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34Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11,
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I. INTRODUCTION

While the electroweak contribution to the anomalous
magnetic moment of the muon a� ¼ 1

2 ðg� � 2Þ can be

calculated with sub-ppm precision, the hadronic contribu-
tion ahad� cannot be evaluated by means of perturbative

techniques within quantum chromodynamics (QCD).
However, it is possible to relate ahad� via a dispersion

relation to hadronic cross section �ðeþe� ! hadronsÞ
data [1]. Thus, hadronic cross section measurements are
important for the standard model prediction of a�, which

differs by more than three standard deviations from a
recent direct Brookhaven National Laboratory measure-
ment [2].

The study of initial-state radiation (ISR) events at an
eþe� collider with a fixed center-of-mass (CM) energy
ECM allows high-precision measurements of the cross sec-
tion of exclusive hadronic channels for energies below the
nominal ECM and is complementary to studies based on an
energy scan. Use of the ISR technique is discussed in
Refs. [3–6]. Previously, we used this technique to inves-
tigate low-multiplicity hadronic processes at effective CM
energies below 5 GeV [7–15].

The ISR cross section �f;� for a specific final-state f

depends on the nonradiative cross section �f and is given

by [5]

d�f;�ðs;MhadÞ
dMhad

¼ 2Mhad

s
�Wðs; x; C�Þ � �fðMhadÞ; (1)

where x ¼ 2 � E�
�=

ffiffiffi
s

p
,

ffiffiffi
s

p
is the nominal CM energy, E�

� is

the energy of the ISR photon,1 andMhad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� xÞp

. The
radiator function Wðs; x; C�Þ, which describes the proba-
bility for the emission of an ISR photon in the polar angle
range j cos���j<C�, is determined to next-to-leading order

(NLO) ISR with the PHOKHARA software package [16].
�� is the angle of the emitted �with respect to the direction
of the incoming e�. Effects of final-state radiation (FSR),
which are neglected in Eq. (1), are studied and corrected
for as explained in Sec. VI.

Recently, cross section measurements with approxi-
mately 1% precision have been presented for the �þ��
final state [15,17,18]. These measurements have led to a
significant reduction in the uncertainty of ahad� [19]. As a

consequence, a large relative contribution to the uncer-
tainty of ahad� now arises from the energy range 1 GeV<

E< 2 GeV [20]. In this energy range, the hadronic
cross section is dominated by the exclusive eþe� !
�þ���þ�� and �þ���0�0 channels.

This paper reports results from an ISR analysis of the
eþe� ! �þ���þ��� process. The four-pion mass
M4� serves as the effective hadronic ECM value. It is
an update of our earlier study [8], based on a data sample

that is five times larger. We perform a more detailed
study of systematic effects and thereby obtain significant
improvements in both the statistical and systematic
uncertainties.
The outline of this paper is as follows. Section II

describes the BABAR detector and the data set used in
this analysis. The primary event selection is presented in
Sec. III. After discussing the background suppression
(Sec. IV) and the acceptance and efficiency studies
(Sec. V), the extraction of the nonradiative cross section
is described in Sec. VI. A qualitative analysis of the
intermediate subsystems and a quantitative measurement
of the J=c and c ð2SÞ branching fractions follows in
Sec. VII. A summary is given in Sec. VIII.

II. THE BABAR DETECTOR AND DATA SET

The data used in this analysis were collected with
the BABAR detector at the PEP-II asymmetric energy
eþe� storage rings at the SLAC National Accelerator
Laboratory. A total integrated luminosity of 454:3 fb�1 is
used, comprised of 413:1 fb�1 collected at the �ð4SÞ
resonance peak, and 41:2 fb�1 collected 40 MeV below
the peak.
The BABAR detector is described in detail elsewhere

[21]. The reconstruction of charged-particle tracks is per-
formed with the tracking system, which is comprised of a
five-layer silicon vertex tracker and a 40-layer drift cham-
ber, both in a 1.5 T axial magnetic field. Separation of
electrons, protons, charged pions, and charged kaons is
achieved using Cherenkov angles measured with the de-
tector of internally reflected Cherenkov light in combina-
tion with specific ionization dE=dx measurements from
the silicon vertex tracker and drift chamber. The CsI(Tl)
electromagnetic calorimeter (EMC) measures the energy
of photons and electrons. Muon identification is provided
by the instrumented flux return.
A simulation package developed for radiative processes,

AFKQED, is used to determine detector acceptance and
reconstruction efficiencies. Hadronic final states, including
�þ���þ���, are simulated based on an approach of
Czyż and Kühn [22]. The underlying model assumes domi-
nance of the a1ð1260Þ� final-state as was reported in
Refs. [23,24]. Because of the dominant decay a1ð1260Þ !
�0�, each event contains one pair of pions from �0 decay.
The simulation of multiple soft-photon emission from the
initial state is performed via a structure function technique
[25,26]. Extra radiation from the final state particles is
simulated by the PHOTOS package [27]. The accuracy
of the radiative corrections is about 1%. A new version
of PHOKHARA [16], which incorporates the results of
recent studies [8] on intermediate resonances, is used to
investigate the influence of these intermediate resonances
on the acceptance.
The simulated events are subjected to simulation of the

detector [28] and the same analysis procedures as the data.1� refers to the nominal CM frame.
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Variations in detector and background conditions over the
course of the experiment are modeled.

A large number of potential background processes are
simulated, including the ISR processes KþK��þ��� and
K0

SK
����. Other ISR background channels are also ex-

amined. Either the remaining number of events after the
event selection is negligible in comparison to other uncer-
tainties, or dedicated methods for background rejection are
implemented as described in Sec. IV. Non-ISR back-
grounds resulting from eþe� ! q �q (q ¼ u, d, s, c) con-
tinuum events are modeled using the JETSET generator
[29], while those from eþe� ! �þ�� are modeled with
KORALB [30]. The cross sections of the ISR channels and
the branching fractions of the inclusive processes leading
to final states similar to our signal are known with about
10% accuracy or better, which is sufficient for the purpose
of this measurement. The contribution from �ð4SÞ !
�þ���þ��� events is negligible.

III. PRIMARY EVENT SELECTION AND
KINEMATIC FIT

Charged tracks are selected by requiring that they origi-
nate from the collision region (transverse distance of clos-
est approach to the nominal interaction point dT < 1:5 cm,
and in the beam direction dZ < 2:5 cm), and that they have
a polar angle �ch in the well-understood acceptance region
of the detector (0:5 rad< �ch < 2:4 rad). The coordinate
system has the z-axis in the direction of the incoming
e� beam. Tracks with transverse momenta less than
100 MeV=c or that are consistent with being an electron
are rejected. Photon candidates are required to have a
minimum energy E�;CM > 50 MeV. The ISR photon can-

didate is restricted to the polar angle range inside the well-
understood acceptance region of the EMC (0:35 rad<

�� < 2:4 rad) and a minimum energy of EISR > 3 GeV is

required.
Radiative Bhabha events are suppressed by requiring

the two most energetic tracks of the event not to be
identified as electrons. The minimum angle between a
charged track and the ISR photon �c is required to satisfy
�c > 1:0 rad, in order to select the back-to-back topol-
ogy between the charged tracks and photon typical for ISR
events.

A kinematic fit procedure with four constraints (4C) is
applied to events with four tracks satisfying these criteria.
The constrained fit uses the measured momenta and direc-
tions of the charged particles and the ISR photon and the
corresponding error matrix to solve the energy-momentum
equation. To provide accurate photon parameters to the
kinematic fit, a precise alignment and an energy calibration
of the EMC are performed using a �þ��� sample. This
improves the data-simulation agreement in the goodness-
of-fit distributions (see below) of the kinematic fit. The
�þ��� sample is also used to identify and measure

differences between the data and the simulation (MC) in
the photon detection efficiency.
The kinematic fit is performed assuming the

�þ���þ��� signal hypothesis. If two tracks are identi-
fied as kaons the fit is also performed under the
KþK��þ��� hypothesis. The fitting routine returns a
goodness-of-fit quantity �2

4� and �2
2K2�, respectively,

which we use to select signal events and to suppress
KþK��þ��� background.
Figures 1(a) and 1(b) show the measured �2

4� distribu-
tion before background subtraction in comparison to the
distribution from the simulated signal sample. The results
are shown on logarithmic and linear scales. The distri-
butions are normalized to the number of events with
�2
4� < 10. Figure 1(c) shows the �2

4� distribution for the
main backgrounds. The difference between measured and
simulated samples is shown in Fig. 1(d) for �2

4� > 10. For
large values of �2

4�, the difference is approximately flat,
and is consistent with the sum of backgrounds shown in
Fig. 1(c). At small �2

4� values, resolution effects cause the
difference to decrease. This is studied with a clean sample
of four pions and one photon where the resolution effect is
visible for �2

4� < 20. To avoid a bias due to the resolution
difference between the data and simulation, the require-
ment �2

4� < 30 is used in the event analysis. In addition,
background channels are suppressed using dedicated
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FIG. 1 (color online). (a,b) The �2
4� distribution for data

without background subtraction (triangles) and signal MC (his-
togram) on a logarithmic and linear scale. (c) MC distributions
of the principal backgrounds. (d) The difference between the
measured and the simulated distributions from part (a,b). The
dashed and solid vertical lines indicate the boundaries with
the 0< �2

4� < 10 region used for normalization and the

�2
4� < 30 requirement, respectively.
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vetoes and particle identification (PID) selectors, as dis-
cussed in Sec. IV.

IV. BACKGROUND REJECTION

Because of large variations in the signal-to-background
ratio across different 4� massM4� regions, different strat-
egies are implemented to eliminate background, depending
on the M4� region. Figure 2(a) shows the M4� distribution
under the �þ���þ��� hypothesis with the requirement
�2
4� < 30. The results are shown for the data and for

the sum of the simulated ISR channels eþe� !
KþK��þ���, eþe� ! K0

SK
����, eþe� ! !�þ���

and the non-ISR continuum background. In Fig. 2(b), these
background contributions are shown individually. The �2

4�

requirement effectively eliminates the !�þ��� back-
ground: according to simulation, only 450 !�þ���
events remain after applying this restriction, in comparison
to 260 000 signal events with a very similar M4� distribu-
tion, leading to a relative contribution of less than� 0:2%.
At very low invariant masses, M4� < 1:1 GeV=c2, the
background contributions from �þ���� and �þ���0�
are large and not included in Fig. 2. In this threshold region,
the signal-to-background ratio is approximately 1:5. In the
peak region, 1:1 GeV=c2 <M4� < 2:2 GeV=c2, the back-
ground contamination is at the level of 3–4%, dominated
by eþe� ! KþK��þ��� and eþe� ! K0

SK
����. At

highM4�, the background level rises to about 10%, mainly
due to the additional contribution of uds-continuum
events.

A clear peak from J=c ! �þ���þ�� is visible in the
distributions of Fig. 2. In addition, the data exhibit a narrow
peak in the c ð2SÞ mass region, due to the decay c ð2SÞ !
�þ��J=c with J=c ! �þ�� and misidentified muons.
The rejection of this background is described in
subsection IVB.

A. Background in the peak region
(1:1 GeV=c2 <M4� < 2:2 GeV=c2)

The dominant background in the peak region is from the
ISR processes eþe� ! KþK��þ��� and eþe� !
K0

SK
����. We utilize two different approaches to evalu-

ate the background and use the difference between the
methods to estimate the systematic uncertainty related to
the background subtraction. The background subtraction
itself is performed using method 2.

1. Method 1: Subtract simulated background

For background subtraction via method 1, we use recent
measurements of the most important background channels,
KþK��þ��� [13] and K0

SK
���� [14]. We tune

AFKQED according to these measurements and use the
resulting predictions to evaluate the contributions of these
channels to the M4� spectrum.

2. Method 2: Background suppression

This method is a hybrid approach. We impose specific
requirements in order to suppress the KþK��þ��� and
K0

SK
���� backgrounds: the so-called KþK��þ��� and

K0
SK

���� vetoes. The remaining background is then

subtracted according to method 1.
K0

SK
���� events are vetoed if one of the tracks is

identified as a K�. The identification algorithm has an
efficiency of 80–90% per track and a � misidentification
probability of 0.25%. In addition, we require the invariant
mass formed from two of the three remaining tracks to
lie within 35 MeV=c2 of the nominal K0

S mass [31].

According to simulation, this method removes 74% of
the K0

SK
���� background but only 1% of signal.

KþK��þ��� events are rejected if two oppositely-
charged tracks are identified as kaons and the requirement
�2
2K2� < 10 is fulfilled. The K� identification algorithm

has an identification efficiency of 85–95% per track and a
� misidentification probability of 1%. This requirement
removes less than 0.1% of the signal, but 55% of the
KþK��þ��� background.
Comparing the results of the two methods yields

a systematic uncertainty of 1.0% on the eþe� !
�þ���þ�� cross section in the peak region.

B. Background at large invariant masses
(M4� > 2:2 GeV=c2)

From Fig. 2(b) it is seen that the uds continuum back-
ground is significant in the M4� > 2:2 GeV=c2 mass
region. The largest contribution is from eþe� !
�þ���þ���0 events in which one of the photons from
the �0 ! �� decay is mistaken for the �ISR. The similar
kinematic configuration of the uds-continuum events
causes a peak at small values of �2

4�. We estimate this
background by measuring the �0 yield from a fit to the �0

mass peak in the two-photon invariant mass distribution of
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FIG. 2 (color online). (a) The �þ���þ�� invariant mass
distribution of �þ���þ��� ISR events (triangles) for the
main selection and the sum of simulated KþK��þ���,
K0

SK
����, !�þ��� and nonradiative uds-continuum

background (histogram). The large �þ���� and �þ���0�
background contribution in the threshold region (M4� <
1:1 GeV=c2) is not included in the simulation. (b) The individual
simulated background channel contributions from top to bottom
as indicated in the legend.
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the ISR photon candidate with any other photon candidate.
We then scale the MC �0 rate to give the same yield as
observed in the data. The corresponding scaling factor
is extracted with a relative uncertainty of about 22%.
The normalized uds-continuum MC sample is used for
background subtraction. The corresponding systematic
uncertainty on the cross section measurement is 0.5%
in the peak region and rises up to 1.5% for M4� >
2:8 GeV=c2.

There is an additional peaking background contribution
in the charmonium region. Figure 3(a) shows the invariant
mass distribution under the �þ���þ�� hypothesis for
the data. Peaks corresponding to the J=c and c ð2SÞ
resonances are clearly seen. In Fig. 3(b), the invariant
�þ�� mass M2� distribution for events within the
c ð2SÞ (3:65 GeV=c2 <M4� < 3:75 GeV=c2) mass region
are plotted. The distribution contains four entries per event.
The J=c peak is clearly visible. The J=c ! �þ��
branching fraction is about a factor 400 smaller than that
of J=c ! �þ�� [31]. No PID selector is used in the
sample selection. In addition, the kinematic fit does not
suppress�þ���þ�� events, because the mass difference
between muons and pions is only 34 MeV=c2, which is
negligible due to the fact that they are highly relativistic,
being emitted from the J=c . Thus, the observed peak is
likely dominated by c ð2SÞ ! �þ���þ�� decays. To
remove this background, we reject events that have M4�

in the c ð2SÞ region and an M2� value consistent with the
J=c . The corresponding M4� distribution after the c ð2SÞ
veto is shown in Fig. 3(c).

C. Background at small invariant masses
(M4� < 1:1 GeV=c2)

Background in the threshold region, i.e., below
1:1 GeV=c2, is dominated by two processes: � conversion
of a real photon in the detector material, and conversion of
a virtual photon at the primary interaction vertex (Dalitz
conversion). In eþe� ! �þ���0�ISR events, one of the
photons from the �0 decay can convert the detector mate-
rial into an eþe� pair, and both the eþ and the e� can be
misidentified as pions. Moreover, eþe� ! �þ���ISR�
events in which the non-ISR photon converts into an
eþe� pair contribute a similar background. The second
source of background in this mass region is eþe� !
�þ���ISRe

þe� events in which the eþe� pair arises
from a Dalitz conversion process. Two methods are used
to remove these background channels.

1. Method 1: Vetoes for Dalitz conversion
and conversion in the detector

The first method vetoes events with either a primary
vertex probability less than 10�8 or with two identified
electrons. Electrons are identified using an algorithm with
an efficiency of 99% and a pion misidentification rate of
5–10% depending on the transverse momentum of the
track. The first requirement is not sufficient to reject back-
ground events with highly-energetic electrons or positrons,
which have a vertex probability similar to nonconversion
events. MC study shows that the combination of both
requirements yields a background rejection larger than
99% while removing less than 6% of signal.

2. Method 2: Pion identification

The second method requires all four tracks to be iden-
tified as pions, using a selector with an efficiency of
97–99% and an electron misidentification probability of
5–7% depending on the transverse momentum of the track.
There is, however, a difference in efficiency between the
data andMC simulation of approximately 0.5–1% per track
(2–4% shift per event). Therefore, this selector is not used
in the peak region, where the background contribution is
very low.
Both methods remove a large fraction of the conversions

and yield results that are consistent with each other. We
present our primary results using the pion selection
method, as the systematic uncertainties on its inputs are
better understood. Comparing the cross section results
using the two methods leads to a systematic uncertainty
estimate of 3%. It should be noted that the �ð770Þ0 peak is
strongly suppressed, but is still visible as a shoulder after
background subtraction, as shown in Fig. 4.
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D. Background subtraction summary

Figure 5(a) shows the �2
4� distribution both for the data

after background subtraction and the signal simulation.
Compared to Fig. 1(a), the difference between the data
and the signal simulation is reduced. There is still some
remaining background at larger �2

4� values as can be seen
in Fig. 5(b). This is consistent with the uncertainties in the
background-subtraction methods as previously described.
To be conservative, we assume that the remaining back-
ground is uniform as a function of �2

4�. In this case, we find
that the associated uncertainty on the cross section is less

than 0.4% for M4� < 2:8 GeV=c2 and 4.0% for
2:8 GeV=c2 <M4� < 4:5 GeV=c2.

V. ACCEPTANCE AND EFFICIENCIES

The full chain of experimental requirements is applied to
the signal MC sample. We define the ratio of the number
of selected events divided by the number of events with-
out applying any requirements as the global efficiency.
Figure 6 shows the global efficiency as a function of M4�

determined with the simulation. The decrease of efficiency
in the threshold region, which corresponds to the highest
energy ISR photons, is due to the fact that the four tracks of
the hadronic system recoil in a narrow cone opposite to the
direction of the ISR photon. Since ISR photons are pref-
erentially emitted at small polar angles, the efficiency for
detecting all four tracks within the fiducial volume of the
detector decreases accordingly. The decrease in the global
efficiency at large values of M4� can be explained with
similar arguments, because the opening angle of the
hadronic system increases with decreasing ISR photon
energy, increasing the probability of losing one of the
four tracks. The discontinuity at M4� ¼ 1:1 GeV=c2 is
due to the pion PID requirement for the tracks at low
invariant masses.
As mentioned in section II, it is assumed that the

�þ���þ��� hadronic final state arises from the decay
of various intermediate resonances such as a1ð1260Þ�. The
relative contributions of intermediate states are discussed
in Sec. VII. Different intermediate states might exhibit
different results for the angular distributions of final-state
particles. The limited knowledge of the hadronic substruc-
ture hence corresponds to a systematic uncertainty in the
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evaluation of the global efficiency. This effect is estimated
through comparison of the predictions from AFKQED and
a new version of PHOKHARA [16], which contain differ-
ent intermediate resonances. The effect is observed to be
negligible.

A. Photon efficiency

A dedicated study is performed to determine the photon
efficiency in data and simulation. Detector inefficiencies
due to inactive material between crystals, nonfunctioning
crystals, and conversions in inner detector structures are
investigated. This study is performed with a �þ���ISR

sample, in which an identified ISR photon is not required in
the event selection. A kinematic fit with one constraint
(1C) based on the kinematic information of the charged
tracks is performed in order to calculate the energy and
direction of the photon. This fit prediction is compared to
the measured photon information to extract the inefficiency
of the photon reconstruction. In Fig. 7, the photon ineffi-
ciency is shown as a function of the polar angle of the
photon for the data and simulation. The inefficiency curve
is not smooth due to the effect of the inactive regions
between EMC crystal rings. Some gaps between rings,
which are visible in the data as peaks of high inefficiency,
are not properly simulated, especially in the forward region
of the detector. As a function ofM4�, we observe a uniform
inefficiency difference between the data and the simulat-
ion with an average value of �	� ¼ ð1:34� 0:03stat �
0:37systÞ%.

B. Tracking efficiency

Track reconstruction and effects like nuclear inter-
actions and energy loss of tracks traversing the detector
volume are not simulated perfectly. As a consequence, the
tracking efficiency is slightly different for the data andMC.
This difference is investigated with a dedicated study of
ISR eþe� ! �þ���þ�� events with one missing track.
The missing momentum and direction of the lost pion is
calculated using a constrained kinematic fit with one
remaining constraint (1C). The angular and momentum
dependent distribution of the inefficient events is extracted.
Small differences in tracking efficiency between the data

and simulation are due to an imperfect description of track
loss when tracks overlap in azimuth. The average differ-
ence between the data and MC is uniform as a function of
the transverse momentum and the polar angle of the tracks
and is determined on average to be �	trk ¼ ð0:75�
0:05stat � 0:34systÞ%.

VI. CROSS SECTION

As described in Sec. I, the nonradiative cross section is
related to the radiative cross section according to

�4�ðM4�Þ ¼
d�4�;�ðM4�Þ

dM4�

� s

2M4�

� 1

Wðs; x; C�Þ : (2)

The radiative cross section is

d�4�;�ðM4�Þ
dM4�

¼ dN4�;�ðM4�Þ
dM4�

� 1

Ltot � 	 � ð1þ 
rad;FSRÞ
(3)

where dN4�;� is the number of selected events, 	 the global

efficiency corrected for tracking and photon efficiency
differences between the data and MC, and 
rad;FSR the

radiative corrections including LO- and NLO-FSR effects.
The MC event generator interfaced with the detector simu-
lation is based on a modified version of the EVA code [22].
It contains collinear NLO-ISR corrections based on the
structure function technique, as well as FSR corrections
based on PHOTOS [27]. Radiative corrections due to
NLO-ISR on the radiator function obtained with this event
generator are compared to the PHOKHARA generator
[16], which includes the full NLO-ISR corrections. With
our selection, a ð1:0� 0:2Þ% difference of the radiator
function between the two generators is observed. We apply
a correction to account for this difference.
Figure 8 shows the ratio of the simulated ISR radiative

cross section and the cross section including additional
FSR (PHOTOS). The FSR leads to a shift of events towards
lower invariant masses in the radiative cross section, due to
the fact that the measured invariant mass is smaller than the
effective ECM for events with FSR.
After applying all radiative corrections and accounting

for the relevant differences in efficiencies between the
data and simulation, we apply Eq. (2) and extract the
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nonradiative eþe� ! �þ���þ�� cross section. The re-
sult is shown in Fig. 9. The measured cross section includes
the contributions of vacuum polarization. The cross section
used in the dispersion integral for a� does not include

vacuum polarization and thus we need to apply a correc-
tion. We define the undressed cross section �ud

4�ðECMÞ by

correcting the measured or dressed cross section �d
4�ðECMÞ

for vacuum polarization effects according to

�ud
4�ðECMÞ ¼ �d

4�ðECMÞ �
�

�ð0Þ
�ðECMÞ

�
2 ¼ �d

4�ðECMÞ

vacðECMÞ (4)

where�ðECMÞ is the electroweak coupling strength at ECM.
The correction due to vacuum polarization 
vacðECMÞ,
which can be found in Ref. [32], is applied. Our results
for the dressed and the undressed cross sections are pre-
sented in Table I.

A. Systematic corrections and uncertainties

Table II presents the complete list of corrections and
systematic uncertainties that are included in the dressed
cross section. The uncertainties associated with back-
ground subtraction are discussed in Sec. IV. The 3.0%
tracking efficiency difference between data and MC has
an uncertainty of 1.4%. The photon efficiency correction is
1:3� 0:4%. The total luminosity is measured with a pre-
cision of 1.0%. A 1:0� 0:2% difference is observed be-
tween the radiator functions computed with AFKQED and
PHOKHARA. The effect of additional FSR is estimated
using PHOTOS, resulting in the correction shown in Fig. 8
and a systematic uncertainty of 0.5%. The requirement
�2
4� < 30 leads to a systematic uncertainty of 0.3%. The

uncertainty on the global efficiency is estimated to be 1.0%
in the central region, increasing to 10% in the low mass
region M4� < 1:1 GeV=c2 due to an observed efficiency
decrease of up to 10%. A conservative uncertainty of 10%
to account for the total acceptance decrease in this region is
also applied.
Assuming no correlation between the various contribu-

tions to the systematic uncertainty of the cross section,
its total is found to be 10.7% for M4� < 1:1 GeV=c2,
2.4% for 1:1 GeV=c2 <M4� < 2:8 GeV=c2, 5.5% for
2:8 GeV=c2 <M4� < 4:0 GeV=c2 and 8.5% for higher
invariant masses. Individual contributions to the systematic
uncertainties contribute in a correlated way on the whole
mass range, with the exception of the global analysis
efficiency, for which it does not. Therefore for M4� >
1:1 GeV=c2 a 100% correlation can be assumed, while
for M4� < 1:1 GeV=c2 where the global efficiency domi-
nates, it can be assumed to be uncorrelated.

B. Comparison with the existing eþe� data

In Fig. 10 the extracted nonradiative �ðeþe� !
�þ���þ��Þ cross section is shown, in comparison with
the previous BABAR result [8] and the results from fixed-
energy eþe� experiments. Our results agree within the
uncertainties with our previous measurement, which they
supersede. Our results are consistent with and higher in
precision than the direct eþe� cross section measurements
made at VEPP-2M by OLYA [33], ND [34], SND [35],
CMD [36], and CMD-2 [37–39], at DCI by M3N [40],
DM1 [41], and DM2 [42], and at Adone by GG2 [43].
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TABLE I. Summary of eþe� ! �þ���þ�� cross section measurement. Dressed (with VP) and undressed (without VP) cross
sections are presented with statistical uncertainties only.

ECM (MeV) �dressed
4� (nb) �undressed

4� (nb) ECM (MeV) �dressed
4� (nb) �undressed

4� (nb) ECM (MeV) �dressed
4� (nb) �undressed

4� (nb)

612.5 0:02� 0:01 0:02� 0:01 1912.5 7:17� 0:14 6:90� 0:13 3212.5 0:50� 0:03 0:47� 0:03
637.5 0:04� 0:02 0:04� 0:02 1937.5 6:93� 0:13 6:67� 0:13 3237.5 0:49� 0:03 0:46� 0:03
662.5 0:02� 0:01 0:02� 0:01 1962.5 6:54� 0:13 6:30� 0:13 3262.5 0:48� 0:03 0:45� 0:03
687.5 0:01� 0:01 0:01� 0:01 1987.5 6:04� 0:12 5:82� 0:12 3287.5 0:49� 0:03 0:47� 0:03
712.5 0:02� 0:01 0:02� 0:01 2012.5 6:18� 0:13 5:95� 0:12 3312.5 0:47� 0:03 0:45� 0:03
737.5 0:03� 0:01 0:03� 0:01 2037.5 5:66� 0:12 5:45� 0:12 3337.5 0:44� 0:03 0:42� 0:03
762.5 0:05� 0:02 0:05� 0:02 2062.5 5:68� 0:12 5:47� 0:12 3362.5 0:44� 0:03 0:42� 0:03
787.5 0:11� 0:03 0:10� 0:02 2087.5 5:34� 0:12 5:14� 0:11 3387.5 0:40� 0:03 0:38� 0:03
812.5 0:11� 0:02 0:10� 0:02 2112.5 4:92� 0:11 4:73� 0:11 3412.5 0:38� 0:03 0:36� 0:03
837.5 0:12� 0:03 0:12� 0:02 2137.5 4:83� 0:11 4:64� 0:11 3437.5 0:38� 0:03 0:36� 0:03
862.5 0:17� 0:03 0:16� 0:03 2162.5 4:59� 0:11 4:41� 0:10 3462.5 0:36� 0:03 0:34� 0:02
887.5 0:26� 0:04 0:25� 0:03 2187.5 4:28� 0:10 4:12� 0:10 3487.5 0:30� 0:02 0:28� 0:02
912.5 0:33� 0:04 0:32� 0:04 2212.5 3:72� 0:10 3:58� 0:09 3512.5 0:35� 0:03 0:33� 0:02
937.5 0:57� 0:05 0:55� 0:05 2237.5 3:72� 0:09 3:57� 0:09 3537.5 0:31� 0:02 0:29� 0:02
962.5 0:71� 0:06 0:69� 0:05 2262.5 3:53� 0:09 3:39� 0:09 3562.5 0:33� 0:02 0:31� 0:02
987.5 0:89� 0:06 0:86� 0:06 2287.5 3:26� 0:09 3:13� 0:08 3587.5 0:29� 0:02 0:28� 0:02
1012.5 1:20� 0:07 1:23� 0:07 2312.5 3:18� 0:09 3:06� 0:08 3612.5 0:27� 0:02 0:26� 0:02
1037.5 1:61� 0:08 1:51� 0:08 2337.5 3:06� 0:08 2:94� 0:08 3637.5 0:26� 0:02 0:25� 0:02
1062.5 2:17� 0:09 2:06� 0:09 2362.5 2:97� 0:08 2:86� 0:08 3662.5 0:22� 0:02 0:22� 0:02
1087.5 3:29� 0:11 3:14� 0:11 2387.5 2:59� 0:08 2:48� 0:07 3687.5 0:29� 0:02 0:13� 0:02
1112.5 4:49� 0:13 4:31� 0:12 2412.5 2:47� 0:08 2:38� 0:07 3712.5 0:23� 0:02 0:21� 0:02
1137.5 5:95� 0:14 5:72� 0:14 2437.5 2:30� 0:07 2:21� 0:07 3737.5 0:26� 0:02 0:24� 0:02
1162.5 7:37� 0:16 7:09� 0:15 2462.5 2:25� 0:07 2:16� 0:07 3762.5 0:25� 0:02 0:23� 0:02
1187.5 8:84� 0:17 8:51� 0:17 2487.5 2:11� 0:07 2:02� 0:07 3787.5 0:21� 0:02 0:20� 0:02
1212.5 10:79� 0:19 10:40� 0:18 2512.5 2:03� 0:07 1:95� 0:07 3812.5 0:19� 0:02 0:18� 0:02
1237.5 12:62� 0:20 12:17� 0:20 2537.5 1:87� 0:07 1:80� 0:06 3837.5 0:18� 0:02 0:17� 0:02
1262.5 14:56� 0:22 14:05� 0:21 2562.5 1:71� 0:06 1:65� 0:06 3862.5 0:18� 0:02 0:17� 0:02
1287.5 16:39� 0:23 15:83� 0:22 2587.5 1:85� 0:06 1:77� 0:06 3887.5 0:21� 0:02 0:20� 0:02
1312.5 19:06� 0:25 18:41� 0:24 2612.5 1:79� 0:06 1:72� 0:06 3912.5 0:20� 0:02 0:19� 0:02
1337.5 21:14� 0:26 20:42� 0:25 2637.5 1:62� 0:06 1:56� 0:06 3937.5 0:15� 0:02 0:14� 0:02
1362.5 23:37� 0:27 22:59� 0:26 2662.5 1:43� 0:06 1:37� 0:05 3962.5 0:14� 0:02 0:14� 0:01
1387.5 25:76� 0:28 24:90� 0:28 2687.5 1:31� 0:05 1:26� 0:05 3987.5 0:16� 0:02 0:16� 0:02
1412.5 27:53� 0:29 26:61� 0:29 2712.5 1:30� 0:05 1:26� 0:05 4012.5 0:17� 0:02 0:16� 0:02
1437.5 29:95� 0:30 28:96� 0:30 2737.5 1:21� 0:05 1:16� 0:05 4037.5 0:12� 0:01 0:11� 0:01
1462.5 30:32� 0:31 29:32� 0:30 2762.5 1:17� 0:05 1:13� 0:05 4062.5 0:20� 0:02 0:19� 0:02
1487.5 32:04� 0:31 30:97� 0:30 2787.5 1:17� 0:05 1:12� 0:05 4087.5 0:13� 0:01 0:12� 0:01
1512.5 30:98� 0:31 29:93� 0:30 2812.5 1:09� 0:05 1:05� 0:05 4112.5 0:14� 0:02 0:13� 0:01
1537.5 30:11� 0:30 29:06� 0:29 2837.5 1:07� 0:05 1:04� 0:05 4137.5 0:14� 0:02 0:13� 0:01
1562.5 28:26� 0:29 27:26� 0:28 2862.5 0:96� 0:05 0:93� 0:04 4162.5 0:14� 0:01 0:13� 0:01
1587.5 26:81� 0:28 25:86� 0:27 2887.5 0:89� 0:04 0:86� 0:04 4187.5 0:15� 0:02 0:14� 0:01
1612.5 24:66� 0:27 23:78� 0:26 2912.5 1:08� 0:05 1:05� 0:05 4212.5 0:11� 0:01 0:10� 0:01
1637.5 22:69� 0:26 21:89� 0:25 2937.5 0:88� 0:04 0:85� 0:04 4237.5 0:13� 0:01 0:12� 0:01
1662.5 20:95� 0:25 20:19� 0:24 2962.5 0:77� 0:04 0:75� 0:04 4262.5 0:13� 0:01 0:12� 0:01
1687.5 18:78� 0:23 18:09� 0:22 2987.5 0:82� 0:04 0:81� 0:04 4287.5 0:13� 0:01 0:12� 0:01
1712.5 17:25� 0:22 16:61� 0:21 3012.5 0:75� 0:04 0:74� 0:04 4312.5 0:11� 0:01 0:11� 0:01
1737.5 15:33� 0:21 14:75� 0:20 3037.5 0:71� 0:04 0:71� 0:04 4337.5 0:11� 0:01 0:11� 0:01
1762.5 13:37� 0:19 12:86� 0:19 3062.5 0:62� 0:04 0:66� 0:04 4362.5 0:09� 0:01 0:09� 0:01
1787.5 11:61� 0:18 11:17� 0:17 3087.5 1:93� 0:06 2:30� 0:08 4387.5 0:10� 0:01 0:10� 0:01
1812.5 10:23� 0:17 9:84� 0:16 3112.5 1:30� 0:05 1:03� 0:04 4412.5 0:11� 0:01 0:10� 0:01
1837.5 8:87� 0:15 8:53� 0:15 3137.5 0:62� 0:04 0:55� 0:03 4437.5 0:09� 0:01 0:09� 0:01
1862.5 7:67� 0:14 7:37� 0:14 3162.5 0:59� 0:03 0:54� 0:03 4462.5 0:09� 0:01 0:08� 0:01
1887.5 7:29� 0:14 7:02� 0:13 3187.5 0:51� 0:03 0:47� 0:03 4487.5 0:10� 0:01 0:09� 0:01
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C. Influence on the prediction of a�

Using the result for the eþe� ! �þ���þ�� cross
section obtained in the present study, we compute the
contribution of this channel to the anomalous magnetic
moment of the muon a� via a dispersion relation using

the HVPTool program [44] in the energy region 0:6 GeV<
ECM < 1:8 GeV. We find

ahad� ð�þ���þ��Þ ¼ ð13:64� 0:03stat � 0:36systÞ � 10�10:

(5)

Our result is more precise than the current world average
for this quantity: ð13:35� 0:10stat � 0:52systÞ � 10�10

[19], where the first uncertainty is statistical and the second
systematic.

VII. INVARIANT MASSES AND CHARMONIUM
BRANCHING RATIOS

Different invariant mass combinations have been studied
in the data and MC simulation to search for states not
included in the MC model. In the following, we present a
general qualitative search for these hadronic structures. We
then consider a more detailed study of the J=c and c ð2SÞ
background subtraction and efficiency corrections. Finally,
we determine the branching fractionsBJ=c!�þ���þ�� and

Bc ð2SÞ!J=c�þ�� and perform a scan for additional reso-

nances at high invariant masses.

A. Substructures

The scatter plots in Fig. 11 display distributions of the
invariant �þ���� and �þ�� masses versus the invariant
�þ���þ�� mass for the data and MC. The �ð770Þ0 band
is clearly visible in the �þ�� mass distribution of the data
and MC. In general, good agreement is seen except for the
J=c decay, which is not simulated.
In a more detailed study, the �þ���þ�� mass spec-

trum is divided into five intervals:
(1) 1:0–1:4 GeV=c2: low mass region
(2) 1:4–1:8 GeV=c2: peak region of the cross section
(3) 1:8–2:3 GeV=c2: high mass shoulder
(4) 2:3–3:0 GeV=c2

(5) 3:0–4:5 GeV=c2: without the narrow region around
J=c

Figure 12 shows the one-dimensional distributions from
the five regions for the two- and three-pion invariant
masses in comparison with MC [22].
The �þ���� invariant mass distribution is shown in

the leftmost column of Fig. 12. In the low mass region,
1:0 GeV=c2 <M4� < 1:4 GeV=c2, there is not enough
energy to allow production of the a1ð1260Þ�. At higher

TABLE II. Summary of systematic corrections and uncertainties in per centage.

M4� <1:1 GeV=c2 <2:8 GeV=c2 <4:0 GeV=c2 <4:5 GeV=c2

KþK��þ���, K0
SK

���� �1:0 �1:0 �3:0 �7:0
continuum bkg � �0:5 �1:0 �1:5
�þ��eþe�� �3:0 � � �
additional bkg �0:4 �0:4 �4:0 �4:0

tracking efficiency þ3:0� 1:4 þ3:0� 1:4 þ3:0� 1:4 þ3:0� 1:4
photon efficiency þ1:3� 0:4 þ1:3� 0:4 þ1:3� 0:4 þ1:3� 0:4
L �1:0 �1:0 �1:0 �1:0
AFK-PHOK-difference �1:0� 0:2 �1:0� 0:2 �1:0� 0:2 �1:0� 0:2
FSR corrections �0:5 �0:2 �0:1 �0:1
�2
4� < 30 �0:3 �0:3 �0:3 �0:3

global efficiency �10:0 �1:0 �1:0 �1:0

sum �10:7 �2:4 �5:5 �8:5
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M4�, the contribution of the a1ð1260Þ� becomes visible. It
is observed as a peaking structure with mass and width
M3� � 1300 MeV=c2 and � � 200 MeV. In comparison,
the average mass value in the PDG [31] is 1:230�
0:040 GeV=c2, with results from individual experiments
that vary between 1.04 and 1:33 GeV=c2. The correspond-
ing width varies between 250 and 600 MeV. In our
simulation, the parameters M ¼ 1:33 GeV=c2 and � ¼
570 MeV are used, which are determined from a combined
analysis of the CLEO and CMD-2 data [24]. Our results
seem to favor a lower a1ð1260Þ� mass and a smaller width.

In the �þ�� invariant mass distributions shown in the
middle column of Fig. 12, four entries are present per
event. At low 4� mass and in the peak region only a single
resonance, the �ð770Þ0, is observed. At larger 4� mass, a
second peaking structure appears atM2� � 1270 MeV=c2,
which most likely corresponds to the f2ð1270Þ. This reso-
nance is not simulated by our MC. It is observed that over
the entire 4� mass range, approximately 25% of the
entries are in the �ð770Þ0 peak. �ð770Þ0�ð770Þ0 production
is not allowed due to C-parity conservation, leading to
the conclusion that in each event one �ð770Þ0 meson is
present.

To investigate the possible presence of the
f2ð1270Þ�ð770Þ0 final state, the �þ�� combination is
plotted for the case that there is another�þ�� combination
within�25 MeV=c2 of the �ð770Þ0 mass, 745 MeV=c2 <
M2� < 795 MeV=c2. The results are shown in the right-
most column of Fig. 12. An artificial dip at M2� �
770 MeV=c2 due to the selection of the �ð770Þ0 is ob-
served. The f2ð1270Þ resonance is visible as a shoulder in

the 1:8 GeV=c2 <M4� < 2:3 GeV=c2 mass region. It is
even more prominent in the 2:3 GeV=c2 <M4� <
4:5 GeV=c2 region, where the energy is large enough to
allow direct production of f2ð1270Þ�ð770Þ0. A sharp falloff
in the M2� spectrum just below 1 GeV=c2 is visible in the
1:8 GeV=c2 <M4� < 2:3 GeV=c2 region. This might be
due to interference with the f0ð980Þ final state. A partial
wave analysis, which is beyond the scope of this paper,
would be necessary to determine the structure of the indi-
vidual intermediate states. A qualitative comparison with
the MC model of Ref. [16] indicates a somewhat better
agreement with the data than that shown in the rightmost
column of Fig. 12, apart from an overestimate of the con-
tribution of the f0ð1300Þ�ð770Þ0 final state.

B. J=c and c ð2SÞ
Figure 13(a) displays the �ðeþe� ! �þ���þ��Þ

cross section as a function of the 4� mass, in the vicinity
of the J=c meson. The measured width of the J=c
(� 15 MeV) is dominated by the track momentum resolu-
tion, the intrinsic width being �J=c ¼ 93 keV [31]. The

small tail toward higher masses is mostly from extra
radiation, which is assigned to the hadronic system by
the fit. We describe the J=c peak and the nonresonant
�þ���þ�� contribution with the sum of two Gaussians
and a linear term, respectively. This allows the integrated

partial cross section �J=c
int ¼ R1

0 dM4��
J=c ðM4�Þ and the

electronic width of J=c ! �þ���þ�� to be extracted:

BJ=c!�þ���þ�� � �J=c
int

¼ NðJ=c ! �þ���þ��Þ
dL=dE � 	MC

¼ ð48:9� 2:1stat � 1:0systÞ MeV=c2 nb (6)

and

BJ=c!�þ���þ�� ��J=c
ee ¼NðJ=c !�þ���þ��Þ�M2

J=c

6�2 �dL=dE �	MC �C
¼ð20:4�0:9stat�0:4systÞ eV:

(7)

For the above, the value MJ=c ¼ 3096:92�
0:01 MeV=c2 [31] and the conversion constant C ¼
3:8938� 1011 MeV2 nb [31] are used. The statistical un-
certainty corresponds to the fit uncertainty on the area
under the two Gaussian distributions, which is a fit
parameter. A systematic uncertainty of 3% covers the
systematic effects related to the luminosity and efficien-
cies. Contributions from background that peak at the J=c

mass are negligible. Using the electronic width �J=c
ee ¼

5:55� 0:14 keV, we determine the J=c ! �þ���þ��
branching fraction to be
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FIG. 11 (color online). Invariant �þ���� and �þ�� mass
combinations vs invariant �þ���þ�� mass for the data with-
out background subtraction (left) and signal MC (right).
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BJ=c!�þ���þ��

¼ ð3:67� 0:16stat � 0:08syst � 0:09extÞ � 10�3: (8)

The external uncertainty (denoted ext) is dominated by the

uncertainty of �J=c
ee [31]. This measurement agrees with

the current PDG [31] value ð3:55� 0:23Þ � 10�3.
A clear c ð2SÞ ! �þ���þ�� peak in the data of

Fig. 3(a) is visible. Because the selection efficiency for
�þ���þ�� is the same as for �þ���þ��, we can ex-
tract the branching fraction Bc ð2SÞ!J=c�þ�� with J=c !
�þ�� from a simple fit to the �þ���þ�� mass distribu-
tion. Figure 13(b) shows the invariantmass distributionunder
the �þ���þ�� hypothesis in the c ð2SÞ mass region.

The measured width of the c ð2SÞ ( � 20 MeV) is, as in
the case of the J=c , dominated by the track momentum

resolution, the intrinsic width of the c ð2SÞ being
�c ð2SÞ ¼ 317 keV [31]. The effect of using the � mass

hypothesis in the � track fit is negligible. The peak is
described by the sum of two Gaussian distributions and
the nonresonant �þ���þ�� contribution with a linear
function. The area under the peak is used to determine the
c ð2SÞ ! J=c�þ�� branching fraction according to the
following equation:

B c ð2SÞ!J=c�þ�� �BJ=c!�þ�� � �c ð2SÞ
int

¼ Nðc ð2SÞ ! �þ���þ��Þ
dL=dE � 	MC

¼ ð84:7� 2:2stat � 1:8systÞ MeV=c2 nb (9)

and
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B c ð2SÞ!J=c�þ�� �BJ=c!�þ�� � �c ð2SÞ
ee

¼ Nðc ð2SÞ ! �þ���þ��Þ �M2
c ð2SÞ

6�2 � dL=dE � 	MC � C
¼ ð49:9� 1:3stat � 1:0systÞ eV; (10)

where the latter result uses Mc ð2SÞ ¼ 3686:09�
0:04 MeV=c2 [31] and the conversion constant C ¼
3:8938� 1011 MeV2 nb [31]. The statistical uncertainty
corresponds to the fit uncertainty on the area of the
two Gaussian distributions and the systematic uncertainty
of 3% covers the systematic uncertainties in the lumino-
sity and efficiencies. Contributions from peaking back-
ground are negligible. The BJ=c!�þ�� ¼ 0:0593�
0:0006 branching fraction is known with very high

precision. Using �c ð2SÞ
ee ¼ ð2:38� 0:04Þ keV [31], the

c ð2SÞ ! J=c�þ�� branching fraction is determined
to be

B c ð2SÞ!J=c�þ�� ¼ 0:354� 0:009stat � 0:007syst

� 0:007ext; (11)

where the external uncertainty is dominated by the uncer-

tainty for �c ð2SÞ
ee [31]. The measurement is slightly higher

than the PDG [31] value Bc ð2SÞ!J=c�þ�� ¼ 0:336�
0:005, but agrees within the uncertainties. Our result is
comparable in precision to the individual results used to
determine the PDG average and agrees well with the most
recent CLEO measurement Bc ð2SÞ!J=c�þ�� ¼ 0:3504�
0:0007� 0:0077 [45].

C. Scan for additional resonances

Figure 14(a) displays the M4� distribution for the data
in the high invariant mass region. No clear signal can be

identified. There is a hint of structure just above 4 GeV=c2.
The inset, Fig. 14(b), shows this feature in more detail.

VIII. SUMMARY

In this paper, we present a measurement of the
�þ���þ�� cross section at effective center-of-mass
energies below 4.5 GeV, using eþe� events with ISR
collected in the vicinity of the �ð4SÞ resonance. We
achieve overall uncertainties of 2.4% in the peak region
defined by 1:1 GeV=c2 <M4� < 2:2 GeV=c2, 10.7% be-
low 1:1 GeV=c2, 5.5% above 2:8 GeV=c2 and 8.5% above
4:0 GeV=c2. These cross section results are much more
precise than the corresponding ones based on energy scans.
The resulting contribution of the �ðeþe� !

�þ���þ��Þ cross section to the anomalous magnetic
moment of the muon ahad� ðeþe� ! �þ���þ��Þ is eval-
uated according to the method described in Ref. [44] in the
CM energy region between 0.6 and 1.8 GeV:

ahad� ð�þ���þ��Þ¼ð13:64�0:03stat�0:36systÞ�10�10:

(12)

The cross section shows evidence of resonant substructure,
with preferred quasi-two-body production of a1ð1260Þ�.
There is an indication of a f2ð1270Þ�ð770Þ contribution to
the final state. A detailed understanding of the four-pion
final state requires additional information from states such
as �þ���0�0.
The ISR events allow a study of J=c and c ð2SÞ

production. We measure the product of decay branching
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FIG. 14. Invariant �þ���þ�� mass distribution for the data
in the invariant mass range 3:2 GeV=c2 <M4� < 6:0 GeV=c2

(a) and 3:75 GeV=c2 <M4� < 4:25 GeV=c2 (inset, b).
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fractions and the eþe� width of the J=c with the best
accuracy to date, with the results

B J=c!�þ���þ�� � �J=c
ee ¼ ð20:4� 0:9stat � 0:4systÞ eV

(13)

B c ð2SÞ!J=c�þ�� �BJ=c!�þ�� � �c ð2SÞ
ee

¼ ð49:9� 1:3stat � 1:0systÞ eV: (14)

ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our
PEP-II colleagues in achieving the excellent luminosity and
machine conditions that have made this work possible. The
success of this project also relies critically on the expertise
and dedication of the computing organizations that support

BABAR. The collaborating institutions wish to thank SLAC
for its support and the kind hospitality extended to them.
This work is supported by the US Department of Energy
and National Science Foundation, the Natural Sciences and
Engineering Research Council (Canada), the Commissariat
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114005 (2008); H. Czyż, A. Grzelinska, and J. H. Kühn,
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