
One-zero textures of Majorana neutrino mass matrix and current experimental tests

E. I. Lashin1,2,3,* and N. Chamoun4,5,†

1Ain Shams University, Faculty of Science, Cairo 11566, Egypt
2Centre for Theoretical Physics, Zewail City of Science and Technology, Sheikh Zayed, 6 October City, 12588, Giza, Egypt

3The Abdus Salam ICTP, P.O. Box 586, 34100 Trieste, Italy
4Physics Department, HIAST, P.O. Box 31983, Damascus, Syria

5Physikalisches Institut der Universität Bonn, Nußalle 12, D-53115 Bonn, Germany
(Received 24 August 2011; revised manuscript received 7 May 2012; published 22 June 2012)

We carry out a complete and systematic study of all the possible one-zero textures for the neutrino mass

matrix in light of the recent neutrino oscillation data which hint to a relatively large nonvanishing value for

the smallestmixing angle (�z).Wefind that all the six possible one-zero textures are able to accommodate the

experimental data, with five cases allowing also for noninvertible mass matrices. We present symmetry

realizations for all the one-zero singular and nonsingular patterns in type-I and type-II seesaw mechanism

schemes.
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I. INTRODUCTION

The experimental observation of solar and atmospheric
neutrino oscillations, and thus of neutrino masses, in the
Super-Kamiokande [1] experiment is an experimental
indication that the standard model (SM) of particle physics
is incomplete. In the flavor basis where the charged lepton
mass matrix is diagonal, the (effective) neutrino mass
matrix M� has nine free parameters: three masses (m1,
m2 and m3), three mixing angles (�x, �y and �z) and three

phases (two Majorana-type �, � and one Dirac-type �).
Experimental data [2–5] put constraints on the values of
the masses and the mixing angles; whereas no definite
experimental measurements of the phases exist up till
now. The recent global analysis of oscillation data [6]
that includes the latest T2K [7] and MINOS [8] results
reveals a relatively large value for the mixing angle �z, in
contrast with the old global analysis [9] that was consistent
with vanishing �z. The Daya-Bay experiment [10] con-
firms the nonvanishing �z and is in agreement with the
findings of [6]. This in turn opens the door for studying the
CP violation in neutrino oscillations with profound impli-
cations for our understanding of matter-antimatter asym-
metry in the Universe. The nonvanishing �z provide a
guaranteed, albeit small, contribution to the third neutrino
mass m3 for both single- and double-beta decay searches
that must be accounted for in detailed analysis. From a
theoretical point of view, the relatively large mixing angle
�z may call for new ideas in model building.

Several schemes have been proposed in the literature to
reduce the number of free parameters, some of which
consist in equalling some elements, or some combinations
of elements, of M� to zero. It was found that three-
independent-zeros texture cannot accommodate the data,

whereas nine patterns of two-independent-zeros texture,
out of 15 possible, can do this [11,12]. The recent analysis
of two-zero texures [13], based on the latest T2K and
Minos oscillation data, constrains further the number of
viable patterns to be equal to seven. In [14], a specific
model realizing any of the possible six patterns of one-zero
texture was provided. However, it led always to one of the
neutrino masses equalling to zero. Based on preceding
works, such as [15], the analysis of the phenomenological
implications of single-zero textures was carried out in [16],
and it showed the viability of the six possible one-zero
textures combined with several interesting conclusions. It
is of great importance to reexamine the one-zero textures,
in light of the new oscillation data, in order to decide
whether the six possible cases are still viable or not, and
the purpose of this paper is to present such a study.
The seesaw mechanism of either type I or II, in addition

to its role in understanding the scale of the neutrino masses,
can help, when combined with discrete Abelian flavor
symmetry, in realizing the zero-texture patterns in the
neutrino mass matrix. More specifically, the light neutrino
mass matrix M� in the framework of the type-I seesaw
mechanism is given by

M� ¼ MDM
�1
R MT

D; (1)

whereMD is the Dirac neutrino mass matrix, andMR is the
Majorana mass matrix of the right-handed singlet neutri-
nos. It has been noted [17,18] that the zeros ofMD andMR

can find their way to enforce zeros in M�, in such a way
that one can construct theoretical models enforcing specific
patterns with zeros located at certain positions of MR and
MD in order to get the desired texture forM�. However, the
zeros ofMD andMR may not only show up as zeros inM�,
and one interesting possibility is that they appear as zero
minors in M�.
Phenomenological analysis of vanishing minors was

first studied in [19] assuming the invertibility of M�, in
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which case they amount to zeros in the inverse neutrino
mass matrix M�1

� . This condition was relaxed in [20,21]
where a phenomenological analysis of single- or double-
vanishing minors was carried out. Moreover, one can gen-
eralize the zero textures in other ways. The simultaneous
existence of a vanishing one minor and a texture-zero
element was studied in [22], whereas two-vanishing-
subtraces texture was studied in [23].

In this work, carrying out an updated phenomenologi-
cal analysis of the one-zero textures in view of the recent
oscillation data, we have paralleled the procedure done in
[21], for both singular and invertible neutrino mass ma-
trices, without assuming any specific model. Our present
analysis is different in one respect that we let �m2,
characterizing the solar neutrino mass-squared difference,
vary randomly within its experimentally allowed range,
instead of fixing it to its central value as was done in [21].
Thus, we need, in addition to the ‘‘two real’’ conditions
corresponding to the one-zero element texture, six pa-
rameters in order to determine the neutrino mass matrix.
We thus vary the six mixing and phase angles (�x, �y, �z,

�, � and �) within their experimentally acceptable re-
gions, and in this way we can determine in the parameter
space of ð�x; �y; �z; �; �; �; �m2Þ the regions consistent

with the other experimental results. We found that all
the six patterns could accommodate the data. Moreover,
five textures allow also for singular models, where one of
the masses equals zero, making room for the data.

Weuse the type-I seesaw formula to present some theoretical
realizations of all the one-zero textures, singular or not, where,
in both cases, we can call for nondiagonal form Dirac neutrino
massmatrix, in order to reproduce just one zero element inM�.
We find also a simple and direct way to realize the one-zero
textures using the type-II seesaw scheme. In addition, we note a
correspondence mapping between the one-vanishing-minor
analysis and the one-zero-texture analysis amounting to invert-
ing the masses and reflecting the phases. This serves qualita-
tively to relate the two phenomenological analyses. However,
this map is not valid for the singular case, and whereas the
singular vanishing minor model presented in [21] was not very
predictive, the one-zero singular models are quite rich in
phenomenology, and cannot be related to the analysis of [21].

The plan of the paper is as follows: in Sec. II, we review
the standard notation for the neutrino mass matrix and
its relation to the experimental constraints. In Sec. III,
we present the one-zero texture in M� and compute the
expressions of the two neutrino mass ratios. In Sec. IV, we
classify all the patterns and present the results and the
phenomenological analysis of each case. Section V is
devoted to the study of singular one-zero textures. We
present symmetry realizations of all patterns, based on
type-I or -II seesaw schemes, in Sec. VI and end up with
conclusions in Sec. VII.

II. STANDARD NOTATION

In the flavor basis, where the charged lepton mass matrix
is diagonal, one can diagonalize the symmetric neutrino
mass matrix M� by a unitary transformation,

VyM�V
� ¼

m1 0 0

0 m2 0

0 0 m3

0
BB@

1
CCA; (2)

with mi (for i ¼ 1, 2, 3) real and positive. We introduce
the mixing angles ð�x; �y; �zÞ and the phases ð�; �; �Þ such
that [12]

V¼UP; P¼ diagðei�;ei�;1Þ;

U¼
cxcz sxcz sz

�cxsysz� sxcye
�i� �sxsyszþcxcye

�i� sycz

�cxcyszþ sxsye
�i� �sxcysz�cxsye

�i� cycz

0
BB@

1
CCA;
(3)

(with sx � sin�x . . . ) to have

M� ¼ U

�1 0 0

0 �2 0

0 0 �3

0
BB@

1
CCAUT (4)

with

�1 ¼ m1e
2i�; �2 ¼ m2e

2i�; �3 ¼ m3: (5)

In this parametrization, the mass matrix elements are
given by

M�11 ¼ m1c
2
xc

2
ze

2i� þm2s
2
xc

2
ze

2i� þm3s
2
z ;

M�12 ¼ m1ð�czszc
2
xsye

2i� � czcxsxcye
ið2���ÞÞ þm2ð�czszs

2
xsye

2i� þ czcxsxcye
ið2���ÞÞ þm3czszsy;

M�13 ¼ m1ð�czszc
2
xsye

2i� þ czcxsxsye
ið2���ÞÞ þm2ð�czszs

2
xcye

2i� � czcxsxsye
ið2���ÞÞ þm3czszcy;

M�22 ¼ m1ðcxszsyei� þ cysxe
ið���ÞÞ2 þm2ðsxszsyei� � cycxe

ið���ÞÞ2 þm3c
2
zs

2
y;

M�33 ¼ m1ðcxszcyei� � sysxe
ið���ÞÞ2 þm2ðsxszcyei� þ sycxe

ið���ÞÞ2 þm3c
2
zc

2
y;

M�23 ¼ m1ðc2xcysys2ze2i� þ szcxsxðc2y � s2yÞeið2���Þ � cysys
2
xe

2ið���ÞÞ
þm2ðs2xcysys2ze2i� þ szcxsxðs2y � c2yÞeið2���Þ � cysyc

2
xe

2ið���ÞÞ þm3sycyc
2
z : (6)
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We note here that under the transformation given by

T1: �y ! �

2
� �y and � ! �� �; (7)

the mass matrix elements are transformed amidst them-
selves swapping the indices 2 and 3 and keeping the index
1 intact:

M�11 $ M�11; M�12 $ M�13;

M�22 $ M�33; M�23 $ M�23: (8)

Under the mapping given by

T2:�!���; �!���; �!2���; (9)

the mass matrix is transformed into its complex conjugate
i.e

M�ijðT2ð�; �; �ÞÞ ¼ M�
�ijðð�; �; �ÞÞ: (10)

The above two symmetries T1;2 are very useful in clas-

sifying the models and in connecting the phenomenologi-
cal analysis of patterns related by these symmetries.

It is important to relate our convention for parametrizing
the mixing matrix in Eq. (3) to the corresponding one used
in the recent data analysis of [6]. The mixing angles
ð�x; �y; �zÞ match exactly their corresponding ones but

with different nomenclatures; strictly speaking,

�x � �12; �y � �23; �z � �13: (11)

The matrix U in Eq. (3) can be decomposed as

U ¼ RyRzð�ÞRx; (12)

where Rx and Ry represent rotations around the third and

first axes:

Rx¼
cx sx 0

�sx cx 0

0 0 1

0
BB@

1
CCA; Ry¼

1 0 0

0 cy sy

0 �sy cy

0
BB@

1
CCA: (13)

As to Rzð�Þ, it depends on the convention. For illustration
purposes and in order to compare our parametrization
convention with the one adopted in [6], we use a super-
script tilde mark to denote the latter one. Thus, Rzð�Þ takes
the following two forms:

Rzð�Þ ¼
cz 0 sz

0 e�i� 0

�sz 0 cz

0
BB@

1
CCA;

~Rzð�Þ ¼
cz 0 sz

0 1 0

�sze
i� 0 cze

i�

0
BB@

1
CCA; (14)

and the diagonal phase matrix P in Eq. (3), which contains
the Majorana phases, is given by

P¼diagðei�;ei�;1Þ; ~P¼diagð1;eið�2=2Þ;eið�3=2ÞÞ: (15)

The relation between phases in the two parametrizations
can be found by means of using rephasing invariant quan-
tities such as the Jarlskog ‘‘J’’ quantity [24] measuring
the CP violation in neutrino oscillations and other two
quantities (S1 and S2) [25] related to the Majorana nature
of the massive neutrinos. The explicit expressions for these
rephasing invariant quantities are

J ¼ ImðV�
	2V

�
e3V	3Ve2Þ; S1 ¼ ImðVe1V

�
e3Þ;

S2 ¼ ImðVe2V
�
e3Þ: (16)

We find then that the Dirac phase is the same for both
parametrizations, whereas the Majorana phases are related
as

� ¼ ��3

2
; � ¼ �2 ��3

2
: (17)

All probability transition amplitudes relevant to neutrino
oscillations in free space are calculated and found to be
equal for both parametrizations and yielding the same
expressions in terms of mixing angles and Dirac phase
(�). This confirms the identification of mixing angles and
Dirac phase for both parametrizations.
Two independent neutrino mass-squared differences,

characterizing, respectively, solar and atmospheric neu-
trino mass-squared differences, are defined as [6]

�m2 � m2
2 �m2

1; j�m2j � jm2
3 � 1

2ðm2
1 þm2

2Þj; (18)

and the hierarchy of solar and atmospheric neutrino mass-
squared differences is characterized by the parameter:

R� � �m2

j�m2j : (19)

Two parameters which put bounds on the neutrino mass
scales, by the reactor nuclear experiments on beta-decay
kinematics and neutrinoless double-beta decay, are the
effective electron-neutrino mass:

hmie ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðjVeij2m2
i Þ

vuut ; (20)

and the effective Majorana mass term hmiee:
hmiee ¼ jm1V

2
e1 þm2V

2
e2 þm3V

2
e3j ¼ jM�11j: (21)

Another parameter with an upper bound coming from
cosmological observations is the ‘‘sum’’ parameter �:

� ¼ X3
i¼1

mi: (22)

Moreover, the above-mentioned Jarlskog rephasing in-
variant quantity is given by

J ¼ sxcxsycyszc
2
z sin�: (23)

There are no experimental bounds on the phase angles,
and we take the principal value range for �, 2� and 2� to
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be ½0; 2��. As to the other oscillation parameters, the
experimental constraints give the values found in Table I
with 1, 2, and 3-� errors [6].

As to the nonoscillation parameters hmie, � and hmiee,
we adopt the less conservative 2-� range as reported in
[26] for the first two, while for hmiee we use values found
in [27]:

hmie<1:8 eV; �<1:19 eV; hmiee<0:34–0:78 eV:

(24)

III. NEUTRINO MASS MATRICES
WITH ONE-ZERO TEXTURE

Since the neutrino matrix is symmetric, then we have six
independent possibilities for one vanishing entry, each of
which is called one-zero texture.

The vanishing condition at the location ða; bÞ is
written as

M�ab ¼ 0 (25)

which amounts to

X3
j¼1

UajUbj�j ¼ 0: (26)

This leads to

m1

m3

¼ ReðA3Þ ImðA2e
2i�Þ � ReðA2e

2i�Þ ImðA3Þ
ReðA2e

2i�Þ ImðA1e
2i�Þ � ReðA1e

2i�Þ ImðA2e
2i�Þ ;

m2

m3

¼ ReðA1e
2i�Þ ImðA3Þ � ReðA3Þ ImðA1e

2i�Þ
ReðA2e

2i�Þ ImðA1e
2i�Þ � ReðA1e

2i�Þ ImðA2e
2i�Þ

(27)

where

Aj ¼ UajUbj; ðno sum overjÞ: (28)

As mentioned in the Introduction, one can completely
reconstruct the neutrino mass matrix in terms of the six
mixing and phase angles, assuming a given one-zero tex-
ture and fixing a value for �m2 within its acceptable range.
We span ð�x; �y; �z; �m2Þ over their experimentally

allowed regions, whereas the phases (�, �, and �) are

varied in their full ranges. We thus can determine in the
parameter space the acceptable regions compatible with
the other experimental constraints as given in Table I and
Eq. (24). One can then illustrate graphically all the possible
correlations, in the three levels of � error, between any two
physical neutrino parameters. We chose to plot for
each pattern and for each type of hierarchy 30 correlations
at the 3-� error level involving the parameters
ðm1; m2; m3; �x; �y; �z; �; �; �; J;meeÞ and the lowest neu-

trino mass (LNM). Moreover, for each parameter, one can
determine the extremum values it can take according to the
considered precision level, and we listed in tables these
predictions for all the patterns and for the three � error
levels.
We found that the resulting mass patterns could be

classified into three categories:
(i) Normal hierarchy: characterized by m1 <m2 <m3

and is denoted by N. It satisfies numerically the
bound:

m1

m3
<

m2

m3

< 0:7 (29)

(ii) Inverted hierarchy: characterized bym3 <m1 <m2

and is denoted by I. It satisfies the bound:

m2

m3
>

m1

m3

> 1:3 (30)

(iii) Degenerate hierarchy (meaning quasidegeneracy):
characterized by m1 � m2 � m3 and is denoted by
D. The corresponding numeric bound is taken to be

0:7<
m1

m3

<
m2

m3

< 1:3: (31)

Moreover, we studied for each pattern the possibility of
having a singular (noninvertible) mass matrix. The viable
singular mass matrix is characterized by one of the masses
(m1, and m3) being equal to zero, as compatibility with the
data prevents the simultaneous vanishing of two masses

TABLE I. The latest global-fit results of three neutrino mixing angles ð�x; �y; �zÞ and two
neutrino mass-squared differences �m2 and �m2 as defined in Eq. (18). Here, it is assumed that
cos� ¼ �1 and that new reactor fluxes have been used [6].

Parameter Best fit 1� range 2� range 3� range

�m2ð10�5 eV2Þ 7.58 [7.32, 7.80] [7.16, 7.99] [6.99, 8.18]

j�m2jð10�3 eV2Þ 2.35 [2.26, 2.47] [2.17, 2.57] [2.06, 2.67]

�x 33.58� [32.96�, 35.00�] [31.95�, 36.09�] [30.98�, 37.11�]
�y 40.40� [38.65�, 45.00�] [36.87�, 50.77�] [35.67�, 53.13�]
�z 8.33� [7.71�, 10.30�] [6.29�, 11.68�] [4.05�, 12.92�]
R� 0.0323 [0.0296, 0.0345] [0.0279, 0.0368] [0.0262, 0.0397]
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TABLE II. The various predictions for the patterns of one-zero texture (M�33 ¼ 0), (M�22 ¼ 0) and (M�32 ¼ 0). All the angles
(masses) are evaluated in degrees (eV).

Model M�33 ¼ 0

Quantity �x �y �z m1 m2 m3

� � � hmie hmiee J
Degenerate hierarchy

1� 32.96–35.00 40.40–44.99 7.71–10.30 0.0747–0.2879 0.0752–0.2880 0.0579–0.2840

0.0839–179.90 0.1234–179.94 0.0285–359.94 0.0745–0.2878 0.0367–0.2752 �0:0401–0:0403
2� 31.95–36.09 40.44–50.77 6.29–11.68 0.0464–0.3161 0.0473–0.3162 0.0569–0.3133

0.0933–179.89 0.1043–180 0.1110–359.77 0.0473–0.3161 0.0240–0.2972 �0:0452–0:0455

3� 30.98–37.10 40.17–53.13 4.05–12.92 0.0452–0.3718 0.0461–0.3719 0.0553–0.3683

0.0197–179.99 0.0057–179.94 0.0790–359.99 0.0457–0.3718 0.0194–0.2668 �0:0498–0:0502
Normal hierarchy

1� � � � � � �
� � � � � �

2� 31.95–36.09 49.32–50.77 6.29–11.68 0.0372–0.0484 0.0382–0.0492 0.0602–0.0703

0.0084–179.93 0.0048–179.94 0.1524–359.73 0.0386–0.0496 0.0335–0.0492 �0:0449–0:0445

3� 30.98–37.11 49.08–53.13 4.05–12.92 0.0277–0.0494 0.0290–0.0501 0.0539–0.0716

0.0224–179.97 0.0073–179.94 0.0213–359.91 0.0297–0.0502 0.0239–0.0490 �0:0485–0:0490
Inverted hierarchy

1� 32.96–35.00 38.65–45.00 7.71–10.30 0.0472–0.0762 0.0479–0.0766 3:05� 10�7 � 0:0583
0.0630–179.99 0.0280–179.97 0.7166–359.73 0.0467–0.0760 0.0155–0.0746 �0:0398–0:0402

2� 31.95–36.09 36.87–50.77 6.29–11.68 0.0461–0.0785 0.0470–0.0790 1:078� 10�5 � 0:0604

0.0355–179.93 0.0057–179.98 0.2343–358.68 0.0455–0.0781 0.0135–0.0711 �0:0449–0:0453
3� 30.98–37.11 35.67–53.12 4.05–12.92 0.0450–0.0794 0.0458–0.0799 1:11� 10�6 � 0:0607

0.0414–179.98 0.0105–180 0.2134–359.15 0.0442–0.0791 0.0114–0.0749 �0:0482–0:0487

Model M�22 ¼ 0
Quantity �x �y �z m1 m2 m3

� � � hmie hmiee J

Degenerate hierarchy

1� 32.96–35.00 38.65–45.00 7.71–10.30 0.0471–0.3933 0.0480–0.3933 0.0580–0.3903

0.0552–179.99 0.0481–179.99 0.2248–359.99 0.0480–0.3932 0.0268–0.2978 �0:0398–0:0396

2� 31.95–36.09 36.87–49.65 6.29–11.68 0.0462–0.3898 0.0471–0.3899 0.0567–0.3885

0.0153–179.83 0.0457–179.99 0.0996–359.97 0.0471–0.3897 0.0229–0.3399 �0:0449–0:0457
3� 30.98–37.11 35.68–50.06 4.05–12.92 0.0453–0.3827 0.0462–0.3828 0.0552–0.3859

0.0038–179.89 0.0431–179.97 0.1258–359.93 0.0459–0.3828 0.0203–0.3596 �0:0496–0:0489

Normal hierarchy

1� 32.96–35 38.65–40.50 7.71–10.30 0.0361–0.0474 0.0371–0.0482 0.0602–0.0689

0.2889–179.91 0.1453–179.94 0.1594–359.78 0.0374–0.0484 0.0333–0.0477 �0:0394–0:0396

2� 31.95–36.09 36.87–40.67 6.29–11.68 0.0292–0.0483 0.0304–0.0491 0.0555–0.0702

0.0029–179.9 0.0798–179.99 0.1001–359.93 0.0307–0.0495 0.0251–0.0488 �0:0443–0:0447
3� 30.98–37.11 35.67–40.79 4.05–12.91 0.0250–0.0492 0.0265–0.0500 0.0522–0.0715

0.0087–179.96 0.0066–179.96 0.0250–359.88 0.0269–0.0505 0.0209–0.0485 �0:0484–0:0493
Inverted hierarchy

1� 32.96–35 38.65–45 7.71–10.30 0.0473–0.0765 0.0481–0.0770 0.0023–0.0587

0.0479–179.96 0.0171–179.99 0.0452–359.93 0.0468–0.0762 0.0157–0.0662 �0:0398–0:0402

2� 31.95–36.09 36.89–50.76 6.29–11.68 0.0462–0.0782 0.0470–0.0786 2:016� 10�5 � 0:0599
0.0320–179.99 0.0736–179.97 0.0399–360 0.0456–0.0780 0.0135–0.0741 �0:0448–0:0441

3� 30.99–37.11 35.71–53.13 4.05–12.92 0.0450–0.0784 0.0458–0.0789 1:33� 10�5 � 0:0602

0.0537–180 0.0159–179.94 0.0638–359.99 0.0442–0.0783 0.0117–0.0744 �0:0486–0:0492

Model M�32 ¼ 0

Quantity �x �y �z m1 m2 m3

� � � hmie hmiee J
Degenerate hierarchy

1� 32.96–35 38.65–45 7.71–10.30 0.0746–0.3955 0.0752–0.3956 0.0579–0.3926

0.0037–179.97 0.0248–179.92 0.1188–359.96 0.0745–0.3954 0.0483–0.3617 �0:0395–0:0404
2� 31.95–36.09 36.88–50.76 6.29–11.68 0.0732–0.3873 0.0738–0.3874 0.0568–0.3841

0.1507–179.93 0.0139–179.96 0.0203–360 0.0730–0.3873 0.0457–0.3518 �0:0445–0:0451
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and thus m2 cannot either vanish. The detailed investiga-
tion of singular one-zero textures is presented in Sec. V.

One can relate the one-zero-textures analysis to the
analysis of the one-vanishing-minor texture. This comes
because the Eq. (2) can be put, assuming M� is invertible,
in an equivalent form:

VTM�1
� V ¼ Diag

�
1

m1

;
1

m2

;
1

m3

�
: (32)

By comparing the two forms, we see that we can write the
inverse mass matrix in the same form as the mass matrix
after having inverted the masses and having conjugated the
phases. Since a zero in M�1

� is equivalent to a vanishing
minor for M�, we get a mapping between the one-zero
textures and the one-vanishing-minor patterns in the fol-
lowing sense. Suppose a one-zero texture at entry ða; bÞ led
to an analytical relation in terms of the free parameters of
the form:

fðm1; m2; m3; �x; �y; �z; �; �; �Þ ¼ 0 (33)

then one can deduce that a vanishing minor at the same
location ða; bÞ would lead to an analytical relation of the
form

f

�
1

m1

;
1

m2

;
1

m3

; �x; �y; �z;��;��;��

�

� gðm1; m2; m3; �x; �y; �z; �; �; �Þ ¼ 0: (34)

However, phenomenologically speaking, one can only
qualitatively relate the correlations obtained in [21] with
the correlations corresponding to the one-zero textures in
this paper, even when using the same neutrino data. In fact,
inverting the masses would change the hierarchy type from
normal into inverted and vice versa, whereas the degener-
ate hierarchy will keep its type. Now, if the � constraint
[Eq. (24)], say, was satisfied for a one-zero texture, then
upon inverting the masses it might stop being satisfied in

the corresponding vanishing minor pattern. Thus, we con-
clude that the experimental bounds on the masses are not
symmetric with respect to the mapping, and hence one
cannot deduce quantitatively the experimentally accept-
able regions in the parameter space from those of [21].
Lastly, this equivalence mapping is no more valid for the
singular models, where one of the masses is equal to zero.
Actually, the predictiveness of the singular model in [21]
was weak, whereas it is quite powerful in the singular
one-zero-texture models.
As to the symmetry T1 introduced in Eqs. (7) and (8),

it induces equivalence between different textures as,
ðM�12 ¼ 0Þ $ ðM�13 ¼ 0Þ and ðM�22 ¼ 0Þ $ ðM�33 ¼
0Þ. However, this equivalence for �y is a reflection about

the first bisectrix, i.e. it maps the �y from the first octant

to the second octant and vice versa. Similarly, the image
points of the map differ in � from their original points
by a shift equal to �. This means that the accepted
points for a pattern imply for the equivalent pattern the
same accepted points but after changing the �y and �

correspondingly. Unfortunately, the recent oscillation
data presented in Table I, has a range for �y which is

not perfectly symmetric about the first bisectrix espe-
cially for the 1-� and 2-� level values, thus making the
T1 symmetry of limited use in relating the equivalent
patterns. However, at the 3-� level, the range of �y is

nearly symmetric about the first bisectrix, and so the T1

symmetry is in action and the phenomenology of any
pattern can be deduced from its T1-symmetric equivalent
one. Hence, the equivalence between different patterns
should be taken carefully especially for data determined
at the 1- and 2-� level.
Thus, it is enough now to present four possible cases,

instead of six ones, corresponding to one-zero texture. We
stated, simple writing permitting, only the leading terms in
powers of sz of the analytical expressions in terms of (�x,
�y, �z, �, � and�). Moreover, since the mapping [Eq. (34)]

3� 30.98–37.11 35.67–53.12 4.05–12.92 0.0713–0.3673 0.0719–0.3674 0.0553–0.3708

0.0350–179.98 0.0539–179.9 0.0052–359.88 0.0710–0.3674 0.0389–0.3609 �0:0496–0:0501
Normal hierarchy

1� � � � � � �
� � � � � �

2� � � � � � �
� � � � � �

3� � � � � � �
� � � � � �

Inverted hierarchy

1� 32.96–35.00 38.65–45.00 7.71–10.30 0.0500–0.0769 0.0508–0.0773 0.0156–0.0590

0.0034–179.86 0.0529–179.84 0.1501–360 0.0496–0.0766 0.0166–0.0580 �0:0397–0:0403
2� 31.95–36.09 36.87–50.77 6.29–11.68 0.0484–0.0784 0.0491–0.0789 0.0128–0.0602

0.0441–179.97 0.0091–179.97 0.1001–359.97 0.0480–0.0781 0.0144–0.0587 �0:0455–0:0451

3� 30.98–37.11 35.67–53.13 4.05–12.92 0.0463–0.0790 0.0471–0.0794 0.0110–0.0605

0.0900–179.88 0.0075–179.98 0.1826–359.76 0.0459–0.0790 0.0122–0.0602 �0:0491–0:0491

TABLE II. (Continued)
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TABLE III. The various predictions for the patterns of one-zero texture (M�13 ¼ 0), (M�12 ¼ 0) and (M�11 ¼ 0). All the angles (masses) are evaluated in degrees (eV).

Model M�13 ¼ 0
Quantity �x �y �z m1 m2 m3

� � � hmie hmiee J
Degenerate hierarchy

1� 32.96–35.00 38.65–45.00 7.71–10.30 0.0470–0.3938 0.04783–0.3939 0.0579–0.3968

0.0057–179.99 0.0012–179.99 0.1688–359.94 0.0480–0.3939 0.0397–0.3939 �0:0402–0:0398
2� 31.95–36.09 36.87–50.76 6.29–11.68 0.0461–0.3802 0.0470–0.3803 0.0575–0.3771

0.0108–180 0.0013–179.99 0.1427–359.95 0.0471–0.3802 0.0364–0.3562 �0:0454–0:0456
3� 30.98–37.11 35.673–53.13 4.05–12.92 0.0451–0.3878 0.0458–0.3880 0.0555–0.3908

0.0026–180 0.0057–180 0.1566–359.82 0.0457–0.3880 0.0341–0.3879 �0:0503–0:0504
Normal hierarchy

1� 32.96–35.00 38.66–45.00 7.71–10.30 0.0045–0.0468 0.0099–0.0476 0.0483–0.0681

0.0588–179.96 0.0137–179.99 0.1474–359.89 0.0094–0.0478 0.0003–0.0460 �0:0398� 0:0404
2� 31.95–36.09 36.87–50.77 6.29–11.68 0.0003–0.0477 0.0085–0.0484 0.0470–0.0693

0.0434–179.95 0.0263–179.94 0.0879–359.91 0.0071–0.0484 0.0001–0.0482 �0:0447� 0:0453
3� 30.98–37.11 35.69–53.13 4.05–12.92 4:94� 10�8 � 0:0462 0.0084–0.0471 0.0458–0.0686

0.0037–179.99 0.0007–179.98 0.0396–359.99 0.0056–0.0468 5:65� 10�5 � 0:0466 �0:0495� 0:0496
Inverted hierarchy

1� 32.96–35.00 38.65–45.00 7.71–10.30 0.0471–0.0765 0.0480–0.0770 1:04� 10�5 � 0:0588
0.0096–179.99 0.0024–179.99 40:27� 135:4 [ 222:6� 319:73 0.0467–0.0763 0.0450–0.0758 �0:0403� 0:0404

2� 31.95–36.09 36.87–50.76 6.29–11.68 0.0462–0.0783 0.0470–0.0787 2:49� 10�6 � 0:0602
0.0341–179.99 0.0029–180 38:40� 138:7 [ 220� 317:5 0.0456–0.0779 0.0436–0.0776 �0:0456� 0:0457

3� 30.98–37.11 35.67–53.12 4.06–12.92 0.0450–0.0791 0.0459–0.0796 5:38� 10�7 � 0:0606
0.0040–180 0.0490–179.99 40:72� 140 [ 221:9� 320:81 0.0443–0.0790 0.0414–0.0781 �0:0501� 0:0505

Model M�12 ¼ 0
Quantity �x �y �z m1 m2 m3

� � � hmie hmiee J
Degenerate hierarchy

1� 32.96–35.00 38.65–45.00 7.71–10.30 0.0470–0.3567 0.0478–0.3568 0.0579–0.3601

0.0062–179.99 0.0094–180 0.0241–359.67 0.0479–0.3569 0.0416–0.3502 �0:0395� 0:0399
2� 31.95–36.09 36.88–50.77 6.29–11.68 0.0461–0.3818 0.0470–0.3819 0.0575–0.3849

0.0044–180 0.0111–179.99 0.1679–359.56 0.0468–0.3819 0.0389–0.3819 �0:0453� 0:0453
3� 30.98–37.11 35.68–53.13 4.05–12.92 0.0450–0.3442 0.0457–0.3443 0.0555–0.3481

0.0253–180 0.0574–179.99 0.2258–359.84 0.0458–0.3443 0.0343–0.3331 �0:0494� 0:0503
Normal hierarchy

1� 32.96–35.00 38.65–45.00 7.71–10.30 0.0025–0.0454 0.0090–0.0463 0.0480–0.0675

0.0028–179.98 0.0886–179.96 0.0682–359.89 0.0085–0.0465 5:82� 10�5 � 0:0462 �0:0398� 0:0400
2� 31.95–36.09 36.87–50.77 6.29–11.68 2:14� 10�6 � 0:0477 0.008 49–0.0485 0.0470–0.0699

0.0001–180 0.0219–179.92 0.0273–359.97 0.0070–0.0487 5:78� 10�5 � 0:0484 �0:0442� 0:0455
3� 30.98–37.11 35.67–53.10 4.05–12.89 2:14� 10�7 � 0:0473 0.0083–0.0481 0.0458–0.0700

0.0181–180 0.0267–179.99 0.1138–359.84 0.0055–0.0481 0.0001–0.0479 �0:0492� 0:0495
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Inverted hierarchy

1� 32.96–35.00 38.65–45.00 7.71–10.30 0.0471–0.0767 0.0479–0.0772 2:01� 10�5 � 0:0590
0.0408–180 0.0045–179.99 41:69� 138:90 [ 224:1� 316:64 0.0467–0.0765 0.0454–0.0758 �0:0402� 0:0402

2� 31.95–36.09 36.87–50.77 6.29–11.68 0.0462–0.0773 0.0470–0.0777 6:16� 10�6 � 0:0589
0.0004–179.97 0.0303–179.98 41:789� 138:7 [ 220:7� 314:96 0.0456–0.0769 0.0437–0.0768 �0:0456� 0:0458

3� 30.98–37.11 35.68–53.13 4.05–12.92 0.0450–0.0798 0.0458–0.0802 6:25� 10�6 � 0:0611
0.0036–179.99 0.0123–179.98 43:773� 136:00 [ 223:7� 316:82 0.0442–0.0794 0.0417–0.0785 �0:0503� 0:0506

Model M�11 ¼ 0
Quantity �x �y �z m1 m2 m3

� � � hmie hmiee J
Degenerate hierarchy

1� � � � � � �
� � � � � �

2� � � � � � �
� � � � � �

3� � � � � � �
� � � � � �

Normal hierarchy

1� 32.96–35.00 38.65–45.00 7.71–10.30 0.0015–0.0080 0.0080–0.0118 0.0480–0.0506

1:57� 88:82 [ 92:38� 179:71 3:06� 89:83 [ 92:46178:32 0.0296–359.97 0.0085–0.0128 0 �0:0403� 0:0404
2� 31.95–36.09 36.88–50.77 6.29–11.68 0.0005–0.0099 0.0085–0.0132 0.0470–0.0517

0:559� 89:3 [ 92:25� 179:35 2.71–179.12 0.3021–359.9 0.0077–0.0147 0 �0:0458� 0:0453
3� 30.98–37.11 35.68–53.13 4.06–12.92 6:31� 10�7 � 0:0115 0.0084–0.0146 0.0458–0.0532

0:458� 88:52 [ 92:16� 179:46 4.20–178.11 0.0546–359.99 0.0065–0.0167 0 �0:0498� 0:0503
Inverted hierarchy

1� � � � � � �
� � � � � �

2� � � � � � �
� � � � � �

3� � � � � � �
� � � � � �

TABLE III. (Continued)
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should be valid term by term to all orders of the expansion
in powers of sz, as the parameter �z is not affected by the
mapping, then we could indeed check our leading-order
formulas by comparing them to those of [21]. Also, we
have verified in the patterns where the obtained formulas
are all exact (not expanded), i.e. (M11) here and (C11) in
[21], the validity of the mapping, which provided an addi-
tional cross-check for the formulas.

IV. RESULTS OF ONE-ZERO TEXTURES

In this section, we present the results of our numerical
analysis for the four possible independent textures based
upon the approach described in the previous section. We
give the coefficients A’s [Eq. (28)] defining each texture,
and we produce also, in order to get some interpretation of
the numerical results, the analytical expressions of the
mass ratios up to leading order in sz, except in the last
texture (M11 ¼ 0) where we give the full analytical
expressions of the mass ratios and other experimental
parameters. We emphasize here that our numerical analysis
is based on the exact formulas and not on the approximate
ones.

The large number of correlation figures is organized in
plots, at the 3-� error level, by dividing each figure into left
and right panels (halves) denoted accordingly by the letters
L and R. Additional labels (D, N and I) are attached to the
plots to indicate the type of hierarchy (degenerate, normal
and inverted, respectively). Any missing label D, N or I on
the figures of certain texture means the absence of the
corresponding hierarchy type in this texture.
Tables II and III list, for the three types of hierarchy and

the three precision levels, the extremum values that the
different parameters can take. The corresponding ranges
should get larger with higher-� precision levels. However,
as in [21], these bounds are evaluated by spanning the
parameter space with some given number [of order
ð108–109Þ] of points chosen randomly in the parameter
space. This way of random spanning is more efficient
than a regular meshing with nested loops where we need,
with a fixed step of ‘‘modest’’ order of 1 degree, and 100
points to cover the �m2 range, around 1012 points so that to
cover the experimentally allowed space, and so requires, in
order to be efficient, a ‘‘dynamic’’ step for a finer meshing
in the regions full of accepted points compensated by less
spanning in the disallowed regions. We do not have this

FIG. 1. Pattern M�33 ¼ 0: The left panel (the left three columns) presents correlations of � against mixing angles and Majorana
phases (� and �) and those of �x against �y, � and �. The right panel (the right three columns) shows the correlations of �z against �y,

�, �, and �x and those of � against � and �y, and also the correlation of �y versus � and m23.
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problem with the random spanning. Moreover, the random-
ness of our spanning allowed us to check the stability of our
results for different randomly chosen points when we ran
the programs several times. Thus, the values in the tables
are meant to give only a strong qualitative indication.

A. Pattern of vanishing M�33

In this pattern, the relevant expressions for A1, A2 and A3

are

A1¼ð�cxcyszþsxsye
�i�Þ2; A2¼ðsxcyszþcxsye

�i�Þ2;
A3¼c2yc

2
z ; (35)

leading to

m1

m3

� s2��2�

s2xt
2
ys2��2�

þOðszÞ;
m2

m3

� s2��2�

c2xt
2
ys2��2�

þOðszÞ: (36)

In Fig. 1, left and right panels, we present all the possible
15 pair correlations related to the three mixing angles and
the three Majorana and Dirac phases ð�x; �y; �z; �; �; �Þ,

while the last plot in the right panel is reserved for the
correlation of (m23 � m2

m3 ) against �y.

The left panel of Fig. 2 presents five correlations of J
against (�z, �, �, � and LNM) and the correlation of �
versus LNM. As to the right panel of this figure, it presents
the correlations of hmiee against �x, �z, �, �, LNM, and J.
As to Fig. 3, and in a similar way, it presents the

correlation of m3 against m2

m3
and m2

m1
for the three types of

hierarchy. In all, we have 30 types of correlations for each
hierarchy type.
We see in Fig. 1 (plots: a-L ! c-L, as examples) that all

the experimentally allowed ranges of mixing angles, at 3�
error levels, can be covered in this pattern except for
normal and degenerate hierarchy types where �y is

restricted to be greater than 49� (40�) for normal and
(degenerate) ones. This restriction on �y is a characteristic

of the normal-hierarchy type in this pattern. As to the Dirac
CP phase �, it is not restricted at all as evident from the
same plots. Likewise, the plots (g-L, h-L), in Fig. 1
show that the Majorana phases ð�;�Þ are not constrained
either.
The plots in Fig. 1 show no obvious clear correlation

except those concerning correlations among phases. The
plots (d-L, e-L) show a strong linear correlation of � versus

FIG. 2. Pattern M�33 ¼ 0: Left panel presents correlations of J against �z, �, �, �, and LNM, while the last one depicts the
correlation of LNM against �. The right panel shows correlations of mee against �x, �z, �, �, LNM and J.
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ð�;�Þ in the case of degenerate and normal hierarchy,
whereas the inverted case does not reveal such a linearity.
We see also in plot (e-R), a linear correlation between the
Majorona phases ð�;�Þ, which is rather obvious in the
normal-hierarchy type while quite blurred in the degener-
ate and inverted cases. As to the correlation of m23 against
�y, the plot (h-D, R) shows that m2 is greater than m3

provided that the angle �y is in the first octant for the

degenerate hierarchy type.
The correlations ðJ; �zÞ and ðJ; �Þ have each a specific

geometrical shape regardless of the hierarchy type as can
be seen from Fig. 2 (plots: a-L, b-L). In fact, from Eq. (23)
we can see the correlation ðJ; �Þ as a superposition of many
sinusoidal graphs in � whose ‘‘positive’’ amplitudes are
determined by the acceptable mixing angles, whereas the
ðJ; �zÞ correlation can be seen as being formed by the
superposition of straight lines in sz 	 �z, for small �z,
whose slopes can be positive or negative depending on
the sign of s�. The resulting shape for ðJ; �zÞ correlation is
trapezoidal instead of isosceles due to the exclusion of zero

and its neighborhood for �z according to the latest oscil-
lation data.
The left panel of Fig. 2 (plots: c-L, d-L), reveals a

correlation of J versus ð�;�Þwhich is a direct consequence
of the ‘‘linear’’ correlations of � against ð�;�Þ and of the
‘‘geometrical’’ correlation of ðJ; �Þ. The two correlations
concerning the LNM (plots: e-L, f-L) disclose that as the
LNM increases the parameter space becomes more re-
stricted. This seems to be a general trend in all the patterns,
where the LNM can reach in the degenerate case values
higher than the other hierarchies.
The correlations of hmiee against (�x, �z, �, �, LNM, J),

as inferred from the right panel of Fig. 2, show that the
increase of hmiee would generally constrain the allowed
parameter space. We note also a general tendency of
increasing hmiee with increasing LNM in all cases of
hierarchy (plots e-R). Another point concerning hmiee is
that it cannot attain the zero limit in all types of hierarchy,
as is evident from the graphs or explicitly from the corre-
sponding covered range in Table II.
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against m3.
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For themass spectrum,we see fromFig. 3 that the normal
hierarchy is of moderate type in that the mass ratios do not
reach extremely high, nor low, values. In contrast, the
inverted hierarchy could be a severe one passing to the limit
of vanishing m3. All hierarchy types are characterized by
nearly equal values of m1 and m2. We also see that if m3 is
large enough then only the degenerate case with m1 	m2

can be compatible with data. We shall find later in Sec. V
that there is a singular texture, with vanishingm3 which can
accommodate the data in the inverted-hierarchy case. The
possibility of vanishing m3 could be seen from the cover-
able ranges of masses m3 in Table II. This table also shows
that no normal-hierarchy type of this pattern can be ob-
tained at the 1-� precision level, that is in accordance with
what we found as bound on �y to be greater than 49

�.

B. Pattern of vanishing M�22

In this pattern, the relevant expressions for A1, A2 and A3

are

A1 ¼ðcxsyszþ sxcye
�i�Þ2; A2 ¼ðsxsysz�cxcye

�i�Þ2;
A3 ¼ s2yc

2
z : (37)

We get

m1

m3

� t2ys2��2�

s2xs2��2�

þOðszÞ; m2

m3

� t2ys2��2�

c2xs2��2�

þOðszÞ: (38)

Again, there is a singular such texture which can accom-
modate the data. As for the plots, and since this pattern is
related by T1 symmetry to the pattern (M�33 ¼ 0), they can
be deduced from those of the latter pattern but after chang-
ing �y and � accordingly.

C. Pattern of vanishing M�32

The relevant expressions for A1, A2 and A3 for this
model are

A1 ¼ �ðszcxsy þ sxcye
�i�Þð�cxcysz þ sxsye

�i�Þ;
A2 ¼ ðsxsysz � cxcye

�i�Þðsxcysz þ cxsye
�i�Þ;

A3 ¼ sycyc
2
z : (39)

We get

FIG. 4. PatternM�32 ¼ 0: Left panel presents correlations of � against mixing angles and Majorana phases (� and �) and those of �x
against �y, � and �, while right panel shows the correlations of �z against �y, �, �, and �x and those of � against � and �y, and also the

correlation of �y versus � and m23.

E. I. LASHIN AND N. CHAMOUN PHYSICAL REVIEW D 85, 113011 (2012)

113011-12



m1

m3

� s2��2�

s2xs2��2�

þOðszÞ; m2

m3

� s2��2�

c2xs2��2�

þOðszÞ: (40)

We checked when we spanned the parameter space
that no normal hierarchy could accommodate the data.
Figs. 4–6, show the corresponding correlation plots, with
the same conventions as in the (M�33 ¼ 0) case. We see
that the mixing angles and phase angles can cover their
experimentally allowed regions. The pair correlations
ð�; �Þ, ð�;�Þ and ð�;�Þ show linear behavior in both
degenerate and inverted cases. The ‘‘sinusoidal’’ and ‘‘tra-
pezoidal’’ shapes of the ðJ; �Þ and ðJ; �zÞ correlations are
invariably covered. Again, a lower bound on mee restricts
enormously the parameter space. The correlation plots of
mee, or alternatively Table I, show that the limit mee ¼ 0
cannot be met in either one of the two acceptable hierarchy
types. Again, no clear correlation between ðm23; �yÞ, nor
between �y and ð�;�Þ. As clear from Fig. 5 [(c-D, L) and

(c-I, L)], there is an acute correlation of J versus �,
originating from the sharp linear correlation of � with �
in both degenerate and inverted cases to be contrasted
with the nonacute one linking J and � presented in
Fig. 5 [(d-D, L) and (d-I, L)]. As to the LNM correlations,
they show that it tends to have a low value, in that increas-
ing it would reduce hugely the parameter space (this is

illustrated in plots e-L and f-L of Fig. 5 in the degenerate
case, where the range of the LNM is larger than that in the
inverted case and so a concentration of the accepted dots
near a low value of the LNM is more obvious). The general
tendency of increasing hmiee linearly with increasing LNM
in all possible hierarchies (plots b-R of Fig. 5) can be easily
recognized.
For the mass spectrum, the inverted hierarchy is not

sharp, in that the ratio m2=m3 has an upper bound
(� 4:5) of order unity (Fig. 6, plot a-I). We note also that
no mass can approach too closely to zero. We see this in the
inverted hierarchy either by looking at (Fig. 6, plot b-I) and
noting that m2

m1
is not reaching very large values correspond-

ing to very minute m1, or by checking the coverable mass
regions in Table II. There is no noninvertible such texture
which can accommodate the current data.

D. Pattern of vanishing M�13

The relevant expressions for A1, A2 and A3 for this
model are

A1 ¼ czcxð�cxcysz þ sxsye
�i�Þ;

A2 ¼ �sxczðsxcysz þ cxsye
�i�Þ; A3 ¼ szczcy: (41)

FIG. 5. Pattern M�32 ¼ 0: Left panel presents correlations of J against �z, �, �, �, and LNM, while the last one depicts the
correlation of LNM against �. The right panel shows correlations of mee against �x, LNM, �, �, �z and J.
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We obtain

m1

m3

� s2���sz
tycxsxs2��2�

þOðs2zÞ; (42)

m2

m3

� s��2�sz
tycxsxs2��2�

þOðs2zÞ: (43)

We have also

R� ¼ c2yjs2��2� � s2��2�j
c2xs

2
xs

2
ys

2
2��2�

s2z þOðs3zÞ: (44)

We plot the corresponding correlations in Figs. 7–9, with
the same conventions as before. In contrast to the
(M�33 ¼ 0) case, we see here that the mixing angles
ð�x; �y; �zÞ can cover all their allowable regions (Fig. 7,

as examples, plots: a-L ! c-L) and in all hierarchy types.
The linear correlations of � versus � and � disappear in
the inverted case, whereas they are replaced by Lissajous-
like patterns in the degenerate case (Fig. 7, plots: d-L, e-L).
However, there is a quasilinear correlation between � and
� (Fig. 7, plot: e-R) in the degenerate and inverted cases.
The special sinusoidal and trapezoidal shapes of J versus
� and �z remain (Fig. 8, plots: a-L, b-L), but we note that
in the inverted case the sinusoidal shape is severed and
does not extend over the whole range of �. This would
single out three disallowed regions for �, one is from 0�

to 40.72� and another from 140� to 221.9� while the
third from 320.81� to 360� approximately. Again, no
clear correlation involves hmiee (Fig. 8, right panel).
However, setting a lower bound on this parameter would
contract enormously the parameter space, as can be seen
from the upper bound of mee: (< 0:05 eV) in the normal-
hierarchy type, followed by (< 0:08 eV) in the inverted
case, and then (< 0:4 eV) in the degenerate case. Apart
from the usual correlations of J versus � and � (Fig. 8
plots: c-L, d-L), initiated by the correlation of � with �
and �, the other plots do not show clear correlations. We
see from Table II that the limit mee ¼ 0 is not attainable
in this pattern, although a tiny value for hmiee of
Oð10�5 eVÞ can be achieved in the normal case. Again,
the general tendency of increasing hmiee with increasing
LNM in all possible hierarchies (Fig. 8, plots e-R) can be
easily recognized.
For the mass spectrum, the plot b-I in Fig. 9 tells us that

the experimental data can be accommodated in the
inverted-hierarchy type only when the two masses m1

and m2 are approximately equal. However, the mass-ratio
parameter m2=m3 (plot a-I) indicates a strong hierarchy.
Similarly, the normal-type hierarchy case (plots a-N and
b-N) reveals a strong hierarchy as shown by the mass ratios
m2

m1
in plot (b-N), while the mass ratios m2

m3
are of order Oð1Þ

as shown in plot (a-N). We see also that in contrast to the
pattern of vanishing M�33, the limit m1 ¼ 0 can also be
reached. In fact, there is a noninvertible such texture which
can accommodate the current data, and this happens when
m1 ¼ 0 or m3 ¼ 0.

E. Pattern of vanishing M�21

The relevant expressions for A1, A2 and A3 for this
model are

A1 ¼ �czcxðcxsysz þ sxcye
�i�Þ;

A2 ¼ �czsxðsxsysz � cxcye
�i�Þ; A3 ¼ szczsy: (45)

We get

m1

m3
� s2���szty

cxsxs2��2�

þOðs2zÞ;
m2

m3

� s2���szty

cxsxs2��2�

þOðs2zÞ;
(46)

with

R� � t2yjs2��2� � s2��2�j
c2xs

2
xs

2
2��2�

s2z þOðs3zÞ: (47)

The phenomenological analysis of this pattern can be
deduced from that of vanishing M�13 by applying the
symmetry T1.
Also, and as in the pattern of vanishing M�13, there is a

noninvertible such texture which can accommodate the
current data.
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F. Pattern of vanishing M�11

In this pattern, the relevant expressions for A1, A2 and
A3 are

A1 ¼ c2zc
2
x; A2 ¼ c2zs

2
x; A3 ¼ s2z : (48)

The analytical expressions for all relevant computed pa-
rameters are simple and independent of �. The mass ratios
take the forms

m1

m3

¼ t2zs2�
c2xs2��2�

;
m2

m3

¼ t2zs2�

s2xs2��2�

: (49)

Using the randomly generated �m2 within its acceptable
range as found in Table I, m3 can be calculated to be

m3 ¼
ffiffiffiffiffiffiffiffiffi
�m2

p js2��2�j
t2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðs

2
2�

s4x
� s2

2�

c4x
Þj

r : (50)

Using this expression ofm3, one can get the corresponding
expression of �m2 as

�m2 ¼ m2
3

��������1� 1

2

t4z
s22��2�

�
s22�
c4x

þ s22�

s4x

���������: (51)

The nonoscillation parameters hmie, hmiee and � are
given as

hmie ¼ m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c2zt

4
z

s22��2�

�
s22�
c2x

þ s22�

s2x

�
þ s2z

�vuut ;

hmiee ¼ m3

��������t2zs2�c
2
z

s2��2�

e2i� þ t2zs2�c
2
z

s2��2�

e2i� þ s2z

��������;

� ¼ m3

�
t2z
c2x

s2�
s2��2�

þ t2z
s2x

s2�

s2��2�

þ 1

�
; (52)

wherem3 is given in Eq. (50). Finally, the parameterR� has
the form

R� ¼ t4z
s22��2�

j s
2
2�

s4x
� s2

2�

c4x
j

j1� 1
2

t4z
s22��2�

ðs22�
c4x

þ s2
2�

s4x
Þj
: (53)

As mentioned earlier, we have cross-checked our calcu-
lations by applying the mapping [Eq. (34)] and getting

FIG. 7. PatternM�13 ¼ 0: Left panel presents correlations of � against mixing angles and Majorana phases (� and �) and those of �x
against �y, � and �, while right panel shows the correlations of �z against �y, �, �, and �x and those of � against � and �y, and also the

correlation of �y versus � and m23.
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exactly the formulas corresponding to the pattern (C11) in
[21]. This pattern shows only normal-type hierarchy, and
the corresponding plots are shown in Fig. 10. We see in this
figure (plots: a-L, b-L and g-L) that the mixing angles
ð�x; �y; �zÞ and the Dirac phase angle � cover all their

allowable regions. Figure 10, l-N, R and Table II show
that this texture allows a vanishing value of m1 only at the

3-� error level, as we shall see later when studying the

singular textures. The nonvanishing of m1, at the 1-� and

2-� error levels, has far-reaching consequences on

Majorana phases in that it excludes the tight region neigh-

borhood around � ¼ �
2 which is clearly evident from the

disallowed region [89.83�, 92.46�] for the phase � at the

1-� error level as deducted from Table II. Similarly,

the nonvanishing of m2 implies the same consequence

but for �, which can be easily understood through mass

ratios given in Eq. (49) (look at the two plots: d-L, h-L). In

the same way, the region of �-� equal to a multiple of �
2

would be excluded due to the nonvanishing of m3 (look at

the two strips in the plot: a-R).

Furthermore, setting the mass ratio, ( m2

m1
¼ s2�

s2�t
2
x
) to be

larger than 1 and taking into account that tx is less than one,

for the phenomenologically accepted �x, would force
small nonvanishing lower bounds for � as can be seen in
Table II.
Plots (c-L, h-L) show no strong correlation between

ð�; �Þ, nor between ð�;�Þ, whence no clear correlation
between J versus �, or between J versus � (plots: d-R,
j-R). The absence of correlation concerning delta is ex-
pected since � drops out from all expression defining the
pattern. There is a strong ‘‘kite-shaped’’ correlation be-
tween � against � (plot: a-R) showing that � being in the
first quarter forces � to be in the second quarter, and vice
versa. In this pattern, hmiee, as given by Eq. (21), vanishes
as a direct consequence of the relation defining the pattern,
namelyM�11 ¼ 0. The vanishing of hmiee clearly leaves its
imprint on all resulting correlation through its functional
dependence on mixing and phase angles as given in
Eq. (52). The LNM correlation with � (plot k-R) again
excludes the region around � ¼ �

2 .

The mass spectrum in plot (f-R) shows a strong normal
hierarchy with m2 quite larger than m1 (plot: l-R) and we
can approach the limitm1 ¼ 0. The singular limit (m1 ¼ 0)
is absent at the 1-� and 2-� error levels as evident from
Table II.

FIG. 8. Pattern M�13 ¼ 0: Left panel presents correlations of J against �z, �, �, �, and LNM, while the last one depicts the
correlation of LNM against �. The right panel shows correlations of mee against �x, �z, �, �, LNM and J.
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V. SINGULAR PATTERNS

The viable singular patterns can be respectively divided
into two classes, the first class is characterized by vanish-
ingm1 while the second class is defined by lettingm3 equal
to zero. Table IV is the analog of Tables II and III for the
experimentally acceptable singular patterns.

A. Vanishing m1 singular patterns

We have the following normal-hierarchy mass spectrum,

m1 ¼ 0; m2 ¼
ffiffiffiffiffiffiffiffiffi
�m2

p
;

m3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ �m2

2

s
�

ffiffiffiffiffiffiffiffiffiffi
�m2

p
; (54)

which constrains the mass ratio m2

m3
to be

m2

m3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R�

1þ R�

2

s
� ffiffiffiffiffiffi

R�

p
; (55)

and the mass ratio value can be deduced from that of R�

given in Table I. The vanishing of m1 together with impos-
ing one-zero texture implies

A2m2e
2i� þ A3m3 ¼ 0; (56)

leading to

m2

m3
¼

��������A3

A2

��������; � ¼ 1

2
arg

�
�A3m3

A2m2

�
: (57)

The Majorana phase � becomes unphysical in this class,
since m1 vanishes, and can be dropped out.
One can use the mass constraint Eq. (55) to check the

viability of the singular patterns. We find that we have
three unviable cases with vanishing m1, whose inability to
accommodate data can be revealed easily from the mass
ratio formula m2

m3
. In fact, this mass ratio for the textures

M�22 ¼ 0 (M�33 ¼ 0, and M�23 ¼ 0), up to leading order

in sz, is respectively
t2y
c2x
( 1
t2yc

2
x
and 1

c2x
), which is larger thanffiffiffiffiffiffi

R�

p
for all allowed range of �x, �y and �z. The relevant

FIG. 9. Pattern M�13 ¼ 0: correlations of mass ratios m2

m3
and m2

m1
against m3.
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mass ratio formulas for both viable and unviable patterns
are listed in Table V.

1. Pattern of vanishing m1 and M�11

In this pattern, the relevant mass ratio is

m2

m3
¼ t2z

s2x
: (58)

In this case, there is no restriction on �y and �. As to the

Majorana phase�, as given by Eq. (57), it is restricted to be
�
2 since both of A3 and A2 are positive real [Eq. (48)].

Equation (58) imposes the constraint on �z and �x given

by
t2z
s2x
¼

ffiffiffiffiffiffiffiffiffi
R�

1þR�
2

r
. This constraint can be satisfied only at the

3-� level. The correlations in Fig. 11 indicate that �z is
restricted to be in a narrow range from 11.71� to 12.91�,
while �x is from 30.98� to 34.69�.

2. Pattern of vanishing m1 and M�13

In this pattern, the relevant mass ratio and the Majorana
phase � are given, expanded in terms of sz, as

m2

m3
� sz

tysxcx

�
1� c�txsz

ty

�
þOðs3zÞ: � � �

2
þOðszÞ:

(59)

In this case, the mass ratio in Eq. (59) imposes a constraint
on the mixing angles and phases that cannot be satisfied at
the 1-� error level, whereas it can be met at the other
levels, and this manifests itself in the clear pair correlations
of Fig. 12 [plots: (b-N, L), (c-N, L), (e, N-L), (g, N-L), (h,
N-L) and (i, N-L)]. Table IV reveals the restrictions on the
mixing angles �z, �y and the phase � at the various �

levels. The notable constraints, at the 2-� level, are the
restriction on �z and �y to be respectively around �z �
6:5� and �y � 49:5�. The valid range for �, at the 2-� error

level, is ½0:015�; 86:24�� [ ½267:2�; 360�� in order to keep
m2

m3
consistent with Eq. (55). At the 3-� error level, we find

that only �z has the restricted range [4.05, 7.54
�], while �x,

�y and � almost cover their acceptable range. In Fig. 12

(c-N, L), it is clear that as �z increases, the phase angle �
tends to be around 0� or 360� and this helps in under-
standing the resulting correlation between J and �z con-
centrating around a vanishing J for relatively large �z. The

FIG. 10. PatternM�11 ¼ 0: Left panel (the left two columns) presents all pair correlations concerning mixing angles and CP phases
except those of ð�; �Þ, ð�; �yÞ and ð�; �yÞ, while right panel (right two columns) displays the previously excluded ones besides (m23 ¼
m2

m3
, �y) correlation and those of J against �z, �, �, an � besides those of LNM against � and J. Finally, those of m3 against

m2

m3
and m2

m1
.
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TABLE IV. The various predictions for the viable singular one-zero textures. All the angles (masses) are evaluated in degrees (eV).

Model (m1 ¼ 0, M�11 ¼ 0)
Quantity �x �y �z � � � hmie hmiee J

Normal hierarchy

1� � � � � � � � � �
2� � � � � � � � � �
3� 30.98–34.69 33.56–53.13 11.71–12.92 0–180 90 0.0548–359.94 0.0108–0.0126 0 �0:0492–0:0487

Model (m1 ¼ 0, M�12 ¼ 0)
Quantity �x �y �z � � � hmie hmiee J

Normal hierarchy

1� � � � � � � � � �
2� 31.95–36.09 36.87–40.81 6.29–7.32 0–180 ½0:0034; 86� [ ½96; 179:99� 12.29–353.17 0.0068–0.0079 0.0023–0.0038 �0:0263–0:0264
3� 30.98–37.11 35.67–53.02 4.05–7.78 0–180 0.0174–179.97 0.1588–359.95 0.0055–0.0082 0.0018–0.0040 �0:0279–0:0279

Pattern (m1 ¼ 0, M�13 ¼ 0)
Quantity �x �y �z � � � hmie hmiee J

Normal hierarchy

1� � � � � � � � � �
2� 32.16–36.09 48.85–50.77 6.29–6.74 0–180 ½0:0071; 41:3� [ ½135:5; 180� ½0:0151; 86:24� [ ½267:2; 360� 0.007–0.0076 0.0030–0.0037 �0:0252–0:0251
3� 30.98–37.11 36.20–53.13 4.05–7.54 0–180 0.0098–179.97 0.0206–359.94 0.0055–0.0081 0.0018–0.0040 �0:0271–0:0269

Pattern (m3 ¼ 0, M�22 ¼ 0)
Quantity �x �y �z � � � hmie hmiee J

Inverted hierarchy

1� � � � � � � � � �
2� 31.95–36.09 38.76–50.77 7.65–11.68 0.0290–180 0.0096–179.99 ½0:0051; 48:73� [ ½310:2; 360� 0.0455–0.0501 0.0135–0.0219 �0:0347–0:0334
3� 30.99–37.11 35.77–53.13 6.30–12.92 0.0213–180 0.0299–179.96 ½0:0253; 61:85� [ ½300; 360� 0.0441–0.0511 0.0118–0.0255 �0:0432–0:0431

Pattern (m3 ¼ 0, M�33 ¼ 0)
Quantity �x �y �z � � � hmie hmiee J

Inverted hierarchy

1� 32.96–35 38.65–44.64 8.35–10.3 0.0176–179.96 0.1035–179.97 144.15–215.86 0.0466–0.0490 0.0154–0.0196 �0:0232–0:0230

2� 31.96–36.09 36.87–50.68 7.04–11.68 0.0829–179.97 0.0185–179.99 126.46–233.22 0.0455–0.0502 0.0136–0.0233 �0:0356–0:0356
3� 30.98–37.11 35.67–53.12 5.98–12.92 0.0870–180 0.0263–179.93 117.13–241.19 0.0441–0.0511 0.0119–0.0259 �0:0429–0:0436

Pattern (m3 ¼ 0, M�12 ¼ 0)
Quantity �x �y �z � � � hmie hmiee J

Inverted hierarchy

1� 32.96–35 38.65–45 7.71–10.30 0.0036–179.97 0.0259–179.99 ½88:17; 91:88� [ ½268:3; 271:95� 0.0466–0.0491 0.0453–0.0484 �0:0296–� 0:0405
2� 31.95–36.09 36.88–50.77 6.29–11.68 0.0384–179.98 0.0140–179.95 ½86:15; 94:4� [ ½265:1; 273:56� 0.0455–0.0502 0.0435–0.0496 �0:0238–� 0:0457
3� 30.98–37.11 35.67–53.13 4.05–12.92 0.0055–179.97 0.0227–179.95 ½82:22; 96:63� [ ½263:2; 278:53� 0.0441–0.0514 0.0415–0.0511 �0:0151–� 0:0506

Pattern (m3 ¼ 0, M�13 ¼ 0)
Quantity �x �y �z � � � hmie hmiee J

Inverted hierarchy

1� 32.96–35 38.65–45 7.71–10.30 0.0589–179.98 0.0046–179.94 ½86:42; 90:47� [ ½269:6; 273:57� 0.0467–0.0491 0.0448–0.0482 �0:0297–� 0:0406
2� 31.95–36.09 36.87–50.77 6.29–11.68 0.021–179.99 0.0016–179.94 ½84:63; 93:57� [ ½266:7; 275:62� 0.0455–0.0502 0.0432–0.0497 �0:0238–� 0:0460
3� 30.98–37.11 35.67–53.12 4.05–12.92 0.0554–179.95 0.0285–179.93 ½82:22; 97:39� [ ½262:2; 276:46� 0.0441–0.0514 0.0415–0.0512 �0:0152–� 0:0509
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TABLE V. The mass ratio formulas for the singular texture. Exact and approximate expressions for ratios are included. The status of each singular texture is indicated.

m1 ¼ 0 m3 ¼ 0
Texture m2

m3
Status m2

m1
Status

M�11 ¼ 0 t2z
s2x

Viable 1
t2x

Unviable

M�22 ¼ 0
s2yc

2
z

s2xs
2
ys

2
zþc2xc

2
y�2sxcxsycyszc�

� t2y
c2x
ð1þ 2txtyc�szÞ þOðs2zÞ Unviable

c2xs
2
ys

2
zþs2xc

2
yþ2sxcxsycyszc�

s2xs
2
ys

2
zþc2xc

2
y�2sxcxsycyszc�

� t2xð1þ 2
c�ty
sxcx

szÞ þOðs2z Þ Viable

M�33 ¼ 0
c2yc

2
z

s2xc
2
ys

2
zþs2xs

2
yþ2sxcxsycyszc�

� 1
t2yc

2
x
ð1� 2 txc�sz

ty
Þ þOðs2zÞ Unviable

c2xc
2
ys

2
zþs2xs

2
y�2sxcxsycyszc�

s2xc
2
ys

2
zþc2xs

2
yþ2sxcxsycyszc�

� t2xð1� 2 c�
tysxcx

szÞ þOðs2zÞ Viable

M�23 ¼ 0
sycyc

2
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2xs
2
ys

2
zþc2xc

2
y�2sxcxsycyszc�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xc

2
ys

2
zþc2xs

2
yþ2sxcxsycyszc�

p � 1
c2x
ð1� 2 txc�sz

t2y
Þ þOðs2zÞ Unviable

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2xs

2
ys

2
zþs2xc

2
yþ2sxcxsycyszc�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2xc

2
ys

2
zþs2xs

2
y�2sxcxsycyszc�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xs

2
ys

2
zþc2xc

2
y�2sxcxsycyszc�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xc

2
ys

2
zþc2xs

2
yþ2sxcxsycyszc�

p � t2xð1� 2 c�sz
t2ysxcx

Þ þOðs2zÞ Unviable

M�12 ¼ 0
szsy

sx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xs

2
ys

2
zþc2xc

2
y�2sxcxsycyszc�

p � tysz
sxcx

ð1þ c�tytxszÞ þOðs3zÞ Viable

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2xs

2
ys

2
zþs2xc

2
yþ2sxcxsycyszc�

p
tx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xs

2
ys

2
zþc2xc

2
y�2sxcxsycyszc�

p � 1þ tyc�sz
sxcx

� s2z t
2
yðc2�ðc2x�3s2xÞ�c2xÞ

2c2xs
2
x

þOðs3z Þ Viable

M�13 ¼ 0
szcy

sx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xc

2
ys

2
zþc2xs

2
yþ2sxcxsycyszc�

p � sz
tysxcx

ð1� c�txsz
ty

Þ þOðs3zÞ Viable

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2xc

2
ys

2
zþs2xs

2
y�2sxcxsycyszc�

p
tx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xc

2
ys

2
zþc2xs

2
yþ2sxcxsycyszc�

p � 1� c�sz
tysxcx

� s2z ðc2�ðc2x�3s2xÞ�c2xÞ
2c2xs

2
xt

2
y

þOðs3zÞ Viable
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3. Pattern of vanishing m1 and M�12

The phenomenology of the pattern (m1 ¼ 0, M�12 ¼ 0)
can be deduced from that of the pattern (m1 ¼ M�13 ¼ 0)
by applying T1 symmetry, but after appropriate change of
�y and �.

B. Vanishing m3 singular patterns

The inverted-hierarchy mass spectrum here is

m1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2��m2

2

s
; m2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2þ�m2

2

s
; m3¼0: (61)

This will constrain the mass ratio m2

m1
to be

m2

m1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R�

2

1� R�

2

vuut � 1þ R�

2
* 1: (62)

The vanishing of m3 together with imposing one-zero
texture implies

A1m1e
2i� þ A2m2e

2i� ¼ 0; (63)

leading to

m2

m1
¼

��������A1

A2

��������; �-� ¼ 1

2
arg

�
�A2m2

A1m1

�
: (64)

The only relevant physical combination ofMajorana phases
in this class of singular patterns is the difference �-�.
Again, the constraints in Eq. (62) helps to test the

validity of the singular pattern. We have here two unviable
cases M�11 ¼ 0, and M�23 ¼ 0. The corresponding mass
ratios m2

m1
are respectively 1

t2x
and t2x þOðszÞ. Both ratio are

ruled out because in the first case it is larger than 1þ R�

2

while for the second is smaller than 1 for the allowable
data. We list also the relevant mass ratio formulas for both
viable and unviable patterns in the right part of Table V.

1. Pattern of vanishing m3 and M�13

In this pattern, we get

m2

m1

� 1� c�sz
tysxcx

� s2zðc2�ðc2x � 3s2xÞ � c2xÞ
2c2xs

2
xt

2
y

þOðs3zÞ:

� � �þ s�sz
2cxsxty

þOðs2zÞ: (65)

FIG. 12. Pattern (M�13 ¼ 0, m1 ¼ 0): The left panel plots and the top plot of the right panel present all pair correlations concerning
mixing angles and relevant CP phases. The remaining right panel plots display the correlations of J against �z, �, and �, besides those
of hmiee against �x, �, �, �z and J. All data correspond to 3-� precision level.
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In this case, the compatibility of the mass ratio in Eq. (65)
with the constraint given by Eq. (62) imposes restrictions
on the mixing angles and phases, which is made evi-
dent in the clear pair correlations in Fig. 13 [plots:
ða-I;LÞ ! ðe; I-LÞ]. The mixing angles cover all their
allowed range at the 3-� level. The Dirac phase � is
restricted to be around �

2 or 3�
2 in order to keep m2

m1
greater

than one as evident from Fig. 13 [plot: (c-I, L)]. The
restriction on � results from an interplay between terms
of various orders namely OðszÞ and Oðs2zÞ which leads to
the specified range ½82:22�; 97:39�� [ ½262:2�; 276:46��.
The correlations ðJ; �Þ and ðJ; �zÞ appearing in Fig. 13
[plots: (d-I, R) and (e-I, R) respectively] can again be
explained as before (see Sec. VA2), but with care about
the mentioned restricted range for �.

The linear correlation between � and � is clearly man-
ifested in Fig. 13 [plot: (a-I, R)] and is in agreement with
the corresponding relation in Eq. (65). The relation in
Eq. (65) implies the existence of two lines whose intercepts
with the � axis are determined by the term of order sz with
sign controlled by s�. The restricted range of � leads to the
blank strip between the two lines. The correlation between

hmiee and �z, as depicted in Fig. 13 [plot: (l-I, R)], can be
understood through the relation defining hmiee in Eq. (21),
which under approximation to leading order in sz reads as

hmiee � m1ð1� s2zÞ þOðs4zÞ: (66)

Thus, the resulting curve can be viewed as a superposition
of many parabolas graphs in the ðhmiee; �zÞ plane. No
correlation for hmiee versus �x, �, � and �.

2. Pattern of vanishing m3 and M�12

The phenomenology of the pattern (m3 ¼ 0, M�12 ¼ 0)
can be inferred from the corresponding one in the case
(m3 ¼ 0, M�13 ¼ 0) since they are related by ‘‘T1’’ sym-
metries, but after appropriate changes of �y and �.

3. Pattern of vanishing m3 and M�33

In this pattern, the relevant mass ratio and the relation
among Majorana phases are given, expanded in terms
of sz, as

FIG. 13. Pattern (M�13 ¼ 0, m3 ¼ 0): The left panel plots and the top-row plot of the right panel present all pair correlations
concerning mixing angles and relevant CP phases. The rest of the right panel displays the correlations of J against �z, �, � and �,
besides those of hmiee against �x, �, �, � and �z.
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113011-22



m2

m1

� t2x

�
1� 2c�sz

tysxcx

�
þOðs2zÞ:

� � �þ �

2
þ s�sz

tysxcx
þOðs2zÞ: (67)

Here, the equality of the mass ratio in Eq. (67) with that
given in Eq. (62) imposes a constraint on the mixing angles
and phases, which is displayed in the clear pair correlations
in Fig. 14 [plots:ða-I;LÞ ! ðe; I-LÞ]. The Dirac phase �
is restricted to be in the second and third quadrant
(� 2 ½117:13�; 241:19��) to keep m2

m1
greater than one.

This behavior can be easily demonstrated from the mass
ratio formula in Eq. (67) which indicates that c� should be
negative in order to enhance the leading-order result, (t2x),
to be greater than one. As �z decreases, � tends to be
restricted around 180� as evident from Fig. 14 [plot:
(c-I, L)]. The remaining mixing angles almost cover all
their allowed range at the 3-� level, but as �z increases �x
and �y tend to be unrestricted as evident from Fig. 14

[plots: (i-I, L), (l-I, L)]. The correlations ðJ; �Þ and ðJ; �zÞ
appearing in Fig. 14 [plots:(d-I, R) and (e-I, R) respec-
tively] can be explained as before (see Sec. VA2), paying

attention to the mentioned restricted range for both � and
�z and their mutual correlation.
The linear correlation between � and � is clearly man-

ifested in Fig. 14 [plot: (a-I, R)] and agrees with the corre-
sponding relation in Eq. (67) and the higher-order terms
OðszÞ can account for the strip appearance instead of a sharp
line. The correlation between hmiee and �x, as depicted in
Fig. 14 [plot: (h-I, R)], can be understood through the
relation defining hmiee in Eq. (21), which leads to

hmiee � m1 cosð2�xÞc2z : (68)

In deriving the above equation, we took into account the
relation between � and � as presented in Eq. (67). In the
allowed range for �z, the factor c

2
z does not vary much and

thus mee can be seen depending mainly on the variable �x.
The resulting figure, Fig. 14 [plot: (h-I, R)], can be viewed
then as a cosine curve, for the allowed range of ð�x; �zÞ,
whose amplitude is modulated by the allowed value of m1.
The other correlations involving hmiee presented in Fig. 14
(right panel) can be explained easily through the formula in
Eq. (68) together with the correlations involving �x and �z
with other mixing angles and phases.

FIG. 14. Pattern (M�33 ¼ 0, m3 ¼ 0): The left panel and the top-row plot of the right panel present all pair correlations concerning
mixing angles and relevant CP phases. The other plots of the right panel display the correlations of J against �z, �, � and �, besides
those of hmiee against �x, �, �, � and �z.
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4. Pattern of vanishing m3 and M�22

The phenomenology of the pattern (m3 ¼ 0, M�22 ¼ 0)
can be deduced from those of the pattern (m3 ¼ 0,
M�33 ¼ 0) after appropriate changes of �y and � that

endowed by T1 symmetries.

VI. SYMMETRY REALIZATION

All neutrino mass matrices with one-zero texture can be
realized in a simple way in models based on seesaw
mechanism with a flavor Abelian symmetry. The realiza-
tion method relies on the necessity of at least two zeros in
MR to be reflected as two zeros in M� through the seesaw
relation in Eq. (1) and on assuming that the Dirac neutrino
mass is diagonal. Relaxing this assumption, in that Dirac
neutrino mass matrix can take a nondiagonal form, then
one sole zero in M� can be produced. The construction
should be augmented with three Higgs doublet with
appropriate flavor symmetry transformation to generate
nondiagonal Dirac neutrino mass matrix while keeping
charged lepton mass matrix diagonal.

We need three right-handed neutrinos �Rj, three right-

handed charged leptons lRj and three left-handed lepton

doublets DLj ¼ ð�Lj; lLjÞT , where j is the family index.

Also, we need the three SM Higgs doublets, plus other
scalar singlets. We follow a similar procedure to that of
[19] and assume a Z8 � Z2 underlying symmetry. For the
sake of illustration, let us take the case ofM�11 ¼ 0. Under
the action of Z8 factor, the leptons (the right singlets and
the components of left doublets) of the first, second, and

third families are multiplied by (1,�1, ! ¼ ei�=4) respec-
tively. As to the three SM Higgs doublets �1, �2 and �3,
the first two do not change under Z8, while the third is
multiplied by !5. Under the factor Z2, all fields stay
invariant except �Rj, �2 and �3 which change sign.

The bilinears of �DLilRj and �DLi�Rj, relevant for Dirac

mass matrix of neutrino and charged leptons transform
under the factor Z8 as

�DLilRj ffi �DLi�Rj ffi
1 !4 !

!4 1 !5

!7 !3 1

0
BB@

1
CCA: (69)

The assigned symmetry transformation for three Higgs
doublets guarantees diagonal mass matrix for charged
leptons and Dirac neutrino mass matrix of the form

M�D ¼
� 0 0

0 � �
0 0 �

0
BB@

1
CCA; (70)

where the cross sign denotes a nonvanishing entry.
The bilinears �Ri�Rj, relevant for the Majorana neutrino

mass matrix MR, transform under the factor Z8 as

�Ri�Rj ffi
1 !4 !

!4 1 !5

! !5 !2

0
BB@

1
CCA: (71)

The (1, 1) and (2, 2) matrix elements of MR are Z8 � Z2

invariant, hence their corresponding mass terms are di-
rectly present in the Lagrangian. We require a Yukawa
coupling to a real scalar singlet (
12) which changes sign
under the factor Z8 to generate the (1, 2) matrix element in
MR, when acquiring a vacuum expectation value (VEV) at
the seesaw scale. The (1, 3) matrix element is equally
generated by the Yukawa coupling to a complex scalar
singlet (
13) with a multiplicative number !7 under the
factor Z8. The resulting right-handed Majorna mass matrix
can be casted in the form

MR ¼
� � �
� � 0

� 0 0

0
BB@

1
CCA: (72)

The resulting effective Majorana mass matrix of light
neutrino takes the form

M� ¼ MDM
�1
R MT

D ¼
0 � �
� � �
� � �

0
BB@

1
CCA; (73)

which is of the required structure.
For the other patterns, they can be generated in a similar

way summarized in the Table VI.
The one-zero-texture singular models, with vanishing

m1 or m3, can be accommodated within the seesaw
schemes by incorporating a singular neutrino Dirac
mass matrix. As evident from the seesaw formula in
Eq. (1), MR cannot be singular; otherwise, the seesaw
mechanism would not work and thus we are obliged to
introduce a singular neutrino Dirac mass matrix. The
symmetry realization can be done similarly to the non-
singular case, but we need more zeros in MD in order to
make it singular. These further zeros can emerge as a
result of enhancing the symmetry form Z8 � Z2 to Z12 �
Z2. This generic choice of the group, Z12 � Z2 was dis-
cussed in [18], and in the present work we use it to realize
the case of singular one-zero-texture models, although it
might not be the most economic choice. The assigned
transformations, under the action of the factor Z12, for
leptons are

lR1 ! �lR1; �R1 ! ��R1; �DL1 ! � �DL1;

lR2 ! �2lR2; �R2 ! �2�R2; �DL2 ! �3 �DL2;

lR3 ! �5lR3; �R3 ! �5�R3; �DL3 ! �8 �DL3; (74)

where � ¼ ei�=6 identifying the Z12 symmetry. The bi-
linears �DLjlRk, �DLj�Rk and �Rj�Rk transform as
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�DLjlRk ffi �DLj�Rk ffi
�2 �3 �6

�4 �5 �8

�9 �10 �

0
BB@

1
CCA;

�Rj�Rk ffi
�2 �3 �6

�3 �4 �7

�6 �7 �10

0
BB@

1
CCA: (75)

The diagonal charged lepton mass matrix can be achieved
by introducing only three Higgs doublets which are de-
noted by �11, �22 and �33 and get, respectively, multi-
plied by �10, �7 and �11 under the action of Z12. The other
demanded scalars (singlets and doublets) and their trans-
formation properties are dependent on the required sin-
gular one-zero texture. As an example, we consider the
singular case of M�11 ¼ 0, and the remaining other cases
can be done in a similar fashion. The required forms for
M�D—singular one—and MR are

M�D ¼
� 0 0

0 0 �
0 0 �

0
BB@

1
CCA; MR ¼

� 0 �
0 � 0

� 0 0

0
BB@

1
CCA; (76)

where the cross sign denotes a nonvanishing element.
These forms are by no means exclusive but they are just
mere possibilities. The effective singular Majorana mass
matrix for the light neutrino assumes the needed form,

M� ¼ MDM
�1
R MT

D ¼
0 � �
� � �
� � �

0
BB@

1
CCA: (77)

The nonvanishing elements of M� are not merely con-
strained due to M� being a symmetric matrix but are also
further constrained due to its noninvertibility. The re-
quired form of M�D can be achieved by introducing scalar

doublets which are denoted by ~�11,
~�23 and ~�33. These

scalars are getting respectively multiplied by �10, �4 and

�11 under the action of Z12. As to the Majorana mass
matrix, MR, it can be constructed by introducing the set of
scalar singlets 
11, 
13 and 
22, which under the action of
Z12 are respectively multiplied by �10, �6 and �8. The
symmetry realization for all singular patterns is summa-
rized in the Table VII.
Two points are in order here. The first one is that the

models constructed above would display flavor-changing
neutral Yukawa interactions, since various Higgs doublets
provide different entries of each mass matrix. However, the
effects are calculable in the models and it should be
possible to suppress processes, like the decay 	 ! e�,
by adjusting Yukawa couplings in such a way that the

relevant elements of Yy
�Y� are quite small [18,28]. The

second point concerns the stability of the zero texture
under radiative corrections, where the contribution of off-
diagonal elements of the neutrino Yukawa couplings to
the renormalization-group running of the neutrino mass
matrix can then replace the texture zero by a nonvanishing
entry. Here, again, one can avoid situations, where the
renormalization-group running spoils at low energy the
acceptability of a zero texture at high energy, by choosing
smaller Yukawa couplings, or a smaller mass for the LNM,
or different values for Majorana phases, all of which are
not constrained strongly by the data [28].
Another interesting possibility to realize the one-zero

textures is achieved by using the type-II seesaw
mechanism [29], where the standard model is extended
by introducing several SUð2ÞL scalar triplets Ha, (a ¼
1; 2; . . .N),

Ha � ½Hþþ
a ;Hþ

a ;H
0
a�: (78)

The gauge-invariant Yukawa interaction relevant for neu-
trino mass takes the form

LH;L ¼ X3
i;j¼1

XN
a¼1

Ya
ij½H0

a�
T
LiC�Lj

þHþ
a ð�T

LiClLj þ lTLjC�LiÞ þHþþ
a lTLiClLj�; (79)

TABLE VI. The Z8 � Z2 symmetry realization for six patterns of one-zero texture. The index 1F indicates the lepton first family and
so on. The 
kj denotes a scalar singlet which produces the entry ðk; jÞ of the right-handed Majorana mass matrix when acquiring a

VEV at the seesaw scale. The transformation properties, under the specified group, are listed below each family and needed scalar
singlet for each pattern. The cross sign indicates the absence of the corresponding scalar field. ! denotes ei�=4.

Symmetry under Z8 factor

Pattern �1 �2 �3 1F 2F 3F 
11 
12 
13 
22 
23 
33

M�11 ¼ 0 1 1 !5 1 �1 ! � �1 !7 � � �
M�22 ¼ 0 1 1 ! 1 �1 ! � �1 � � !3 �
M�33 ¼ 0 1 1 !5 ! �1 1 � � !7 � �1 �
M�12 ¼ 0 1 1 ! 1 �1 ! � � � � !3 !6

M�13 ¼ 0 1 1 !5 ! �1 1 !6 � � � �1 �
M�23 ¼ 0 1 1 ! 1 �1 ! � �1 � � � !6

Symmetry under Z2 factor

�2, �3, �R1, �R2, �R3 change sign, while the rest does not change
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where Ya
ij are the corresponding Yaukawa coupling con-

stants, the indices i, j are flavor ones, and C is the charge
conjugation matrix.

The field H0
a could acquire a small expectation value,

hH0
ai0 that gives rise to a Majorana neutrino mass matrix of

the following form,

M�ij ¼
XN
a¼1

Ya
ijhH0

ai0: (80)

The smallness of the vacuum hH0
ai0 is attributed to the

largeness of the triplet scalar mass scale [29].
Using type-II seesaw mechanism as described above, all

possible one-zero textures can be generated by using four
Higgs triplets augmented by Z5 flavor symmetry. For the
purpose of illustration, the case of M�11 ¼ 0 is detailed as
follows. We assume that the leptons (the right charged
singlets and the components of the left doublets) of the

first, second and third families are multiplied by (1, � ¼
eið2�=5Þ, �2). As to the four Higgs triplets ðH1; H2; H3; H4Þ
they are multiplied by ð�4;�3;�2;�Þ respectively. The
bilinear of �Li�Lj relevant for Majorana mass matrix trans-

forms under Z5 as

�Li�Lj ffi
1 � �2

� �2 �3

�2 �3 �4

0
BB@

1
CCA: (81)

The assigned symmetry transformation for �Li and Ha’s
enforces the absence of the term

P
4
a¼1 H

0
a�

T
L1C�L1, and

thus, after H0
a acquiring a VEV, the resulting mass matrix

assumes the form

M� ¼
0 � �
� � �
� � �

0
BB@

1
CCA: (82)

The charged lepton mass matrix is guaranteed to be diago-
nal provided the standard model Higgs doublet is singlet
under flavor symmetry. In our case, we need only one
Higgs doublet. The other one-zero textures can be gener-
ated in a similar way, which is summarized in Table VIII.
One can see from Tables VI, VII, and VIII, that the type-II
seesaw construction, compared to the corresponding one in
type-I scheme, is simpler in the sense of a minimal added
particle content and a smaller Zn flavor symmetry group.
However, there is no clear way for symmetry realization of
singular Majorana mass matrix in case of type-II seesaw in
contrast to the type-I case presented earlier. Nonetheless,
there are two advantages of this type-II seesaw construc-
tion. First, the Majorana neutrino mass matrix is renormal-
ized multiplicativelly [30] and thus the zero textures are
stable under renormalization effects. Second, the flavor-
changing neutral current due to the triplet is highly sup-
pressed due to the heaviness of the triplet mass scale, or
equivalently the smallness of the neutrino masses.

VII. DISCUSSION AND CONCLUSIONS

Taking into account the recent oscillation data that con-
firms relatively large value of �z, we have presented an
updated comprehensive phenomenological analysis for all
the possible patterns of Majorana neutrino mass matrices

TABLE VII. The Z12 � Z2 symmetry realization for 6 patterns of singular one-zero texture. The ~�kj denotes a scalar doublet which
produces the entry ðk; jÞ of the Dirac neutrino mass matrix when acquiring a VEV at the electroweak scale. The 
kj denotes a scalar

singlet which produces the entry ðk; jÞ of the right-handed Majorana mass matrix when acquiring a VEV at the seesaw scale. The
transformation properties, under the specified group, are listed below each needed scalar singlet or doublet for each pattern. The cross
sign indicates the absence of the corresponding scalar field. � denotes ei�=6.

Symmetry under Z12 factor

Pattern ~�11
~�12

~�13
~�21

~�22
~�23

~�31
~�32

~�33 
11 
12 
13 
22 
23 
33

M�11 ¼ 0 �10 � � � � �4 � � �11 �10 � �6 �8 � �
M�22 ¼ 0 � � �6 � �7 � � � �11 �10 � � �8 �5 �
M�33 ¼ 0 �10 � � �8 � � � � �11 � � �6 �8 � �2

M�12 ¼ 0 �10 � � � � �4 �3 � �11 �10 � � �8 � �2

M�13 ¼ 0 �10 � � �8 � �4 � � �11 �10 � � �8 � �2

M�23 ¼ 0 �10 � � � � �4 �3 � �11 �10 � � �8 � �2

Symmetry under Z2 factor
~�jk and �Rj change sign, while the remaining fields do not change sign

TABLE VIII. The Z5 symmetry realization for six patterns of
one-zero texture. The index 1F indicates the lepton first family and
so on. The Ha denotes the ath scalar triplet. The transformation
properties, under the specified group, are listed below each family
and needed scalar triplet for each pattern.� denotes eið2�=5Þ.

Symmetry under Z5 factor

Pattern H1 H2 H3 H4 1F 2F 3F
M�11 ¼ 0 �4 �3 �2 � 1 � �2

M�12 ¼ 0 1 �3 �2 � 1 � �2

M�23 ¼ 0 1 �4 �3 � 1 � �2

M�33 ¼ 0 1 �4 �3 �2 1 � �2

M�13 ¼ 0 �3 �4 1 � � 1 �2

M�22 ¼ 0 �3 �4 1 �2 � 1 �2
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with one-zero element. All the six possible cases allow
to accommodate the current data without need to adjust
the input parameters. For the chosen acceptable param-
eter points, all the matrices are complex displaying
CP-violation effects.

Noninvertible mass matrices with one-zero texture occur
only in the cases:M11 (N),M12 andM13 (N and I),M22 and
M33 (I), where the normal hierarchy (N) corresponds to
m1 ¼ 0 and the inverted hierarchy (I) implies m3 ¼ 0.

All the nonsingular textures can produce all the three
types of hierarchy, except the texture M32 which cannot
produce the normal type in contrast to the texture M11

which produces just this type. The mixing and phase angles
cover their whole experimentally allowed regions.
However, in the normal type of M33 (M22), the angle �y
is constrained to be larger than 49� (smaller than 41�).
Also, in the inverted type of M13 (M12), the phase
� is bound to lie inside the interval union ½40:72�; 140�� [
½221:9�; 320:81�� (½43:77�; 136�� [ ½223:7�; 316:82��),
and the other phase angle � is forbidden to be around �

2

in the texture M11.
There exists a linear correlation between � and � or �,

for texturesM22 andM33 in case of normal and degenerate
hierarchies and for texture M23 in case of degenerate and
inverted hierarchies. In case of M13 and M12 textures there
is a clear correlation but is not a linear one. This induces a
clear correlation of J against these two phases. As to the
correlation ð�;�Þ, it is linear in the textures M23, M13 and
M12 in case of normal and degenerate hierarchies but it has
a kitelike shape in case ofM11. We see also that imposing a
zero texture would not in general force the parameter hmiee
to take very tiny values, except for the textureM11 where it
is identically zero. Another less obvious exception is the
case of normal hierarchy of the patterns M12 and M13

where hmiee can attain very tiny values of Oð10�5Þ eV
substantially smaller than the allowed lower bounds in
the other cases.

These features might help in distinguishing between the
four independent cases (M33, M13, M32, M11, say). If by
measuring the masses we note a normal hierarchy, then
M32 is excluded. We look then for the hierarchy intensity
(m3=m2). If it is larger than 2 (in the 3-� precision level)
then the pattern M33, where the range of the ratio is [1.4,
1.9], is excluded. If, then, the measurement of mee gives a
nonzero value then the pattern M13 (or its T-equivalent
M12) is the only possible pattern. On the other hand, if
m3=m2 is less than 2 then the patternM11, where this mass
ratio lies in [3.3, 6.2], is excluded and we need to choose
between the pattern M33 and the pattern M13 (where the
corresponding interval is [1.43, 6]). If we have m3=m2 > 2
or if �y < 49�, then M33 is excluded. Contrariwise,

if m3=m2 < 2 and �y > 49�, then measuring ð�; �Þ can

decide which of the two patterns fit by comparing to
the ‘‘narrow’’ dotted regions in the plots (e-N, L) of
Figs. 1 and 7.

However, if the mass spectrum corresponds to inverted-
hierarchy type, then the acceptable patterns are
ðM32;M33;M13Þ. Here, if the mass ratio (m2=m3) (in the
3-� precision level) is strong (> 100) then the patternM32

is excluded since this ratio in it does not exceed the value
4.5. Moreover, the measurement of � can exclude M13 if it
lies outside ½40:72�; 140�� [ ½221:9�; 320:81��, whereas,
in the other case, the narrow linear band of the correlation
ð�;�Þ in Fig. 7 (plot e-I, R) can help in this exclusion. This
last correlation, nonetheless, does not help, when needed in
the case m2=m3 < 100, in differentiating betweenM32 and
M33 [see the ‘‘blurred’’ plots (e-I, R) in Figs. 1 and 4].
In the degenerate case, the possible patterns are also

ðM32;M33;M13Þ. Although the mere measurements of �
cannot in its own exclude one of the textures, however, the
knowledge of all the phase angles jointly, and referring to
the narrow bands of the correlations ð�;�Þ for the M32,
M13 cases and the linear correlations of ð�;�Þ forM33,M32

cases can help in deciding which texture does fit the data.
We note in what preceded a strong similarity with the

vanishing minor analysis given in [21], in line with the
mapping [Eq. (34)] swapping inverted and normal hierar-
chies. However, as we indicated before, this correspon-
dence is qualitative and cannot be used to deduce the actual
allowed values of the parameters defining the one-zero
textures starting from those of the vanishing minor case,
due largely to the fact that the experimental bounds we
have are not invariant under this mapping. Moreover, there
are singular models for the one-zero textures which are rich
in phenomenology, and which are not related to any model
of the vanishing minor case, be it singular or not.
All the singular viable one-zero textures do not allow the

angle �z to be vanishing, in contrast to the singular vanish-
ing one minor texture [21] which implies vanishing �z and
thus becomes unviable according to the recent oscillation
data. There are three viable singular textures with normal-
type hierarchy (m1 ¼ 0): M11, M13, M12. The singular
texture M11 is viable only at the 3-� level and is charac-
terized by � ¼ �

2 and that �z 2 ½11:71�; 12:92��, whereas
�x < 34:69�. In the T1-related normal-type singular one-
zero textures M13 and M12, the difference between 2� and
� is equal to zero and � respectively, up to OðszÞ, whereas
�z < 7:8�, which helps in distinguishing them from the
singular M11 pattern.
There are four viable singular textures with inverted-type

hierarchy (m3 ¼ 0):M12, M13,M22,M33. In the T1-related
inverted-type singular textures ðM13;M12Þ, we have � � �
and � 2 ½82:22�; 97:39�� [ ½262:2�; 276:47��.
The T1-related inverted-type singular textures

ðM33;M22Þ are viable for all precision levels except at the
1-� level where M33 can be accommodated while M22

fails. The Majorana phases are constrained to satisfy
j�-�j ’ �

2 . As to �, it is bound to be in the 1st and 4th

quadrants outside [62�, 300�] for M22, whereas in M33 it
lies in the 2nd and 3rd quadrants inside the interval
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[117.13�, 241.19�]. Thus, the difference between � and �
and the quadrants in which � lies can help in distinguish-
ing between the four inverted-type singular one-zero
textures.

In singular textures where m1 ¼ 0, it might be possible
to attribute the smallness of �z to the smallness of R�

through the relations in Eq. (55). This is clear in the
case of (m1 ¼ 0, M�11 ¼ 0) which implies t2z �

ffiffiffiffiffiffi
R�

p
s2x.

However, this will not work in the other viable patterns of
m1 ¼ 0, because there will be a dependency on � besides
the mixing angles.

All the one-zero patterns can be realized in the frame-
work of flavor Abelian discrete symmetry implemented in
seesaw schemes. In the case of type-I scheme, the group is
(Z8 � Z2), and we need three scalar doublets, and two
additional scalar singlets in the invertible patterns trans-
forming appropriately. As to the singular patterns for the
neutrino mass matrix, and although they enjoy a larger
symmetry (Z12 � Z2), their realizations required more sca-
lar fields. Actually, we needed three scalar singlets and at
most seven scalar doublets. As to the type-II seesaw
scheme, we presented alternative simple realizations based
on introducing several Higgs triplets without introducing
right-handed neutrinos. The flavor symmetry turns out to

be Z5 which is simpler than those required for the case of
type-I seesaw.
Finally, and compared to preceding analyses of the one-

zero textures ([16] and references therein), we can summa-
rize the new points carried out in our work as follows. First,
we have updated the viability testing for the textures con-
sidering the new oscillation data. Second, we have pointed
out a relation between the one-zero textures and the one-
vanishing-minor textures analyzed in [21] and used it to
cross-check the calculations. Third, we signaled the impor-
tance of the T1 symmetry relating different patterns with
each other, and used it to check the consistency of the results
in the related patterns. Fourth, and due to the random
sampling method we used, we could cover the whole pa-
rameter space rather than limiting the study to representa-
tive points. Last, we have presented symmetry realizations
theoretically motivated by the seesaw mechanism.
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