PHYSICAL REVIEW D 85, 114006 (2012)

Quark orbital angular momentum from Wigner distributions and light-cone wave functions
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We investigate the quark orbital angular momentum of the nucleon in the absence of gauge-field
degrees of freedom, by using the concept of the Wigner distribution and the light-cone wave functions of
the Fock-state expansion of the nucleon. The quark orbital angular momentum is obtained from the phase-
space average of the orbital angular momentum operator weighted with the Wigner distribution of
unpolarized quarks in a longitudinally polarized nucleon. We also derive the light-cone wave-function
representation of the orbital angular momentum. In particular, we perform an expansion in the nucleon
Fock-state space and decompose the orbital angular momentum into the N-parton state contributions.
Explicit expressions are presented in terms of the light-cone wave functions of the three-quark Fock state.
Numerical results for the up and down quark orbital angular momenta of the proton are shown in the light-

cone constituent quark model and the light-cone chiral quark-soliton model.
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L. INTRODUCTION

The spin structure of the nucleon is one of the most
important open questions in hadronic physics that has
recently attracted increasing attention. While the quark
spin contribution is well known from the accurate mea-
surements in polarized deep inelastic scattering [1,2], the
situation is much more unclear for the remaining contri-
butions from the quark orbital angular momentum (OAM)
and those from the gluon spin and OAM. In the present
paper we will focus on the quark OAM. As a first step, we
ignore the contributions from the gauge-field degrees of
freedom. Under this assumption, there is no ambiguity in
the definition of the quark OAM operator [3-5]. To unveil
the underlying physics associated with the quark OAM, we
discuss two different representations. The first one is ob-
tained by using the concept of the Wigner distributions [6],
whereas the second one is based on light-cone wave func-
tions (LCWFs). A study that includes a Wilson line was
recently proposed in Ref. [7].

The Wigner distribution was originally constructed as
the quantum mechanical analogue of the classical density
operator in the phase space. Recently, it was also exploited
to provide a multidimensional mapping of the partons in
the nucleon [6,8,9]. An important aspect of the Wigner
distribution is the possibility to calculate the expectation
value of any physical observable from its phase-space
average with the Wigner distribution as weighting factor.
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In particular, we will show that the quark OAM can be
obtained from the Wigner distribution for unpolarized
quarks in the longitudinally polarized nucleon.

On the other hand, the LCWFs provide the natural
framework for the representation of OAM. This is due to
the fact that the LCWFs are eigenstates of the total OAM
for each N-parton configuration in the nucleon Fock space.
In particular, we will consider the three-valence quark
sector, giving the explicit representation of the quark
OAM in terms of the partial-wave amplitudes of the
nucleon state.

The plan of the paper is as follows. In Sec. II we give
the relevant definitions for the quark OAM operator and
derive the expression of the OAM in terms of a Wigner
distribution. In Sec. III we first discuss the LCWF repre-
sentation of the quark OAM, giving the decomposition
into the contributions from the N-parton states. For the
three-valence quark sector we further derive in Sec. IV
the explicit expressions for the contributions from the
different partial-wave amplitudes of the nucleon state to
the OAM. The corresponding expressions for the distri-
bution in x of the OAM are collected in the Appendix. The
formalism is finally applied in a light-cone constituent
quark model and the light-cone version of the chiral
quark-soliton model, and the corresponding results are
discussed in Sec. V. Concluding remarks are given in the
last section.
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II. QUARK ORBITAL ANGULAR MOMENTUM
A. Definitions

If one neglects gauge-field degrees of freedom, the quark
OAM operator for a given flavor ¢ can unambiguously be
defined as
£t= 1 [ar arpee oy e x F)0en, )
where normal ordering is understood and the transverse

vector a = (a', a®) has been introduced for the generic
4-vector a. Furthermore, in Eq. (1) we used for conve-

nience the notation V=V — V. Using the Fourier trans-
form of the quark field from the coordinate space to the
momentum space

dk* d’k L
i, r) = o) e Wk gkt k), (2)
the quark OAM operator can alternatively be written as
. dk* d’k P
e o AP S ARG RNC)

We define the quark OAM €7 as the following matrix
element of the quark OAM operator

(p', +1LIp, +) = €Xp, +p, +), )
where the momenta of the incoming and outgoing nucleon

are given by

A A

Since the nucleon states |p, A) in Eq. (4) are normalized as

(P, +1p, +) = 2P 5(A")(2m) 6 (A), (6)

the forward limit p’ = p has to be treated with care. One
can easily get rid of this normalization by integrating over

A" and A

dAT d?A .
7= L +|Lp, +
€Z [ 2P+ (2 )3 <p ) |LZ |p’ >7 (7)

avoiding in this way to use normalizable wave packets or
infinite normalization factors.

q_
Z

dAY A
f 2P 2m)®
dAY A
[P+ (2 )3
dAY A
[ Pt (2m)}

/dxdzkdzr(r X k)zp++]q(r k, x),
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B. Orbital angular momentum from
Wigner distributions

In this section we derive the link between the quark
OAM and the Wigner distributions. In particular, we
show how it is possible to express Eq. (7) as the phase-
space average of the intuitive OAM operator (r X k),
weighted with the Wigner distribution of unpolarized
quarks in a longitudinally polarized nucleon.

From the definition of the OAM introduced in the pre-
vious section, it is natural to interpret the integrands of
Egs. (1) and (3) as the quark OAM density operators in
position and momentum space, respectively,

Ny e x V.00, 8

L r) = =530,

LI k) = =5 k" 0y (e X G g1(k* k). (8b)
The generalization to the joint position and momentum
space corresponds to the quark OAM density operator in
the phase space

. dz=d*z vy

G N W TR Ga(r )
Xy e X V). 407, 7, )

where r; = r + z/2 and r; = r — z/2. This operator con-

tains the OAM density operators in position and momen-
tum space as specific limits, i.e.

[dk+d2kl:'§(r_, rkt k) =Li(r",r), (10a)

/ dr-d’rLi(r~,r k", k) = L{(k", k).  (10b)
Introducing the Wigner operator [6,8,9]

dz” & z z(k*zf—k'z)
2 m)}

X dlq(rf’ rf)y+ djq(ri_’ ri)) (11)

Wl kt k) =

the OAM density operator in the phase space can also be
expressed as

A

LI,k k) =20r X k), W G, r k™, k). (12)

Using the definition of the OAM in Eq. (7), we can write

(' +] [ dr-drdk* kLI, v,k K| p, +)
dr~d2rdk* d*k(r X k) (p', +|W M vkt k)| p, +)

d*rdk* d’k(r X k) (p', +IW (0, r, k*, k)| p, +) f drel™r

(13)
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where in the last line we introduced the Wigner distribution
for unpolarized quark in a longitudinally polarized
nucleon pl?, 7

P (ke x)
5 A I wila (o, r, xP™,

=[(‘2’27A)2<p+5

with x = k*/P* the fraction of quark longitudinal
momentum. Since we consider a nucleon state with its
transverse center of momentum at the origin of the axes,
we may identify the transverse coordinate r with the
impact-parameter b [10-12].

In the same way as the impact-parameter-dependent
parton distributions are two-dimensional Fourier trans-
forms of the generalized parton distributions, the Wigner
distributions are two-dimensional Fourier transforms of the
so-called generalized transverse-momentum-dependent
parton distributions (GTMDs) [6,13,14]

[r] d’A
ROTER| S
with the GTMD correlator given by

WA, k,x)

A
—{p+ /
<P,2A

for the generic twist-2 Dirac matrix I' = y", y*ys,
io/"ys with j =1, 2. The hermiticity property of the
GTMD correlator

Wik(A, K,

A
+ _
PT, 2,A>

(14)

et WIN(A K x),  (15)

| witla(0,0,xP*,

P, —%, A) (16)

O] = wii(—A &, x)

(e (17)

implies that p[7 ¥ i5 a real quantity, in accordance with its

interpretation as a phase-space distribution.
Collecting the main results of this section, we can ex-
press the OAM in terms of Wigner distributions as

¢ = f dxd?kd?b(b X k) p 7 (b, k, x),  (18)
or, equivalently, in terms of GTMDs as [6]

¢ = f dxd?k[i(k X V). WY (A & x)]ay  (19)

k2
- / dxdkr s Fi (5 12,0,0), (20)

where F{ , follows the notation of Ref. [14].

III. LCWF OVERLAP REPRESENTATION

Following the lines of Refs. [15,16], we can obtain an
overlap representation of Eq. (20) in terms of LCWFs.
Since the quark OAM operator is diagonal in light-cone
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helicity, flavor, and color spaces, we can write the quark
OAM as the sum of the contributions from the N-parton
Fock states

o=y @b
N.B
where
N N
25 =i [ladkly 3 o
X [(k; X Vo) W (r W s (rM ]acy. (22)

Note that this expression is consistent with the wave-
packet approach of Ref. [17], except for the difference by
a factor of 1/2 that follows from different conventions for
the light-cone components. In Eq. (22), the integration
measures are given by

ldx]y = I:f[ldxi:lcS(l - gxi), (23)
[d2k]y = [ﬁ 22122: ")3]2(277)35<2>(ﬁ k,»), (24)

and the N-parton LCWF W4 Np(r) depends on the hadron

light-cone helicity A, on the Fock-state composition B
denoting collectively quark light-cone helicities, flavors
and colors, and on the relative quark momenta collectively
denoted by r. In particular, for the active parton i one has

ey K =k-(0-x5, @)
Y " Y R LS C
and for the spectator partons j # i, one has
W= K=k, 27)
XM=, kM =k, — xj%. (28)

Acting with V, on the LCWFs in Eq. (22) and then
setting A = 0 leads to the following expression':

i N N
=5 [l 3 8, 3 (80— )
i=1 n=1

X [Wip(k; X ¥y ) W5 o (r)]

g?’ﬁvq —

(29)

This expression coincides with our intuitive picture of
OAM. Indeed, since the transverse position r is represented
in transverse-momentum space by iVy, it means that
N N
iZ(ani rt_zxnrn:bi
n=1 n=1

- xn)vkn -~ (30)

'We find the same expression starting from the representation
of the quark OAM operator in momentum space given by Eq. (3)
and integrating over A to kill the & function subjected to V.
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represents the transverse position of the active quark rela-
tive to the transverse center of momentum R =Y x,r,.
Moreover, by construction, k; represents the relative trans-
verse momentum of the active quark. It follows that
Eq. (29) gives the intrinsic quark OAM defined with re-
spect to the transverse center of momentum.”

An important property of the LCWFs is that they are
eigenstates of the toral OAM

N
=i Y (ke X Vi ), Who(r) = LYN,(r) (3D
n=1
with eigenvalue I, = (A — Y ,A,)/2. As a consequence,
from the overlap representation (29) it is straightforward to
show that the total OAM is given by

€= Lpw (32)
N,l

where

p. = S0 [l @IV, OF  33)
B’
is the probability to find the nucleon with light-cone he-
licity A = + in an N-parton state with eigenvalue /. of the
total OAM.

IV. PARTTAL-WAVE DECOMPOSITION OF QUARK
ORBITAL ANGULAR MOMENTUM

In this section we give the explicit expressions for the
OAM ¢ in terms of the different partial-wave components
of the three-quark state of the nucleon.

_ [ld=hld%]s

|P, )70

[dxLs[d*k];
Nieerss

P, +)=1 =

_ (Laxh[k];
Nieerss

_ (Laxh[dk];
Nieerss

|P, )=

P, +)-72

(k) (1,2, 3)%ui+(1>(u}+ @}, (3) — dl. u],(3)l0),

kigkag p© (1,2, 3)3”2u?(1><dj @uf_(3) — ul_(2)d}_(3))0).
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Working in the so-called ““uds” basis [18,19], the proton
state is given in terms of a completely symmetrized wave
function of the form

|Pr +> = |P’ +>uud + |P7 +>udu + |P; +>duu' (34)

In this symmetrization, the state | P, +),4, is obtained from
|P, +),,4 by interchanging the second and third spin and
space coordinates as well as the indicated quark type, with
a similar interchange of the first and third coordinates for
|P, +)4,,. For the calculation of matrix elements of one-
body operators, as in the case of the OAM operator, it is
sufficient to use only the wuud order. As outlined in

the previous section, the LCWF \I’f\\]‘ﬁ:i of the uud com-

ponent is eigenstate of the total OAM, with eigenvalues
I.= (A — Y3, A,)/2. In particular, for a nucleon with
helicity A = + we can have four partial waves with
[, =0, =1, 2 corresponding to combinations of ‘I’I;K;‘fs
with appropriate values of the quark helicities A;. However,
the 16 helicity configurations of \Iff\\l;xgi are not all inde-
pendent. Parity and isospin symmetries leave only six
independent functions ¢ of quark momenta. In particu-
lar, the complete three-quark light-cone Fock expansion
has the following structure [20-22]:

[P, +) = |P, +):70 + |P, +):=1 + |P, +)-=71
+|P, +):72, (35)

where

ijk
[pD(1,2,3) + ie*Phy ko @ (1,2, 3)]%%1(1)(14}_ 2)df, (3) = dl_(u], (3))]0),

7
(36a)

[kir D (1,2,3) + korp9(1, 2, 3)]6’};{@;(1)@_ @)df_(3) = dl, (Dul_(2)ul_(3))l0),

(36b)

(36¢)

(36d)

In Egs. (36a)—-(36d) «, B = 1, 2 are transverse indices, ulTA (u;)) and leA (d;)) are creation (annihilation) operators of # and
d quarks with helicity A and color i, and /) are functions of quark momenta, with argument i representing x; and k; and
with a dependence on the transverse momenta of the form k; - k; only. We also used the notation kg ; = k, = ik,.

+uud

The relations between the wave-function amplitudes ¢ ? and the three-quark LCWFs W A AoA, are given by

This is completely analogous to nonrelativistic mechanics where the intrinsic OAM is defined relative to the center of mass

SF X By =D (F = R) X (pp = x,B) + RX Y (p, — x,B) + 3,7, X P =7 X piel + R X P,
n n n n i

with R =¥, %, 7, P =3, s X, = m, /M, and M = ¥, m,,. This analogy comes from the Galilean symmetry of transverse space on

the light cone.
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Wit = ¢ 12(1,2,3), (37a)
prmd — (22, 1, 3), (37b)
phuwd — _[y02(1,32) + 412(2,3,1)],  (37c)
Ppmed — 4,641, 2, 3), (37d)
Pphud — 642, 1, 3), (37e)
whd = —[yB9(1,3,2) + ¢BH2,3, 1] (37D
Wi = —ky (1, 2,3), (372)
phud = — ko ckap r©(1, 2, 3), (37h)

where we defined

$p12(1,2,3) = [¢V(1,2,3) + ie*Fk ko p?(1,2,3)],
(38a)

PpP9(1,2,3) = [k D(1,2,3) + kogp@(1,2,3)]  (38b)

PHYSICAL REVIEW D 85, 114006 (2012)

The corresponding expressions for hadron helicity A = —
are obtained thanks to light-cone parity symmetry

W (G ki ki }) = =W (g, — K k).
(39)

Using the partial-wave decomposition of the nucleon
state in Eqs. (36a)—(36d), we can separately calculate the
results for K'Z]‘l’ corresponding to the contribution of the
quark with flavor ¢ in the Fock-state component with OAM
[,. Summing over all flavors we find, in agreement with
Eq. (32), €§ = l,p, (we omit the index N = 3 since we
considered only the three-quark Fock contribution) with
P = (P, +|P, +)". In the Appendix we also give the
results for the partial-wave decomposition of the distribu-
tion in x of the OAM for the u- and d-quark contributions.

For the [, = 0 component, we find the following:

(1) for total u-quark contribution
0 = f [dxls[ PRI — x)ky - Ky + k3 =9 (1,2,3) 9@ (1,2,3) + D2, 1,3)p 22 1,3)]
—[yM(1,2,3) + VG2 DI = xpky - ky + kD 2(1,2,3) + (kg - ky = x3ky k)P (3,2,1)]
+ (ky X ky)[yD(1,2,3)ky XV, + ky X Vo) @(1,2,3) — ¢ @(1,2,3)(k; XV, + ko X V) p(D(1,2,3)
— (1,3, 2)(k; XV, +ky X Vo)(rP(1,3,2) — ¢ 22,3, 1) + ¢ @(1,3,2)(k; XV, + ky X V,)
X (p1(1,3,2) + (2,3, D) (40)

(i1) for total d-quark contribution

0 = f [dx]s[d?k1s{[x ks - ey — xoky - k3] (1,2,3) 6 @(1,2,3) + [(1 — xoky - ky + x K3 (1,2,3)

+ W32 DIP@(1,2,3) + (k) X k) V(1 2,3) (k3 X V3) @ (1,2,3) — ¢ (1, 2,3) (k3 X V3)gr(1,2,3)
— (1, 3,2) (k3 X V3)(p?(1,3,2) — (2,3, 1) + ¢P(1,3,2) (k3 X V3)(pD(1,3,2) + y (2,3, D]}

(41)
In Eq. (40) we used the following definition:
Vip(1,2,3) = [(1 = x)Vi, =0V 1900, 2.k = —ki — k), (42)
and similarly for V,. Furthermore, in Eq. (41) the operator V3 is defined as
Vip(1,2,3) = =0 Vi, + Vi) p (1L 2k = —ky — ko). (43)
Using the momentum conservation constraint k; + k, + k3 = 0, one finds (5?‘13:0 = —€f’li:0. One then recovers the fact

that the total contribution from the [, = 0 component is equal to zero

=" =0. (44)
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For the [, = 1 component, we find the following:
(1) for the total u-quark contribution

el = f [dxls[ @k ]s{lk, oy ®(1,2,3) + k3D (1,2,3)[—2x, 9 (1,2,3) +2(1 — xp) (1, 2,3)
—x199(1,3,2) = x3 D (1,3,2)] + [k2 ¢ 3(1,2,3)) + ky k@ (1,2,3) (1 —x) D (1,2,3) = x4y (1,2,3)]
—[ky ks ¥(1,2,3) + ks ks @ (1,2,3)]0x; 6D (1,2,3) + 2, @ (1,2,3) +x, D (1,3,2) — (1 — x3) 6D (1,3,2)]
— (kg X k) 3 (1,2,3) (ky X Vy + ky X V) D(1,3,2) — (ky X V) ¥ (1,2,3)]
— (ke X ko) D (1,2,3)[(ky X Vy + k3 X V) ((1,3,2) — ¢ D(1,3,2)) — (ky X V,) p¥(1,2,3)]}; (45)

(i1) for the total d-quark contribution
e = ] [dxly [Pk Is{[k3 D (1,2,3)) + Ky Ko (1,2, 3) (1 =) r®(1,2,3) = xo 9(1,2,3)
+ (1= x)(1,3,2) = x5 D(1,3,2)] = [y ks D (1,2,3) + ky k3 p D (1,2,3) ]y 9(1,2,3) + 5,6 9(1,2,3)]
— (k) X Io) r(1,2,3)[(ky X V) W (1,3,2) — (k) XV, + k3 X V3) ¥ (1,2,3)]
— (kg X ko) (1,2, 3)[(ky X V) (¢ D(1,3,2) = ¢ 9(1,3,2)) + (k) XV, + k3 X V3) O (1,2,3)]}. (46)

The sum of the u and d contributions from the /, = 1 component gives
" = [ [ax k{1209 (1,2,3) + D (1,3, 2R O(1,2,3) + &y ko pr9(1,2,3)]
+2¢9(1,2,3)[k; - kyp?(1,2,3) — I3 (1,2,3)] + ¢pW(1, 3,2k, - kspD(1,2,3) + ky - k3 (1, 2,3)]}
=pr-1 (47)

For [, = —1 component, we find the following:
(1) for the total u-quark contribution

6?’12:_1 = j[dx]3[d2k]3{[kl ka9 (1,2,3) = ky k(1 3, 2) 0 O(1,2,3) — x399(1,3,2) — x349(2,3, 1)
— (=)D 1,3)]+ k3¢O(1,2,3) —ky - k3O (1,3, 2) ] (2, 1,3) — x3409(1,3,2)
—x39(2,3,1) = (1 = x) (1, 2,3)] + (ky X k3)[p(1,3,2)(ky XV, +ky X V) (9 (2, 1,3)
= p9(1,2,3) + (1, 2,3) 0k, XV, + ko X V) (0(1,3,2) + (2, 1,3) + ¢O(2,3, 1)k (48)

(i1) for the total d-quark contribution

e = f [dx [kl - ks (1, 2,3) = K313, 2] 92, 1,3) + 0,00(1,2,3) + (1 = x3)(9(1,3,2)

+ 02,3, )]+ (ky X k3)[9(1,3,2) (k3 X V) (D (2, 1,3) — ¢9(1,2,3))

+ ¢O(1,2,3)(ks X V3)(0(1,3,2) + 992, 1,3) + (2,3, D) (49)
Adding the u and d contributions, we find that the /[, = —1 partial wave contributes to the total orbital angular momentum
as
6?:_1 = /[dx]3[d2k]3{_[k1 : k2 17[/(5)(1r 2) 3) - kl : k3 1/1(5)(1) 3) 2)]1//(5)(2) 1: 3) - [k%l//(S)(lJ 2! 3)

- k2 : k3 1/1(5)(1) 3: 2)]1//(5)(1) 21 3) + [k2 : k3 l/l(S)(lr 2) 3) - k%w(S)(l’ 3’ 2)][1//(5)(1) 31 2) + ¢(5)(2’ 3’ 1)]}
= —p——1. (50)
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For [, = 2 component, we find the following:
(1) for the total u-quark contribution

PHYSICAL REVIEW D 85, 114006 (2012)

T = f [dxT [k T[T — x)K3 — xaky - ks ][ ©(1,2,3) 29 ©(1,2,3) + 93,2, 1))

+ 93,2 D O1,2,3) + 93,2, 1)] = k[xk + x3ky k3 Ty ©(1,2,3)(¢(2,1,3) — 93, 1,2)
— 936,293, 1,2)] = KL — x)ky ks — 0ok kT ©(1,2,3)299(1,3,2) + ¢©(2,3, 1)

+ OG22, 1)y, 3,2)] = [xiky - kok3 + x3ky - kski 1 ©(1,2,3) 9 (1,2,3)

—[(1 = x2)ky - k3k? — x; 2k, - koky - ky — ky - k3k3)][p©(1,2,3)(©(1,3,2) + ¢©(2,3,1))

— 93,2, 1)O2,3, 1)] + (ky X k) ©(1,2,3)[k3(ky XV, +ky X V) ©(2,1,3)

— I3k XV, + k3 X V3) i ©(3,1,2) + k3(key X V) ©(1,3,2) + k3 XV, + &y X V,)©(2,3, )]

(ii) for the total d-quark contribution

(D

0T = f [dx]s[d?k]s{—[x 1k, - ok + x3ky - ks3] ©(1, 2, 3) [ O(1, 2, 3) + ¢©(3,2, 1]

—[(1 = xpky - kok3 — x32k, - kaky - ks — Ky - k3k3) ] © (3, 1, 2)[9(1,2,3) + (3,2, 1)]

— k3[xoky ke — (1 = x3)ky - o]y ©(1,2,3) (2, 1,3) — k[ kg - ks — (1 — x3)k3]9©(1,2,3) 991, 2,3)
+ I3[k ko 4 0k ] O(1,2,3)[ 91, 3,2) + ¢ ©(2, 3, 1)]

— (kg X ko) (1, 2, 3)[3(key X V) p©(3,1,2) + k3 (ks X V3)p©(2, 1, 3)

— ke, X Vy + k3 X V) ©(1,3,2) + k3 (ks X V) ©(2,3, 1)} (52)

The sum of the u and d contributions in the /, = 2 component to the total orbital angular momentum is

0 = f [dxls[ @k 1s{yr© (1, 2, 32k 2O (1, 2, 3) + ¢ ©(3,2, 1)) — 23k, - k(¢ ©(3, 1,2) — ¢ ©(2,1,3))

= 2kihk; k3 299(1,3,2) + O3, )]} = 2p, . (53)

V. RESULTS IN LIGHT-CONE QUARK MODELS

The model-independent expressions derived in the pre-
vious sections are applied here within two light-cone quark
models, a light-cone constituent quark model (LCCQM)
[23-27], and the light-cone version of the chiral quark-
soliton model (LCyQSM) restricted to the three-quark
sector [28-30]. These two models were recently applied
to describe the valence-quark structure of the nucleon as
observed in parton distribution functions, like generalized
parton distributions, transverse-momentum-dependent par-
ton distributions, and form factors of the nucleon, giving a
typical accuracy of about 30% in comparison with avail-
able data in the valence region [13]. Therefore, we expect
they can provide a good testing ground to illustrate our
method for understanding the quark orbital angular
momentum.

In the LCCQM the nucleon state is described by a
LCWEF in the basis of three free on-shell valence quarks.
The three-quark state is, however, not on-shell

My # My =3 ,0; where w; is the energy of free quark
i and My is the physical mass of the nucleon bound state.
The nucleon wave function is assumed to be a simple
analytic function depending on three free parameters (in-
cluding the quark mass) that are fitted to reproduce at best
some experimental observables, like e.g. the anomalous
magnetic moments of the proton and neutron and the axial
charge. The explicit expressions for the partial-wave am-
plitudes ' in the LCCQM can be found in Ref. [25].

In the LCYQSM quarks are not free, but bound by a
relativistic chiral mean field (semiclassical approxima-
tion). This chiral mean field creates a discrete level in the
one-quark spectrum and distorts at the same time the Dirac
sea. It has been shown that the distortion can be repre-
sented by additional quark-antiquark pairs in the baryon
[28]. Even though the yQSM naturally incorporates higher
Fock states, we restrict the present study to the 3Q sector.

Despite the apparent differences between the LCCQM
and the yQSM, it turns out that the corresponding LCWFs
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TABLE I. The results for the quark orbital angular momentum
from the LCCQM and the LC yQSM for u-, d- and total- (u + d)
quark contributions.

Model LCCQM LCxQSM
q u d Total u d Total
€2 Eq. (20) 0.131 —0.005 0.126 0.073 —0.004 0.069

have a very similar structure (for further details, we refer to
[13,31]). The corresponding predictions from the LCCQM
and the LCYQSM for u-, d- and total- (u + d) quark
contributions to the OAM are reported in Table 1. We
note that there is more net quark OAM in the LCCQM
(Zqﬁ? = 0.126) than in the LCyQSM (Zq&’ = 0.069).
For the individual quark contributions, both the LCCQM
and the LC yQSM predict that €7 are positive for u quarks
and negative for d quarks, with the u-quark contribution
larger than the d-quark contribution in absolute value.
These results refer to the low hadronic scales of the mod-
els. Before making a meaningful comparison with results
from experiments or lattice calculations that are usually
obtained at higher scales, a proper treatment of the effects
due to QCD evolution is essential [32]. However, this is
beyond the scope of the present paper.

The explicit calculation within the LCCQM of the wave-
function amplitudes in Egs. (36a)—-(36d) can be found in
Ref. [25]. Using these results and the expressions in the
Appendix, we can also calculate the distribution in x of the
OAM ¢, separating the contribution from each partial
wave. The corresponding results for # and d quarks are
shown in Fig. 1. The x dependence of the different partial-
wave amplitudes is very similar for u and d quarks.
However, the total contribution has a distinctive behavior
for u and d quarks, coming from a quite different interplay
between the different partial waves. For the u quarks, the
dominant contribution comes from the /, = 1 amplitude
(dotted curve), with positive sign, while the positive

0 A up 04 f down
02} 02f
0 )
0z2f 02 f ’
04

1 1 1 1 0.4 1 1 1 1
0 02 04 06 08 1 0 02 04 06 08 1
X X

FIG. 1. Results for the distribution in x of the OAM €7 in the
proton for u (left) and d (right) quarks. The curves correspond to
the contribution of the different partial waves: long-dashed
curves for the light-cone amplitude with [, = 0, dotted curves
for the light-cone amplitude with /, = 1, dashed-dotted curves
for the light-cone amplitude with /, = —1, and short-dashed
curves for light-cone amplitude with I, = 2. The solid curves
show the total results, sum of all the partial-wave contributions.

PHYSICAL REVIEW D 85, 114006 (2012)

contributions coming from the /, = 0 (long-dashed curve)
and [, = 2 (short-dashed curve) amplitudes are largely
compensated by the negative contribution coming from
the [, = —1 amplitude (dashed-dotted curve). For the d
quarks, the OAM arises from the competition between the
positive [, = 1 and [, = 2 contributions, and the negative
[, = —land [, = O contributions. As a result, the OAM for
d quarks is much smaller than for u quarks, and goes from
negative to positive values at x = 0.3.

The integral over x of the different distributions in Fig. 1
gives the value for u- and d-quark OAM reported in
Table II. In the last row we also show the results for the
squared norm of the different partial waves p, , giving the
probability to find the proton in a three-quark state with
eigenvalue /, of total OAM, according to Eq. (33).

It is interesting to rewrite the expression (18) for the
OAM as

0 = f 2b(b X (k)7)., (54)

where (k)7 is the distribution in impact-parameter space of
the quark mean transverse momentum

(k) (b) = f dxd’kkp'? (b, k, x). (55)

This distribution is shown in Fig. 2 for both u and d quarks.
First of all, it appears that the mean transverse-momentum
(k)4 is always orthogonal to the impact-parameter vector b.
This is not surprising since a nonvanishing radial compo-
nent of the mean transverse momentum would indicate
that the proton size and/or shape are changing. The
figure also clearly shows that u quarks tend to orbit coun-
terclockwise inside the nucleon, corresponding to €% >0
since the proton is represented with its spin pointing out of
the figure. For the d quarks, we see two regions. In the
central region of the nucleon, |b| < 0.3 fm, the d quarks
tend to orbit counterclockwise like the u quarks. In the
peripheral region, |b| > 0.3 fm, the d quarks tend to orbit
clockwise. All this is consistent with the three-dimensional
picture provided by the generalized parton distributions
that indicates that the central region is dominated by the
large x values, while the peripheral region is dominated by

TABLE II. Results from the LCCQM for the contribution of
the different partial waves to the OAM €Z. The first and second
rows show the values for the u and d quarks, respectively, while
the third row shows the sum of the u- and d-quark contributions.
In the last row the results are shown for the squared norm of the
different partial waves, giving the probability to find the proton
in a three-quark state with eigenvalue [, of total OAM.

=0 L=1 L=-1 I1,=2  Total
I 0.013 0.139  —0.046 0025 0131
¢ 0013 0.087  —0.090 0011  —0.005
I 0 0226  —0.136 0036  0.126
p. 0620 0.226 0.136 0.018 1
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FIG. 2 (color online).
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0.6

0.4

0.008]

-0.6

-06 -04 -02 00 02 04 06

by[fm]

Distributions in impact-parameter space of the mean transverse momentum of unpolarized quarks in a

longitudinally polarized nucleon. The nucleon polarization is pointing out of the plane, while the arrows show the size and direction of
the mean transverse momentum of the quarks. The left (right) panel shows the results for u (d) quarks.

<k,*[Gev/fm’]
0.2} 1~

FIG. 3 (color online). Results for the different partial-wave
contributions to the u-quark mean transverse-momentum (k) =
(ky)e, as a function of b = b,e,.

<ky>*[Gev /fn?]
03¢ ..

FIG. 4 (color online). Results for the different partial-wave
contributions to the d-quark mean transverse-momentum (k) =
(ky)e, as a function of b = b,e,.

the low x values. The approximate cancellation between
the central (large x) and peripheral (small x) contributions
leads then to a very small value for the d-quark OAM.

Figures 3 and 4 show the different partial-wave contri-
butions to the u- and d-quark mean transverse-momentum
(k)7 as a function of b. Because of the axial symmetry of
the system, it is sufficient to plot (k)7 = (k,)%e, as a
function of b = b,e,. Similarly to Fig. 1, for the u quarks,
the dominant contribution comes from the /, = 1 ampli-
tude (dotted curve), with positive sign, while the positive
contributions coming from the /, = 0 (long-dashed curve)
and [, = 2 (short-dashed curve) amplitudes are largely
compensated by the negative contribution coming from
the /, = —1 amplitude (dashed-dotted curve). For the d
quarks, the OAM arises from the competition between the
positive [, = 1 and [, = 2 contributions, and the negative
[, = —1 and [, = O contributions, with a delicate balance
between the different partial-wave contributions. As a
result the total OAM takes small positive values at small
|b|, becomes slightly negative at |b| = 0.3 fm, and van-
ishes at the periphery.

VI. CONCLUSIONS

In summary, we derived the relation between the quark
OAM and the Wigner distribution for unpolarized quark in
a longitudinally polarized nucleon. This relation is exact as
long as we neglect the contribution of gauge fields, and
provides an intuitive and simple representation of the quark
OAM that resembles the classical formula given by the
phase-space average of the orbital angular momentum
weighted by the density operator. We compare this deriva-
tion with the LCWF representation of the OAM. The
advantage in using LCWPFs is that they are eigenstates of
the total OAM for each N-parton configuration in the
nucleon Fock space. As a consequence, the total OAM
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can be simply calculated from the sum of squared LCWFs
multiplied by the corresponding eigenvalues of the OAM
operator. In the three-quark sector, we further decomposed
the nucleon state in different partial-wave amplitudes,
calculating the corresponding contributions to the quark
OAM.

These two representations of the OAM are equivalent
and allow one to visualize complementary aspects of the
orbital motion of the quarks inside the nucleon. As ex-
amples, we adopted two different light-cone quark models
and discussed the corresponding results for the distribution
in x of the OAM, as obtained from the LCWF overlap
representation, as well as the distribution of the mean
transverse momentum in the impact-parameter space, as
obtained from the Wigner distributions.
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APPENDIX A: PARTIAL-WAVE DECOMPOSITION
OF THE DISTRIBUTIONS IN x
OF THE OAM

In this appendix we summarize the results for the partial-
wave contributions to the distribution in x of the OAM. In

particular, we separately list the results for €§’"lf, corre-
sponding to the contribution of the ith quark with flavor ¢
in the Fock-state component with total OAM /..

For the [, = 0 component, we find the following:

(i) for the u quark

€0 () = [ [dxT[d2k158(x — x){— ¢V (1, 2, 3)[2((1 — x))k; - ky + x.k3) (1, 2, 3)

+ (xpky - k3 — x3ky k)@ (3,2, D] — (k) X kp)[V(1,2,3)(k; X V(=24 (1,2,3) + ¢ (3,2, 1))

+ (1, 2,3)k; X V)¢ V(1,2,3) + D (3,2, D))},

(AD)

00 = j[dx]3[d2k]33(x — ) D(1,2,3)[(1 — )k - by + x1 k3] P(1, 2, 3)

+ (k) X k) D(1,2,3)(ky X Vy) (1, 2,3) — @ (1,2, 3)(ky X Vo) pD(1,2,3)]}

(A2)

?3'1210()6) = /[dx]3[d2k]36(x - xs){_ ll/“)(l, 2, 3)[(x2k, k3 — xik, -k3)¢(2)(1, 2,3) + (1 — x3)k5 - ks

+ ka§)¢(2)(3, 2) ])] - (k] X kZ)[w(l)(l’ 2’ 3)(k3 X v3)(_ 1/1(2)(1’ 2’ 3) + ¢(2)(3: 2’ 1))

+ (1,2, 3)(k; X V3) (¢ V(1,2,3) + V(3,2 D)k

(i1) for the d quark

(A3)

€20 (x) = [[dx]3[d2k]3 8(x = x){y W (1,2, 3)[((1 = xp)ky -y +x,1Kk3) P (1,2,3) + (x3k3 + (1 = x)ky - k3) P (3,2, 1)]

— (ke X k) V(1,2,3) (ke X V) (— @ (1,2,3) + ¢P(3,2,1))

+ 9 @(1,2,3)(k, X Vo) (¢ V(1,2,3) + ¢ (3,2, )]},

(A4)

€80 (x) = [ [dxTs[d?k]38(x — x3{— (ke - ks — xyky - k3) (1, 2,3) (1, 2, 3)

+ (ke X k[ D(1,2,3) (ks X V3)pr@(1,2,3) — (1,2, 3) (ks X V3) (1,2, 3)]}.

For the [, = 1 component, we find the following:
(1) for the u quark

(A5)
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e () = [ [dx)s[ k) 8(x — x [T O(1,2,3)) + ky - ko p (1,2, 3)][(1 — x) 6P (1,2, 3)

— 0 @(1,2,3)] + (ky X k) O (1,2, 3)(ky X V) FP(1,2,3) = p@(1,2,3)k, X V)P (1,2,3)]}
(A6)

et () = f [dx][d2k158(x — [k - ko rD(1,2,3)) + k3@ (1,2, 3)[—2x, (1,2, 3)
+2(1 =) @(1,2,3) = x ¥ (1,3,2) — x5 9(1,3,2)] = (ky X k)[4 D (1,2,3)(ky X V) (—24(1,2,3)
+ ¢ D(1,3,2) + ¢ D(1,2,3)(ky X Vo) (24D (1,2,3) + ¢(1,3,2)) — (1,2, 3)(ky X Vo) D (1,3,2) T}
(A7)
e () = [ [dxT3[d*k138(x — x3){[ky - ks p® (1, 2,3)) + Ky - ks p™(1, 2, 3)[—x, (1, 2, 3) — x,49(1, 2, 3)

- X lp(})(l’ 3: 2) + (1 - X3)¢(4)(1, 3’ 2)] - (kl X k2)[¢(3)(1r 2» 3)(k3 X v3)(_ ¢(4)(1» 2) 3) + ¢(4)(1r 3» 2))
+ D1, 2,3) (k3 X V3)(¢(1,2,3) + ¢3(1,3,2)) — (1, 2,3)(k; X V3)y9(1, 3,2)] (A8)

(i1) for the d quark
e () = f [dxTs[d?k]38(x — x {[K3 D (1,2,3)) + ky - kyp @ (1, 2,30 — x) P (1, 2,3) — %@ (1, 2,3)

+ (1 - xl)l//(3)(1) 3! 2) - )C3 11[/(4)(1: 3: 2)] - (k] X k2)[¢(3)(1’ 27 3)(kl X el)(_ 111(4)(17 2» 3) + 170(4)(1’ 37 2))
+ D1, 2,3) ke, X V)((1,2,3) + ¢9(1,3,2)) — ¢p@(1,2,3)(k, X V)grD(1,3,2)]}, (A9)

e () = [ [dxT3[@*k138(x — x3){[ky - ksp® (1, 2,3)) + Ky - k3@ (1,2, 3)[—x, (1, 2,3) — x99(1,2,3)]

+ (kg X k) [ D(1,2,3) (k3 X V3)pD(1,2,3)) — (1,2, 3)(k3 X V3) ¥ (1,2,3)]}. (A10)

For [, = —1 component, we find the following:
(i) for the u quark

et () = j [dx]s[d?k]38(x — x )k - kyp® (1,2, 3)[ 22,91, 2,3) — (1 — x) D2, 1,3) + x,49(3,2, 1)

- 2X3 lp(S)(l’ 3’ 2) + (1 - xl)lp(S)(:;x 1’ 2) - X3 ¢(5)(2, 3’ 1)] - (kl X kZ)w(S)(l’ 2’ 3)(kl X e])|:lp(5)(3r 1) 2)
— 92, 1,3) —2¢49(1,3,2) + 92,3 D]}, (A1)

e () = f[dx]3[d2k]35(x — Y1, 2,3)[—(1 — x) (1, 2,3) + x D2, 1,3) — x390)(1,3,2)

— x5 9(23, D] + (ky X ko) p®(1,2,3)(ky X V[ (2, 1,3) + ¢0(1,3,2) + ¢9(2,3, D]}, (A12)

e ) = [ [ [T 6(x = x3ey - k3 ®(1,2, )09 9(1,2,3) + 19 0G,2.1) + (1 - x3)pP(1,3,2)
— x93, 1,2)] = (kg X k) (1,2,3) (ks X V3)[¢9(3,1,2) — pO(1,3,2)]% (A13)
(i1) for the d quark
e ) = j [dxls[d*k138(x — (=K (1,2, 3)[(1 — )9O (1,2,3) + (1 — x) (3,2, 1)

+ X3 l//(S)(L 3! 2) + X1 1111(5)(3’ 1: 2)] - (kl X kZ)dI(S)(L 2! 3)(k2 X v2)[17[/(5)(3) 1: 2) - 17[/(5)(1) 3) 2)]}’
(Al14)
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6?3’&:_1()6) = f[dx]3[d2k]33(x _x3){k2 'k3 ¢<5)(1) 2? 3)[X1 lp(S)(zr 1’3) +X2 ¢’(5)(1’ 2? 3) + (1 _X3)l/f(5)(1, 3’ 2)

+(1=x3) 92,3, D]+ (k) X ko) D (1,2,3) (ks X V3)[¢D(2, 1,3) + ¢9(1,3,2) + ¢y (2,3, )] (Al5)

For I, = 2 component, we find the following:
(i) for the u quark

€0 () = [ [dxls[d?k]38(x — x )3 O (1, 2, 3)[(1 — x k3 — xaky - ks][24/9(1,2,3) + (3,2, 1)]

+ [0ok? + x3ky k3 [ 93, 1,2) — @2, 1,3)] = [(1 — x)ky - k3 — x2k - k3][249(1, 3, 2)
+ 02,3, D]+ (ky X k) O (1,2, 3)[K3(ky X V)(49(2, 1,3))
— ¢ ©(3,1,2) + K3k, X V)24 ©(1,3,2) + ©(2,3, 1)]}, (A16)

2 (x) = f[dx]3[d2k]35(x — o —[x1k3ky - ky + x3k3ky - ksl ©(1,2,3) ¢ 9(1,2,3) — [(1 — xp)k3k, - ks

— x12k, - koky - ky — K3k, - k)L ©(1,2,3)©(1,3,2) + ¢ 92,3, (¢ ©(1,2,3) — 93,2, 1))]
+ (ke X k) O(1, 2, 3)[k3(ky X Vo) @2, 1,3) + K3 (ky X V,)(¢9(1,3,2) + ¢©(2,3, )]}, (A17)

€ (x) = f [dxTs[d?k]38(x — x){yp @ (1, 2, 31 — x3)kT — xiky - k3)(©(3,2, 1) + (1,2, 3))
+ (xiky ke + k)P ©(1,3,2) — (1 — x3)ky - ky — x5k, - k3) ¢ ©(3,1,2)]
— (ky X ko) O(1, 2, 3)[k3(ks X V3) 93, 1,2) — K2(ky X V3)©(1,3,2)T%; (A18)

(i1) for the d quark
07 () = [ [dxT[d2k158(x — xo){ =[x K3k, - by + x3k3ky - ksl © (1,2, 3)[©(1,2,3) + ¢©(3,2,1)]

—[(1 = x)k3ky - k3 — x,(2k - koky - k3 — ky - ksk3)]¢© (1,3, 2)[©(1,2,3) + ¢©(3,2,1)]
+ (ky X k) O(1, 2, 3)[k3(ky X Vo) pO(1,3,2) — K3k, X Vy) 93, 1,2)]}, (A19)

€ () = f [dxls[d?k]38(x — x) 3O (1, 2, 3)[((1 — x3)ky - ky — 0k - k3)p©(2, 1, 3)
— (xrky kg — (1= x3)kD) (1, 2,3) + (xyky - ky + x2kD)(9(1,3,2) + (2,3, 1))]
+ (k) X k) O(1, 2, 3) [k} (ks X V) (' ©(1,3,2) + ¢ ©(2,3,1) + K3(ks X V)@ (2, 1,3)]1.  (A20)
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