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Searches for Majorana neutrinos in B~ decays
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Searches for heavy Majorana neutrinos in B~ decays in final states containing hadrons plus a =~ @™
pair have been performed using 0.41 fb~! of data collected with the LHCb detector in proton-proton
collisions at a center-of-mass energy of 7 TeV. The D* u~ u~ and D** ™ u~ final states can arise from
the presence of virtual Majorana neutrinos of any mass. Other final states containing 7", D], or D7
can be mediated by an on-shell Majorana neutrino. No signals are found and upper limits are set on
Majorana neutrino production as a function of mass, and also on the B~ decay branching fractions.
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I. INTRODUCTION

Leptons constitute a crucially important sector of ele-
mentary particles. Half of the leptons are neutrinos. Yet we
do not know if they are Dirac or Majorana particles, the
latter case characterized by being their own antiparticles
[1]. Since the observation of neutrino oscillations has
indisputably established that neutrinos have nonzero
mass, it is possible to distinguish the two types experimen-
tally. Finding neutrinoless double 8 decay has long been
advocated as a premier demonstration of the possible
Majorana nature of neutrinos [2]. The Feynman diagram
is shown in Fig. 1. We also show the fundamental quark
and lepton level process. An impressive lower limit from
neutrinoless double B decays in nuclei has already been
obtained on the half-life of @(10%) years [3] for coupling
toe .

Similar processes can occur in B~ decays. The diagram
is shown in Fig. 2(a). In this reaction there is no restriction
on the mass of the Majorana neutrino as it acts as a virtual
particle. In this paper, unlike in neutrinoless double beta
decays, a like-sign dimuon is considered rather than two
electrons. The only existing limit is from a recent Belle
measurement [4] using the B~ — D u~ u~ channel. We
consider only final states where the cd pair forms a final-
state meson, either a D or a D*™, so the processes we are
looking for are B~ — D™* = ™. In this paper mention
of a specific reaction also implies inclusion of the charge
conjugate reaction.

There are other processes involving b-quark decays that
produce a light neutrino that can mix with a heavy neu-
trino, designated as N. The heavy neutrino can decay as
N — W' u~. In Fig. 2(b) we show the annihilation pro-
cesses B~ — 7t (D} )u™ w™, where the virtual W' mate-

*Full author list given at the end of the article.
Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-

bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOL

1550-7998/2012/85(11)/112004(13)

112004-1

PACS numbers: 14.40.Nd, 13.35.Hb, 14.60.Pq

rializes either as a w+ or D] . These decays have been
discussed in the literature [5,6].

We note that it is also possible for the B~ —
D®T = u~ decay modes shown in Fig. 2(a) to proceed
by a Cabibbo suppressed version of the process in Fig. 2(b)
where the virtual W* forms D®*. Similarly, the decay
modes shown in Fig. 2(b) could be produced via Cabibbo
suppressed versions of the process in Fig. 2(a). Here the
7w~ u~ final state requires a b — u quark transition
while for the D} u~ u~ final state, one of the virtual W~
must couple to a § quark rather than a d.

The lifetimes of N are not predicted. We assume here
that they are long enough that the natural decay width is
narrower than our mass resolution which varies between 2
and 15 MeV' depending on mass and decay mode. For
B~ — 7"~ u~, we can access the Majorana mass region
between approximately 260 and 5000 MeV, while for B~ —
D] u~ ", the Majorana mass region is between 2100 and
5150 MeV. In the higher mass region, the W* may be more
likely to form a D} meson than a 7. The B~ —
7t u~ u~ search was first performed by Mark-1I [7] and
then by CLEO [8]. LHCb also performed a similar search
using a smaller 0.04 fb~! data sample [9] giving an upper
limit of 5.8 X 10™® at 95% confidence level (CL). The
decay of B~ — D/ u~ ™ has never been investigated.

Finally, in Fig. 2(c) we show how prolific semileptonic
decays of the B~ can result in the D7 ™ u~ final state.
This process has never been probed [10]. We benefit from
the higher value of the Cabibbo-Kobayashi-Maskawa cou-
pling |V,,| relative to |V,,| in the annihilation processes
shown in Fig. 2(b). The accessible region for Majorana
neutrino mass is between 260 and 3300 MeV. For all the
modes considered in this paper, we search only for decays
with muons in the final state, though electrons, and 7 leptons
in cases where sufficient energy is available, could also be
produced. Searches have also been carried out looking for
like-sign dileptons in hadron collider experiments [11].

'In this paper we use units where the speed of light, c, is set
equal to one.
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FIG. 1. (a) Diagram of neutrinoless double 8 decay when two
neutrons in a nucleus decay simultaneously. (b) The fundamental
diagram for changing lepton number by two units.

I1. DATA SAMPLE AND SIGNAL

We use a data sample of 0.37 fb~! collected with the
LHCb detector [12] in the first half of 2011 and an addi-
tional 0.04 fb~! collected in 2010 at a center-of-mass
energy of 7 TeV.

The detector elements are placed along the beam line of
the LHC starting with the vertex detector, a silicon strip
device that surrounds the proton-proton interaction region
having its first active layer positioned 8 mm from the beam
during collisions. It provides precise locations for primary
pp interaction vertices and the locations of decays of long-
lived particles and contributes to the measurement of track
momenta. Further downstream, other devices used to mea-
sure track momenta include a large area silicon strip de-
tector located in front of a 4 Tm dipole magnet, and a
combination of silicon strip detectors and straw-tube drift
chambers placed behind. Two ring imaging Cherenkov
(RICH) detectors are used to identify charged hadrons.
An electromagnetic calorimeter is used for photon detec-
tion and electron identification, followed by a hadron

FIG. 2. Feynman diagrams for B decays involving an
(b) B — 7t (Dy)w p ,and (¢) B~ = D7 p”.
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calorimeter, and a system that distinguishes muons from
hadrons. The calorimeters and the muon system provide
first-level hardware triggering, which is then followed by a
software high level trigger.

Muons are triggered on at the hardware level using their
penetration through iron and detection in a series of track-
ing chambers. Projecting these tracks through the magnet
to the primary event vertex allows a determination of their
transverse momentum, pt. Events from the 2011 data used
in this analysis were triggered on the basis of a single muon
having a py greater than 1480 MeV, or two muons with
their product pp greater than 1.69 GeV?. To satisfy the
higher level trigger, the muon candidates must also be
detached from the primary vertex.

Candidate B~ decays are found using tracking informa-
tion, and particle identification information from the RICH
and muon systems. The identification of pions, kaons, and
muons is based on combining the information from the two
RICH detectors, the calorimeters, and the muon system.
The RICH detectors measure the angles of emitted
Cherenkov radiation with respect to each charged track.
For a given momentum particle this angle is known, so a
likelihood for each hypothesis is computed. Muon like-
lihoods are computed based on track hits in each of the
sequential muon chambers. In this analysis we do not reject
candidates based on sharing hits with other tracks. This
eliminates a possible bias that was present in our previous
analysis [9]. Selection criteria are applied on the difference
of the logarithm of the likelihood between two hypotheses.
The efficiencies and the misidentification rates are ob-
tained from data using Ky, D** — 77D D° — K~ 7%,
andJ/¢ — u" u~ event samples that provide almost pure
pion, kaon, and muon sources.

Efficiencies and rejection rates depend on the momen-
tum of the final-state particles. For the RICH detector
generally the pion or kaon efficiencies exceed 90% and
the rejection rates are of the order of 5% [13]. The muon
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system provides efficiencies exceeding 98% with rejection
rates on hadrons of better than 99%, depending on selec-
tion criteria [14]. Tracks of good quality are selected for
further analysis. In order to ensure that tracks have good
vertex resolution we insist that they all have pyt >
300 MeV. For muons this requirement varies from 650 to
800 MeV depending on the final state. All tracks must be
inconsistent with having been produced at the primary
vertex closest to the candidate B~ meson’s decay point.
The impact parameter (IP) is the minimum distance of
approach of the track with respect to the primary vertex.
Thus we form the IP y? by testing the hypothesis that the IP
is equal to zero, and require it to be large; the values
depend on the decay mode and range from 4 to 35.

III. NORMALIZATION CHANNELS

Values for branching fractions will be normalized to well
measured channels that have the same number of muons in
the final state and equal track multiplicities. The first such
channel is B~ — J/¢K~. Its branching fraction is
BB~ — J/¢yK™) = (1.014 £ 0.034) X 1073 [3]. We
use the J/¢ — u* u~ decay mode. The product branch-
ing fraction of this normalization channel is (6.013 =
0.021) X 1073, and is known to an accuracy of *+2%.
The charm meson decay modes used in this paper are listed
in Table I, along with their branching fractions and those of
the charmonium decays in the normalization channels.

To select the J/ K~ normalization channel, the pg
requirement is increased to 1100 MeV for the K~ and
750 MeV for the muons. To select B~ candidates we
further require that the three tracks form a vertex with a
x> <7, and that this B~ candidate points to the primary
vertex at an angle not different from its momentum direc-
tion by more than 4.47 mrad, and that the impact parameter
x? of the B is less than 12. The same requirements will be
used for the 7% u~ u~ selection. The total efficiency for
K is(0.99 = 0.01)%, where the u™ ™ come from
J/ ¥ decay.

The invariant mass of K~ " u~ candidates is shown in
Fig. 3(a). In this analysis the u* ™ invariant mass is
required to be within 50 MeV of the J/ i mass. We use a
Crystal Ball function (CB) to describe the signal [16], a
Gaussian distribution for the partially reconstructed back-
ground events, and a linear distribution for combinatorial

TABLE I. Charm and charmonium branching fractions.
Particle Final state Branching fraction (%)
DO K ot 3.89 = 0.05 [3]

Dt K atat 9.14 = 0.20 [3]
D K Kot 5.50 = 0.27 [15]
D** DY 67.7 = 0.5 [3]
¥ (2S) ata I/ 32.6 £ 0.5 [3]
J/ utu~ 5.93 = 0.06 [3]
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background. The CB function provides a convenient way
to describe the shape of the distribution, especially in the
mass region below the peak where radiative effects often
produce an excess of events that falls away gradually, a so-
called “‘radiative tail.”” The CB function is

{exp(—M) for 270 > — g
f(m; a, n, my, o) = 20 v

A-(b—"0)™" for = —q,
(D

where

n \n |a|? n
A=(—) - ex (——)b=——|a|.
lal) P\ 2 [l

The measured mass of each candidate is indicated as m,
while m and o are the fitted peak value and resolution, and
n and « are parameters used to model the radiative tail. We
use the notation o in the rest of this paper to denote
resolution values found from CB fits.

Using an unbinned log-likelihood fit yields 47224 =+
222 B~ — J/y K~ events. Within a +2¢ signal window
about the peak mass, taken as the signal region, there are
44 283 of these events. The number of signal events in this
window is also determined using the total number of events
and subtracting the number given by the background fit.
The difference is 119 events, and this is taken as the
systematic uncertainty of 0.3%. The width of the signal
peak is found to be 19.1 = 0.1 MeV. Monte Carlo simu-
lations are based on event generation using PYTHIA [17],
followed by a GEANT-4 [18] based simulation of the LHCb
detector [19]. The J/ K~ mass resolution is 20% larger
than that given by the LHCb simulation. All simulated
mass resolutions in this paper are increased by this factor.

For final states with five tracks, we change the normal-
ization channel to B~ — ¢(2S)K~, with (2S5) —
atm J/¢, and J/y — u* . The branching fraction
for this channel is B(B~ — (2S)K~) = (6.48 = 0.35) X
10~% [3]. Events are selected using a similar procedure as
for J/¢K~ but adding a 777~ pair that must have an
invariant mass when combined with the J/i¢ which is
compatible with the #(2S) mass, and that forms a consis-
tent vertex with the other B~ decay candidate tracks. The
total efficiency for u™ w7t 7~ K~ is (0.078 = 0.002)%,
without inclusion of the i (2S) or J/ s branching fractions.
The B~ candidate mass plot is shown in Fig. 3(b). Here the
utu” pair is constrained to the J/¢ mass. (In what
follows, whenever the final state contains a ground-state
charm meson, its decay products are constrained to their
respective charm masses.)

The data are fitted with a CB function for signal, a
Gaussian distribution for partially reconstructed back-
ground, and a linear function for combinatorial back-
ground. There are 767 = 29 signal events in a *20
window about the peak mass. The difference between
this value and a count of the number of events in the signal
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FIG. 3 (color online).

Invariant mass of K'n*J/y (MeV)

Invariant mass of (a) candidate J/ ¢ K~ decays, and (b) candidate J/ ¢y K~ 7+ 7~ decays. The data are shown

as the points with error bars. Both the partially reconstructed background and the combinatorial background are shown, although the
combinatorial background is small and barely visible. The solid curve shows the total. In both cases the candidate u™ ™~ is required to
be within =50 MeV of the J/i mass, and in (b) the dimuon pair is constrained to have the J/ ¢ mass.

region after subtracting the background implies a 0.7%
systematic uncertainty on the yield.

IV. ANALYSISOF B~ — D*u pu AND D**' ™~

Decay diagrams for B~ — D™* =~ are shown in
Fig. 2(a). Since the neutrinos are virtual, the process can
proceed for any value of neutrino mass. It is also possible
for these decays to occur via a Cabibbo suppressed process
similar to the ones shown in Fig. 2(b), where the virtual
W™ materializes as a cd pair. If this occurred we would
expect the Cabibbo allowed D u~ u~ final state to be
about an order of magnitude larger. The search for
Majorana neutrinos in this channel are discussed in
Sec. VI. The D™ — K~ 7+ 7" and D*" — 7" D° D° —
K~ 7t channels are used. The decay products of the Dt
and D° candidates are required to have invariant masses
within =25 MeV of the charm meson mass, and for D**
candidate selection the mass difference m(7#" K~ 71) —
m(K~7") is required to be within =3 MeV of the known
D** — D° mass difference.

L (a) LHCb :

Events / 10 MeV

The D™* u~u~ candidate mass spectra are shown in
Fig. 4. No signals are apparent. The B~ mass resolution is
15.7 = 0.5 MeV for the D* channel and 14.1 = 0.6 MeV
for the D** channel. The background has two components,
one from misreconstructed B decays that tends to peak
close to the B~ mass, called “peaking backgrounds,” and
random track combinations that are parametrized by a
linear function. To predict the combinatorial background
in the signal region we fit the data in the sidebands with a
straight line. In the D™ mode we observe six events in the
signal region, while there are five in the D** mode. The
combinatorial background estimates are 6.9 = 1.1 and
5.9 £ 1.0 events, respectively. Peaking backgrounds are
estimated from misidentification probabilities, determined
from data, coupled with Monte Carlo simulation. For these
two channels peaking backgrounds are very small. The
largest, due to B~ — DY@ o, is only 0.04 events.

The total efficiencies for DTy~ u~ and D*t u~ u~ are
(0.099 = 0.007)% and (0.066 = 0.005)%, respectively;
here the charm branching fractions are not included. The
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FIG. 4 (color online).

lines show the linear fits to the data in the mass sidebands.
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systematic errors are listed in Table II for this mode and other
modes containing charm mesons that will be discussed sub-
sequently. Trigger efficiency uncertainties are evaluated
from differences in the 2010 and 2011 data samples. The
largest systematic uncertainties are due to the branching
fractions of the normalization channels and the trigger effi-
ciencies. The uncertainty on the background is taken into
account directly when calculating the upper limits as ex-
plained below. Other uncertainties arise from errors on the
charmed meson branching fractions. For these final states the
uncertainty due to different final-state track momenta with
respect to the normalization mode is very small, on the order
of 0.2%. Other channels have uncertainties due to varying
efficiencies as a function of Majorana mass, and these are
entered in the row labeled “efficiency modeling.” The de-
tector efficiency modeling takes into account the different
acceptances that could be caused by having different track
momentum spectra. For example, the track momenta depend
on the Majorana neutrino mass for on-shell neutrinos. These
uncertainties are ascertained by simulating the detector re-
sponse at fixed Majorana masses and finding the average
excursion from a simple fit to the response and the individu-
ally simulated mass points. This same method is used for
other modes.

To set upper limits on the branching fraction the number
of events N, within =20 of the B~ mass is counted. The
distributions of the number of events () are Poisson with
the mean value of (S + B), where S indicates the expecta-
tion value of signal and B background. For a given number
of observed events in the signal region, the upper limit is
calculated using the probability for N = N:

(S + B)Ne=(5+B)

P(N = Nop) = Y Vi )
N=Nps :

TABLE II. Systematic uncertainties for B~ — DXy~ u~
modes.
Source Systematic uncertainty (%)
Common to all modes
BB~ — y(285)K™) 54
B(p2S)— J/patw™) 1.5
BU/p—putpu) 1.0
Uncertainty in signal shape 3.0
Yield of reference channel 0.7
M identification 0.6
Source Systematic uncertainty (%)
Mode specific DY DO7rt DY D**
Trigger 4.9 9.3 5.5 4.8
Efficiency modeling 10.0 6.7
K /7 identification 1.0
Charm decay B’s 4.9 1.3 2.2 1.5
Total 13.8 13.2 8.8 8.2
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A limit at 95% CL for branching fraction calculations is set
by having P(N = N,,) = 0.05. The systematic errors are
taken into account by varying the calculated S and B,
assuming Gaussian distributions.

The upper limits on the branching fractions at 95% CL
are measured to be

BB — D u ) <69 %107
BB~ —> D" u)<24X1076.

and

The limit on the D* channel is more stringent than a
previous limit from Belle of 1 X 107% at 90% CL [4],
and the limit on the D** channel is the first such result.

V. ANALYSISOF B~ —» 7" p~p~

The selection of 77+ ™ ™~ events uses the same criteria
as described for J/¢ K~ in Sec. III, except for like-sign
rather than opposite-sign dimuon charges and pion rather
than kaon identification. The invariant mass distribution of
77w~ u~ candidates is shown in Fig. 5. The mass resolu-
tion for this final state is 20.3 = 0.2 MeV. An interval of
*20 centered on the B~ mass is taken as the signal region.
There are 7 events in the signal region, but no signal above
background is apparent. The peaking background, esti-
mated as 2.5 events, is due to misidentified B~ —
J/ YK~ or J/ ¢~ decays; the shape is taken from simu-
lation. The combinatorial background is determined to be
5.3 events from a fit to the 77w~ u~ mass distribution
excluding the signal region. The total background in the
signal region then is 7.8 = 1.3 events.

Since the putative neutrinos considered here decay into
t M, and are assumed to have very narrow widths, more
sensitivity is obtained by examining this mass distribution,
shown in Fig. 6, for events in the B~ signal region. There is
no statistically significant signal at any mass. There are
three combinations in one mass bin near 2530 MeV;
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Invariant mass of *uu (MeV)
FIG. 5 (color online). Invariant mass distribution of

7t u~ u”. The estimated backgrounds are also shown. The
curve is the sum of the peaking background and the combinatoric
background.
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FIG. 6 (color online). Invariant mass distribution of 7+ u~ in
the =20 region of the B~ mass with both peaking and combi-
natorial background superimposed. The peaking background at
3100 MeV is due to misidentified B~ — J/¢X decays. There
are two combinations per event.

however, two of the combinations come from one event,
while it is possible to only have one Majorana neutrino per
B~ decay. Upper limits at 95% confidence level on the
existence of a massive Majorana neutrino are set at each
7t u~ mass by searching a signal region whose width is
*30y, where oy is the mass resolution, at each possible
Majorana neutrino mass, M. This is done in very small
steps in 77" .~ mass and so produces a continuous curve. If a
mass combination is found anywhere in the =30 interval it
is considered as part of the observed yield. To set upper limits
the mass resolution and the detection efficiency as a function
of 7" u ™ mass need to be known. Monte Carlo simulation of
the mass resolution as a function of the Majorana neutrino
mass is shown in Fig. 7, along with resolutions of other
channels. The overall efficiencies for different values of
My, are shown in Fig. 8. A linear interpolation is used to
obtain values between the simulated points.

Many systematic errors in the signal yield cancel in the
ratio to the normalization channel. The remaining system-

Majorana mass resolution (MeV)

R B A S SR B
1000 2000 3000 4000 5000
Majorana neutrino mass (MeV)

FIG. 7 (color online). Majorana mass resolutions for the three
B~ decays as a function of Majorana mass.
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FIG. 8 (color online). Detection efficiencies for the three B~
decays as a function of Majorana mass. Charm meson decay
branching fractions are not included.

atic uncertainties are listed in Table III. The largest sources
of error are the modeling of the detector efficiency (5.3%)
and the measured branching fractions B(B~ — J/¢K™)
(3.4%), and B(J/p — u* u™) (1.0%).

To set upper limits on the branching fraction, the number
of events N, at each My value (within =30 y) is counted,
and the procedure described in the last section applied.
Estimated background levels are taken from Fig. 6.
Figure 9(a) shows the upper limit on B(B~ —
7w~ ) as a function of My at 95% CL. For most of
the neutrino mass region, the limits on the branching ratio
are <8 X 107°. Assuming a phase space decay of the B~
we also determine

BB —mpu pw)<13X107% at95% CL.

These limits improve on a previous CLEO result ( < 1.4 X
107% at 90% CL[8] and supersede the LHCb result ( <
5.8 X 107% at 95% CL) [9].

VI. ANALYSISOF B~ —» D} u p~

The process B~ — DYy~ u~ is similar to B~ —
7wt u” u~, with the difference being that the heavy
neutrino can decay into D u~. Here we consider only

TABLE III.
measurement.

Systematic uncertainties for B~ — 7t u " u~

Selection criteria Systematic uncertainties (%)

K /r identification 1.0
M identification 0.6
Muon selection 0.6
Trigger 1.0
Yields of reference channel 04
Efficiency modeling 53
BB~ —J/yK) 34
B/ — ptp”) 1.0
Total 6.7
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FIG. 9. Upper limits at 95% CL as a function of the putative Majorana neutrino mass, (a) for B(B~ — 7" u~ u ™) as a function of
the 7% 1~ mass, (b) for B(B~ — D} u~ u ™) as a function of the D] u~ mass, and (c) for B(B~ — D7 u~ u ™) as a function of the

7" u” mass.

D — K"K~ #" decays. Our analysis follows a similar
procedure used for the 7% u~ u~ channel. Candidate
D/ — K*K~ 7" decays are selected by having an invari-
ant mass within =25 MeV of the D} mass. A Majorana
neutrino candidate decay is then looked for by having the
D; candidate decay tracks form a vertex with an opposite-
sign muon candidate. Then this neutrino candidate must
form a vertex with another muon of like sign to the first one
consistent with a B~ decay detached from the primary
vertex. The invariant mass spectrum of D} u~ u~ candi-
dates is shown in Fig. 10. The mass resolution is 15.5 *=
0.3 MeV.

There are 12 events within the B~ candidate mass
region; it appears that there is a dip in the number of events
here. An unbinned fit to the data in the sidebands gives an
estimate of 22 events. The fluctuation at the B~ mass,
therefore, is about 2 standard deviations. Peaking back-
ground contributions at the level of current sensitivity are
negligible (~ 3 X 10™%); thus only combinatorial back-
ground is considered.

After selecting the events in the B~ signal region, we
plot the D;f ™ invariant mass distribution, which is shown

10''I""I""I""I""
LHCb

Events /10 MeV

IIINIIIhrIIIIIIIIII

ol o v v
5100 5200 5300
Invariant mass of DU | (MeV)

5400

FIG. 10 (color online). Invariant mass spectrum for B~ —
D] u~ u~ candidates. The line shows the fit to the data exclud-
ing the B~ mass signal region.

in Fig. 11. A background estimate is made using the
sideband data in B~ candidate mass (see Fig. 10), by fitting
to a 4th order polynomial. The background estimated from
the sidebands is also shown in the figure. The normaliza-
tion is absolute and in agreement with the data. The data in
the signal region is consistent with the background esti-
mate. The systematic error due to the fitting procedure is
estimated using the difference between this fit and the one
obtained using a 6th order polynomial.

The overall efficiencies for different values of M, are
shown in Fig. 8. As done previously, during the scan over
the accessible Majorana neutrino mass region we use a
*30, mass window around a given Majorana mass. The
resolution is plotted in Fig. 7 as a function of My.
Systematic uncertainties are listed in Table II.

Again we provide upper limits as a function of the
Majorana neutrino mass, shown in Fig. 9(b), only taking
into account combinatorial background in this case as the
peaking background is absent. For neutrino masses below
5 GeV, the limits on the mass dependent branching frac-
tions are mostly <6 X 1077, We also determine an upper

25 T
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o [ ]
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~ 15 —
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gos' ]
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2500 3000 3500 4000 4500 5000

Invariant mass of D (MeV)

FIG. 11 (color online). Invariant mass spectrum of D} u~
from B~ — D u~"u~ events in the signal region with the
background estimate superimposed (solid curve). There are
two combinations per event.
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limit on the total branching fraction. Since the background
estimate of 22 events exceeds the observed level of 12
events we use the CL; method for calculating the upper
limit [20]. Assuming a phase space decay of the B~ we find

BB~ —Dip pn)<58x10"7 at 95% CL.

VII. ANALYSIS OF B~ — Dzt u~p~

A prolific source of neutrinos is semileptonic B~ decay.
Majorana neutrinos could be produced via semileptonic
decays as shown in Fig. 2(c). Here the mass range probed is
smaller than in the case of 7w~ u~ due to the presence of
the D° meson in the final state. The sensitivity of the search
in this channel is also limited by the need to reconstruct the
D° — K~ 7" decay. We do not explicitly veto D** —
7+t DY decays as this would introduce an additional sys-
tematic uncertainty. The invariant mass distribution of
D7t ™ u~ is shown in Fig. 12. The mass resolution is
14.4 £ 0.2 MeV.

Peaking backgrounds are essentially absent; the largest
source is B~ — D%z~ v~ 7" which contributes only 0.13
events in the signal region. The combinatorial background,
determined by a linear fit to the sidebands of the B~ signal
region, predicts 35.9 events, while the number observed is 33.

The 77+~ invariant mass for events within 2 standard
deviations of the B~ mass is shown in Fig. 13. The back-
ground shape is estimated by a 5th order polynomial fit to
the sideband data (see Fig. 12) and also shown on the
figure. The systematic error on this background is esti-
mated using a 7th order polynomial fit.

The 7+ 1~ mass resolution is shown in Fig. 7. The My,
dependent efficiencies are shown in Fig. 8. They vary from
0.2% to 0.1% over most of the mass range. Systematic
errors are listed in Table II. The largest sources of error are
the trigger, and the M, dependent efficiencies.

The upper limits for B(B~ — D7t~ u ™) as a func-
tion of the 7"~ mass are shown in Fig. 9(c). For
Majorana neutrino masses <<3.0 GeV, the upper limits

T —
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¢ 5
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5100 5200 5300 5400 5500

Invariant mass of D° * u w (MeV)

FIG. 12 (color online). Invariant mass distribution of
DOz u~. The solid line shows a linear fit to the data in
the sidebands of the B~ signal region.
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FIG. 13 (color online). Invariant mass distribution of 7+~
for B~ — D%~ u~ 7" in the signal region and with estimated
background distribution superimposed. There are two combina-
tions per event.

are less than 1.6 X 107% at 95% CL. The limit on the
branching fraction assuming a phase space decay is

BB — D7 u u)<1.5X107° at95% CL.

VIII. CONCLUSIONS

A search has been performed for Majorana neutrinos in
the B~ decay channels, D" u-u~, 7 u u-,
Dfu~ p~,and D7t ™ u™ that has only yielded upper
limits. The D™ 1~ ™ channels may proceed via virtual
Majorana neutrino exchange and thus are sensitive to all
Majorana neutrino masses. They also could occur via the
same annihilation process as the other modes, though this
would be Cabibbo suppressed. The other channels provide
limits for neutrino masses between 260 and 5000 MeV. The
bounds are summarized in Table IV. These limits are the
most restrictive to date.

Our search has thus far ignored the possibility of a finite
neutrino lifetime. Figure 14 shows the relative detection
efficiency as a function of Majorana neutrino lifetime,
for (a) B-—a7tu u~ for a mass of 3 GeV,
(b) B-—>D/u u~ for a mass of 3 GeV, and

TABLE IV. Summary of upper limits on branching fractions.
Both the limits on the overall branching fraction assuming a
phase space decay, and the range of limits on the branching
fraction as a function of Majorana neutrino mass (M) are given.
All limits are at 95% CL.

Approximate limits

Mode B upper limit as function of My
DYtu~ u~ 6.9 X 1077
D u~u” 2.4X107°
Ttu"u” 1.3x 1078 0.4 —1.0)x 1078
Dip~up” 5.8 X 1077 (1.5 —8.0) X 1077
DOt~ ™ 1.5 X 107° (0.3—-1.5x107°
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Relative efficiencies as a function of Majorana neutrino lifetime for (a) B~ — 7" u~ u~ for a mass of 3 GeV,

(b) B~ — D} ™~ ™ foramass of 3GeV, and (c) B~ — D7 u~ u~ for a Majorana neutrino mass of 2 GeV. Where the error bars are

not visible, they are smaller than radii of the points.
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FIG. 15. Upper limits on |V,,4|* at 95% CL as a function of the
Majorana neutrino mass from the B~ — 7" u~ u~ channel.

(©) B~ — D7 u~ u~ for amass of 2 GeV. All sensitivity
is lost for lifetimes longer than 10~'° s to 10~!! s, depend-
ing on the decay mode. Note that for the D*)* = u~ final
states the detection efficiency is independent of the neu-
trino lifetime, since the neutrino acts a virtual particle.
Our upper limits in the 77 u~ u~ final state can be used
to establish neutrino mass dependent upper limits on the
coupling |VM4| of a heavy Majorana neutrino to a muon and

a virtual W. The matrix element has been calculated in
Ref. [5]. The results are shown in Fig. 15 as a function of
My. A model dependent calculation of B(B~ —
D7t~ u”) can also be used to extract [V ,al [10],
but the wtu~u~ mode is more sensitive. For the
D®* = u~ channels upper limits cannot be extracted until
there is a theoretical calculation of the hadronic form factor
similar to those available for neutrinoless double 8 decay.
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