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We discuss short-baseline electron and muon neutrino disappearance searches into sterile neutrinos at a

very low energy neutrino factory (VLENF) with a muon energy between about 2 and 4 GeV. A lesson

learned from reactor experiments, such as Double Chooz and Daya Bay, is to use near and far detectors

with identical technologies to reduce the systematical errors (the VLENF has been recently renamed into

nuSTORM-Neutrinos from STORed Muons). We therefore derive the physics results from a combined

near-far detector fit and illustrate that uncertainties on cross sections� efficiencies can be eliminated in a

self-consistent way. We also include the geometry of the setup, i.e., the extension of the decay straight and

the muon decay kinematics relevant at the near detector, and we demonstrate that these affect the

sensitivities for �m2 * 30 eV2, where oscillations take place already in the near detector. Compared to

appearance searches, we find that the sensitivity depends on the locations of both detectors and the muon

energy, where the near detector should be as close as possible to the source, and the far detector at about

500 to 800 m. In order to exclude the currently preferred parameter region, at least 1019 useful muon

decays per polarity are needed for E� ¼ 2 GeV, or, alternatively, a higher muon energy can be used.

DOI: 10.1103/PhysRevD.85.113005 PACS numbers: 14.60.Pq

I. INTRODUCTION

The test of three-flavor neutrino oscillations in solar,
atmospheric, long-baseline, and reactor experiments has
been so far very successful, where a nonzero mixing angle
�13 has been recently established by the Daya Bay and
RENO reactor experiments above the 5� confidence level
[1,2]. On the other hand, neutrino oscillations at short
baselines, i.e., L � E=�m2

31 where atmospheric oscilla-

tions have not yet developed, face a tension between the
strong constraints from many short-baseline experiments,
and several observed anomalies which may be described by
eV-scale sterile neutrinos. In particular, short-baseline elec-
tron neutrino disappearance may cause an anomaly identi-
fied in Gallium experiments [3], electron antineutrino
neutrino disappearance may lead to lower than predicted
reactor antineutrino fluxes [4,5], and electron antineutrino
appearance may be driven by sterile neutrinos in the LSND
[6] and MiniBooNE [7] experiments. In the simplest mod-
els, one would add one extra sterile generation to fit these
data by a 3þ 1model, separated by�m2 � 1 eV2, see, e.g.,
Ref. [8]. However, it turns out that the tension between
MiniBooNE neutrino and antineutrino data (CP violation
cannot be described by this model), and the tension between
appearance and disappearance data disfavor thismodel, see,
e.g., Ref. [9]. Therefore, 3þ 2 models have been more
recently used [10] to resolve the tension between appear-
ance neutrino and antineutrino data, which allow for CP
violation and include additional degrees of freedom.1 In any

of the above models, crucial information comes from the
disappearance channels, which may be the ‘‘cleanest’’
channels to measure the oscillation parameters (see Sec. II
for details). In addition, electron neutrino and antineutrino
disappearance searches are needed to directly test the
Gallium and reactor anomalies, respectively.
Various new experiments have been proposed to test

short-baseline neutrino oscillations, see Appendix A of
Ref. [11] for a recent summary of alternatives. In this study,
we focus on a very low energy neutrino factory (VLENF),
which is a neutrino factory with a low muon energy of
about 2 to 4 GeV which does not require muon cooling or
muon acceleration [12], and could be the first phase of a
staged neutrino factory program (see also Refs. [13,14] for
an earlier proposal of a low energy neutrino factory for
standard oscillations).2 Compared to muon neutrino
appearance, discussed in Ref. [12], we discuss the electron
and muon neutrino (antineutrino) disappearance channels.
These are qualitatively different from the appearance chan-
nels because of different systematics: while the appearance
channels are limited by (charge misidentification and
neutral current) backgrounds, the disappearance channels
suffer from unknown cross sections� efficiencies.
Therefore, similar to reactor experiments such as Double
Chooz or Daya Bay, near and far detectors have been
proposed for the high energy neutrino factory to control
the systematical errors [16]. In addition, near detectors
very close to the muon storage ring experience geometry
effects from the extension of the decay straight and beam

*winter@physik.uni-wuerzburg.de
1Without this tension between appearance neutrino and anti-

neutrino data, the 3þ 1 and 3þ 2 models may produce com-
parably well fits, and face similar challenges from the
disappearance information.

2Note that a letter of intent has recently appeared for the
discussed VLENF concept [15], where the name has been
changed from VLENF to nuSTORM-Neutrinos from STORed
Muons.
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divergence [17]. In Ref. [16] the geometry effects from the
decay straight have been taken into account, which lead to
a smearing of the oscillation probabilities, whereas the
detectors were assumed to be far enough away from the
source (or small enough) not to experience any detector
geometry effects (far distance limit). However, for the
substantially lower muon energy of the VLENF, the
beam will be larger from the muon decay kinematics
only, which means that the detector geometry has to be
taken into account. In addition, the near and far detectors
are supposed to be as similar as possible, which is difficult
to reconcile with different detector diameters. Therefore,
we will simultaneously integrate over straight geometry
and detector surface area in this study, and show the impact
of these effects. We discuss electron neutrino disappear-
ance for most of this study, since it is directly relevant to
test some of the anomalies, and we point out the differ-
ences for muon neutrino disappearance at the end.

This study is organized as follows: we recapitulate the
phenomenology of sterile neutrino disappearance searches
in Sec. II. Then in Sec. III, we introduce our setup, system-
atics treatment, and geometry treatment. In Sec. IV, we
illustrate the impact of the beam and detector geometry,
and of the systematics assumptions. Then in Sec. V, we
perform a two-baseline optimization of near and far detec-
tors. We show our main results for electron and muon
neutrino disappearance in Sec. VI, and we conclude in
Sec. VII.

II. STERILE NEUTRINO PHENOMENOLOGY

In most experiments, the disappearance or appearance of
neutrinos at short distances is described in the two-flavor
limit

P�� ¼ 1� sin2ð2�effÞsin2�; (1)

P�� ¼ sin2ð2�effÞsin2�; (2)

where � � �m2L=ð4EÞ and �eff is an effective mixing
angle. However, this description cannot be used for a
self-consistent description of a multichannel experiment.
In order to demonstrate that, consider the simplest possible
case, a 3þ 1 framework with one extra sterile neutrino.
Although this case is disfavored if one needs to resolve the
tension between appearance neutrino and antineutrino
data, it is useful two illustrate some of the considerations
to be taken into account here which also apply to more
sophisticated models. The parameterization-independent
probabilities in the limit �41 � �31 ’ 0 (�ij �
�m2

ijL=ð4EÞÞ can be written as

Pee ¼ 1� 4jUe4j2ð1� jUe4j2Þsin2�41; (3)

P�� ¼ 1� 4jU�4j2ð1� jU�4j2Þsin2�41; (4)

Pe� ¼ P�e ¼ 4jUe4j2jU�4j2sin2�41; (5)

where we show the most interesting channels for the neu-
trino factory. From this simple model, it is immediately
clear that LSND-motivated electron or muon neutrino
appearance, which requires jUe4j> 0 and jU�4j> 0,

must be accompanied by electron and muon neutrino dis-
appearance, and that the disappearance searches provide
important and strict constraints on theoretical models.
Especially, the disappearance probabilities are propor-
tional to jU�4j2, the appearance probabilities to jU�4j4,
i.e., the appearance probabilities are suppressed by two
more powers of the new mixing angles. In a specific
parameterization, electron and muon disappearance can
be described by the two-flavor limit Eq. (1) by different
mixing angles (such as �14 and �24, respectively), whereas
the appearance probability in Eq. (2) is proportional to the
product of these mixing angles; see, e.g., Ref. [18] for a
direct comparison. This means that Eq. (1) or Eq. (2) can
be used independently to effectively describe an individual
disappearance or appearance channel. If, however, the
information from different channels is to be combined,
there will be a model-dependent (but well defined) inter-
play among the channels.
Nowwhat are the consequences for the neutrino factory?

For electron or muon neutrino appearance, the main limi-
tations are charge misidentification3 and neutral current
backgrounds. At least for small mixing angles, other sys-
tematics, such as the flux and cross section uncertainties,
are less relevant. That is quite fortunate, since it would be
probably hard to quantify this systematics. Consider, for
instance, a near detector to measure the cross sections for
muon neutrinos. For large enough �m2

41, oscillations may
already take place in the near detector. Unless it is clearly
defined how the theoretical interplay between muon neu-
trino disappearance at the near detector and muon neutrino
appearance at the far detector works, one cannot disen-
tangle the cross sections from oscillation physics in that
case. Thus, an effective two-flavor description is not suffi-
cient to obtain reliable information on this systematics.
For the disappearance channels, the situation is very

different. Here the electron and muon neutrino disappear-
ance can be described by Eq. (1) in the effective two-flavor
limit with different effective mixing angles. Because small
deviations from unity are to be measured, a lesson learned
from reactor experiments [19,20], such as Double Chooz or
Daya Bay, has been to use (more or less) identical near and
far detectors to cancel systematical errors. Compared to
reactor experiments, where the flux is the unknown, the
cross section� efficiency uncertainties are the dominant
systematics to be canceled by the near detector. From the
oscillation framework point of view, since both near and

3For instance, for neutrino production by �þ ! eþ þ �e þ
���, one has to distinguish a few �e ! �� charged current events
from the dominant ��� ! ��� event rate by charge-identification
of the produced muons (antimuons) by means of a magnetic
field.
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far detectors measure the same flavors, the oscillation
probabilities in both detectors can be described by the
same probabilities. In the 3þ 1 model, one can simply
use Eq. (1) for �e or �� disappearance. In a 3þ N model,

the translation into the model parameters is more compli-
cated. Nevertheless, it is clear that any detected difference
between near and far rates (or neutrino and antineutrino
rates) must be due to oscillations, and cannot come from
unknown cross sections or efficiencies. Very interestingly,
the near and far detectors may change their roles as a
function of �m2

41. While for small �m2
41 the far detector

measures the oscillations and the near detector the normal-
ization, for large �m2

41 the near detector measures the
oscillations and the far detector, where the oscillation
averages out, the normalization [16]. We choose an effec-
tive two-flavor framework in the following to quantify the
performance, and we assume CPT invariance for the sake
of simplicity (the disappearance channels are always CP
invariant). Note that nevertheless CPT invariance tests of
the disappearance channels are well motivated, see
Ref. [16] for the neutrino factory. We do not perform a
combined fit of appearance and disappearance channels, or
electron and muon disappearance channels, since such a fit
can only be performed for a specific model. Note, however,
that the final experiment can of course be used to test more
complicated scenarios.

III. SETUP AND SIMULATION TECHNIQUES

For the simulation, we choose a near-far detector setup
with a near detector of 200 t fiducial mass� efficiency,
and a far detector of 1 kt fiducial mass� efficiency, see
Fig. 1 for a possible geometry. Since the detector geometry
will be important for close distances, we assume cylindri-
cal shapes with diameters of 6 m (perpendicular to the
beam axis). We test two different muon energies: E� ¼
2 GeV and E� ¼ 4 GeV. The decay straight length s is

assumed to be 100 m for E� ¼ 2 GeV, and 200 m for

E� ¼ 4 GeV. For very short baselines and line neutrino

sources, the baseline L is ill-defined [17]. Therefore, the
detector locations are specified by the distance d to the end
of the decay straight, i.e., dþ s � L � d. For the inte-
grated luminosity, we use 1019 useful muon decays per
polarity, and 1018 useful muon decays in some cases where
explicitly specified. For the detection threshold, we use

0.25 GeVand 0.5 GeV for E� ¼ 2 GeV and E� ¼ 4 GeV,

respectively. For the energy resolution of the detectors, we

use �E=GeV ¼ 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E=GeV
p

for �e ( ��e) disappearance,

and �E=GeV ¼ 0:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E=GeV
p

for �� ( ���) disappearance,

which is motivated by a totally active scintillator or a liquid
argon detector. Neutral current backgrounds are included
at the level of 10�4, which have, however, only a very
small effect. Note that a magnetization of the detector for
the disappearance searches may or may not be necessary,
depending on the underlying physics model, i.e., what
happens to the other flavor. For instance, in the 3þ 1
model discussed above, one may have large �� disappear-

ance driven by nonzero jU�4j, see Eq. (4), whereas ���

appearance vanishes at the same time for jUe4j ¼ 0, see
Eq. (5). Since we only use the disappearance channels, we
assume that charge misidentification is either under control
by a magnetic field, or suppressed by the underlying phys-
ics. Note that the chosen parameters are consistent with the
currently discussed ones of the VLENF study group [21];
see also Ref. [12].
For the geometric treatment of the neutrino line source

and detector geometry, we follow Refs. [16,17], and for the
simulation, we use the GLOBES (General Long-Baseline
Experiment Simulator) software [22,23]. GLOBES (up to
version 3.1) assumes that the detectors are far enough away
from the source to treat the source as point source, and that
the detectors are small compared to the beam divergence. If
we start from the differential event rate from a point source
dNPS=dE without oscillations, as the one used in GLOBES,
we can take into account the extension of the straight and
the detector and the effect of oscillations by an averaged
event rate

dNavg

dE
¼ 1

s

Z dþs

d

dN

dE
dL

¼ 1

s

Z dþs

d

dNPSðL; EÞ
dE

"�ðL; EÞP��ðL; EÞdL: (6)

Here "�ðL; EÞ ¼ Aeff;�=ADet parameterizes the integration

over the detector geometry for a fixed baseline L, energy E,
and flavor ��, where Aeff;�ðL;EÞ is the (energy and flavor

dependent) effective area of the detector, and ADet is the
actual surface area. Note that the oscillation probability
P�� appears inside the integral, since different parts of the
decay straight contribute differently. In addition, note that

A
lternative

locations

s~100 m

Decay straight

d~500 − 800 m

N
ear det. ~ 200 t

µ

D~6 m

d~20 m

Far det. ~ 1 kt

FIG. 1 (color online). Possible geometry of the VLENF near-far setup for E� ¼ 2 GeV (not to scale).
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it is assumed that the differential muon decay rate per
(straight) length is equal along the decay straight. Since
dNPS=dE / 1=L2, we can rewrite this as

dNavg

dE
¼ dNPSðLeff ; EÞ

dE

L2
eff

s

Z dþs

d

"�ðL; EÞ
L2

P��ðL; EÞdL

¼ dNPSðLeff ; EÞ
dE

P̂ðEÞ (7)

with the average efficiency ratio times probability

P̂ðEÞ � L2
eff

s

Z dþs

d

"�ðL; EÞ
L2

P��ðL; EÞdL (8)

and the effective baseline

Leff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðdþ sÞ
p

; (9)

which is defined such that P̂ðEÞ ¼ 1 for "�ðL; EÞ � 1 and
P��ðL; EÞ � 1. As a consequence, one would use the usual
detector definitions in GLOBES with the effective baseline
Leff , which are to be corrected by Eq. (8). We compute
Eq. (8) directly in a user-defined probability engine in
GLOBES, including both neutrino source and detector

geometry. For the sake of simplicity, we assume that the
(machine-dependent) beam divergence is smaller the the
beam spread given by the muon decay kinematics. In this
ideal case, one can easily compute "�ðL; EÞ independent of
machine-dependent effects more or less analytically [17].
We will demonstrate that there is a substantial effect com-
ing from the extension of the beam compared to the
detector, whereas machine-dependent effects may lead to
additional smearing if the divergence is not under control.
Note that the intrinsic effect of the muon decay kinematics
cannot be removed, even in an ideal machine.

For the systematics treatment, we follow the reactor
experiments with two (or more) detector, rather than the
usual neutrino factory description; see Refs. [16,24] for
details. From the reactor experiments, we known that
short-baseline electron neutrino disappearance is mostly
affected by the signal normalization uncertainty (see, e.g.,
Refs. [20,24] for reactor experiments). Here, compared to
the reactor experiments, our signal normalization error is
not dominated by the flux, which may be known at the level
of 0.1% using various mean monitoring devices [25],
but the knowledge of the cross sections� efficiencies.
Because our neutrino energies span the cross section re-
gimes from quasielastic scattering, over resonant pion
production, to deep inelastic scattering, it is difficult to
estimate the degree the cross sections will be known at the
time of the measurement. The efficiencies depend on the
detection processes and detector properties, which means
that their uncertainties are also difficult to pin down. For
reactor experiments, on the other hand, the inverse beta
decay cross sections are well known, but the fluxes are
relatively uncertain. Both classes of experiments have,
however, in common that these uncertainties can be

controlled by using detectors as identical as possible. In
our case, where the near and far detector masses are differ-
ent, the far detector may consist of five modules identical
to the near detector, as it is illustrated in Fig. 1. We neglect
the extension of the detector along the beam axis, since it is
expected to me much smaller than the extension of the
decay straight. However, in practice, the location of the
interaction vertex can be measured to some degree.
We adopt the most conservative case for systematics,

which is that the cross sections� efficiencies (� flux)
are fully uncorrelated among the bins, but fully correlated
between the near and far detectors.4 This assumption is
conservative because is corresponds to cross sections�
efficiencies with an unknown shape error, where the shape
is to be measured by the near detector. Unless noted other-
wise, we assume that cross sections� efficiencies are only
known to the level of 10% (within each bin), where even
larger errors do not matter in the oscillation region. In
addition, we use a normalization error uncorrelated be-
tween near and far detectors, but fully correlated among
the bins, which may come from a fiducial mass uncertainty.
This error is, for reactor experiments, believed to be con-
trolled below the percent level. We use 0.6% [24], whereas
Daya Bay claim that they can even do significantly better
(0.2% [1]). Since it depends on the detector properties and
detection interactions, a more conservative choice seems
reasonable. Finally, the backgrounds are assumed to be
known within 35% and the energy calibration to 0.5%,
uncorrelated between the detectors. In the next section,
we will discuss where these uncertainties are important.

IV. IMPACT OF GEOMETRYAND SYSTEMATICS

Let us now study the impact of geometry and system-
atics, where we use E� ¼ 2 GeV, d1 ¼ 20 m (200 t), and

d2 ¼ 500 m (1 kt). For the most of the following, we focus
on �e ( ��e) disappearance, and discuss the differences to
muon neutrino disappearance at the end. In Fig. 2, left
panel, the exclusion region in sin22� and �m2 (right hand
sides of curves) is shown for different geometry assump-
tions. As we will demonstrate below, this setup is opti-
mized for not too small values of �m2. The curve ‘‘no
systematics’’ represents the statistics limit of the far detec-
tor only, without systematics or backgrounds. It is simu-
lated in the point source and far distance approximations,
which means that the baseline is computed with Eq. (9) and
that "�ðL; EÞ � 1 in Eq. (8), respectively, as it is usually
done for far detectors. The curve ‘‘point source’’ is ob-
tained for the same geometry assumptions, but for a near-
far detector simulation including full systematics. The first
peak of the sensitivity at about �m2 ’ 3 eV2 corresponds
to the far detector, as it can be easily seen. In this case, the

4We use 17 bins with bin widths following the energy resolu-
tion of the detector. To avoid aliasing effects, we use the built-in
filter of GLOBES on the oscillation probability.
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near detector measures the normalization, the far detector
the oscillation. The near detector sensitivity peaks at about
�m2 ’ 13 eV2, where, however, oscillations are still
present in the far detector (see ‘‘no systematics’’ curve).
Therefore, the optimal sensitivity is reached at somewhat
larger values of �m2, where oscillations in the far detector
average out and the cross sections� efficiencies are safely
measured in the far detector. In this case, near and far
detectors swap their roles. This swapping is also the reason
why it is difficult to obtain reliable sensitivity predictions
for effective far detector simulations only, especially for
�m2 � 1 eV2, where oscillations take place in the near
detector. As the next step in Fig. 2, left panel, we take into
account the extension of the decay straight in the curve
‘‘straight averaged’’, which leads to some averaging in the
region the near detector is most sensitive to. This case
corresponds to using Eq. (8) with "�ðL; EÞ � 1. The final
result, curve ‘‘straight and detector averaged’’, shows the
additional impact of the detector geometry, i.e., the full
Eq. (8). In this case, the sensitivity for large �m2, coming
from the near detector, almost vanishes. The reason is that
the detected spectrum effectively peaks at lower energies
due to the muon decay kinematics, which the near detector
(but not the far detector) is sensitive to. For very large
�m2 � 100 eV2, the oscillations average out in both near
and far detectors, and the sensitivity is given by the exter-
nally imposed error of 10%.

We have also tested if one can reduce the effect of the
straight averaging by the use of two beam current trans-
formers (BCTs), one before and one after the straight. One
may assume that the number of muon decays along the
straight, which is proportional to the difference between
the two beam currents, is exponentially distributed along
the straight. However, already at E� ¼ 2 GeV, the mean

lifetime (decay length) of the muon is about 6 km, which

means that the effect is small and not visible in the
sensitivities.
In the right panel of Fig. 2, we show the impact of

different systematics assumptions, where again the ‘‘no
systematics’’ and full systematics (‘‘10% shape error’’)
curves are used for reference. First of all, we reduced the
systematical errors one by one. As expected, a smaller
shape error (curve ‘‘2% shape error’’) improves the sensi-
tivity for large �m2, where the oscillations in near and far
detectors are averaged out and this systematics dominates.
None of the other systematics has an effect on the sensi-
tivity if improved separately. Only if all of the systematical
errors can be controlled better, the curve ‘‘low system-
atics’’ is obtained.5 Since it is difficult to say how realistic
this case is, we rely on our standard (more conservative)
values in the following, unless explicitly stated otherwise.
In Fig. 2, we also show the result for the far detector only
(gray dashed-dotted curve), from which one can see that
the near detector is necessary to maintain the sensitivity for
low �m2 ’ eV2 in the presence of the systematical errors.
We include the decay straight and detector geometries in
the following calculations, as well as the near detector,
where the full systematics curve (‘‘10% shape error’’)
represents our standard values.

V. TWO-BASELINE OPTIMIZATION

Whereas the muon energy is limited by other con-
straints, such as accelerator and storage ring, the detector
locations of the two detectors can be almost freely chosen.
We therefore show in Fig. 3, left panel, the two-baseline
optimization for �e disappearance. The different regions

10 3 10 2 10 1 100
10 1

100

101

102

103

sin22

m
2

GLoBES 2012

No systematics

Point source

Straight averaged

Straight det. averaged

10 3 10 2 10 1 100
10 1

100

101

102

103

sin22

m
2

GLoBES 2012

No systematics

Low systematics

2 shape error

10 shape error

Far detector only

FIG. 2 (color online). Exclusion region in sin22�-�m2 (right hand sides of curves) for �e disappearance for different geometry
assumptions (left panel) and systematics assumptions (right panel); see main text for details (90% C.L., 2 d.o.f.). The curves ‘‘no
systematics’’ represents a single detector at d ¼ 500 m using statistics only, whereas the other curves correspond to near-far detector
setups, where the red thick curves include (conservative) full systematics and geometry effects. Here E� ¼ 2 GeV, 1019 useful muon

decays per polarity, d1 ¼ 20 m (200 t) and d2 ¼ 500 m (1 kt).

5Low syst.: Fiducial volume/normalization error 0.1%, shape
error 2%, calibration error 0.1%, background error 10%.
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correspond to optimal detector locations for the depicted
values of �m2, where the respective reaches in sin22� are
given in the figure caption. For �m2 ¼ 1 eV2, two optimal
regions are found, where two central choices are marked by
points A and B. Point A is within a region where the near
detector is as close as possible to the source, and the far
detector in a distance between about 200 m and 1 km. Point
B corresponds to a longer far detector baseline which helps
for small values of�m2. However, a somewhat farther near
detector distance is preferred, where the near detector also
adds to the sensitivity directly. The larger �m2 is, the
smaller distances for the far detector are preferred, where
in all cases the near detector may be as close as possible to
the source. Point C is representative for a region with
better sensitivity for �m2 * 10 eV2. The asymmetry in
Fig. 3 (left panel) with respect to the symmetry axis d1 ¼
d2 comes from the different detector masses. For equal
detector masses, we do not find a qualitative differences
apart from the plot becoming symmetric with respect to
this axis.

The results in the �m2-sin22�-plane are shown for the
marked setups in Fig. 3, right panel. Setup B has the best
sensitivity for small values of �m2, but for larger �m2 it
is not optimal. Setup C is best for �m2 * 1 eV2, as
expected, whereas setup A is a good compromise be-
tween the small and large �m2 sensitivities. Therefore,
we have chosen it for reference. In order to check if the
chosen setup match the needs for �e disappearance, we
show the best-fit region from Ref. [4] (Fig. 8) as gray-
shaded region for reference (99% C.L.). One can easily
read off the figure that all setups can exclude this best-fit
region very well, with setup C actually covering the
largest part. Note again that the very large �m2 coverage
is limited by the external knowledge on cross sections�

efficiencies for the VLENF, whereas the flatness of the
best-fit region for large �m2 simply means that the
reactor experiments cannot resolve the oscillations (nec-
essary to exclude this part). Therefore, one should proba-
bly not overemphasize this part. For reference, we also
show in Fig. 3, right panel, the curve for point A with
1018 useful muon decays (per polarity) only, as different
luminosities are currently being discussed. One can
clearly read off the figure, that the statistics is not suffi-
cient to fully exclude the interesting part of the best-fit
region at lower values of �m2.
In Fig. 4, we perform a similar analysis for E� ¼

4 GeV. In the left panel (two-baseline optimization),
only the point A is chosen as for E� ¼ 2 GeV. The quali-

tative results of the two-baseline optimization are however
similar to the above case, with the exception that the

optimal region with a long baseline has disappearance in

the chosen baseline window. In addition, for very large
�m2, somewhat longer baselines are preferred to avoid the

geometry effects. In the right panel, the sensitivities for the

chosen points are shown, with rather similar results. Again,
point A appears to be a good compromise between the

small and large �m2 sensitivities, but point D performs

better for small �m2. The absolute sensitivities are signifi-
cantly better than in the E� ¼ 2 GeV case, which is a

result qualitatively different from the appearance optimi-

zation in Ref. [12], because statistics are important for the
disappearance channels. In this case, even the low lumi-

nosity curve with 1018 useful muon decays covers the

relevant parameter space. In summary, for electron neu-
trino disappearance, either 1019 useful muon decays or

E� ¼ 4 GeV are required to exclude the discussed best-

fit parameter space region.
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FIG. 3 (color online). Left panel: Optimal detector distances for �e disappearance, E� ¼ 2 GeV, 1019 useful muon decays per
polarity. The contours correspond to sensitivities in log10ðsin22�Þ down to �1:9 (�m2 ¼ 1 eV2), �1:95 (�m2 ¼ 10 eV2), �1:5
(�m2 ¼ 32 eV2), �1:2 (�m2 ¼ 100 eV2) for the depicted values of �m2 (90% C.L., 2 d.o.f.). Right panel: Sensitivities in
sin22�-�m2 for the ‘‘optimal’’ setups marked in the left panel. For comparison, setup A is shown with 1018 useful muon decays
per polarity, and the best-fit region from Ref. [4] (Fig. 8) is shown as gray-shaded region (99% C.L.).
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VI. RESULTS AND COMPARISON

We summarize our results in Fig. 5 for �e disappearance
(left panel) and �� disappearance (right panel). For �e

disappearance (left panel), optimized setups for different
values of E� are compared. As discussed above, the sensi-

tivity for E� ¼ 4 GeV is significantly better than for E� ¼
2 GeV, but both setups can in principle cover the relevant
parameter region. The large �m2 region coverage, marked
‘‘systematics limit’’, depends on the assumed external

knowledge of cross sections� efficiencies. The modifica-
tion of the E� ¼ 2 GeV case for an improved 2% error is

shown as dashed curve in the same color. In this case, one
can clearly fully cover the discussed (gray-shaded) pa-
rameter space. In addition, we show two curves for alter-
native approaches to �e disappearance measurements. One
example is a low � ’ 30 beta beam [26], shown as dashed
curve. This setup is in a way very similar to ours both in
terms of � (our � ’ 19 for E� ¼ 2 GeV) and the beam

geometry. For the detection reaction, however, inverse beta
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FIG. 4 (color online). Left panel: Optimal detector distances for �e disappearance, E� ¼ 4 GeV, 1019 useful muon decays per
polarity. The contours correspond to sensitivities in log10ðsin22�Þ down to �2:15 (�m2 ¼ 1 eV2), �2:5 (�m2 ¼ 10 eV2), �1:85
(�m2 ¼ 32 eV2), �1:45 (�m2 ¼ 100 eV2) for the depicted values of �m2 (90% C.L., 2 d.o.f.). Right panel: Sensitivities in
sin22�-�m2 for the optimal setups marked in the left panel. For comparison, setup D is shown with 1018 useful muon decays per
polarity, and the best-fit region from Ref. [4] (Fig. 8) is shown as gray-shaded region (99% C.L.).
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FIG. 5 (color online). Left panel: Exclusion region in sin22�-�m2 (right hand sides of curves) for �e disappearance with 10
19 useful

muon decays per polarity for E� ¼ 2 GeV (point A, 20 mþ 500 m) and E� ¼ 4 GeV (point D, 20 mþ 800 m) at the 90% C.L., 2

d.o.f. The orange-dashed curve shows the E� ¼ 2 GeV result for an improved (2%) shape error. For comparison, two reference setups

are shown: a radioactive ion facility [27] (dashed-dotted red curve in Fig. 6 therein; 1014 8Li ions per second) and a low gamma beta
beam [26] (red curve in Figs. 4 and 5 therein). Right panel: Comparison between �� disappearance (solid) and �e disappearance

(dotted) for the three test points (1019 useful muon decays per polarity, E� ¼ 2 GeV; 90% C.L., 2 d.o.f). The combined SciBooNE and

MiniBooNE �� disappearance result from Ref. [28] is shown for comparison.
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decay is used, and thus the systematical error is assumed to
be controllable at the level of 1% (ours: 10%).
Furthermore, this detection process is only sensitive to
��e. Another example, shown as dashed curve, is the radio-
active ion facility in Ref. [27]. Here �� 1 ions are injected
into a 4� detector. Again, the systematical error is assumed
to be 1%. The final result depends on the ion intensity,
where we have shown the most aggressive scenario in
Fig. 5 (1014 ions per second). Here the main issue seems
to be the coverage of the low �m2 region, which requires
relatively long baselines (which cannot be realized within
such a detector).

For �� disappearance (right panel, solid curves), we

have used the same fiducial masses� efficiencies for the
sake of simplicity. Therefore, the main difference to �e

disappearance are the beam spectrum peaking at higher
energies (for the same E�), and the better energy resolu-

tion. For the optimization, we have not find any qualitative
differences compared to �e appearance, apart from the fact
that slightly longer baselines are preferred, especially for
point B in Fig. 3. For the sake of consistency, we therefore
show the same optimization points in Fig. 5 as in Fig. 3,
and we show the �e disappearance (dotted curves) for
comparison. One can easily see that the �� disappearance

has a slightly better absolute performance, which mainly
comes from the higher beam energy. In order to compare
the absolute performance to existing experiments, we show
the combined SciBooNE and MiniBooNE �� disappear-

ance result from Ref. [28], which was obtained in a similar
spirit, as solid thin curve. The VLENF could improve this
by about an other of magnitude.

So far we have used the neutrino and antineutrino chan-
nels simultaneously, assuming CPT invariance. However,
since the earlier mentioned anomalies appear for specific

polarities, the separate sensitivities for neutrinos and anti-
neutrino disappearance may be important for some models.
We therefore show in Fig. 6 the contributions of the neu-
trino and antineutrino modes, together with the result
assuming CPT invariance. As it can be clearly seen, simi-
lar limits can be obtained for the separated neutrino and
antineutrino channels. The antineutrino sensitivities are
somewhat weaker than the neutrino sensitivities due to
the smaller cross sections. Nevertheless, CPT invariance
(or other consistency) tests can be easily performed, see
Ref. [16] for details. This is a significant advantage over
many other experiments, which typically have the neutrino
channels (beam experiments) or the antineutrino channels
(reactor experiments) dominate.
The discussed alternative setups only represent a limited

selection of the ideas for sterile neutrino searches, see
Appendix A of Ref. [11] for a more complete list.
However, none of the proposed options seems to be able
to compete with the proposed disappearance searches at the
VLENF.

VII. SUMMARYAND CONCLUSIONS

We have studied short-baseline electron and muon neu-
trino disappearance at a VLENF with E� ¼ 2 GeV and

E� ¼ 4 GeV. Compared to the appearance channels,where

backgrounds limit the sensitivities, the disappearance
channels suffer from the knowledge on cross sections�
efficiencies. We have therefore chose a setup similar to
reactor experiments, such as Double Chooz and Daya
Bay, using a near and far detector, in which the unknowns
can be measured in a self-consistent way. For the system-
atics, we have adopted themost conservative case of a shape
error fully uncorrelated among the bins, but fully correlated
between the near and far detectors. In addition, we have
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FIG. 6 (color online). Contribution of neutrino and antineutrino modes compared to the total result assuming CPT invariance (solid
curves) for �e disappearance (left panel) and �� disappearance (right panel) at the 90% C.L., 2 d.o.f. In both cases, 1019 useful muon

decays per polarity, E� ¼ 2 GeV, and optimization point A (20 mþ 500 m) have been used.
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included the extension of the decay straight and the beam
divergence from the muon decay kinematics, which affect
the sensitivity to very large �m2 * 30 eV2 in the near
detector. Note that any additional machine-dependent
divergence will add to the muon decay systematics and
lead to some additional averaging. However, the muon
decay kinematics cannot be eliminated, even if the other
systematics might be improved.

We have performed a two-baseline optimization of the
setup, where we have identified optimal points depending
on the value of �m2. From the different options, we have
chosen a setup with the near detector as close as possible
to the source and the far detector at a distance between
about 500 and 800 meters, which is consistent with the
optimization for appearance [12] and a good compromise
between the small and large �m2 sensitivities. As far as
the minimal luminosity and muon energy are concerned,
we have found that at least 1019 useful muon decays per
polarity are needed for E� ¼ 2 GeV, or, alternatively, a

higher muon energy, in order to outperform practically
any other proposed alternative setup and test the relevant
parameter space. That is different from the appearance
channel optimization, where lower luminosities may be
sufficient and the muon energy hardly matters as long as
E� * 2 GeV [12]. Note that the VLENF setup can mea-

sure both electron and muon neutrino disappearance, for
both neutrinos and antineutrinos. We have also demon-

strated that the proposed setup is practically insensitive to
the external knowledge on cross sections and efficiencies
for �m2 & 30 eV2, whereas the sensitivity for larger �m2

depends on the systematics assumptions since oscillations
average out in both near and far detectors.
In conclusion, it is well known from 3þ 1 models of

sterile neutrinos that disappearance channels provide com-
plementary and important information to constrain the
models for sterile neutrinos. In the 3þ 1 case, the tension
between the appearance and disappearance of various ex-
periments, and between neutrino and antineutrino appear-
ance in MiniBooNE have challenged this model. Apart
from the direct tests of disappearance anomalies, for any
3þ N scenario, better disappearance information from
both electron and muon neutrino disappearance will be
needed. These channels may be uncorrelated in the under-
lying physics model, as it is evident already in the 3þ 1
case. The VLENF can provide this information if it is
designed similar to the reactor experiments, with near
and far detectors as similar as possible.
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