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We reexamine the light deflection by an Ellis wormhole. The bending angle as a function of the ratio

between the impact parameter and the throat radius of the wormhole is obtained in terms of a complete

elliptic integral of the first kind. This result immediately yields asymptotic expressions in the weak field

approximation. It is shown that an expression for the deflection angle derived (and used) in recent papers

is valid at the leading order but it breaks down at the next order because of the nontrivial spacetime

topology.
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I. INTRODUCTION

The bending of light was the first experimental confir-
mation of the theory of general relativity. At present, the
gravitational lensing is one of the important tools in as-
tronomy and cosmology. It is widely used for investigating
extrasolar planets, dark matter and dark energy.

The light bending is also of theoretical importance, in
particular, for studying a null structure of a spacetime. For
example, strong gravitational lensing in a Schwarzschild
black hole was considered by Frittelli, Kling and Newman
[1] and by Virbhadra and Ellis [2]; Virbhadra and Ellis [3]
later described the strong gravitational lensing by naked
singularities; Eiroa, Romero and Torres [4] treated
Reissner-Nordström black hole lensing.

A peculiar feature of general relativity is that the theory
admits a nontrivial topology of a spacetime, for instance a
wormhole. An Ellis wormhole is a particular example of
the Morris-Thorne traversable wormhole class [5–7].
Many yeas ago, scattering problems in such spacetimes
were discussed (for instance, [8,9]). One remarkable fea-
ture is that the Ellis wormhole has a zero mass at the spatial
infinity but it causes the light deflection [8,9]. Moreover,
the gravitational lensing by wormholes has been recently
investigated as an observational probe of such an exotic
spacetime [10–15]. Perlick [10], Nandi, Zhang and
Zakharov [13], Dey and Sen [16] calculated a deflection
angle of light due to an Ellis wormhole, though their
expressions are in different forms. Therefore, a reason for
such differences should be clarified.

Moreover, a rigorous form of the bending angle plays an
important role in understanding properly a strong gravita-
tional field [1–3,10]. The main purpose of this brief paper
is to reexamine the bending angle of light by the Ellis
wormhole in order to clarify an unclear relationship among
the different expressions. We shall show that the deflection
angle as a function of the impact parameter and the throat
radius of the wormhole is obtained in terms of a complete
elliptic integral of the first kind. We discuss also the
validity and limitation of several forms of the deflection
angle by wormholes, which have been recently derived and

often used [10,13–17]. We take the units of G ¼ c ¼ 1
throughout this paper.

II. DEFLECTION ANGLE OF LIGHT BY THE
ELLIS WORMHOLE

The line element for the Ellis wormhole is written as
[5,10,13]

ds2 ¼ �dt2 þ dr2 þ ðr2 þ a2Þðd�2 þ sin2�d�2Þ: (1)

To cover the entire wormhole geometry, the coordinate r
runs from �1 to þ1, where r ¼ 0 corresponds to the
throat of the wormhole. In order to discuss the deflection
angle of light, it is sufficient to consider r 2 ð0;þ1Þ, only
one half of the wormhole geometry. This metric gives the
Lagrangian for a massless (lightlike) particle as

L ¼ � _t2 þ _r2 þ ðr2 þ a2Þð _�2 þ sin2� _�2Þ; (2)

where the dot denotes the derivative with respect to the
affine parameter.
The Ellis wormhole is spherically symmetric so that

a photon orbit can be considered on the equatorial plane
� ¼ �=2 without loss of generality. Since this spacetime is
stationary and spherically symmetric, we have two con-
stants of motion of a photon as

E � _t; (3)

h � ðr2 þ a2Þ _�; (4)

where E and h are corresponding to the photon’s specific
energy and the photon’s specific angular momentum, re-
spectively. The two constants of motion are substituted into
the null condition ds2 ¼ 0 to obtain an equation for the
photon orbit as

1

ðr2 þ a2Þ2
�
dr

d�

�
2 ¼ 1

b2
� 1

r2 þ a2
; (5)

where a constant b is defined as h=E. The impact parame-
ter is the perpendicular coordinate distance between the
projectile’s fiducial path and the center of a deflector by
assuming that the fiducial path were not deflected. For the
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Ellis wormhole case, the zero deflection limit is obtained
by a ! 0. If a ¼ 0, r ¼ b means that r is the minimum
according to Eq. (5). Namely, the above constant b can be
called the impact parameter of the light trajectory. On the
other hand, the closest approach r0 between the light
trajectory and the coordinate origin (the deflector) is given
by Eq. (5) as

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
: (6)

Namely, r0 is the minimum value of the radial coordinate
along the light ray.

An integration of Eq. (5) immediately gives the deflec-
tion angle expressed as

�ðbÞ ¼ 2
Z 1

r0

bdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ a2Þ2 � ðr2 þ a2Þb2p � �: (7)

We make a coordinate transformation from r 2 ½0;þ1Þ to
R 2 ½a;þ1Þ by R2 ¼ r2 þ a2, where R is the circumfer-
ence radius. Equation (7) becomes

�ðbÞ ¼ 2
Z 1

b

bdRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðR2 � a2ÞðR2 � b2Þp � �: (8)

This is rewritten as

�ðbÞ ¼ 2
Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp � � ¼ 2KðkÞ � �;

(9)

where t � b=R and k � a=b. The integral in Eq. (9) is a
complete elliptic integral of the first kind KðkÞ, which
admits a series expansion for k < 1. Hence, Eq. (9) is
expanded as

�ðbÞ ¼ �
X1
n¼1

�ð2n� 1Þ!!
ð2nÞ!!

�
2
k2n: (10)

III. COMPARISON WITH PREVIOUS RESULTS

Perlick [10] and Nandi, Zhang and Zakharov [13] later
obtained the deflection angle in a different form (e.g.,
Eq. (54) in [13]) that is expressed in terms of the closest
approach [10,13]. It follows that their expression using the
closest approach can be recovered from Eq. (9) by noting
r20 ¼ b2 � a2 [18]. However, the present result by Eq. (9)

is more convenient for astronomers, especially on a micro-
lens study, since describing an image direction (its angular
position) needs the impact parameter rather than the closest
approach.

Dey and Sen [16] followed the method proposed by
Amore and Arceo [19,20], in which firstly the linear delta
function technique is used to approximate the above type
of the integral with an ansatz potential and next the prin-
ciple of minimal sensitivity (PMS) is used to minimize
the parametric dependence on the deflection angle. They
obtained the deflection angle as

� ¼ �

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr20 þ a2Þ
2r20 þ a2

s
� 1

9=
;; (11)

where r0 is the closest approach of the light. In the weak
field approximation (a � b� r0), the deflection angle is
expanded as

� ¼ �

4

�
a

r0

�
2 � 5�

32

�
a

r0

�
4 þO

�
a

r0

�
6
: (12)

The deflection angle derived in this paper is based on not
the closest distance but the impact parameter. In terms of
the impact parameter, Eq. (12) is rearranged as

�ðbÞ ¼ �

4

�
a

b

�
2 þ 3�

32

�
a

b

�
4 þO

�
a

b

�
6
: (13)

where we used r20 ¼ b2 � a2.
In the rigorous treatment without using the PMS ap-

proximation, we have obtained Eq. (9), the expansion of
which in the weak field is given by Eq. (10) and explicitly
written as

�ðbÞ ¼ �

4

�
a

b

�
2 þ 9�

64

�
a

b

�
4 þO

�
a

b

�
6
: (14)

Comparing Eq. (14) with Eq. (13) shows that the deflection
angle recently expressed by Eq. (11) is valid at the leading
order in the weak field approximation but it breaks down at
the next order. Note that the complete elliptic integral of
the first kind cannot be expressed by a square root like
Eq. (11).
Why does the previous approach fail? The main reason

is a difference between a black hole spacetime and a
wormhole. The Schwarzschild spacetime has a singularity
at r ¼ 0, which also leads to a singular behavior of the light
bending. Therefore, the PMS approximation using the
delta function works [19,20]. On the other hand, r ¼ 0 in
the Ellis geometry is a regular sphere which can connect
with a separate spatial domain. The deflection angle by the
Ellis wormhole is not inversely but logarithmically diver-
gent there. Therefore, the PMS does not seem to be suitable
for this case. Let us consider a case that the closest ap-
proach vanishes, for which r0 ¼ 0, namely b ¼ a. Then,
we obtain

�ðaÞ ¼ 2
Z 1

0

dt

1� t2
� �� ln1: (15)

On the other hand, Eq. (11) leads to � ! �ð ffiffiffi
2

p � 1Þ as
r0 ! 0 (b ! a). This result misses the throat effects and
thus it is incorrectly finite.
Note that the throat r ¼ 0 is a light sphere (photon

sphere). A light ray can stay on this sphere if it is tangential
to the sphere, because r ¼ 0 satisfies Eq. (5). The existence
of the light sphere is reflected by the divergence in Eq. (15).
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IV. CONCLUSION

The light deflection by an Ellis wormhole has been
reexamined. The bending angle as a function of the ratio
between the impact parameter and the throat radius of
the wormhole has been obtained in terms of a complete
elliptic integral of the first kind. The deflection angle in
this geometry in a different form [10,13] is the same
as the present one but it is depending on the closest
approach. In the weak field approximation, it has
been shown that another expression for the deflection
angle derived (and used) in recent papers [14–17] is
correct at the leading order, but it breaks down at the

next order because there exists a throat in the Ellis
geometry.
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Note added—Equation (9) was found first in Ref. [8].

Equation (14) can be recovered by lengthy calculations
using Weierstrass’s elliptic functions [21].
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