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We extend a covariant model, tested before in the spacelike region for the physical and lattice QCD

regimes, to a calculation of the ��N ! � reaction in the timelike region, where the square of the

transfered momentum, q2, is positive (q2 > 0). We estimate the Dalitz decay � ! Neþe� and the �

distribution mass distribution function. The results presented here can be used to simulate the

NN ! NNeþe� reactions at moderate beam kinetic energies.
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I. INTRODUCTION

Electromagnetic reactions which induce excited states
of the nucleon are important tools to study hadron structure
and define an intense activity at modern accelerator facili-
ties, namely at Mainz Microtron, Bates (Massachusetts
Institute of Technology), and Jefferson Lab. Enormous
progress in these experimental studies has been achieved
in the recent years, leading to very accurate sets of data on
��N ! N� excitation reactions, for several N� resonances
at low and high Q2 (with Q2 ¼ �q2) [1–3]. This wealth of
new experimental data establishes new challenges for the
theoretical models and calculations, since in the impossi-
bility of solving exact QCD in the momentum transfer
regime of Q2 ¼ 0–10 GeV2, reliable effective and phe-
nomenological approaches are unavoidable.

In this context, we developed a covariant constituent
quark model for the baryons within the spectator frame-
work [4] for a quark-diquark system [5–11]. Because the
construction of the electromagnetic current is based upon
the vector meson dominance mechanism, it was possible to
apply the model also to the lattice QCD regime in a domain
of unphysical large pion masses [8,12,13]. The model is
constrained by the physical data for the nucleon and
��N ! � data [5,7,12] as well as the ��N ! � lattice
QCD data [12]. The evidence of the predictive power of the
model comes from its results, obtained without further
parameter tuning, for the form factors of the reactions
��N ! �ð1600Þ [14] as well as the reaction ��N ! N�,
where N� can be first radial excitation of the nucleon
N�ð1440Þ, and the negative parity partner of the nucleon
N�ð1535Þ [15–17]. Moreover, the extension of the model to
the strangeness sector was successful in the description of
the baryon octet [18] and baryon decuplet form factors [8].
All parameters in the model have a straightforward inter-
pretation: They give, for instance, the momentum scales
that determine the extension of the particle, and the cou-
pling of the photon with the constituent quark.

Importantly, the information extracted from the electro-
magnetic excitation reactions is also relevant for the inter-
pretation of production processes induced by strong

probes. Of particular interest is the study of NN collisions
in elementary nucleon-nucleon reactions and in the nuclear
medium [19–26]. In this sector, the HADES experiments of
heavy-ion collisions in the 1–2 GeV range play a unique
role in accessing nuclear medium modifications at inter-
mediate and high energies [26–28]. Furthermore, in the
near future, the Facility for Antiprotons and Ions Research
facility will expand these experiments further to a higher-
energy regime [19,21,23,24]. In both cases, independently
of the energy domain under scrutiny, the di-lepton channel,
the first of which is the lowmass di-electron channel, is one
of the interesting production channels from heavy-ion
collisions expected to signal in-medium behavior. It is
crucial for the interpretation of both present and planned
di-lepton production data from heavy-ion experiments at
intermediate energies to have a reliable baseline made of
experimental reference from nucleon-nucleon scattering—
one of the objectives of the HADES experiments.
Nonetheless, one also needs an extension of the

knowledge gained from the experimental studies on ele-
mentary electromagnetic transitions, to the timelike region
(Q2 ¼ �q2 < 0), since the description of the NN !
NNeþe� reaction involves baryon electromagnetic transi-
tion form factors in that kinematic regime [19,21,24].
Natural requirements of this extension is that it is well-
constrained, appears to be robust when tested by its pre-
dictions, and allows a direct physical interpretation of the
parameters involved.
Therefore, in this work we extend our form factor cal-

culations for the ��N ! � reaction to the timelike region
and calculate the partial width decays � ! �N and
� ! eþe�N. We follow the procedure of the standard
simulation packages that treat the low mass di-electron
production data as a Dalitz decay following a resonance
excitation [19]. We note, in particular, that according to
Ref. [19], the fraction of di-lepton events compared to the
hadronic channels depends significantly on the resonance
mass W and on the details of the dependence on q2 of the
transition form factors, two features that call for studies
such as the one we describe here, where such sensitivities
are investigated.
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We start with the valence quark model presented in
Ref. [12] for the ��N ! � reaction. That model has two
important ingredients: the contributions from the quark
core and a contribution of the pion cloud dressing. In the
quark core component, the � system has a quark-diquark
effective structure with an S-wave orbital state and small
D-wave admixtures [6,7,12]. We take here only the domi-
nant S-state contribution which is largely responsible for
the magnetic dipole transition form factor G�

M, because
D-wave states give only small contributions to the � wave
function (�1%) [12]. Since the electric and Coulomb
quadrupole form factors are determined by the D-state
admixture coefficients [7], in the S-state approximation
those two subleading form factors become identically
zero. This is a reasonable approximation because they are
indeed small when compared with G�

M [6,29]. To the quark
core contributions, it is necessary to add contributions from
the pion cloud in order to describe the reaction in the
physical regime for small momentum transfer [6,7]. An
important feature of our model is that it describes the
��N ! � reaction in the physical and lattice QCD regimes.

The extension of the model to the timelike region pre-
sented here is done directly by extrapolating the valence
quark model [6], fixed in the spacelike region, to the kine-
matic conditions of the timelike region. This means that an
arbitrary mass W of the � is taken to replace its physical
mass value. We also need to generalize the photon-quark
current to the timelike region while keeping its vector
meson dominance parametrization [5,6]. This is done by
adding a finite width to the vector meson poles of the
current. As for the pion cloud contributions, we study
two different extensions to the timelike region. Although
similar in the spacelike regime [6,7], they have very differ-
ent behaviors in the timelike region. From the obtained
results, we conclude that the model which includes the
�PT constraints is favored.

This work is organized in the following way: in Sec. II,
we introduce the formalism that relates the � Dalitz decay
with the ��N ! � electromagnetic form factors; in
Sec. III, the spectator quark model is introduced and the
explicit expressions for the form factors are presented; in
Sec. IV, we show our results for the decay widths of
� ! �N and � ! eþe�N, and for the � mass distribu-
tion, as a function of W; finally, in Sec. V, we summarize
and draw our conclusions.

II. BREIT-WIGNER DISTRIBUTION
FOR THE � RESONANCE

In the simulations of NN reactions, one has to take into
account the intermediate excitations of the nucleon, and
the � (spin and isospin 3=2) resonance is the first relevant
one [19–22,24,26]. For that purpose, we calculated the
contribution of the �ð1232Þ state to the cross-section, for
an arbitrary resonance mass W which can differ from the
resonance pole (defining the mass M�). The most usual

ansatz is the relativistic Breit-Wigner distribution
[19,30,31], given by

g�ðWÞ ¼ A
W2�totðWÞ

ðW2 �M2
�Þ2 þW2½�totðWÞ�2 ; (2.1)

where �tot is the total width dependent of W and A is a
normalization factor determined by the conditionR
dWg�ðWÞ ¼ 1. The total width can be decomposed into

the contributions from the independent decay channels [19]:

�totðWÞ ¼ ��NðWÞ þ ��NðWÞ þ �eþe�NðWÞ; (2.2)

respectively, for the decays � ! �N, � ! �N (� repre-
sents a real photon), and � ! eþe�N.
The dominant process is the decay � ! �N, which can

be described by the well-known ansatz [19,31]

��NðWÞ ¼ M�

W

�
q�ðWÞ
q�ðM�Þ

�
3
�
�ðWÞ
�ðM�Þ

�
2
�0
�N; (2.3)

where q�ðWÞ is the pion momentum for the decay of a �
with massW, and �0

�N is the � ! �N partial width for the
physical � [�0

�N � ��NðM�Þ]. The function �ðWÞ is a
phenomenological function given by

�ðWÞ ¼ �2

�2 þ q2�ðWÞ ; (2.4)

where � is a cutoff parameter. Following Refs. [19,31] we
use � ¼ 300 MeV.
As for the components ��NðWÞ and �eþe�NðWÞ, they

will be determined by the � Dalitz decay, as described
next.

A. � Dalitz decay

The � Dalitz decay can be expressed in terms of the
function ���Nðq;WÞ, where ��N is a short notation for the

reaction � ! ��N, and �� represents a virtual photon,
with squared momentum q2 � 0 (i.e., timelike). The vari-

able q is defined by q ¼ ffiffiffiffiffi
q2

p
. The case q2 ¼ 0 corresponds

to the real photon limit.
The ���Nðq;WÞ function can be written [19,32] as

���Nðq;WÞ ¼ �

16

ðW þMÞ2
M2W3

ffiffiffiffiffiffiffiffiffiffiffiffi
yþy�

p
y�jGTðq2;WÞj2;

(2.5)

whereM is the nucleon mass, � ’ 1=137 the fine-structure
constant, and

y� ¼ ðW �MÞ2 � q2: (2.6)

The function jGTðq2;WÞj depends on the ��N ! � tran-
sition form factors: G�

M (magnetic dipole), G�
E (electric

quadrupole), and G�
C (Coulomb quadrupole) [33], and is

given by
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jGTðq2;WÞj2 ¼ jG�
Mðq2;WÞj2 þ 3jG�

Eðq2;WÞj2

þ q2

2W2
jG�

Cðq2;WÞj2: (2.7)

In this equation, we note that the contribution of each form
factor will always be real and positive, even if the form
factors are complex.

Eq. (2.5) allows the calculation of any � ! ��N decay,
once a model for the ��N ! � form factors in the timelike
region is provided. Note, however, that in Eq. (2.7) the
form factors can be directly measured only for W ¼ M�.
Consequently, any estimation of the function ���Nðq;WÞ
has to be done using models that can be constrained only in
the limit W ¼ M�. The implication is that such models
should be largely tested for their predictions in other differ-
ent conditions. Another detail in Eq. (2.5) is that y� van-
ishes for q2 ¼ ðW �MÞ2. As we discuss later, this point
corresponds also to the upper limit allowed to q2 for the
reaction to occur.

B. Explicit expressions for ��NðWÞ and �eþe�NðWÞ
We present now the expressions for ��NðWÞ and

�eþe�NðWÞ. The first function is given by Eq. (2.5) for
the q2 ¼ 0 limit [19,31,34]

��NðWÞ ¼ ���Nð0;WÞ: (2.8)

As for �eþe�NðWÞ, it will be determined by integrating the
function

�0
eþe�Nðq;WÞ � d�eþe�N

dq
ðq;WÞ; (2.9)

according with

�eþe�NðWÞ ¼
Z W�M

2me

�0
eþe�Nðq;WÞdq: (2.10)

Note that the integration holds for the interval 4m2
e � q2 �

ðW �MÞ2, where me is the electron mass. In this case, the
lowest squared momentum corresponds to q2 ¼ 4m2

e, the
minimum possible value for a physical eþe� pair. The
upper limit is determined by the maximum value for q2

needed for the � with mass W to decay into a nucleon
(mass M), and is discussed in the Appendix.

The function �0
eþe�Nðq;WÞ can be determined [19,31] by

�0
eþe�Nðq;WÞ ¼ 2�

3�q
���Nðq;WÞ: (2.11)

The function �0
eþe�Nðq;WÞ diverges when q ! 0, due to

the presence of 1=q. However, this is not a problem, since
in Eq. (2.10) the lower limit of the integration variable q
(given by 2me) prevents the integral from diverging.

To proceed from here, the calculation of the partial
widths ��NðWÞ and �eþe�NðWÞ requires a model for the

��N ! � form factors in the timelike region, for an arbi-
trary � mass W. In the past, at least three models were

proposed to this reaction: constant form factors [19,20], a
two-component quark model (model with valence and pion
cloud components) [19,35–38], and a vector meson domi-
nance model from Ref. [34]. In the next section, we pro-
pose a new model based on the spectator formalism. This
model also can be described as a two-component quark
model. What is specific about our model is that, in addition
to the constraints from the spacelike physical data, our
model was also constrained by the spacelike lattice QCD
data [12].

III. SPECTATOR QUARK MODEL

We will focus now on the covariant spectator quark
model for the ��N ! � reaction [6,7,12]. Here we will
describe briefly the properties of the model and summarize
the important results. In its simple version, when the
nucleon and � are both approximated by an S-state con-
figuration for the quark-diquark system, the transition form
factors are restricted to the dominant magnetic dipole form
factor and is decomposed [6] into

G�
MðQ2;WÞ ¼ GB

MðQ2;WÞ þG�
MðQ2;WÞ; (3.1)

where GB
M is the contribution of the quark core and G�

M

represents the effect of the pion cloud. In the previous
equation, W replaces M�, the physical � mass used in
the previous applications [6,7]. Because our original model
and formulas were developed in the spacelike region, we
maintain here the use of the variable Q2, which stands for
�q2. Explicitly, GB

M is written as [6]

GB
MðQ2;WÞ ¼ 8

3
ffiffiffi
3

p M

MþW
fvðQ2ÞIðQ2Þ; (3.2)

where

I ðQ2Þ ¼
Z
k
c �ðPþ; kÞc NðP�; kÞ (3.3)

is the overlap integral of the nucleon and � radial wave
functions which depend on the nucleon (P�), the � (Pþ)
and intermediate diquark (k) momenta. The integration
sign indicates the covariant integration in the diquark

momentum k:
R
k �

R
d3k

ð2�Þ22ED
, where ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

is

the diquark energy (mD is the diquark mass). Explicit
expressions for the nucleon radial wave function c N and
the � radial wave function c � will be presented later. As
for the factor fv, it is represented by

fvðQ2Þ ¼ f1�ðQ2Þ þW þM

2M
f2�ðQ2Þ; (3.4)

where fi� (i ¼ 1, 2) are the quark (isovector) form factors
that parameterize the electromagnetic photon-quark cou-
pling [5,6,8]. The fi� parameterizations will be discussed
in more detail in the next subsection.
The pion cloud parametrization G�

M was established in
the physical regime using the factorization [7]:
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G�
MðQ2;WÞ ¼ 3��GDðQ2Þ

�
�2

�

�2
� þQ2

�
2
; (3.5)

where GD ¼ ð1þ Q2

0:71Þ�2, with Q2 in GeV2, has the usual

dipole functional form, and �� and �� are parameters that
define the strength and the falloff of the pion cloud effects,
respectively. In particular, we take �� ¼ 0:441 and �2

� ¼
1:53 GeV2 following Refs. [7,12]. More details of the
model in the physical regime (W ¼ M�) can be found in
Refs. [6,7]. Since the pion cloud parameterization given by
the right-hand side of Eq. (3.5) has no explicit dependence
onM�, in its extension toW � M� we consider no explicit
dependence on W either. Then, for W � M�, our choice
was to keep G�

M independent of W; that is, G�
MðQ2;WÞ ¼

G�
MðQ2;M�Þ, and the variable W could have been dropped

in Eq. (3.5).
A general comment about the decomposition Eq. (3.1) is

in order. In the spectator framework, the component GB
M,

given by Eq. (3.2), is limited by the condition Ið0Þ � 1,
which follows from the normalization of the nucleon and�
radial wave functions and the Cauchy-Schwartz-Hölder
inequality. This implies that GB

Mð0;M�Þ � 2:07 [6].
Since the experimental value is G�

Mð0;M�Þ ’ 3, it follows
that the description of the reaction near Q2 ¼ 0 is not
possible unless the contribution of the pion cloud is sig-
nificant: more than 30% of the total result. The under-
estimation of G�

Mð0;M�Þ is a result common to several
models based on constituent quark degrees of freedom
alone [6].

A. Quark current

In the spectator quark model, the electromagnetic inter-
action with the quarks is represented in terms of Dirac and
Pauli electromagnetic form factors, f1� and f2�, respec-
tively, for the quarks [5,6,8]. Using the vector meson
dominance (VMD) mechanism, those form factors are
parametrized as

f1�ðq2Þ ¼ �q þ ð1� �qÞ m2
v

m2
v � q2

� c�
M2

hq
2

ðM2
h � q2Þ2

f2�ðq2Þ ¼ ��
�
d�

m2
v

m2
v � q2

þ ð1� d�Þ M2
h

M2
h � q2

�
; (3.6)

where mv is a light vector meson mass, Mh is a mass of an
effective heavy vector meson, �� are quark anomalous
magnetic moments, c�, d� are mixture coefficients, and
�q is a parameter related with the quark density number in

deep inelastic scattering [5]. In the applications we take
mv ¼ m	 ( ’ m!) to include the physics associated with

the 	-meson, and Mh ¼ 2M (twice the nucleon mass) for
effects of meson resonances with a larger mass than the 	.
Note that both functions f1� and f2� have a pole at q2 ¼
m	 and at q2 ¼ M2

h. Hereafter, we will refer to these poles

as 	-poles and Mh-poles, respectively.

The parametrization Eq. (3.6) is particularly useful for
applications of the model to the lattice QCD spacelike
regime. In fact, the decomposition of the current into
contributions from the vector meson poles (m	 and Mh ¼
2M) is very convenient for an extension of the model to a
regime where those poles can be replaced by the m	 and

M values given by the lattice calculations without intro-
ducing any additional parameters. Examples of successful
applications to the lattice regime can be found in
Refs. [8,12,13,18]. In Refs. [12,13], in particular, one can
see how well the model describes the lattice data from
Ref. [39] for the ��N ! � reaction, particularly for pion
masses m� > 400 MeV where the pion cloud effects G�

M

are suppressed. The valence quark contribution [7,13] is
also compatible with the estimation of the bare contribu-
tion from the Excited Baryon Analysis Center (EBAC)
model [40]. The successful description of the G�

M lattice
data shows that the valence quark calibration of our model
is under control.
To stress the first problem of the extension of Eq. (3.6) to

the case q2 > 0, in Eq. (3.6) we used explicitly the variable
q2 instead of the variable Q2 employed in Refs. [5–7]:
Singularities appear at q2 ¼ m2

	 and q2 ¼ M2
h. The larger

poles are not problematic for moderatedW since, as shown
in the Appendix, q2 � ðW �MÞ2. But the case q2 ¼ m2

	

has to be taken with care. Such a pole is a consequence of
having the 	-meson as a stable particle with a zero mass
width. One can overcome this limitation by introducing a
finite width �	 in the 	-propagatorm

2
	=ðm2

	 � q2Þ, with the
replacement m	 ! m	 � i

2 �	. A nonzero width �	 leads

then to the substitution

m2
v

m2
v � q2

! m2
	

m2
	 � q2 � im	�	

! m2
	½ðm2

	 � q2Þ þ im	�	�
ðm2

	 � q2Þ2 þm2
	�

2
	

: (3.7)

Note that this procedure induces an imaginary part in the
bare quark contributions for the form factors. The 	-width
�	 is in fact a real function of q

2 defined only for q2 > 0, as

we discuss next, and therefore the results in the spacelike
regime are unaffected by the redefinition Eq. (3.7).
The 	 width can be measured only for the physical

decay of the 	, when q2 ¼ m2
	. The experimental value

is �0
	 ¼ �	ðm2

	Þ ¼ 0:149 GeV (Particle Data Group) [41].

For q2 � 0, one has to consider some parametrization for
�	ðq2Þ. A usual parametrization is [42–44]:

�	ðq2Þ ¼ �0
	

�
q2 � 4m2

�

m2
	 � 4m2

�

�
3=2 m	

q

ðq2 � 4m2

�Þ; (3.8)

where m� is the pion mass and 
ðxÞ the Heaviside step
function that cuts the contributions for q2 � 4m2

� below
the 2� creation threshold (decay 	 ! 2�). The previous
formula includes, then, the creation of �� states from an
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off mass shell 	. Eq. (3.8) assures us that there is no width
near q2 ¼ 0. Therefore, the imaginary contribution ap-
pears only for q2 > 4m2

� ’ 0:076 GeV2.

B. Scalar wave functions

The radial (or scalar) wave functions taken in this work
for the nucleon and �, respectively, are

c NðP; kÞ ¼ NN

mDð�1 þ �NÞð�2 þ �NÞ (3.9)

c �ðP; kÞ ¼ N�

mDð�þ ��Þ3
; (3.10)

where mD is the diquark mass, �1, �2, and � are momen-
tum range parameters (in units mD), and

�B ¼ ðMB �mDÞ2 � ðP� kÞ2
MBmD

; (3.11)

for B ¼ N (MB ¼ M) and B ¼ � (MB ¼ M�), is a vari-
able without dimensions that includes the dependence in
the quark momentum ðP� kÞ2. As for NB (B ¼ N, �),
they are positive normalization constants. See Refs. [5,6]
for details. The representation of the wave function in
terms of �B given by Eq. (3.11) has advantages in the
applications to the lattice regime [8,12,13].

The scalar wave functions are important for the present
calculations because they are part of the overlap integral
defined by Eq. (3.3). To apply the expressions to the time-
like region, one has to choose a configuration with Q2 < 0
(q2 > 0). That can be achieved by considering the reaction
��N ! � in the � rest frame, with the following configu-
ration: Pþ ¼ ðW; 0Þ as the � momentum and P� ¼
ðEN;�qÞ, with EN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ q2
p

as the nucleon momen-
tum. In those conditions, the photon momentum is repre-
sented by q ¼ Pþ � P�, as q ¼ ð!;qÞ, where

! ¼ W2 �M2 þ q2

2W
; q2 ¼ ðW2 þM2 � q2Þ2

4W2
�M2:

(3.12)

Those variables correspond to the timelike region when
0 � q2 � ðW �MÞ2. See details in the Appendix.

Using Eq. (3.2) and the integral Eq. (3.3) for the kine-
matics Eq. (3.12), together with the extension of the current
given by Eq. (3.7), one can calculate the contribution for
GB

M. Note that as the function Eq. (3.7) has an imaginary
component, GB

M is now complex.

C. Pion cloud contribution

The most phenomenological part of the model presented
here is the parametrization of the pion cloud contribution
through Eq. (3.5). Although the valence quark parametri-
zation has been validated by lattice QCD simulations and
the EBAC estimations of the quark core contributions
[39,40], the contributions from the pion cloud were esti-

mated only phenomenologically. In fact, they were
extracted directly from the physical data after the calibra-
tion of the valence quark effects [6,7].
For the pion cloud component of the form factor, we will

compare two different generalizations of Eq. (3.5) for the
timelike region. We start with a simple model, a naive
generalization of the model from Refs. [6,7,12] to the
timelike region. Next, we discuss the possible limitations
of that approach and introduce a different parametrization
motivated by the expressions for the pion cloud derived
from �PT.

1. Naive model (Model 1)

In a first approach, we took the pion cloud contributions
for the G�

M form factor by Eq. (3.5), as in the spacelike
regime, but now evaluated in the timelike kinematic re-
gion. We have to take into consideration now the poles for
q2 > 0 (Q2 < 0). We rewrite GD as

GDðq2Þ ¼
�

�2
D

�2
D � q2

�
2
; (3.13)

where �2
D ¼ 0:71 GeV2 is the cutoff of the dipole form

factor. As it happens to the 	-term in the quark current, this
factor also has a pole at q2 ¼ 0:71 GeV2, but in this case, it
is a double pole. We apply the procedure used before to the
	 propagator, i.e., definiting a width to the function GD, by
making

GDðq2Þ !
�

�2
D

ð�2
D � q2Þ2 þ�2

D�
2
D

�
2 � ½ð�2

D � q2Þ2

��2
D�

2
D þ i2ð�2

D � q2Þ�D�D�;
(3.14)

where �D is the width associated with its pole. As the poles
m2

	 and �2
D are close (q2 ’ 0:6 GeV2 versus q2 ’

0:7 GeV2), we will use �Dðq2Þ ¼ �	ðq2Þ. WithGD defined

as above, G�
M also is a complex function in the timelike

regime.

As for the extra dipole factor in Eq. (3.5), ð �2
�

�2
��q2

Þ2,
where in the applications �2

� ’ 1:5 GeV2, it is far way
from the 	-poles region. For � masses not very large
compared with M�, the possible effect of the finite width
is less significant, since q2 < ðW �MÞ2 <�2

�.
We call the model defined by Eqs. (3.5) and (3.14)

Model 1. The result of the extension of the model to the
timelike region for the case W ¼ M� and �	 � 0 is pre-

sented in Fig. 1. We used the parametrization of Ref. [12]
for the valence quark contributions but neglected the
D-state contributions ( � 1%). As in this case Q2 �
�ðM� �MÞ2 ’ �0:086 GeV2, and therefore the allowed
values for Q2 are far away from the Q2 < 0 poles; the
corrections due to the imaginary components are small. In
Fig. 1 we also show physical data forQ2 > 0 and the result
for Q2 ¼ 0 from Ref. [45].
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2. �PT motivated model (Model 2)

Instead of Eq. (3.5) for the pion cloud effect, we can use a
different parametrization, based in a different combination
of multipole functions. For instance, in the two-component
model from Refs. [19,38], the contribution from the pion
cloud is proportional to the function F	, interpreted as the

	-propagator, derived from �PT. This function F	 was

presented in Refs. [36,38,46], taking into account the pion
loop contributions to the 	-propagator. Here we simplified
the exact expression in those references by assuming its
limit when q2 	 4m2

�, and using the normalization
F	ð0Þ ¼ 1. For Q2 ¼ �q2 > 0, we obtained then

F	ðq2Þ ’
m2

	

m2
	 þQ2 þ 1

�

�0
	

m�
Q2 logQ

2

m2
�

: (3.15)

In the previous equation, the physical	-width�0
	 was taken

to be �0
	 ¼ 0:149 GeV. Ref. [19] uses instead �0

	 ¼
0:112 GeV.

Eq. (3.15), derived in the low q2 chiral perturbation
regime, has a faster falloff for the 	-propagator [with

1=ðQ2 logQ
2

m2
�
Þ] than Model 1 (with 1=Q2) for large Q2.

We used it here to explore alternative parametrizations to
Model 1 for the pion cloud contributions. The parametri-
zation for the pion cloud contribution Eq. (3.5) is propor-

tional to the dipole factor ð �2
�

�2
�þQ2Þ2, where �� is a large

cutoff, and also toGD, the dipole form factor. Although the
dipole factor depending on �� was chosen phenomeno-
logically and determined by a fit to the data, one has no
reason a priori to use the particular form of GD to parame-
terize an extra falloff1 of G�

M. The inclusion of GD was

motivated by the traditional convention of dividing the
form factor G�

M by 3GD when showing results. With the
parametrization Eq. (3.5), one has an asymptotic depen-
dence of G�

M / 1=Q8.
We note that in the spacelike region where the pion

cloud effects are more important, 0<Q2 < 1 GeV2, the
functions GD and F	 give very similar results, as seen in

Fig. 2. This suggests that one can also use

G�
MðQ2Þ ¼ 3��F	ðq2Þ

�
�2

�

�2
� � q2

�
2

(3.16)

with

F	ðq2Þ ¼
m2

	

m2
	 � q2 � 1

�

�0
	

m�
q2 log q2

m2
�
þ i

�0
	

m�
q2

(3.17)

to extend Eq. (3.15) to the timelike kinematics.2 The
imaginary part in Eq. (3.17) is a consequence of two pion
production (or transition 	 ! 2�) which is possible in the
timelike region when q2 � 4m2

�.
We will call the model defined by Eq. (3.16) Model 2.

One implication of the new form for the pion cloud
contributions is a falloff as 1=ðq6 logq2Þ, slower than for
Model 1 (1=q8 falloff). [Note that GD / 1=q4 and F	 /
1=ðq2 logq2Þ].
Another important feature of the function Eq. (3.16) is

that its imaginary part does not peak for q2 ¼ m2
	 ’

0:6 GeV2 but for q2 ’ 0:3 GeV2 because of the logarithm
corrections. That effect changes the Q2 dependence of the
pion cloud contributions to G�

M relative to Model 1.
A note about F	ðq2Þ given by Eq. (3.17): It was derived

from the exact result in Refs. [19,36,46] in the limit

Q
2
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1
G

D
(Q

2
)

Fρ (Q
2
)

FIG. 2 (color online). Comparing the dipole form factor GD

with the function F	ðQ2Þ, given by Eq. (3.15).
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FIG. 1 (color online). ��N ! �ð1232Þ magnetic form factor
in the timelike and spacelike region given by the model of
Ref. [12]. The data for Q2 > 0 is the same as the one presented
in Ref. [12]. The data for Q2 ¼ 0 is from Ref. [45]. The dashed
line represents the contributions of the valence quark core (bare
contribution). The solid line is the result of the sum of valence
quarks and pion cloud contributions.

1The function GD provides a good approximation for the
behavior of the nucleon electromagnetic form factor at low Q2.

2In the transformation from Eq. (3.15) to Eq. (3.17), there is an
ambiguity from the factor

logð�1Þ ¼ i�þ ið2�Þt;
where t is an integer. In this case, the ambiguity is fixed by the
sign of the imaginary part from Ref. [19].
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q2 	 4m2
� ’ 0:08 GeV2, as explained previously.

However, we have checked that our simplified formula,
though approximate, does not deviate too much from the
exact one even when that limit does not hold. Therefore,
our formula gives a good qualitative description of the
chiral behavior in the whole domain q2 > 0. We note
only that the results from Eq. (3.17) and the results in
Refs. [19,36,46] differ in a slight deviation of the location
of the peak of the imaginary part of F	. Using Eq. (3.17),

the peak is at q2 ’ 0:3 GeV2, while in Refs. [19,36,46] the
peak is at q2 ’ 0:4 GeV2.

Finally, as for the quark current Eq. (3.6) in the bare
quark contributions, we will not replace our parametriza-
tion of the 	-propagator Eq. (3.7) by Eq. (3.15), since they
differ substantially and our parametrization was already
calibrated by the physical data [5–7] and lattice data
[12,13] for the nucleon and �ð1232Þ systems in the space-
like region. A different parametrization for timelike and
spacelike regions would be inconsistent.

IV. RESULTS

We will divide the presentation of our results into two
parts. In the first part, we show the results of the magnetic
form factor G�

M, calculated with the two models described
in the previous section. In the second part, we show the
results for the width functions ��NðWÞ and �eþe�NðWÞ, and
also for the � mass distribution function g�ðWÞ.

A. Form factors in the timelike region

Contrary to what happens in the spacelike domain, in the
timelike region the form factor G�

M has a nonzero imagi-
nary part. Because of Eq. (2.7), we are interested in the
absolute value of the form factor jG�

Mj, which enters into
jGTðq2;WÞj2. Although the form factors are defined for
any value of W � M, we show here results for selected
values of W only. We recall that the range of Q2 for the
function G�

MðQ2;WÞ depends on W, as established by the
condition Q2 � �ðW �MÞ2.

The results for jG�
Mj at energies W ¼ 1:232, 1.500 and

1.800 GeV, for both models, are presented in Fig. 3. One
notes that the value of jG�

Mj nearQ2 ¼ 0 decreases withW.
We will see that this is a consequence of the valence quark
contribution given by Eq. (3.2). The same effect was
observed in lattice QCD simulations where large pion
masses induce large nucleon and � masses [12,39]. In
the figure it is also clear that the two models differ sub-
stantially in theQ2 dependence of jG�

Mj. For Model 1, jG�
Mj

increases as Q2 decreases for all values of W, and this
behavior is enhanced as W becomes larger. A peak (not
shown in the graph because it is too large) is present, near
q2 ¼ �2

D ’ 0:71 GeV2 when W ¼ 1:800 GeV. A first
conclusion is therefore that Model 1 generates very strong
and probably unphysical contributions to jG�

Mj in the time-
like region. Model 2, in contrast, gives moderated contri-
butions only (larger than in the spacelike region but with
the same magnitude) and is therefore a much more reason-
able model. To better compare the two models, we have to
analyze the real and imaginary parts of G�

M separately.
Since the valence quark contributions are common to

both models, we start by looking to the bare term GB
M. The

results are presented in Fig. 4. ForQ2 
 0 and values ofW
not too large when compared with W ¼ 1:232 GeV, the
real part dominates, as expected from the results for the
physical case (W ¼ M�). For larger values of W and low
Q2, the real part dominates increasingly less. As for the
imaginary part, we recall that it is zero down to Q2 ’
�0:08 GeV2 (because �	 ¼ 0). But as Q2 decreases, for

larger W values, we can observe the effect of the 	-mass
poles emerging at Q2 ¼ �m2

	 ’ �0:6 GeV2 and strength-

ening the imaginary parts of GB
M. ForW ¼ 1:800 GeV, the

real part also increases in the region Q2 <�m2
	 due to the

impact of the 	-mass poles. In this case, however, the other
terms from the VMD parametrization Eq. (3.6), the con-
stant term and the Mh-mass poles, are relevant as well. All
these contributions to GB

M are balanced—and therefore
reduced—in the final result by the pion contributions
G�

M, to be discussed next.
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FIG. 3 (color online). Results for the modulus of the �N ! � magnetic form factor for different � masses (W). At left: Model 1; at
right: Model 2. In both cases, the valence quark model is from Ref. [12].
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We turn now to the term G�
M, which gives the pion cloud

contribution, and where the two models differ in the time-
like region. The results are presented in Fig. 5 for the same
values of W as before. Comparing the two models, we can
say that both have similar results for the real part of G�

M in
the region �0:2 GeV2 <Q2, but differ significantly for
smaller values of Q2 (larger values of q2). That is the
consequence of the double pole q2 ¼ �2

D in the pion cloud
formula for Model 1. In Model 2 there is no such contri-
bution from the pion cloud, and the values for real and
imaginary parts are more moderate. Note that the strong
peak for W ¼ 1:800 GeV at Q2 ’ �0:65 GeV2 for Model
1 is a consequence of Eq. (3.14) and differs from Model 2
by an order of magnitude.

We look now to the imaginary part of G�
M. Our first

observation goes to the imaginary part of G�
M in the region

near Q2 ¼ 0. In Model 1 it is identically zero for
�0:076 � Q2 � 0 [because �	 ¼ 0 from Eq. (3.8)], but

in Model 2 it is different from zero although small (this is a
consequence of the approximation considered in function
F	, discussed previously). The second observation is that

the significant difference between Models 1 and 2 is the
sign of the imaginary part of G�

M: Model 1 gives positive
contributions while Model 2 gives negative contributions.
This model is motivated by �PT, satisfies chiral constraints
for the 	 propagator, which has a nonanalytical pole near
Q2 ’ �0:3 GeV2 present in F	 and with its origin in the

pion loop contributions.
With this detailed analysis, we come to understand the

large difference between the two models shown in Fig. 3.
The figure provides a strong indication that Model 1 is not
a reasonable model: The results from this model are
strongly dominated by the pole q2 ¼ �2

D ¼ 0:71 GeV2

which induce extremely large (and probably unphysical)
contributions for increasingly largeW values. On the other
hand, Model 2 contains the input from �PT and has there-
fore a more solid basis. The results are very sensitive to this
input and clearly exclude Model 1.
From the previous discussion, we favor the results from

Model 2. The final results (bare quark core plus pion cloud)
for both the real and imaginary part of the form factor G�

M

are presented in Fig. 6. One realizes that the real part
dominates the imaginary part for Q2 >�0:15 GeV2. We
can say that the dominant contributions to the imaginary
part are the poles from G�

M (induced by F	) around Q2 ¼
�0:3 GeV2, and the 	-terms in the quark current from the
bare contribution. The effect of those poles is particularly
evident in the curve for W ¼ 1:800 GeV.
The main and general conclusion from Figs. 4–6 is that

the final structure for G�
M emerges from a combination of

effects, namely from the VMD model poles and also the
pion cloud effects. The two processes interfere crucially
and determine the structure of the final amplitude.
Later, we will discuss the applicability of the model for

W > 1:8 GeV, the effect of the remaining poles, and the
impact in the observables in consideration. We emphasize
that any extension of the � form factors to the timelike
region has to rely on models and cannot be directly esti-
mated from experimental data only. It is then important to
compare our model with models having a similar content,
such as the two-component quark model of Ref. [19],
also defined in the timelike region. In this last model,
the contribution from the coupling to the quark core
(valence contribution) is 0.3% near Q2 ¼ 0 (99.7% of
pion cloud), while in our model one has 55.9% (44.1% of
pion cloud). This significant difference between the con-
tributions of the quark core is due to a different, and
somewhat arbitrary, classification of the two effects. In
the model of Refs. [19,36], the term from the pion cloud
is also classified as an effective part of the VMD mecha-
nism, since it is proportional to the function F	 for the 	
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FIG. 4 (color online). Valence contribution for �N ! �ð1232Þ
magnetic form factor for W ¼ 1:800, 1.500, and 1.232 GeV.
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propagator. Therefore, in that model, the VMD mecha-
nism/pion cloud term is the only relevant effect [19,36].
In our formalism, the coupling with the quarks is calibrated
directly by a VMD parametrization, and although it gives
the dominant contribution, it is not the only one to affect
the results. Our model has the advantage of having been
tested successfully by the lattice QCD simulations (in a
regimewhere the pion cloud is small), and of agreeing with
the EBAC data analysis for the bare quark core contribu-
tions to the pion photoproduction data [12]. These tests
suggest that our estimation of the quark core structure is
under control, since the model is largely constrained in a
variety of kinematic domains. Another important point is
that our model allows a direct physical interpretation of the
parameters involved in terms of the range of the baryon
wave functions.

B. Results for ��NðWÞ and �eþe�NðWÞ
We will discuss now the partial widths ��NðWÞ and

�eþe�NðWÞ. We will also show ��NðWÞ, given by
Eq. (2.3), together with the calculation of g�ðWÞ, defined
by Eq. (2.1).

We start by showing in Fig. 7 the function
d�eþe�N

dq ðW;qÞ
for the casesW ¼ 1:232, 1.500, and 1.800 GeV. This figure
includes the results from Model 1 (dashed line), Model 2

(solid line), and the result of a calculation where the

form factor G�
M is taken as constant, defined by the value

of G�
MðW; 0Þ at the pole W ¼ M� (dotted line), given by

the experimental value (G�
MðQ2Þ � G�

MðM�; 0Þ ’ 3:0).
This last case was also considered in Ref. [19], and it is

useful as a reference for the q2 dependence of our results.
The figure illustrates that, in line with the results in the
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previous subsection, for Model 1, �0
eþe�Nðq;WÞ is en-

hanced for large q and large W values (see result for W ¼
1:800 GeV).

To determine the di-lepton production width,
�eþe�NðWÞ, one has to integrate Eq. (2.11) using
Eq. (2.10). This is equivalent to calculating the integral
of the functions represented in Fig. 7 for each value ofW in
the interval ½2me;W �M�. Therefore �eþe�NðWÞ ¼ 0
when W <Mþ 2me. The calculation of the function
��NðWÞ proceeds through Eq. (2.8). The results obtained

for the twowidths within the three models discussed before
are in Fig. 8.

Finally, ��NðWÞ is estimated using Eq. (2.3) and the
function

q�ðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðW þMÞ2 �m2

��½ðW �MÞ2 �m2
��

p
2W

; (4.1)

defined for W � Mþm� and q�ðWÞ ¼ 0 otherwise.
��NðWÞ is then a positive function for W >Mþm�. In
Fig. 9, we present the three partial widths obtained with
Model 2, the one that we favor for reasons explained in the
previous subsection.
We turn now to the � mass distribution function g�ðWÞ

defined by Eq. (2.1). As the channel � ! �N is largely
dominant, �totðWÞ ’ ��NðWÞ and the normalization of
g�ðWÞ can be done in that approximation. Considering
��NðM�Þ ’ �totðM�Þ ’ �exp

� , with the experimental result

�
exp
� ’ 0:118 GeV [41], one has A ¼ 0:7199.
The results for the partial contributions to g�ðWÞ are

given by
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M for Model 2.
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Q2 ¼ 0.

G. RAMALHO AND M.T. PEÑA PHYSICAL REVIEW D 85, 113014 (2012)

113014-10



g�!�NðWÞ ¼ ��NðWÞ
�totðWÞ g�ðWÞ

g�!eþe�NðWÞ ¼ �eþe�NðWÞ
�totðWÞ g�ðWÞ; (4.2)

and are shown in Fig. 10 for the constant form factor model
(dotted line), Model 1 (dashed line), and Model 2 (solid
line). The final results for Model 2 are presented in Fig. 11.

We restricted our results to the region W � 2 GeV.
Above that region, one has to take into account the addi-
tional pole structure of the form factor G�

M that appears for
large q2 values. Another reason for not having our model
applied to larger W values is that, for W > 1:5 GeV, the
reactions are expected to be dominated by resonances as
the N�ð1440Þ, N�ð1535Þ, �ð1600Þ, among others, instead
of the �ð1232Þ alone.

As for the first problem, one has to find a way deal
with those large q2 singularities. From Eq. (3.16) for the
pion cloud component, already the pole at q2 ¼ �2

� ’
1:53 GeV2 makes the form factor diverge for

W >Mþ�� ’ 2:17 GeV, since q2 � ðW �MÞ2. Also,
from the valence quark component, one has a singularity
q2 ¼ M2

h ’ 3:53 GeV2. To remove those singularities we

may introduce an effective width �X, in analogy with
Eq. (3.7) or (3.14), for single or double poles, with a
constant width �0

X. This procedure adds a new parameter
to the model. We started by verifying that a large width �0

X

(for instance, �0
X ’ 1 GeV) will affect the results for W <

2 GeV, while a very small width will induce significant
oscillations in the functions g�!�NðWÞ and g�!eþe�NðWÞ
(enhancement of �0

eþe�Nðq;WÞ near the poles). By taking

�0
X ¼ 2�0

	, the results obtained for W < 2 GeV are almost

unchanged and the results forW > 2 GeV are also smooth
functions of W. With this choice, the smooth dependence
on W of the functions g�!�NðWÞ and g�!eþe�NðWÞ ob-
tained with Model 2 is maintained for higherW values. We
stress, nevertheless, that the application of our model to
largeW values is to be viewed only as an extreme test of its
limits.

V. CONCLUSIONS

In this work, we have presented a covariant approach to
describe the Dalitz decays � ! �N, � ! ��N, and we
have calculated the � mass distribution function g�ðWÞ
within that approach. Our framework can be used to simu-
late the NN ! eþe�NN reaction at moderate beam ki-
netic energies (1–2 GeV). The code used in this work can
be supplied under request.3

Our calculations are based on a unified description of the
��N ! � reaction in both the spacelike and timelike
regimes. We start with a model tested previously in space-
like physical and lattice QCD simulation data [7,12] and
generalize it to the timelike regime. In this formalism, the
electromagnetic interaction can be decomposed into two
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FIG. 9 (color online). Partial widths as function of W for
Model 2. The total is represented by the thin solid line.
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FIG. 10 (color online). Partial contributions of the channels
� ! �N and � ! eþe�N (in GeV�1 units). The constant form
factor model is represented by the dotted line, Model 1 by the
dashed line, and Model 2 by the solid line. Note that Models 1
and 2 have the same result for the real decay � ! �N because
the models are identical at Q2 ¼ 0.
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FIG. 11 (color online). Function g�ðWÞ (in GeV�1 units) and
the partial contributions of the channels � ! �N, � ! eþe�N
as function ofW for Model 2. The thin solid line is the total result
[g�ðWÞ] and the sum of all decay channels (� ! �N, � ! �N
and � ! eþe�N).

3Send an email to gilberto.ramalho@cftp.ist.utl.pt.
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mechanisms: the direct photon coupling with the quarks
and the interaction with the pion cloud.

For the first mechanism, we extended the quark current
and wave functions obtained for q2 < 0 to the region
q2 > 0 without additional changes, except for a nonzero
width of the effective vector mesons included in the VMD
parametrization of our quark electromagnetic current. For
the pion cloud contribution we probed two different pa-
rametrizations: a naive generalization of our spacelike
model and a more elaborated model based on �PT.
Although the two models behave very similarly in the
spacelike region, they differ substantially in the timelike
region.

The results of the models for the form factor G�
M, as a

function of q andW, are used to calculate the partial widths
��NðWÞ, �eþe�NðWÞ, and the partial mass distributions

functions g�!�NðWÞ, g�!eþe�NðWÞ.
A first important conclusion of this work is that the q2

dependence of the form factor has an impact on the final
results and therefore has to be under control: The results
for the � mass distribution functions, where the form
factor is taken with its full q2 dependence, can differ by
a factor of 4 from the results obtained with the constant
form factor model.

We verified also that the results are sensitive to the
analytical extension of the pion cloud parametrization to
the timelike region. Model 1 (naive model) generates
unreasonably large contributions for moderate squared
momentum q2, for larger values of W, as consequence of
a spurious (not physically motivated) pole q2 ¼ �2

D in the
pion cloud contribution. Model 2 is motivated by �PT and
includes the function F	 for the 	 propagator with a non-

algebraic pole near q2 ’ 0:3 GeV2 originated by pion loop
corrections. This model gives smooth contributions to the
partial � mass distribution functions g�!�NðWÞ and

g�!eþe�NðWÞ that vary slowly with W for large W.
A second important conclusion, then, is that our calcula-

tions support the need to have under control the effect of the
pion cloud contributions. Our framework is suitable for this
because its bare quark core component is constrained by
experimental data and lattice QCD simulation data. In addi-
tion, the fact that the pion cloud content of Model 2 is con-
sistentwith�PTmakesModel 2 reliable, at least in its domain
of validity. The results of Model 2 give moderated contribu-
tions for jG�

Mj2 (since it has no spurious pole at q2 ¼ �2
D),

which are determinedby the combined effect of two important
features: the pion cloud term structure near q2 ¼ 0:3 GeV2

and the quark core contributions from the 	-pole included in
theVMDstructure of the quark current, near q2 ¼ 0:6 GeV2.

We may say that while spacelike data does not constrain

models sufficiently well enough, timelike data for
d�eþe�N

dq

for different values of W (see Fig. 7) are important and
necessary to select between models in a decisive way. In
the � case discussed in this work, this is especially true for
the pion cloud effects. But the timelike data can also be

useful to calibrate the widths and high mass poles of the
VMD parametrization of the current needed in valence
quark component, particularly for resonances heavier
than the �ð1232Þ.
For high values of W, the assumption that the �ð1232Þ

resonance is the only state playing a role in the reactions
becomes questionable. In the regime W > 1:5 GeV other
resonances can be relevant, as the spin 1=2 resonances
N�ð1440Þ and N�ð1535Þ. Once those states are calibrated
for the Q2 ¼ 0–2 GeV2 region, one can extend the models
from Refs. [15,16] to the timelike region too. It is also
expected that the spin 3=2 channels as the �ð1600Þ state
are important for large W. This defines a study of high
interest, since the constraints in the spacelike region are
very scarce, and the available data at the photon point
suggest a strong contribution from the pion cloud [14].
Future applications of our formalism can include the

study of the ��N ! N reaction where the final nucleon
has an arbitrary mass W, also in the timelike region. Since
the quark current was already defined in the timelike region
and we already have a model for the nucleon system [5], no
additional ingredients are necessary. Such study may pro-
vide an important theoretical input to the study of the
reaction p �p ! �0eþe� in complement to the first inves-
tigation presented here.
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APPENDIX: KINEMATICS

We consider here the final state of the decay process of a
resonance R according to R ! ��N. Assuming W as the
invariant mass of the resonance, we can write the four-
momentum in the rest frame of R as PR ¼ ðW; 0Þ. In this
frame, we can also write

PN ¼ ðEN;�qÞ; q ¼ ð!;qÞ; (A1)

where q is the photon momentum PR ¼ PN þ q, with

EN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p
(M is the nucleon mass). We then define

q as the photon three-momentum (symmetric to the nu-
cleon three-momentum) in the final state, and ! as the
photon energy in the R rest frame. All of those variables are
related with W2 and q2 according to

q 2 ¼ ðW2 þM2 � q2Þ2
4W2

�M2 (A2)
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! � PR � q
W

¼ W2 �M2 þ q2

2W
: (A3)

In the last relation, we used EN ¼ W2þM2�q2

2W . From

Eq. (A2) we can conclude that q2 decreases when q2

increases. As q2 � 0, it can be proved that there is an
upper limit to q2 (given by the condition q2 ¼ 0). The
upper limit is then

q2jmax ¼ ðW �MÞ2: (A4)

This is, then, the largest value of q2 for which the timelike
form factors are defined.
In conclusion, the timelike form factors are defined only

in a limited interval ½0; ðW �MÞ2�. One then has different
ranges according to the value ofW. In the caseW ¼ M we
have only q2 ¼ 0. At the pole W ¼ 1:232 GeV, the maxi-
mum value of q2 is 0:0859 GeV2. ForW ¼ 1:500 GeV and
W ¼ 1:800 GeV, the maximum value of q2 is, respectively
0:315 GeV2 and 0:741 GeV2.
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