark condensates both in the scalar and
pseudoscalar channel that is subdominant. This results in a
small magnitude forMs

p compared to all other condensates.

As the quark chemical potential increases, because of
flavor mixing again, the strange quark mass also decrease
to 463 MeV at �c ¼ 375 MeV. For � ¼ � the scalar
condensate almost vanishes but for the nonzero current
quark masses while the contribution to the constituent
quark mass arises from the pseudoscalar condensate as
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FIG. 1 (color online). � dependence of the condensates (a) and the effective potential at zero temperature and zero baryon density (b).
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shown in Fig. [2(c)]. As the quark chemical potential is
increased there is a first order transition at�c � 368 MeV.
At �c the pseudoscalar condensate vanishes and the con-
tribution to quark mass arises solely from the scalar con-
densate that is nonvanishing because of the nonzero current
quark masses.

Next we discuss the condensate variations with tempera-
ture. For � ¼ 0, at zero baryon density the chiral crossover
transition takes place for temperature about 200 MeV as
may be seen in Fig. [3(a)]. As � increases, the pseudoscalar
condensate starts becoming nonzero and increase with �.
For � ¼ �=2, the masses arising from both types of con-
densates are shown in Fig. [3(b)]. Here, both the scalar and
pseudoscalar masses show a crossover transition as tem-
perature is increased. In Fig. [3(c)], we show the behavior
of the masses for � ¼ �. The transition for the pseudo-
scalar mass becomes a second order transition at � ¼ �
instead of a crossover that was the nature of transition for
lower �. This feature is elaborated in Fig. 4 where �
dependence of the nature of transition of scalar and pseu-
doscalar condensates with temperature is shown for zero

baryon density. Fig. [4(a)] shows the � dependence of the
transitions for the scalar condensate. The transition is
always a crossover for scalar condensate. Figure [4(b)]
shows the transitions of the pseudoscalar condensates for
different �. We can see that the transition is a second order
transition for � ¼ � whereas it is a crossover for other
values of �. Similar kinds of results have been obtained in
sigma model calculations [6] where the transition at � ¼ �
is found to be a first order transition instead of a second
order transition. The CP restoring transition temperature
for the zero baryon density case turns out to be about
192 MeV. However, the total constituent mass is nonzero
as the scalar condensate is nonvanishing due to the nonzero
current quark masses. This high temperature restoration of
CP is expected as the instanton effects responsible for the
CP violating phase become suppressed exponentially at
high temperature [23]. Let us, however, note that what we
have considered here is the equilibrium uniform CP vio-
lating phase that is restored at high temperature. However,
in the context of heavy ion collisions, a local parity violat-
ing phase can also exist due to fluctuations of topological
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FIG. 3 (color online). Quark masses as a function of temperature at zero quark chemical potential for � ¼ 0 (a), � ¼ �=2 (b), and
� ¼ �.
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charges that are induced through sphaleron configurations
that unlike instantons are not exponentially suppressed
[11]. Further, such domains can also arise depending
upon the kinetics of the transition, in particular, in non-
equilibrium situations in heavy ion collisions [24]. Such
CP-odd domains can decay via CP-odd processes and can
have observable effects like chiral magnetic effect for non-
central heavy ion collisions [12] as well as lead to possible
excess dilepton production for central collisions [14].

The CP restoring transition in the present three-flavor
NJL model turns out to be second order for the zero
chemical potential case similar to the results for the two-
flavor case [9] unlike the case of the linear sigma model
coupled to quarks [6]. The reason behind such different
behavior regarding the order of the transition is due to the
nonanalytic vacuum term in the NJL model [9]. However, a
first order CP transition is observed with finite chemical
potential and small temperature. This is clearly shown in
Fig. 5 where we have shown the dynamical mass, Mu

p

arising from the pseudoscalar condensate, for different
temperatures as a function of the quark chemical potential
for � ¼ �. While at zero temperature, the order parameter
decreases discontinuously; as the temperature increases, it
becomes less sharp and finally results in a second order
transition at high temperature.

In Fig. 6, we show the phase diagram in the plane of a
quark chemical potential and temperature for the CP vio-
lating transition. Since the transition is first order at zero
temperature and second order at zero chemical potential,
there is a tricritical point for this transition in this plane.
This turns out to be ð�c; TcÞ ¼ ð273; 94Þ MeV. Including
Polyakov loop for the two flavor NJL model, such a
tricritical point occurs at ð�c; TcÞ ¼ ð209; 165Þ MeV
[10]. First order transitions are associated with the exis-
tence of metastable states. CP is restored in these meta-

stable states and these are the nontrivial solutions of the
gap equation (25), however, with lower pressure than the
stable solutions. In the phase diagram of Fig. 6, such
solutions may exist in the region between the solid line
and the dotted line. A presence of such metastable states
with parity violating condensates can have experimental
consequences, since in the presence of such condensates
there could be mixing between states of different parities.
This can lead to decay of mesons to both even and odd
number of pions. Apart from this, the properties regarding
the dispersion relations for the in-medium mesons itself
can change in presence of a P-violating condensate. This
may result into excess production of dileptons in heavy ion
collision experiments [14].
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V. SUMMARY

To summarize, we have investigated the effect of �
vacuum on the chiral transition in the T-� phase diagram
of strong interaction. This is studied within the framework
of a three-flavor NJL model. The effect of a CP violating �
term of QCD is incorporated through the KMT determinant
interaction term in the quark space that is induced by
instantons [25]. In chiral perturbation theory, such effects
can be included through a log determinant interaction term
[5]. Spontaneous CP violation at � ¼ � occurs in such
theory depending upon the ratio of the strength of such a
log determinant interaction term to the number of flavors as
compared to the quark masses. In the two-flavor NJL
model, it was observed that spontaneous CP violation for
� ¼ � occurs depending on the magnitude of current quark
masses as well as the strength of the determinant coupling
[8]. In the present case of the three-flavor NJL model, we
observe that spontaneous CP violation occurs for � ¼ �
for the phenomenologically consistent parameters [16] for
the current quark masses as well as the strength of the
determinant coupling.

To calculate the thermodynamical potential in the pres-
ence of a � term, instead of performing a chiral rotation of
the quark field operators [8,10], we have used a variational
approach using an explicit construct for the ground state.

We have considered an ansatz state general enough to have
condensates both in the scalar as well as the pseudoscalar
channel. The ansatz functions are determined through
minimization of the thermodynamic potential.
In the three-flavor case considered here, we observed

that at zero baryon density, the uniform CP violating phase
is restored beyond a critical temperature of about 200 MeV
for � ¼ �. This is expected as theCP violation effects here
arise from instanton induced interactions whose effect is
suppressed exponentially with temperature [23]. It might
be noted, however, that there could be local violation of
CP due to sphaleron induced interactions that do not have
such exponential suppression [11].
Apart from the effect of the temperature that has been

considered earlier for two flavor cases [6,9], we have also
considered the effect of the finite quark chemical potential
and discussed the phase diagram in the T-� plane. Within
the model, the CP restoring transition is a first order
transition at low temperature and high baryon chemical
potential while it is a second order transition at high T and
low �. The existence of a first order transition leads to a
possibility of formation of metastable CP-odd domains
that could be of relevance for the planned heavy ion
collision experiments at the Facility for Antiproton and
Ion Research and the Nucleotron Based Ion Collider
Facility. Such domains here arise from the instanton in-
duced determinant interaction in the flavor space. Such
parity violating condensates can result in mixing of parity
partners, and the mass eigenstates will then be mixtures of
different parity states. Therefore, low energy theorems
based on field-current type identities with definite parity
will not hold and need to be modified in the presence of
P-violating condensates [26]. Further, it turns out that for
the range of temperature and the chemical potentials we
have considered, the strange quark condensates do not get
dynamically generated in the CP violating pseudoscalar
channel even for nonvanishing �. Nonetheless, the strange
quark antiquark condensates in the scalar channel do affect
the pseudoscalar light quark condensates through the flavor
mixing coupled gap equations.
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