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We consider the phenomenology of the gauged Abelian symmetry Bþ 3ðLe � L� � L�Þ. Right-
handed neutrinos necessary to cancel triangle anomalies are used in a type-I seesaw scheme to create

active neutrino masses. Breaking the Bþ 3ðLe � L� � L�Þ symmetry spontaneously below the seesaw

scale generates low-energy neutrino mass matrices with the approximate symmetries Le (leading to

normal hierarchy) or Le � L� � L� (inverted hierarchy). For the latter we need to introduce a Z2

symmetry which decouples one of the right-handed neutrinos. If exact, this Z2 leads to a Majorana dark

matter candidate that interacts with the standard model via the Z0 and a scalar s originating from

spontaneous breaking of the new symmetry. The measured relic abundance of the dark matter particle can

be obtained around the scalar and Z0 resonances, while direct detection experiments are mainly sensitive

to scalar exchange, which is induced by mass mixing of s with the standard Higgs.
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I. INTRODUCTION

The observed neutrino mixing angles and mass-squared
differences have launched an avalanche of models trying to
explain their values. One possible starting point is the
Majorana mass matrix in flavor basis, on which one then
imposes symmetries. As far as continuous Abelian sym-
metries of lepton numbers go, three interesting linear
combinations have been identified for the zeroth-order
approximation: Le, �L � Le � L� � L� and L� � L�,

leading to normal hierarchy (NH), inverted hierarchy
(IH) and quasidegeneracy in the neutrino mass spectrum
[1]. The flavor structure of the mass matrices is

MLe
� �

0 0 0

0 � �
0 � �

0
BB@

1
CCA; M �L

� �
0 � �
� 0 0

� 0 0

0
BB@

1
CCA;

M
L��L�
� �

� 0 0

0 0 �
0 � 0

0
BB@

1
CCA; (1)

where� denotes a nonzero entry. The last matrix conserv-
ing L� � L� has the interesting property of being

anomaly-free [2] (in the standard model (SM) with mass-
less neutrinos), so the symmetry can be gauged, which
leads to numerous interesting effects [3]. The other two
symmetries have been considered as global symmetries
[4–6] (or as an anomalous Uð1Þ [7]), but no effort has
been put forward to construct a local version.

The reason why it is not easily possible to promote Le or
�L to a local symmetry with the SM particle content is due
to arising quantum anomalies, even if we introduce

SM-singlet right-handed neutrinos (RHNs). Extending
the chiral fermion content of the model could serve as a
viable way to cancel these triangle anomalies and construct
a renormalizable Lagrangian. In the case of the above
symmetries it can be shown that a complete fourth genera-
tion of fermions suffices to accomplish this task.1 However,
the strict bounds on the fourth-generation fermions com-
plicate model building severely, especially when it comes
to the mass matrix of the—then four—active neutrinos.
A different way to cancel anomalies is the modification

of the symmetry itself. For example, the quantum number
B� 3Le is anomaly-free in the SM plus RHNs [8], and
leads to an Le symmetric neutrino mass matrix for the
right-handed neutrinos (see Eq. (1)). Models based on
symmetries of the type B�P

‘x‘L‘ and
P

‘y‘L‘ (with
the constraints

P
‘x‘ ¼ 3 and

P
‘y‘ ¼ 0, respectively)

have been discussed, for example, in Refs. [9–12].
Seesaw neutrino models with an additional Uð1Þ0 are also
discussed in Ref. [13]. Some of the phenomenological
aspects of such models (the scalar sector, dark matter
candidates, etc.) are similar to frequently discussed
B� L analyses. However, choosing gauge groups that
include flavor information makes it possible to provide
predictions on neutrino mixing and mass spectrum, which
is impossible in theories based solely on B� L. This
interesting connection of flavor and gauge physics moti-
vates us here to discuss the minimal gauged Bþ 3 �Lmodel,
which is free of anomalies if right-handed neutrinos with
proper charges under the new Uð1Þ0 are introduced. Active
neutrino masses are a result of a type-I seesaw mechanism,
which is applicable only in the case of a broken symmetry,
because the zeroth-order right-handed neutrino mass
matrix obeying �L symmetry has rank 2. Interestingly, the
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1This is easy to see because Le � L� � L� þ L‘4 is a vector-
like symmetry in analogy to L� � L�.
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resulting low-energy neutrino mass matrix M� does not
necessarily obey a flavor structure resembling the one
required from �L conservation. Indeed, in what follows
we will see that details of the breaking of Bþ 3ðLe �
L� � L�Þ can lead to low-energy neutrino physics with a

normal or inverted hierarchy for the active neutrinos. As a
possibility to force the inverted hierarchy in the active neu-
trino sector, we introduce a Z2 symmetry. Interestingly, the
very same Z2 turns out to render one of the right-handed
neutrino stable, and to become a dark matter candidate.

The paper is built up as follows: we will show the
anomaly freedom of our symmetry in Sec. II. In Sec. III
we show that the model can lead to either Le or �L sym-
metric low-energy neutrino mass matrices via type-I see-
saw, depending on the number of right-handed neutrinos
and additional discrete symmetries. The Z0 phenomenol-
ogy of Bþ 3 �L has already been briefly considered in
Ref. [14], as a special case of B�P

‘x‘L‘, so we devote
only a small section to its discussion (Sec. IV). Since the
minimal scalar sector consists only of one additional com-
plex scalar, the effects are well known from, e.g., minimal
B� L models. The resulting mixing among the scalars is
briefly derived in Sec. V. The discussion of the neutrino
mass matrix naturally leads to an additional exchange
symmetry, which—properly implemented—yields a stable
right-handed neutrino as a dark matter candidate. We dis-
cuss the relic abundance of said dark matter candidate
around the scalar and Z0 resonances in Sec. VI. We con-
clude our findings in Sec. VII. The calculation of anoma-
lies is presented in Appendix A, while Appendices B and C
contain brief calculations that are not of utter importance to
follow the main text.

II. GAUGED Bþ 3ðLe � L� � L�Þ SYMMETRY

We introduce nN right-handed neutrinos Ni with
Uð1ÞBþ3 �L quantum numbers Y0ðNiÞ. The gauge group rep-
resentations of the first-generation fermions are shown in
Table I for the second and third generation the Uð1ÞBþ3 �L

charge of the leptons changes sign. Defining for simplicity
Uð1Þ0 � Uð1ÞBþ3 �L and Y0 � Bþ 3 �L we can calculate the
triangle anomalies of the model. As shown in Appendix A,
the model is free of anomalies as long as the quantum
numbers of the right-handed neutrinos satisfy

XnN
i

Y0ðNiÞ ¼ �3;
XnN
i

Y03ðNiÞ ¼ �33: (2)

The minimal anomaly-free model consists of only one
right-handed neutrino with �L charge �3. There are no
real solutions of Eq. (2) for nN ¼ 2, but for odd nN we
can choose �LðNR;1Þ ¼ �3 and add pairs of right-handed

neutrinos with arbitrary—but opposite—charge. Solutions
without a charge �3, and, therefore, without Dirac cou-
pling to the active neutrinos, can be obtained with five
right-handed neutrinos, e.g. with the �L charges �1, 2, �5,
�5 and 6, respectively. It is clear that in this case mD ¼
0 ¼ MR, and hence the massless right-handed neutrinos
decouple unless �L is broken in a very specific way. Since
this is cumbersome, we will restrict ourselves to RHNs
with charges �3 in the following.
The symmetry Uð1ÞBþ3 �L was already discussed in

Ref. [14], where it is proposed as an origin for R-parity
that also forbids proton decay via higher dimensional
operators like QQQL, which conserve B� L but violate
B�P

‘x‘L‘ if x‘ � 1. Since in Ref. [14] it is only briefly
mentioned that the mass matrix for the right-handed neu-
trinos has no vanishing entries in the broken case, we feel it
is still worth discussing the neutrino masses in more detail,
due to their interesting structure.
It should be stressed that even though we are taking a

nonsupersymmetric model for simplicity, a similar discus-
sion holds for the supersymmetric case of Ref. [14].
Supersymmetric particles aside, the main difference is
the need for a second complex scalar (super-)field to fill
the vanishing entries in the neutrino mass matrix. The
model (superpotential, mass spectrum, etc.) is then similar
to supersymmetric B� L models, which are intensively
discussed in, e.g., Refs. [15]. Assuming similar vacuum
expectation values (VEVs) for both scalars makes the
discussion of neutrino masses identical to Sec. III. The
scalar and dark matter sectors will of course differ from
Sec. V and VI in a supersymmetric context. For example,
the mixing of the Higgs doublets Hi and the new scalars Si
will be severely suppressed [16], making the Z0 boson the
main mediator between the dark matter and SM sector. A
discussion of dark matter (especially in the context of the
additional Z2 symmetry that leads to inverted hierarchy)
would be interesting, but lies outside the realm of this
work.

III. NEUTRINO MASSES

In this section we discuss various interesting possibil-
ities of the new gauge symmetry in the neutrino sector.

TABLE I. SUð3ÞC � SUð2ÞL �Uð1ÞY � Uð1ÞBþ3ðLe�L��L�Þ representations of left-handed SM
fermions (only first-generation shown) and right-handed neutrinos Ni. For the second and third
generation the Uð1ÞBþ3 �L charge of the leptons changes sign.

Le ¼ �
e

� �
L
� ð1; 2;�1Þð3Þ ecR � ð1; 1;þ2Þð�3Þ Nc

i � ð1; 1; 0ÞðY0ðNc
i ÞÞ

Qu
L ¼ u

d

� �
L
� ð3; 2;þ 1

3Þðþ 1
3Þ ucR � ð�3; 1;� 4

3Þð� 1
3Þ dcR � ð�3; 1;þ 2

3Þð� 1
3Þ
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A. Three right-handed neutrinos

The most natural quantum number assignment for three
right-handed neutrinos that cancels the anomalies of
Eq. (2) is þ3, �3 and �3. After electroweak symmetry
breaking, the Dirac and (symmetric) Majorana mass ma-
trices for ��iNj and �Nc

i Nj, respectively, take the form

mD ¼
a 0 0

0 b c

0 d e

0
BB@

1
CCA; MR ¼

0 X Y

� 0 0

� � 0

0
BB@

1
CCA: (3)

As already mentioned in the introduction, the matrix MR

is singular, which means the usual seesaw formula M� ’
�mDM�1

R mT
D for the light neutrinos in the limit X, Y �

ðmDÞij is not applicable. Instead of the 3�light þ 3�heavy

scheme known from seesaw, the diagonalization of
the full 6� 6 matrix leads to the hierarchy 2�heavy þ
2�electroweak þ 2�light, which is clearly not in agreement

with experiments.
Since the model looks quite different after Uð1Þ0

breaking, let us introduce a complex scalar field
S� ð1; 1; 0Þðþ6Þ which acquires a VEV. Collider limits
on additional heavy neutral gauge bosons typically give
limitsMZ0=g0 � hSi * 1–10 TeV for the VEV, to be further
discussed in Sec. IV. S couples to the right-handed neutri-
nos, so hSi fills all texture zeros inMR. As a result,MR is
in general an invertible matrix after Bþ 3 �L breaking:

MR ¼
A X Y

� B C

� � D

0
BB@

1
CCA;

M�1
R ¼ � 1

detMR

C2 � BD DX� CY BY � CX

� Y2 � AD AC� XY

� � X2 � AB

0
BB@

1
CCA:
(4)

The scaling X, Y � hSi � ðmDÞij leads to the order-

of-magnitude structure of the low-energy neutrino mass
matrix

M� ’ �mDM�1
R mT

D �
"2 " "

� 1 1

� � 1

0
BB@

1
CCA; (5)

with " � hSi=X. Consequently, a low Bþ 3 �L breaking
scale (compared to MR, not mD) "� 0:1 actually leads
to a mass matrix that approximately conserves Le instead of
�L [see Eq. (1)]. It is, however, not the most general Le

symmetric matrix, because the zeroth-order mass matrix
has the structure

M��
0 0 0

� ðcX�bYÞ2 ðcX�bYÞðeX�dYÞ
� � ðeX�dYÞ2

0
BB@

1
CCAþOð"Þ;

(6)

which gives only one massive neutrino �3�ðcX�bYÞ��þ
ðeX�dYÞ��.
The solar mixing angle is still undefined at this order,

due to an accidental Oð2Þ symmetry of the matrix (see
Ref. [17]). Since the symmetry allows for mixing of � and
�, the charged-lepton mass matrix is not diagonal in gen-
eral and contributes to �23. The atmospheric mixing angle
will, therefore, be a combination of the charged-lepton
mixing and the neutrino one

tan��23 ’
cX � bY

eX � dY
; (7)

so we expect large but nonmaximal mixing.
While not particularly predictive, we show the distribu-

tion of the mixing angles �12 and �13 in Fig. 1 (left panel).
For these we generated random Yukawa couplings
jðmDÞijj � 1; jAj; jBj; . . .< " and jXj, jYj> 1 that lead to

neutrino mixing parameters in their 3� range [18]. Here
and in the following we restrict the parameters to real
values for simplicity, resulting in vanishing CP-violating
phases in the mixing matrix. In any case, since the Yukawa
couplings can have arbitrary phases, we do not expect our
model to be able to predict the CP-violating phases. The
solar angle tends to be large while the reactor angle �13 is
generally small, but in good agreement with the recent
T2K [19], Double-Chooz [20], Daya Bay [21] and RENO
[22] results of sin2�13 ’ 0:025–0:03.
The units of mD and MR have not been specified yet,

because they only fix the overall neutrino mass scale—and
hence the �m2

ij—but not the mixing angles. In the usual

seesaw manner, the magnitudem2
D=MR ’ 0:1 eV does not

fix the seesaw scale, but naturalness hints at a high scale.
Since the NH structure (5) has already been recognized

before as a byproduct of the softly broken global �L (see, for
example, Refs. [5]), we will not attempt to redo all the
calculations done before. Instead, we construct a model
with a true �L symmetry (and, therefore, inverted hierarchy)
instead of the effective Le as above. It turns out we are just
a Z2 symmetry away.

B. Three right-handed neutrinos and Z2 symmetry

The reason for the different approximate symmetries in
MR and M�1

R is the occurring vanishing eigenvalue of
MR in the unbroken case. Since the number of right-
handed neutrinos is fixed by anomaly cancellations to be
odd, we cannot simply remove one of the Ni to make MR

invertible. We can, however, forbid its coupling to all other
particles by means of an additional discrete symmetry. We
will discuss the simplest example below.
Defining an additional Z2 symmetry under which N3

transforms as N3 ! �N3 while all other fields are even,2

the only allowed interactions for N3 are

2This is equivalent to an exchange symmetry N2 $ N3 as can
be seen using the basis �1 � N2 þ N3, �2 � N2 � N3.
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LN3
¼ i �N3�

�ð@� � ið�3Þg0Z0
�ÞN3 � Y	S �Nc

3N3 þ H:c:

¼ i

2
	TC��@�	� 3

2
g0Z0

�	
TC���5	� Y	

vSffiffiffi
2

p 	TC	
�
1þ s

vS

�
; (8)

making it stable and heavy after Bþ 3 �L breaking. In the
last line we replaced the right-handed Dirac fermion N3 by
a Majorana fermion 	 (see Appendix C) and used unitary
gauge to make the Z0 boson massive and eliminate ImðSÞ.
The stable Majorana fermion 	 is, therefore, a candidate
for dark matter, to be further examined in Sec. VI. Note
that the stability is due to the Z2, which was introduced to
implement an inverted hierarchy for the active neutrinos.

The active neutrinos then couple only toN1 andN2, so at
most two active neutrinos acquire mass at tree level. The
Bþ 3 �L symmetry is broken in MR by the parameters A
and B, so with the usual seesaw mechanism we find

M� ’ �
a 0

0 b

0 c

0
BB@

1
CCA A X

X B

 !�1 a 0 0

0 b c

 !

¼ 1

X2 � AB

a2B �abX �acX

� b2A bcA

� � c2A

0
BB@

1
CCA; (9)

which features an interesting structure [6,23]: The decou-
pling of N3 results in an invertible M2�2

R , so M� con-
serves Le � L� � L� in the limit A, B ! 0. This model

also gives a simple explicit realization of ‘‘scaling’’ [24],
seeing as the second and third column of M� are propor-
tional. Therefore, we have an inverted hierarchy solution
with �13 ¼ 0, whereas the atmospheric mixing angle is
once again large but random also due to the contributions
of the charged leptons. At 2-loop level radiative corrections

induce a nonzero �13, but of practically irrelevant magni-
tude [25]. The solar mixing angle becomes maximal for A,
B ! 0, so the breaking scale needs to be close to the bare
mass terms to lower �12.
Since a vanishing reactor angle is by now excluded at

�6�, we have to modify our model to make it phenom-
enologically viable. Here, �13 and the mass of the lightest
neutrino are linked [24], so we need to break Z2 to couple
N3 to the active neutrinos if we want �13 � 0. Therefore, a
nonzero �13 will lead to an unstable dark matter (DM)
candidate 	, with a short lifetime compared to the age of
the Universe in general (see Appendix B for an estimate).
Note that an explicit (soft) Z2 breaking by the coupling
�Nc
1N3 does not lead to IH, but rather an Le symmetric M�

(1). Correspondingly, the scalar sector needs to be enlarged
quite a bit to achieve IH with nonvanishing �13, which is
why we will not discuss this model any further. Without
touching the Z2 symmetry we could of course introduce a
Higgs triplet (type-II seesaw) to generate �13 � 0, but once
again the scalar sector blows up. Another solution would
be the introduction of additional scalar doublets—charged
under Uð1Þ0—which generate off-diagonal mass terms
for the charged leptons and consequently modify the
PMNS mixing matrix. Obviously this once again compli-
cates the scalar sector of the model and will, therefore, not
be discussed further.
In the next section we will show that an extension of the

fermion sector can easily generate a nonvanishing reactor
angle while maintaining a simple scalar sector and the
exact Z2 symmetry.
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FIG. 1 (color online). Left panel: scatter plots using the broken Bþ 3 �L low-energy neutrino mass matrix (5) (" ¼ 0:05) that leads to
NH. Right panel: scatter plots using the neutrino mass matrix (11) (" ¼ 0:1) with five right-handed neutrinos and a Z2, which leads to
IH. The accepted values of the mixing parameters satisfy the 3� bounds from Ref. [18], except for �23, because it can be arbitrarily
adjusted by the charged-lepton contribution.
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C. Five right-handed neutrinos and Z2 symmetry

Since the extension by scalars is cumbersome, we seek
out a different solution to generate �13 � 0. The anomaly
condition (2) can be fulfilled for five right-handed neutri-
nos with Bþ 3 �L charges þ3, þ3, �3, �3, and �3,
respectively. To obtain an invertible MR—and, therefore,
an approximate �L symmetric M�—we once again de-
couple one of the right-handed neutrinos (	 � N3) by
imposing a Z2 symmetry. Again, 	 will be our dark matter
candidate to be discussed in Sec. VI.

After symmetry breaking with the scalars
H � ð1; 2;þ1Þð0Þ and S� ð1; 1; 0Þðþ6Þ we obtain the
mass matrix

M� ’ �
a b 0 0

0 0 c d

0 0 e f

0
BB@

1
CCA A X

XT B

 !�1

a 0 0

b 0 0

0 c e

0 d f

0
BBBBB@

1
CCCCCA;

(10)

where X is an arbitrary 2� 2 matrix (the gauge invariant
mass terms for the right-handed neutrinos) and A, B are
symmetric 2� 2 matrices generated by spontaneous Bþ
3 �L breaking. For cf� ed � 0 there is no massless neu-
trino ��� þ ���, so we have �13 � 0 in general. The solar

mixing angle becomes maximal for A, B ! 0, so the
breaking scale needs to be close to the bare mass terms
to lower �12. A large �13 in agreement with recent results
also forbids a too low breaking scale, meaning that the
breaking parameter should be at least " ’ 0:1 in our mini-
mal model. For the scatter plots in Fig. 1 (right panel)

we generated random Yukawa couplings jðmDÞijj � 1,

jðAÞijj, jðBÞijj � " and jðXÞijj> 1. Except for the

approximate �L symmetry in the limit Aij, Bij 	 Xmn

(and the corresponding inverted hierarchy), there is no
further structure in M�, so we refrain from any analytical
discussion.
We conclude the section by stressing once more that the

spontaneously broken Bþ 3 �L symmetry can provide mass
matrices for either normal or inverted hierarchy, just de-
pending on whether the number of ‘‘active’’ right-handed
neutrinos is odd or even, respectively. Since anomaly
cancellation requires an odd number of Ni—at least for
physically interesting charge assignments—the decoupling
to get IH needs to be imposed by additional symmetries,
which can easily lead to stable dark matter candidates.
While we discussed only the simplest decoupling symme-
try Z2, one can of course implement a more elaborate
structure on this subsector.

IV. GAUGE SECTOR

In this section we will briefly discuss constraints on the
neutral gauge boson of the gauged Bþ 3 �L symmetry and
possible detection prospects. The presented results are
independent of the neutrino sector. Extending the gauge
group of the SM GSM � SUð3ÞC � SUð2ÞL �Uð1ÞY by
Uð1Þ0 leads to possible Z� Z0 mixing, either from the
VEVof a scalar in a nontrivial representation of SUð2ÞL �
Uð1ÞY and Uð1Þ0 or via the kinetic mixing angle 	 that
connects the Uð1Þ field strength tensors [26]. The relevant
Lagrange density L ¼ LSM þLZ0 þLmix after breaking
SUð2ÞL �Uð1ÞY �Uð1Þ0 to Uð1ÞEM then consists of:

LSM ¼ � 1

4
B̂��B̂

�� � 1

4
Ŵa

��Ŵ
a�� þ 1

2
M̂2

ZẐ�Ẑ
� � ê

ĉW
j�Y B̂� � ê

ŝW
ja�SUð2ÞŴ

a
�;

LZ0 ¼ � 1

4
Ẑ0
��Ẑ

0�� þ 1

2
M̂2

Z0Ẑ0
�Ẑ

0� � ĝ0j0�Ẑ0
�;

Lmix ¼ � sin	

2
Ẑ0��B̂�� þ 
M̂2Ẑ0

�Ẑ
�: (11)

Since the above gauge eigenstates have a nondiagonal
mass matrix and kinetic terms, the physical mass eigen-
states are linear combinations of the hatted fields. Setting
for simplicity the kinetic mixing angle 	 to zero, the
transformation to the mass eigenstates Z1 and Z2 takes
the simple form

Z1

Z2

 !
¼ cos� sin�

� sin� cos�

 !
Ẑ

Ẑ0

 !
;

tan2� ¼ 2
M̂2

M̂2
Z � M̂2

Z0
; (12)

which modifies the couplings of the gauge bosons to
fermions (see Ref. [27] for more details). Using a modified
version of Global Analysis of Particle Properties [28] to fit

our model with an arbitrary scalar sector we obtain the
95% confidence level (C.L.) limit jg0 sin�j & 10�4 (see
Fig. 2) from electroweak precision data. Constraints for
the mass MZ0 are obtained from collider searches, as the
gauge boson of Uð1ÞBþ3 �L couples directly to first-
generation particles. LEP-2 searches for new physics give
a stronger limit than Tevatron, namelyMZ0=g0 * 13:5 TeV
at 95% C.L. [29], because the Z0 couples strongly to the
electron (Y0ðeÞ ¼ 3).
In the following we will ignore any Z� Z0 mixing, be it

mass mixing (not induced at tree-level in our minimal
model) or kinetic mixing; with Lmix ¼ 0 we can omit all
the hats of the parameters in Eq. (11).
With nN heavy neutrinos below MZ0—and with charges

jY0ðNÞj ¼ 3—we can calculate the Z0 width:
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�ðZ0 ! f �fÞ ’ g02

12�
MZ0 ð3Y02

� =2þ nNY
02
N=2þ 3Y02

‘ þ 3NcY
02
u þ 3NcY

02
d Þ

¼ g02

24�
MZ0 ð85þ 27nNÞ; (13)

with the number of colors Nc ¼ 3. The main contribution
comes from the leptons, because of the largeBþ 3 �L charge,
which can be used to distinguish this model from the similar
B� L model at colliders. The prospects of detecting the
heavy Z0 at the LHC were discussed in Ref. [14]; for g0 ¼
0:1 the final stage of the LHC (

ffiffiffi
s

p ¼ 14 TeV, integrated
luminosity L ’ 100 fb�1) can probe the model up toMZ0 ’
3:6 TeV via the dilepton Z0 resonance.

We note that the nonuniversal lepton coupling ofBþ 3 �L
gives rise to nonstandard neutrino interactions (NSIs),
which are usually parameterized by the nonrenormalizable
effective Lagrangian

L eff
NSI ¼ �2

ffiffiffi
2

p
GF"

fP
��½ �f��Pf
½ �����PL��
; (14)

in our case obtained upon integrating out the heavy gauge
boson Z0. Without going into details, we can estimate

"�� � v2
EW

ðMZ0=g0Þ2 diagð1;�1;�1Þ

¼ v2
EW

ðMZ0=g0Þ2 diagð2; 0; 0Þ þ v2
EW

ðMZ0=g0Þ2 diagð1; 1; 1Þ:

(15)

The magnitude is very small ("� 10�4) and since the term
proportional to the identity matrix does not affect oscilla-

tions, we actually only induce "ee, i.e. modify the usual
matter potential, which is hard to measure.

V. MINIMAL SCALAR SECTOR

In this section we will discuss the scalar sector of the
theory, which is again independent on the neutrino physics.
In addition to the usual scalar doublet H � ð1; 2;þ1Þð0Þ of
the SM, we introduce a complex scalar S� ð1; 1; 0Þðþ6Þ
that will break the Bþ 3 �L symmetry spontaneously. The
discussion is analogous to the highly discussed minimal
B� L scalar sector [30]. The potential has the simple form

VðH; SÞ ¼ ��2
1jHj2 þ �1jHj4 ��2

2jSj2 þ �2jSj4
þ 
jSj2jHj2; (16)

where we assume �2
i > 0 to generate VEVs v � ffiffiffi

2
p jhHij

and vS � ffiffiffi
2

p jhSij. The positivity of the potential gives the
constraints �i > 0 and �1�2 > 
2=4. In unitary gauge the
charged component of H is absorbed by W�, the pseudo-
scalar neutral component by Z, and the pseudoscalar com-
ponent of S by Z0, hence we may go to the physical basis

H ! ð0; ðhþ vÞ= ffiffiffi
2

p ÞT , S ! ðsþ vSÞ=
ffiffiffi
2

p
, which after the

replacement of �2
i by the VEVs gives the potential:

Vðh; sÞ ¼ �1v
2h2 þ �2v

2
Ss

2 þ 
vvShs

þ �1vh
3 þ �1

4
h4 þ �2vSs

3 þ �2

4
s4 þ 


4
h2s2 þ 


2
vhs2 þ 


2
vSh

2s:

(17)

The resulting mass matrix for the neutral scalars h and s,

M2
scalar ¼

2�1v
2 
vvS


vvS 2�2v
2
S

 !
; (18)

leads to the mass eigenstates 1 and 2:

1

2

 !
¼ cos� � sin�

sin� cos�

 !
h

s

 !
;

tan2� ¼ 
vvS

�2v
2
S � �1v

2
; (19)

with the masses m2
1;2 ¼ �1v

2 þ �2v
2
S �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2v
2
S � �1v

2Þ2 þ 
2v2
Sv

2
q

. In the limit vS � v we

obtain � ’ 
v=2�2vS and m2
1 ’ 2ð�1 � 
2=4�2Þv2, so

the Higgs mass is reduced compared to the SM.
The LEP-2 bounds on MZ0=g0 translate into the con-

straint vS > 2:3 TeV, which is to be compared to the VEV

LEP 2

2 1 0 1 2

5

10

15

20

g' sin 10 4

M
2

g'
T

eV

FIG. 2 (color online). 	2 contours (90%, 95% and 99% C.L.)
in the M2- sinð�Þ plane. The horizontal dashed line is the
95% C.L. lower limit from LEP-2 [29].
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in minimal B� L models vB�L > 3–3:5 TeV. The masses
of Z0,2 and 	 can of course be smaller, since they involve
additional coupling constants (that are completely inde-
pendent of each other):

MZ0 ¼ 6g0vS; m2 ’ ms ’
ffiffiffiffiffiffiffiffi
2�2

p
vS;

M	 ¼ ffiffiffi
2

p
Y	vS: (20)

Seeing as the VEV vS is connected to the seesaw scale
[Eqs. (5) and (9)] one could also consider vS � 1015 GeV,
which would make Z0 and s pretty much impossible to
observe. We will, therefore, focus on the low-energy end of
the seesaw scale, which can lead to observable effects. The
arising effects are nearly identical to the highly discussed
minimal B� L scalar sector [30], the main difference
being a larger Z0 coupling to leptons, right-handed neutri-
nos and the scalar s; for these particles, B� L results can
be translated via g0 ! 3g0, while the coupling strength to
quarks does not change. A future lepton collider would,
therefore, be the ideal machine to test this model and
distinguish it from B� L by the decay products of the Z0
resonance.

VI. DARK MATTER

As we have seen in the previous sections, our model
leads to a stable right-handed neutrino 	 which interacts
with Z0 and the i via the Lagrangian from Eq. (8). The
measured relic density [31] �	h

2 ¼ 0:1123� 0:0035 can

be obtained around either of the scalar s-channel reso-
nances M	 ’ mi=2, but for the 1-resonance one needs a

large mixing angle �. Choosing parameters that make the
model testable at LHC and direct DM detection experi-
ments—M	 � 10–100 GeV, m2 � 100 GeV—can lead to

viable DM relic abundance in complete analogy to
Ref. [32], where a Z2 symmetry is added to the minimal
B� L model to make one of the right-handed neutrinos

stable. We stress, however, that theZ2 in our model was not
introduced to make a particle stable, but to generate the
right flavor symmetry in the neutrino mass matrix. The
stability of 	 is in that sense just a welcome accident.3 We
show the relic abundance of 	 as a function of its mass and
the h-s mixing angle � in Fig. 3, as calculated with a
modified version of microMEGAs [33]. There is no differ-
ence between the Bþ 3 �L model and the B� L model in
the region M	 	 MZ0 of parameter space, because the Z0

plays a subdominant role for the properties of the scalars,
so we refer to Ref. [32] for exact formulas of the relevant
cross sections and discussions of direct detection signals,
etc. Additional work on B� L in connection with dark
matter has been done in Refs. [16,34].
Values around M	 � 100 GeV are an interesting limit-

ing case for collider searches. However, since 	, Ni, Z
0,

and 2 all obtain their masses from Bþ 3 �L breaking (20),
we naturally would expect their masses to be similar:

MZ0 �m2 �M	 �MNi
: (21)

To satisfy collider constraints and give a valid seesaw
mechanism one needs the scale for these masses to be
above 1–10 TeV, but it can of course be even higher. A
valid relic density can be obtained yet again around the 2

resonance, since we expect 	 and 2 to have similar
masses anyway. The important annihilation channels are
then 		 ! leptons, WW, ZZ and 11. The latter three
have a fixed ratio at the resonance, because for m2 � m1,
MZ one calculates
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sin 0.5
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FIG. 3 (color online). Left panel: Relic density of 	 for the parameters m1 ¼ 125 GeV, m2 ¼ 500 GeV, vS ¼ 2:3 TeV, g0 ¼ 0:25,
N1 ¼ 1:9 TeV, N2 ¼ 2:5 TeV, and sin� ¼ 0:5 (blue), 0.3 (red) and 0.1 (black). This puts the 1, 2 and Z0 resonances at �60 GeV,
250 GeVand 1.7 TeV, respectively. The green band shows the 3� range measured by WMAP. Right panel: Relative contribution to the
relic density by the processes 		 ! q �q (sum over all quarks), leptons (including neutrinos), ZZ, etc., for sin� ¼ 0:3.

3Note that we need an exact Z2 for dark matter, while a valid
IH solution could also work with a broken Z2. This would,
however, necessitate a more complicated model, so Occam’s
razor suggests an exact Z2.
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�ð2 ! WþW�Þ ’ 2�ð2 ! ZZÞ ’ 2�ð2 ! 11Þ

’ m3
2

16�v2
sin2�: (22)

For M	 ’ m2=2>mt there is of course the additional

important decay into top quarks. However, for a DM

candidate this heavy, we also have a Z0 resonance M	 ’
MZ0=2 independent of the mixing angle �. Because of the
different coupling of our Z0 compared to B� L, this Z0
resonance is particularly interesting to distinguish the
models. The interactions between fermions and Z0 are
given by

L � g0Z0
�

�
� 3

2
�	���5	þ 1

3

X
q

�q��q� 3�e��eþ 3 �����

þ 3

2
��e�

�ð��5Þ�e � 3

2
����

�ð��5Þ�� þ 3

2
�N1�

�ðþ�5ÞN1 þ . . .

�
; (23)

where 	 and the neutrinos are written as Majorana fermi-
ons. The structure of the effective operators �	���5	 �f��f
upon integrating out Z0 leads to spin-independent (SI) and
spin-dependent (SD) interactions in the nonrelativistic
limit, suppressed by v2 (velocity) and q2 (momentum
transfer), respectively, as discussed in Ref. [35].

Around the Z0 resonance, the relevant processes 		 !
Z0 ! f �f lead to the thermally averaged cross section
h�vi ’ aþ bv2 with a ¼ 0 and

b ’ 2g04

3�

M2
	

ðM2
Z0 � 4M2

	Þ2 þ �2
Z0M2

Z0

X
f

Y02
f Y

02
	 ; (24)

where we neglected the fermion masses for simplicity. This
can be used to calculate the freeze-out temperature and the
relic density �	h

2 � 1=b [32] of 	. Because of the larger

coupling of Z0 to leptons compared to B� L, the annihi-

lation channels around the Z0 resonance are mainly ‘ �‘, � ��,
and also NiNi if MNi

& MZ0=2. At this point it matters

whether we take 	 from Sec. III B or Sec. III C, because the
models differ in the number of heavy neutrinos. However,

additional right-handed neutrinos do not change the dis-
cussion qualitatively, so we will perform our calculations
with nN ¼ 3 (Sec. III B) for simplicity. In Fig. 3 we already
showed the relic density of 	 and the contributing pro-
cesses around the Z0 resonance.
While it is clear from Fig. 3 that the Z0 channel can lead

to the proper relic density (even for sin� ¼ 0), direct
detection signals from Z0 interactions are difficult to mea-
sure due to the Lorentz structure of the effective operator
�	���5	 �f��f. Since direct detection occurs via t-channel

Z0 exchange, there is no resonance boost like in the anni-
hilation case. The SD operators �	���5	 �f���5f—which

do not suffer from q2 or v2 suppression—can only be
obtained via electroweak loops or Z� Z0 mixing, which
once again suppresses them. Correspondingly, direct de-
tection experiments will not be sensitive to Z0 exchange, so
the cross section will be dominated by the scalar-induced
operator �		 �qq, which gives SI cross sections proportional
to sin22�M2

	=v
2
S. We show the cross sections for 	p ! 	p

in Fig. 4 (as calculated with microMEGAs) for the same
parameters as in Fig. 3. The right relic density can be
obtained, for example, at the 2 resonance with M	 ’
225 GeV, which gives a cross section �p=sin

22� ’ 2:5�
10�9 pb. This evades current XENON100 bounds [36] but
can be probed in future experiments like XENON1T [32].
We note that a supersymmetric extension of this model

might result in � 	 1—making the Z0 resonance crucial
for relic abundance—similar to a supersymmetric exten-
sion of the B� Lmodel of Ref. [32] discussed in Ref. [16].
In any case, dark matter experiments will not be able to

distinguish between the various B�P
‘x‘L‘ models. This

has to be done in collider experiments or with precision
observables such as magnetic moments.

VII. CONCLUSION

We presented the minimal model for a local
Bþ 3ðLe � L� � L�Þ symmetry. Direct detection limits

demand a breaking scale of at least 1–10 TeVand to cancel
anomalies we need to introduce right-handed neutrinos.
Correspondingly, we identify the breaking scale with
the seesaw scale (in fact, slightly below) and obtain

XENON100

sin 0.1
sin 0.3
sin 0.5

100 200 500 1000 2000 5000

10 11

10 10

10 9

10 8

10 7

10 6

M GeV

p
p

b

FIG. 4 (color online). Spin-independent cross section of 	
with a proton with the same parameters as Fig. 3, i.e. m1 ¼
125 GeV, m2 ¼ 500 GeV, vS ¼ 2:3 TeV, g0 ¼ 0:25, N1 ¼
1:9 TeV, N2 ¼ 2:5 TeV, and sin� ¼ 0:5 (blue line), 0.3 (red,
dashed line) and 0.1 (black, dotted line). Also shown is the
XENON100 90% C.L. exclusion from Ref. [36].
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low-energy neutrino mass matrices that approximately
conserve Le or Le � L� � L�, which are the championed

symmetries behind normal and inverted hierarchy, respec-
tively. The latter can be obtained if a Z2 symmetry is added
to the model, resulting in a stable, heavy right-handed
neutrino which serves as dark matter. We stress that Z2 is
introduced to obtain the flavor structure associated with the
inverted hierarchy; the DM stability is somewhat acciden-
tal. The heavy gauge boson Z0 and the leftover scalar from
spontaneous Bþ 3ðLe � L� � L�Þ breaking are the only

mediators to the DM sector and are in principle observable
at the LHC. Depending on the number nN of right-handed
neutrinos, our model can produce �13 ¼ 0 (nN ¼ 3 plus
Z2) or �13 � 0 (nN  5 (odd) plus Z2), making �13 a
parameter to test the number of right-handed neutrinos in
our model.

The dark matter candidate 	 interacts with the standard
model via scalar mixing and Z0; the measured relic abun-
dance can be obtained around any of the s-channel reso-
nances M	 ’ mi=2, MZ0=2. The Z0 contribution to direct

detection measurements is highly suppressed due to the
Lorentz structure of the effective operator �	���5	 �f��f,

so direct detection cross sections are dominated by scalar
exchange and can be probed in future experiments.

Many of the phenomenological aspects of our models
are very similar to previously discussed B� L analyses.
However, the fact that our modified gauge group includes
flavor information, makes it possible to provide predictions
on neutrino mixing and mass spectrum, which is impos-
sible in theories based on B� L.
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APPENDIX A: TRIANGLE ANOMALIES

We introduce nN right-handed neutrinos Ni with
Uð1ÞB�xeLe�x�L��x�L�

quantum numbers Y0ðNiÞ. The gauge
group representations of the first-generation fermions are
shown in Table II for the second and third generation xe has
to be replaced by x� and x�, respectively.

Defining for simplicity Y0 � B� xeLe � x�L� � x�L�

and Uð1Þ0 � Uð1ÞY0 we can calculate the triangle anoma-
lies of the model [9,37]:

Uð1Þ0 � grav� grav:
X

Y0 ¼ NgNc

�
2

�
1

3

�
�
�
1

3

�
�
�
1

3

��
þX

‘

ðx‘ � 2 � x‘Þ þ
X
i

Y0ðNc
i Þ

¼ X
i

Y0ðNc
i Þ �

X
‘

x‘;

Uð1Þ0 �Uð1Þ0 �Uð1Þ0: XY03 ¼ X
i

Y03ðNc
i Þ �

X
‘

x3‘;

Uð1Þ0 �Uð1Þ0 �Uð1ÞY:
X

Y02Y ¼ NgNc

�
2

�
1

3

�
2
�
1

3

�
þ
�
� 1

3

�
2
�
� 4

3

�
þ
�
� 1

3

�
2
�
2

3

��
¼ 0;

Uð1Þ0 �Uð1ÞY �Uð1ÞY :
X

Y0Y2 ¼ NgNc

�
2

�
1

3

��
1

3

�
2 þ

�
� 1

3

��
� 4

3

�
2 þ

�
� 1

3

��
2

3

�
2
�

þX
‘

ð22x‘ � 2x‘Þ ¼ �2NgNc

�
1

3

�
þ 2

X
‘

x‘;

Uð1Þ0 � SUð3Þ � SUð3Þ: X
3;�3

Y0 ¼ NgNc

�
2

�
1

3

�
�
�
1

3

�
�
�
1

3

��
¼ 0;

Uð1Þ0 � SUð2Þ � SUð2Þ: X
2

Y0 ¼ 2NgNc

�
1

3

�
� 2

X
‘

x‘; (A1)

where we introduced the number of generations Ng ¼ 3 and the number of colors Nc ¼ 3. Thus the conditions for
anomaly-freedom are

TABLE II. SUð3ÞC � SUð2ÞL �Uð1ÞY �Uð1ÞB�xeLe�x�L��x�L�
representations of left-handed

SM fermions (only first-generation shown) and right-handed neutrinos Ni.

Le ¼ �
e

� �
L
� ð1; 2;�1Þð�xeÞ ecR � ð1; 1;þ2ÞðxeÞ Nc

i � ð1; 1; 0ÞðY0ðNc
i ÞÞ

Qu
L ¼ u

d

� �
L
� ð3; 2;þ 1

3Þðþ 1
3Þ ucR � ð�3; 1;� 4

3Þð� 1
3Þ dcR � ð�3; 1;þ 2

3Þð� 1
3Þ
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XnN
i

Y0ðNc
i Þ ¼

X
‘

x‘ ¼ 3; and
X
i

Y03ðNc
i Þ ¼

X
‘

x3‘:

(A2)

In this paper we discuss the choice xe ¼ �x� ¼ �x� ¼
�3, which leads to the conditions for the right-handed
neutrino charges

XnN
i

Y0ðNiÞ ¼ �3; and
X
i

Y03ðNiÞ ¼ �33: (A3)

APPENDIX B: UNSTABLE DARK MATTER
FROM Z2 BREAKING

We will discuss the connection between the lifetime of
	 � N3 and �13 in the model of Sec. III B, as they are both
connected to Z2 breaking. Z2 breaking in MR does not
induce a nonzero �13, so we assume there are breaking
terms in mD:

4

L � 
 ���	þ " ���	þ H:c:; (B1)

where 
 and " carry no Bþ 3 �L charge, wlog. The mass
matrix M� from Eq. (9) gets perturbed by

�M ¼ �
0 0 0

� 
2=M	 
"=M	

� � "2=M	

0
BB@

1
CCA: (B2)

The lowest neutrino mass is no longer zero but rather ’
ð
� "Þ2=2M	, and furthermore

sin�13 ’ 
2 � "2

M	

Rffiffiffiffiffiffi
18

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�m2

31j
q ; (B3)

with R � �m2
21=�m

2
31 ’ 0:03.

The Lagrangian (B1) generates the 	 decay via W-loop
(Fig. 5) and tree-level 	 ! �Z ! 3�, the latter of which
dominates and can be estimated via

�ð	 ! 3�Þ ’ G2
F

192�3

�



M	

�
2
M5

	; (B4)

where we set " ¼ 0 for simplicity. The decay width is,
therefore, linear in sin�13:

�ð	 ! 3�Þ ’ ffiffiffiffiffiffi
18

p G2
F

192�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�m2

31j
q

R
M4

	 sin�13

’ sin�13

�
M	

½100
GeV
�
4
10�14 GeV; (B5)

resulting in a lifetime compared to the age of the Universe,

�	=�Universe ’ 10�28

sin�13

�
100 GeV

M	

�
4
: (B6)

Even for the smallest currently allowed sin�13 ’ 0:03 (at
3�) it is not possible to make 	 a sufficiently long-lived
cold dark matter candidate.

APPENDIX C: MAJORANA INTERACTIONS

Here we provide some details on the rewriting of the
Lagrangian of the right-handed Dirac fermion N3 in terms
of a Majorana fermion 	. After spontaneous breaking of
Bþ 3 �L we have

LN3
¼ i �N3�

�ð@� � ið�3Þg0Z0
�ÞPRN3 � Y	S �Nc

3PRN3 � Y	
�S �N3PLN

c
3

¼ i �N3�
�ð@� � ið�3Þg0Z0

�ÞPRN3 � Y	

vSffiffiffi
2

p ð �Nc
3PRN3 þ �N3PLN

c
3Þ
�
1þ s

vS

�
: (C1)

Introducing two Majorana fields  ¼ c and 	 ¼ 	c so
that N3 ¼ PLþ PR	 gives

L 	 ¼ i

2
	TC��@�	� 3

2
g0Z0

�	
TC���5	

� Y	

vSffiffiffi
2

p 	TC	
�
1þ s

vS

�
; (C2)

where we omitted the noninteracting  and used the
Majorana identities5

�	��	 ¼ 0 ¼ �	���
5@�	� ð@� �	Þ���

5	; (C3)

as well as the general equations ½C; �5
 ¼ 0, �C ¼ C and
�PL;R ¼ PR;L. Because of the Majorana condition we also
have 	TC ¼ �	. Reading off the mass m	=2 ¼ Y	vS=

ffiffiffi
2

p

FIG. 5. Decay of the dark matter candidate 	 due to small Z2

breaking " in the Dirac mass matrix mD.

4We do not specify the origin of these parameters; they can be
obtained with an additional Higgs doublet or as effective opera-
tors from Z2 breaking at the Planck scale. In the former case the
additional scalars might contribute to the width of 	.

5It proves convenient to add a total derivative to the
Lagrangian to replace the kinetic term �N3 6@N3 by 1

2 ð �N3 6@N3 �ð@� �N3Þ��N3Þ.
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we note that 	 is to be treated as a real field when computing functional derivatives (additional factor of 2).
A similar analysis can be performed for the neutrinos (active and right-handed), with the additional complication of

mixing (via seesaw). The only important part is actually the �5 in the Z
0 and Z interactions, which leads to spin-dependent

scattering. For the active neutrinos the �5 stems from a left-handed projector, so we end up with

L � þ 1

2
ðþ3g0ÞZ0

� ��e�
�ð��5Þ�e þ 1

2
ð�3g0ÞZ0

� ����
�ð��5Þ��

þ 1

2
ðþ3g0ÞZ0

�
�N1�

�ðþ�5ÞN1 þ 1

2
ð�3g0ÞZ0

�
�N2�

�ðþ�5ÞN2; (C4)

etc., where all fermions are Majorana particles.
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