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String amplitudes and framelike formalism for higher spins
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We analyze open string vertex operators describing connection gauge fields for spin 3 in Vasiliev’s
framelike formalism and perform their extended Becchi-Rouet-Stora-Tyutin analysis. Gauge symmetry
transformations, generalized zero torsion constraints relating extra fields to the dynamical framelike field,
and the relation between the dynamical framelike field and fully symmetric Fronsdal’s field for spin 3 are
all realized in terms of Becchi-Rouet-Stora-Tyutin constraints on these vertex operators in string theory.
Using the construction, we analyze the 3-point correlator for the spin 3 field and calculate Chern-Simons
type cubic interactions described by the 3-derivative Berends-Burgers-Van Dam type vertex in the

framelike formalism.
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L. INTRODUCTION

Constructing consistent gauge theories of interacting
higher spin fields is a long-standing, fascinating, and diffi-
cult problem (for an incomplete and very subjective list of
references see [1-58]).

Despite significant progress in describing the dynamics
of higher spin field theories, achieved over the past
few decades, our understanding of the general structure
of the higher spin interactions is still very far from
complete. String theory appears to be a particularly effi-
cient and natural framework to construct and analyze
consistent gauge-invariant interactions of higher spins
[4-6,21,22,34,36,37,59-68].

Within string theory, there are several approaches to this
problem. The first approach is based on the observation
that excitations with higher spins appear naturally in the
massive spectrum of open and closed strings with the
masses of the states on the leading Regge trajectory given
by m ~ (£)1/?, so in the tensionless limit a’ — co the
corresponding operators technically become massless.
There are several difficulties within this approach; e.g., it
is generally not easy to combine the vertex operators so as
to recover the explicit set of the Stueckelberg symmetries
of the corresponding states. The known examples of such
operators typically mix the excitations with different spin
values [68]. In addition, since the tensionless limit is
opposite to the low-energy one, field theoretic interpreta-
tion of the correlation functions of these vertex operators is
not easy. This formalism is also hard to extend to the anti—
de Sitter (AdS) case since the world sheet correlators of
string theory in AdS backgrounds are difficult to analyze
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beyond the semiclassical limit. Another string-theoretic
approach to higher spins, based on the formalism of ghost
cohomologies, is independent on the tension arguments
and in principle allows circumventing some of the diffi-
culties related to the tensionless limit. This approach is
based on new physical [Becchi-Rouet-Stora-Tyutin
(BRST) invariant and nontrivial] vertex operators that we
analyzed in previous works (see, e.g., [660]) that are essen-
tially coupled to the B-7y system of superconformal ghosts
in Ramond-Neveu-Schwarz formulation of superstring
theory (RNS) formalism. This ghost coupling cannot be
removed by picture-changing transformation and can be
classified in terms of ghost cohomologies [66,67]. This
class of vertex operators is ghost picture-dependent, dis-
tinguishing them from standard operators such as a photon
or a graviton, which exist at any picture. In the open string
sector, there is a subclass of these operators corresponding
to massless higher spin excitations. BRST-invariance con-
ditions lead to Pauli-Fierz on-shell conditions for higher
spin fields in Fronsdal’s metriclike formalism, while BRST
nontriviality constraints lead to gauge transformations for
these operators. Their world sheet amplitudes are thus
gauge-invariant by construction and describe polynomial
interactions of massless higher spin fields in the low-
energy effective limit. In our previous works we calculated
some examples of such interations—cubic interaction of
s = 3 — 3 — 4, the disc amplitude of spin 3 operators with
the graviton (reproducing the coupling of spin 3 to gravity
through the linearized Weyl tensor), and the quartic inter-
action of spin 3 and spin 1 gauge fields [66,67]. In practice,
however, explicit calculations involving these operators are
in most cases complicated, as their explicit structure is
generally quite cumbersome. More significantly, due to
the picture dependence, in many physically important
cases the options to manipulate with the picture changing
are limited and it is often hard to find the appropriate
picture combination of the higher spin vertex operator
satisfying the correct ghost number balance in correlation
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functions to cancel the background charges of the ghosts
(e.g., on the sphere all the appropriate correlators must
carry total ¢-ghost number —2, y-ghost number +1, and
b — ¢ ghost number +3). One important example when
such a complication appears is the cubic interaction of spin
s = 3 corresponding to cubic amplitude of spin 3 vertex
operators in open string theory. Straightforward calculation
of this amplitude using vertex operators for Fronsdal-type
fields requires 4 picture-changing transformations which,
given the cumbersome structure of the operators, makes
the computations practically insurmountable. In this paper
we approach this problem by developing vertex operator
formalism for auxiliary (extra) fields in Vasiliev’s frame-
like approach. We construct vertex operators for connec-
tion gauge fields in this formalism. As in the Fronsdal’s
case the on-shell conditions on the operators lead to stan-
dard trace and symmetry constraints on the fiber indices of
the connection gauge fields, along with gauge fixing con-
ditions for diffeomorphism symmetries. Gauge transfor-
mations of the connection fields lead, in turn, to shifting the
vertex operators by BRST-exact terms that do not affect the
correlators that determine the structure of the interaction
terms in the low-energy limit. The generalized zero torsion
constraints follow from ghost cohomology conditions on
the vertex operators that will be derived in the next section.

The rest of the paper is organized as follows. In Sec. II
we review the basic ideas of the framelike description of
higher spin fields and construct vertex operators for the
dynamical and auxiliary connection gauge fields. In
Sec. III we analyze the 3-point correlation function of these
operators for spin 3, limiting ourselves to terms with 3
derivatives. The result is given by the Berends-Burgers-
Van Dam type 3-derivative vertex in a certain gauge,
modulo total derivative terms. In the conclusion and dis-
cussion section we outline generalizations of the developed
formalism for the AdS case and discuss the relation be-
tween the vertex operators, constructed in this paper, and
generators of higher spin algebra in AdS.

II. FRAMELIKE FORMALISM AND VERTEX
OPERATORS FOR CONNECTION GAUGE FIELDS

Framelike formalism in higher spin field theories, origi-
nally proposed by Vasiliev and later developed in a number
of works (e.g., see [2,26,43,44,69—72]), is a powerful tool
to describe gauge-invariant interactions of higher spin
fields in various backgrounds including AdS geometry.
Unlike the approach used by Fronsdal that considers higher
spin tensor fields as metric-type objects, the framelike
formalism describes the higher spin dynamics in terms of
higher spin connection gauge fields that generalize objects
such as vielbeins and spin connections in gravity (in stan-
dard Cartan-Weyl formulation or MacDowell-Mansouri-
Stelle-West in case of nonzero cosmological constant).
The higher spin connections for a given spin s are de-
scribed by the collection of two-row gauge fields
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s=1lr =

w a),a,,'"'a"'lb""b’(x), 0=r=s—1,

)

l=abm=d

traceless in the fiber indices, where m is the curved
d-dimensional space index while a, b label the tangent
space with w satisfying

ety |by).b
wS";l ay—11by)...b, =0. (2)
The gauge transformations for w are given by
w%}-uasfllblmbl N wzllmas—]lblmbr + Dmpal'”arllbl'”b’, 3)

while the diffeomorphism symmetries are

ay...a;_|b;..b,

g b () — (x)

+9,,€ (x) ol |bl-<-br(x)
+ €'(x)a, 0l Pty (&)

The w*~ ' gauge fields with r = 0 are auxiliary fields
related to the dynamical field w* "0 by generalized zero
torsion constraints:

w;zll...a:,llbl...b[ ~ b ab,w,an]...as,l (5)
skipping pure gauge terms (for convenience of the nota-
tions, we set the cosmological constant to 1, anywhere the
AdS backgrounds are concerned).

It is also convenient to introduce the d + 1-dimensional
index A = (a, d) (where d labels the extra dimension)
and to combine ' into a single two-row field
wAr-A-11B1-Bio1 (x) identifying

'] [t — w1 |b, ..Ab,c?...c?’

(6)

wAr-As—1|B1..B— V4 Ay |31--~Bz’

— A
i Va, T

where V, is the compensator field satisfying V,VA = 1.
The Fronsdal field H*-“ is then obtained by symmetriz-
ing @(@-a) = M@ %41 We now turn to the question
of constructing vertex operators for w*~!I". The operators
for spins greater than 2 constructed in our previous works
[66] were in fact limited to the Fronsdal-type objects only.
In particular, in RNS superstring theory the operators for

s = 3 are given by
V) =H,, (p)ce 39X X0 ymelPX (7)

at an unintegrated minimal negative picture and
VO = K o Hypn(p) § dze?oX0ax" ymei?™  (3)

at integrated minimal positive picture +1 where a, b, m =
0,...,d — 1 are Minkowski space-time indices, X“(z) are
space-time coordinates, ¢ are their world sheet super-
partners, b, ¢ are reparametrizational fermionic ghosts,
and B, vy are bosonic superconformal ghosts. The homo-
topy transformation K o7 of an integrated operator
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T = $dzV(z) [with V(z) being a primary field of dimen-
sion 1] is defined according to

T G U A A v
KoT=T+ NI E(Z w)N: KoV W:(z)
1 dz
WY f 52 M@= WK@K Ques UL, (9)
where

1 1
0= fa’z{cT — bcoc — Eyzpmaxm - Zbyz} (10)

is the BRST operator, K = —4ce**2% is the homotopy
operator satisfying {Q, K} = 1, U and W are the operators
appearing in the commutator [Q, V(z)] = aU(z) + W(z),
and the ghost fields are bosonized as usual according to

b=e9,

B=ex"%9y=e%0&

c = eo" fy = e¢7X = e¢n’

D

The operators (7) and (8) are the elements of negative
and positive ghost cohomologies H_3 and H|, respectively
(see [66] for definitions and review). They are related
according to V*D=7ZI2ZI'>:V(=3 by a combination of
BRST-invariant transformations by picture-changing op-
erators for b-c and B-y systems: Z =: bS(T): and I" =:

|
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S8(B)G: (T is the full stress tensor and G is the super-
current). Therefore, the on-shell conditions and gauge
transformations for H,,,, at positive and negative pictures
are identical. The manifest expression for V(*!) is given by

V,_s(piw) = f dz(z — w2U(2)
=Ag+tA +A +A;+ A+ As
+ Ag + A7 + Ag, (12)

where

Apiw) = S Hupn(p) § de(z = wp?

x P%)

o e?IX X YR (7)) (13)

and
As(6) = Hopn(p) § dzlz =’
X dccdéée P aX 90X ymePX(z)  (14)
have ghost factors proportional to e? and dccdéée™?,

respectively, and the rest of the terms carry a ghost factor
proportional to c¢:

Ay(piw) = —2H i (p) f dz(z — wcé(§a%)axX ax? ymePX (2),

Ay(piw) = —Hapm(p) fdz(z — w)céax axPox" P} "X (z),

Ay(piw) = Hopn(p) f dz(z — wc£aXaXP 32X eiP X (3),

A(piw) = 2Han(p) § delz = wPcgo Py axP e )

(15)

As(p;w) = 2H ,4,,(p) fdz(z — w)2cgaPraXP e X (z),

As(psw) = —2H i (p) f dz(z — w)e£0X“XP(PX™ + aX P )elPX(2),

Aol ) = 20 (p) § d2(z = wPeE(p DIPY. 9X00X e (),

A7(piw) = 2iH 4,,(p) fdz(z — w)2cE(pagaxaaxt yme X ().

Here w is an arbitrary point on the world sheet; since all the w derivatives of s = 3 operators are BRST-exact in a small
Hilbert space [66], all the correlation functions involving higher spin operators V,_;(p, w) are w-independent and the

(n)

choice of w is arbitrary. Conformal dimension n polynomials P, b+By+Co (where A, B, C are some numbers) are defined

according to

e~ AP Bx(2)—Co(2)

dn eA¢(Z)+BX(z)+C0'(Z) (16)
dz"

[where the product is understood in the algebraic rather than operator-product expansion (OPE) sense].
As it is straightforward to check, the BRST-invariance constraints on the operators (7) and (8) lead to Pauli-Fierz type

conditions
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szabm = paHabm = 7'labl_labm =0. (17)
However, in general
" Hapy # 0 (18)

as the tracelessness in @ and m or b and m indices is not
required for V(=3 to be a primary field. In what follows
below we shall interpret H,,, with the dynamical spin 3
connection form w2, identifying m with the manifold
index and a, b with the fiber indices. So the tracelessness
condition is generally imposed by BRST-invariance con-
straint on any pair of fiber indices only (but not on a pair of
manifold and fiber indices). The same is actually true also

VY ~{o w},

W= Hahm(p)cage*%*ipxaxa(l/f[ma%//b] —2¢lmayPlog + ¢m¢b(% 9’ + %(345)2)) +a e b.

If Qp, is two-row, the V(3 operator is obtained as the
commutator of W with the matter supercurrent term of Q
given by ~ §y¢,,0X". As W commutes with the
$(—=1by? —bcac) term in Q, VO is BRST-exact if
and only if it commutes the stress energy part of Q
given by §cT. This is the case if the integrand of W is a
primary field. It is, however, easy to check that the
integrand is primary only when the last term in its expres-
sion is present. Since this term is proportional to

|

V) = v+ {0, U)
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for the vertex operators for framelike gauge fields of spins
higher than 3. Altogether, this corresponds precisely to the
double tracelessness constraints for corresponding metric-
like Fronsdal’s fields for higher spins (although the zero
double trace condition does not of course appear in the case
of s = 3). As it is clear from the manifest expressions (7)
and (8) the tensor H,, is by definition symmetric in
indices a and b and therefore can be represented as a
sum of two Young diagrams. However, only the fully
symmetric diagram is the physical state, since the second
one (with two rows) can be represented as the BRST
commutator in the small Hilbert space:

19)

|
~dée dTirXgxaymyb(S02p + 5 (9¢)?) it is auto-
matically antisymmetric in m and b and is absent when
multiplied by fully symmetric H,;,,. In the latter case this
term is not a primary since its OPE with T contains cubic
singularities and therefore the commutator of Q with W
does not give V®). Similarly, shifting H,,,, by symme-
trized derivative H ,p,,, — Hypy + P(n/Aap) is equivalent to
shifting the vertex operator (7) by BRST-exact terms
given by

U= Ageage ¢ ax (e = 2ppiautas + puw (e + S 047)) 0

+ 0x axb((pa?X) — a¢(pax))}.

Of course everything described above also applies to the vertex operator (8) at positive picture, with appropriate Z, I
transformations. This altogether already sends a strong hint to relate (7) and (8) to vertex operators for the dynamical
framelike field ?© describing spin 3. However, to make the relation between string theory and framelike formalism, we
still need the vertex operators for the remaining extra fields ' and w?2. The expressions that we propose are given by

V2A(p) = 20!¢(p)ce 4*(—20 P 0X (02 Xy — 204™ 00X, 00X, + 020X ,0X,)e'PX (21)

for w?!" and
V2R (p) = —3wfn”'“’(p)ce*5"’<w'"azzﬁcc'ﬁwdaX“aXb = 2470407 P 0X,9° X, + 2 Yoo hadX,0°X,
+ T—Z Yo wcawdazxaasz)eipx (22)
for 2. We start with analyzing the operator for w?/'. Straightforward application of I to this operator gives

CTVAL(p) = VEI(p),  HE(p) = ip.wil(p); (23)

i.e., the picture changing of V2! gives the vertex operator for w2!? with the 3-tensor given by the divergence of w?!; i.e., for
p.wi€(p) # 0 V21 is the element of H_5. If, however, the divergence vanishes, the cohomology rank changes and V2!

shifts to H_,4. This is precisely the case we are interested in. Namely, consider the H_, cohomology condition
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ab
pewi(p) =0, (24)
The general solution of this constraint is
a)ﬁlblc—pr — pwbt — ptwic + p, wledb, (25)
where w?’ is traceless and divergence free in a and b and satisfies the same on-shell constraints as H%”, while Wi ig

some three -row field, antisymmetric in a, ¢, d and symmetric in a and b. It is, however, straightforward to check that the

operator V2! with the polarization given by w®’!

— ac
= pawm

&b can be cast as the BRST commutator:

pawi P (p)V (p) =10, i (p) ¢ dzeX 3T PXgx(=20 9™ 0X,0°X, — 200X, 0X, + Y™ 9% .0X,0X,)
|

X (a%pd —§a¢da¢ +

m bad1(ag) — 29624)))}. (26)

Therefore, modulo pure gauge terms the cohomology condition (24) is the zero torsion condition relating the extra field

w2 2[0

to the dynamical w
second generalized zero torsion condition

w;lnblcd

relating ??

W2 (p) = wedl (p) fdzei”x[(llf’”azwcﬂ3lﬁd@X“aXb = 24" 0 10X,0°X),

57

where, as previously, ¢ = eX and

Lf:

2|1 2[2
b

The gauge transformations for o and o
Swi(p) = p,A®lc and Swi(p) = p,, A% with
A’s having the same symmetries in the fiber indices as
w’s shift the operators (21) and (22) by terms that are
BRST-exact in the small Hilbert space; the explicit expres-
sions for the appropriate BRST commutators are given in
the Appendix B. Similarly to the w?° case, for w?!' and
w?? with the manifold m index antisymmetric with any
of the fiber indices a or b the operators (21) and (22)
become BRST-exact in the small Hilbert space. Given
the cohomology (‘“‘zero torsion’) conditions, (25) and
(27) ensure that the fully symmetric s = 3 Fronsdal field
is related to the dynamical field w2 by the gauge trans-
formation removing the two-row diagram. The expressions
for the appropriate BRST commutators are given in the
Appendix B.

This concludes the construction of the vertex operators
for framelike gauge fields for spin 3. In the next section we

— zpdwablc _ pawbdlc _ pbwadlc + 2pcwab|d _ paw

connection. Similarly, constraining V2 to be the element of H_s cohomology results in the

beld _ pbwacld (27)

to w?!' modulo BRST-exact terms ~{Q, W22(p)} where

é (m 2 3
+81,// A 0" 70X, 0° X,

5
+1—6¢ma zpcazlpdazxaasz)](—#fazg + aLfag), (28)

(azwf—atpfaw b (ag)? — 462¢)). (29)

shall use this construction to analyze the 3-point open
string amplitude for spin 3.

II1. THREE-POINT AMPLITUDE
AND 3-DERIVATIVE VERTEX

In this section we use the vertex operator formalism,
developed in the previous section, to compute the cubic
coupling of massless spin 3 fields. In this paper we limit
ourselves to the 3-derivative contributions corresponding
to the Berends, Burgers, and Van Dam [20,73] type vertex
in the field theory limit. The first step is to choose the ghost
pictures of the operators to ensure the correct ghost number
balance, i.e., so that the correlator has total ¢-ghost num-
ber —2, b — ¢ ghost number +3, and y-ghost number +1.
This requires two out of three operators to be taken unin-
tegrated at negative pictures and the third one at positive
picture (note that higher spin operators at positive pictures
are always integrated). It is convenient to take unintegrated
operators at the minimal ghost picture —3; i.e., we shall use
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the V(=3 operator for w20, Then the remaining integrated =~ Where
operator must be taken at picture +5, and only the terms
proportional to the ghost factor ~ceX™*?¢ will contribute, Vi(p)

while the terms proportional to ~dcce?X 3¢ and to ~e>¢ 3 bled S radiin
will drop out as they do not satisfy the balance of ghosts. It “eam (p) fd”(uo —u)’ceX r
is therefore appropriate to choose the operator for w?? for 24 1 1
the third operator (for which the minimal positive picture is X LZ;?L{WP%),Q X,(,(gP(XZ) + §P<224),,2 o
+3) and to apply the picture-changing transformation | :
twice to bring it to the pict +5. Th It is gi b (1) p(1) (1) p1) (1)
wice to bring it to the picture +5. The result is given by _ZPX Py o, —12P30 P - 12(P¢*x)2)
K o ah|cd( ) d 3¢Fm(17/2) 1 102
0, 810, €K 0w (p) P de’PF 4 Lt pua o p) _22pli3)
11! 2¢0—2x—0" —(3/2)p+(55/4)x+(11/4)o 13! 2¢0—"2x—0
= +
Vi(p) + Va(p) 31)
= i (p) § dutuy — wPeer INRY, (), (30
and
|
1 7 p | g atb+tr+5 (_1)a+b+p+qN!
Valp) =g g 22 > >33 3 | Wi (p)
N =8l i pgm0d bt prg—8—n}mdazbizd A= m!l!(p—r)!r!l(N—r)!(5+a+b+r—N)!
—r)y m(N+9) 18 I—all —bl (5+a+b+r—N)
X f dulug—u)bceX 449w =IL oM PIE o Po Pas s Pox (u)}. (32)

Here u is an arbitrary point on the boundary (will be fixed later) and
5 57 :
Fined = (w’"a%awdaxaaxb 200X 0Ky IR g0X, 0K wcaz¢da2xaa2xb)e"’x
(33)

is the dimension L’ primary field ((]%1/\£)en the on-shell conditions on w); conformal dimension N + 9 fields are defined as the

2
OPE terms in the product of F), //~ with the matter supercurrent G = — % ,,0X" on the world sheet:

Gu@FT (W) = 3 (2 = wN LI (w) (34)
N=0

or manifestly

X r15 171 1
m(N+9) _ 4 {_ (8X063Xb + E82}(a62X'b)((:)(N+1))(ma ll/CaZ 'wbd _ a(N+2)XCl//m62 lr//d

abcd N! | 8 N+ 1
15
+ (N+3) m ) + ! 2 <_ N+1 3
(N ¥ 1)(N ¥ 2)8 Xdlp al/jc lwb alpca ¢d 8(N ¥ l)a waa Xb
— 45 N3y, X, — 171 aN+2y azx,,) + 30X, aX,,(aW“)XmaZng DYy
4(N + 1)(N + 2)(N + 3) @ BN+ DN +2) “ “ ¢
2 6
_ a(N+3)X ma3 _ a(N+4)X 82 m
(N + 1)(N +2) AT TN )N 1) ad el
3 2 3
_ m E (:)(N+1) X )_ X 2x( (N+1)Xm 93 _ (N+2)X m a3
N+ll//3¢ca¢d P (a0Xp) 690X,0°Xp| 0 AP0, N+la PNy,
6 1
_ (N+4) m\ + G 3 (N+1) 2
ERV e LA R ) R e Sl X
2 _ m . m
+ ma(l\]+2)¢baxa> + N:&N leFab(cl‘Zi/z):(l - 80;1\/) - l:(p”(')Nt//,,)FalfiZ/z):}. (35)
The associate ghost polynomials pv are conformal dimension n polynomials in derivatives of ¢, y,

. A p+B x+C oAy p+Byx+Cro
and o defined as the terms in the o]perat]or pI]’Odllet B
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N
(N) Z — —N pnIN Ayp+Byx+C
P Ai¢p+Bix+Cio (Z w)” PZI¢’+B|X+C|IT|A2¢+32X+C20'(Z)€ 20 Bax ZU(W) (36)

n=0

()2t tBax+Cao (1) =

(see Appendix A for some of the techniques related to these polynomials). Note that, for example,

g,|Z+BIX+c,a|A2¢+BZX+CZa = PX\]/)¢+31)(+C10-’ (37
while
n—l
Pﬂ$+BM&Cﬂﬂ%¢+&X+CﬂT==[](C1C24—B B, — A\A, — k). (38)

=0
We are now prepared to analyze the 3-point function given by
Alp. k) = & (P (003" q) § dulu — gl (caX, aX, 47 ePX(@)eoX, aX, e (w)ee R ()
(39)

Using the SL(2, R) symmetry, it is convenient to set z — 00, uy, = w = 0 (see [67] where the details related to this choice
were discussed). For the notation purposes, however, it is convenient to retain z and w in our notations for the time being.
We start with computing the “static” exponential ghost part of the correlator. Simple calculation gives

(ce (e )t 1) = (2 = w) M = ) ow = B = 2w — )", (40)

where we substituted the z — oo limit. Next, consider the i part of the correlator. The expression for R, wbled contains two
types of terms: those that are quadratic in ¢ and those that are quartic . Since the remaining two spin 3 operators are
linear in ¢, only the quadratic terms contribute to the correlator. Note that all the terms quadratic in ¢ are also cubic in 9 X.
So the pattern for the ¢ correlators is

nyne
Tw—u

naP
77(' 774
) @1)

QU0 ) = Py P
where, according to the manifest expression (35) for R, bled> the numbers P, and P, can vary fromOto N + 3 (and N, = 8).
Next, consider the X part. As in this paper we limit ourselves to just three-derivative terms, it is sufficient to
compute the terms linear in momentum (since the »?? field already contains 2 derivatives out of 3). According to (31),
(32), and (35) the X factor is a combination of the 3-point correlators of the type ~(w2l%)%(w?2(9X)2ePX(z) X
(0X)2e™ X (w)g M) X 9(M2) X 9(M3) X 014Xy with different values of M,, M,, and M. Straightforward computation gives

lim ;! (p) @}y (k)i (q)(0X,, 0X,, 0¥ (2)0X,, X, e ™ (w)a MV X,, 5 M) X, o M) X 19 (1))

_ S18 1t blcd lqt Ns,aTs bn;n . 1
= Ml !Mz!M3!a)nl Z(P)w ) z(k)w“ ¢ ( ){ 2+M, +21l/[2(]vv ZM)ZL»M3 + lqhns,a”’]gﬂtlb ZZ+M1+M3(W — M)2+M2
+ 1 _ ZIkArzntlantzbnsl — ik m 1
MM ()2, DM (v — ) MM, Ko, Miya M, Msyb My — ) T,

1 . 1 1
ﬁsnsm nszﬂnfzh<lkm(23+M| (w — ) FI + My — )1, +M3)

. 1 1 1 1
+ lpm(ZS+M|+M3(W — u) M SEMy M (3 — )M, )) + lpbnS]llnYzanf2<M

z 3+ M, (w— u)1+M2+M3
L1 1 PNy My Ma (11
M, Z3+M2(W _ u)1+M|+M3 Z3+M3(W _ u)1+M|+M2

1
T 55w +M +M)_
Z Z(W—u) 1 3

+—). 42
T 42)

Comparing this with the explicit expression (30)—(35) for
the w?? vertex operator, it is easy to notice that, while the
static ghost factor (40) is proportional to ~z°, the z asymp-
totics of the ¢ correlator (41) is ~% + 0( L) and the

to the interaction vertex. Terms proportional to negative
powers of z disappear in the limit z — oo and correspond to
pure gauge contributions. There are no terms proportional
to positive powers of z (their presence would be a signal of

asymptotics for the X correlator is ~Zl + 0( 5). This
means that only the terms proportional to ~z° contribute

problems with the gauge invariance). Moreover the z
asymptotics further simplifies the analysis of the ghost
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polynomials in the expressions (30)—(32) for the w??

operator; namely, all the polynomials have to couple to
the ce 3% ghost exponent of the w2l® operator sitting at w
as any couplings of these polynomials with the operator

PHYSICAL REVIEW D 85, 106014 (2012)

sitting at z produce contributions vanishing in the z — o
limit.

Combining (30), (32), (41), and (42) we arrive to the
following expression for the main matter building block for
the matter part of the correlator:

lim w32 (p) w2 (k)i (g} X, X, ePX (2) P X, X, e X (W)L (w;.9)) =275 (w — 1) 0N Ay (p, k, ),
7—00

AN(k, 3 q) _ wzlsz(p)w;)]tz (k)wﬁ,blCd(q) % {nnm ’7pd<_72(N+ S)nslanszbntlcqtz

45 45
+ <72(N+ 5)= 5 (N+12(N+2) - 144)nf1“n31bnfszh - (144—ZN(N+ 1))7751’1 b ke

+ <§N (N+1)?=72(N + 4))175‘" 7°2 "¢ p”) +Symm(m, a, b)}. 43)

Using the manifest expression (35) for the V,, vertex
operator in terms of Lg,y and their derivatives, it is now
straightforward to calculate the cubic coupling. First of all,
it is immediately clear that only the V, part of V|, con-
tributes to the overall correlator. No terms from V; con-
tribute since, as it was pointed out above, all the ghost
polynomials entering V,, must be completely absorbed by
the ghost exponent ~ce 3% located at w (no couplings to

9 (282D (z) = ce 3¢ (w) = :P(Z’Z;,ZX,U

implying that

P(”)

22X b:ce 3 (w) ~

the exponent at z are allowed as they would result in
contributions vanishing at z — 00). At the same time all
the terms in V carry the factors of Pé’:;f o (n=11,12,
13) which cannot be absorbed by ce 3% T[i.e.. their OPEs
with ce %) are less singular than (z — w)™"]. Indeed,
since e2P72Xp(2)ce 3 (w) ~ (z — w)le P X (w) +
O(z — w)b, clearly for n = 5

nl s

=y P22 T + 0= W) (44)

1
) olhee 00 = 0(5), 45)

i.e., no complete contractions for n = 6. Next, combining (42) with the expression (35) for V,(g) we obtain the following

result for the overall correlator:

6 7 P q I+b+r+5
n—17
91 — 81 Z 2 Z Z
. * n=0 {L,m,p,q=0;l+m~+p+q=8—n} r=0b=0N=I[+b+r+2
{ (=DM N NN 4+ 8 + p — T (n + )
m!(p—r!r!N=—r)!5+I1+b+r—N)IN—-1—b—r—2)(N +38)!
X a0 = DD I8P k)], (46)

where we used the fact that the only nonzero contributions from the summation over a are the terms with a = [ for which
pall = poll = (—1)11; while for a # [ PlTalf are the polynomials in y of dimension [/ — a which are not

xlé—x . Xlp—x _ As:B5:C
contractible with"ce 3¢. The numbers a3
A1;By;C1A43Bs;

order terms in the operator products

n|N (Z)€A3¢+BSX+C3”(w) ~

Aip+B x+CiolAyp+Bx+Cro

c n|N) appearing in (46) are the coefficients in front of the leading

A3;B3;C3
n|N
A1$312(C] |A2232§)€l2( l )€A3¢+B3X+C3”(W). a7
—w

The calculation of these coefficients is explained and the values are given in the Appendix A [see (58) and (60)]. Finally,
substituting for Ay(p, k, ¢) and evaluating the series (46) we obtain the following answer for the cubic coupling:
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691072283467 1 4
A([J, k, q) — lw;lsz(p)w;,llz(k)w?nbkd(q) X {nnm npd(_ nslanstntlcqtz + = ntlanslbntzcksz
720 36 3
1
+ Ensltl nSQantzbkc — nsltl nszantchb) + Symm(m, a, b)} (48)

This concludes the calculation of the 3-derivative part of
the cubic vertex. Inclusion of the appropriate Chan-Paton’s
indices is straightforward and leads to vertices of the type
considered in [20,73].

IV. CONCLUSION AND DISCUSSION

In this paper we performed the analysis of open string
vertex operators describing generalized connection gauge
fields in Vasiliev’s framelike formalism for higher spin
fields. We have shown that generalized zero curvature
conditions relating auxiliary connections w*~!I to the
dynamical «*l° fields are realized (up to BRST-exact
terms) through ghost cohomology conditions on vertex
operators that ensure that the fields with higher values of
t belong to cohomologies of higher orders. We have also
given precise BRST arguments relating w2 to the sym-
metric Fronsdal field for spin 3, presenting the BRST
commutator for the nonsymmetric spin 3 diagram (an
important point which has been somewhat obscure before).
We also demonstrated how the 3-derivative cubic vertex of
spin 3 fields appears from the string-theoretic 3-point
amplitude computed in this work. Obvious directions for
future research include the computation of the 5-derivative
vertex in the flat space (which technically appears to be
significantly more tedious than the 3-derivative one) and
generalizing the construction proposed in this work to
framelike gauge fields with spins greater than 3. We hope
to present these results soon in our future papers. The cubic
vertex computed in this work is the one for the flat space
and an important next step would be to generalize it to
AdS. For that, one has to generalize the computation,
analyzing of the 3-point function of operators for framelike
spin 3 fields in the sigma-model background studied in
[74]. That is, one has to perturb the flat background with
the vertex operators for spin 2 vielbeins and connections in
AdS space constructed in [74,75]. These operators carry
negative cosmological constant and the vacuum solution of
the low-energy equations of motion is described by AdS
geometry. To calculate the cubic coupling of spin 3 frame-
like fields in the AdS space one has to consider their disc
amplitude with insertions of closed string operators for
spin 2 connections. As the insertions carry the dependence
on the cosmological constant parameter, the important
question to explore is the relation of this amplitude to

N
pM

n=0

AdS deformations of flat vertices considered by Vasiliev
by methods of vertex complex analysis [26]. It is particu-
larly interesting to clarify how the insertions of the closed
string operators give rise to terms with a lower number of
derivatives, as observed in [26] for the AdS deformations
of vertices in Minkowski space. Another issue is to explore
the relevance of the zero momentum parts of the vertex
operators for framelike fields to space-time symmetry
generators and higher spin algebra in AdS space.
Typically, physical vertex operators in string theory are
related to generators of global space-time symmetries in
the zero momentum limit. For example, a photon operator
at p = 0 is the generator of translations. A similar question
can be asked about the vertex operators of framelike gauge
fields for higher spins at zero momentum. While in general
these operators at p = 0 do not generate global symmetries
for RNS string theory in flat space, it is possible that they
realize the symmetries of the sigma model perturbed by
operators for spin 2 connections and vielbeins, provided
that AdS vacuum constraints are imposed on spin 2. So far
we have been able to show this for spin 3 only [76] and this
conjecture needs to be generalized for higher spins. If the
vertex operators for the framelike gauge fields are indeed
related to the symmetries of the sigma model, their opera-
tor algebras may provide nice realizations of higher spin
algebras in various AdS backgrounds.
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APPENDIX A: ASSOCIATE GHOST

A3;B3;C,
POLYNOMIALS AND a}¥3%C . (n|N)

COEFFICIENTS

In this appendix we explain some of the techniques to
calculate the « coefficients that appear in the series (46) for
the spin 3 cubic coupling. As was explained above, the

. : n|N
associate ghost polynomials P 4B, +CyolAy b+ Byy+Coor

(0 = n = N) are the conformal dimension n polynomials
in bosonized ghost fields ¢, y, and o, defined as the OPE
terms in the product

Ay p+Byx+C — —N pnIN Arp+Byx+C
A1¢+31X+C10'(Z)e 2 Baxt ZU(W) - Z(Z o W)n PZ]¢+B1X+C10'|A2¢7+32X+C20'(Z)e s bax ZU(W)’ (49)
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where the conformal dimension N polynomials P A +B,y+C o ATC defined according to (16). Then the « coefficients

2“ g: ?I Ay:By:C (nIN ) are defined as coefficients in front of the leading order n terms in the OPE
Ax Bj; C;l (nlN)
n|N Ay p+Byy+Cio @ A1:B1:C11A2:B5:C Ayp+Byx+Cyo
A+ B+ Cr 1A+ By Caor ()€ (w) ~ (z — w) ¢ (w) (50)

(if the actual leading order of a given OPE is less than n, the appropriate coefficient is zero). Although the manifest form of
the associate ghost polynomials is generally complicated, there is an algorithm significantly simplifying the computations
of both associate ghost polynomials and related « coefficients. The algorithm is based on a comparison of two similar
operator products Below we shall explain the algorithm and present the results for o 3! — blg) (where 0 = b =

siro1;-1:09
g =8)and a, 1|0 " O(n|8) entering the series (46). Consider the operator product

X, (7 — w) AArt BB C Cotm
eAl¢+31X+C1U(Z)eAz¢+Bz)(+Cztf(w) — Z

m=0

g (A1 TA2) b+ (B +By) x +(Cy +C2)U(Z)P( B picot :(w)

(D

around the point w. Differentiating N times over z we get

o N—1
W) A1 FTBIx+C10 (7) oAb+ Box+Ca0 (1)) = Z l_[(_AlAZ + BB, + C;Cy + m — 1)
m=0 [=0
(z — w)~AMAs+BIBy+C Crtm=N -
X — e(A +A,)d+(B+By) x+(C, +C2)(TP nf({;+B|X+Clo- (W)

(52)
On the other hand this product by definition coincides with the OPE:

(N) +B1x+C 0. () pArd+Byx+C

g B ()

— )~ A1Ar+B By +C Cytn—N+j+k

= Z Z(Z w) a(/)pnIN ph AT ADS+(BI+B)XH(C1+C)0 (1)
=5 k! A1p+Bix+CiolArp+Box+Cro” Aip+B x+Cio ’

Jk=0n=

(53)

[the derivative of the associate polynomials appears since in the deﬁmtlon (49) the polynomlals are located at z while the

OPE (53) is around w]. This gives the characteristic equation on P"" Ay b+ By y+C, oA+ Byy+Coort

AAy+B By+C,Cy+n—N+j+k
i > (z — w) MR TRRTGGTTA Ll priN p®
N ]Vk! Aj¢p+B x+CiolA,p+B x+Cro Al¢+31/\’+c1‘7
Jk=0n=
o N—1 (Z _ W)—A1A2+B]BZ+C1C2+m—N (m)
= Z (=A1A, + BB, + C,C, + m — ) o P A +B, y+Cyo 54)
m=0 [=0 !

Matching the coefficients in front of each power of (z — w) (starting from the most singular term) then gives recurrence

n|N
relations on : P Ay b+B, x+Cy ol Ay b+ By x+Coor
P

A,6+B, v+, o a0 their derivatives (with I = [ = n). The coefficients

each of 9% PY according to

., expressing them in terms of conformal dimension n combinations of
A3:B3:C3 ; ;
ABiClAyByiC (n|N) are then obtained by replacing
k=11-1

P s e — (D ]'! l_!)(l +i)(—A Ay + BBy + C,C; — ) (55)
i=0 j=

in each of these combinations since

I~

PX?¢+31X+c1U(Z)€A3¢+B3X+C3”(W) ~ (@ = w) ' TI(=41A5 + B B; + C,C3 — et Bt (w) + 0(z — w)! L. (56)
=0

n|8

Applied to P2¢—2x—¢rlx

this procedure gives the recurrence relations
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s 0 o 0P oy P o
P! o = NP B — AT e (57)
2¢—2x—olx ¢—2x— &= Ik — I)!
and the corresponding « coefficients @, 3 1|0 L O(nIS) are given by
a0 00008) =9, P! 1|010(1|8) —81x40, a0 | (2I8) = 8! X 150,
a0 010BI18) = —81x300, a0 1|010(4|8) 8! X 275, 2‘331 Hoo(318) = =81 X 94, (58)
-3, 01 —zo 1 -3, 01
@7y 1101,0(018) = 0 i010718) = @y 1010(818) =
Similarly, when applied to P;’;il)‘(ll by (0 = b = g = 8) this procedure gives the recurrence relations
bl _(g+3)! 8(1)P§|¢87+ lp— P(Sr;;rk)
a—Dlq q xlo—x X
Ps 3p+xld—x 31 P3</>+x(31;q + 8yt 05) — Z Z Nk —1)! (59
and the corresponding « coefficients are « 3?(1)“ ol@ —blg)(0=b=gq=28)are
- (g +3)! _ 3 S
a3,§?:é|1,—1,0(0|4) T T 6 (aj i(1)(1J|1 Solllg) =~ 5(‘1 +2)q9) Z O pigy
fm

8
a; 200 _o@lg) = (=6(g +3)! + 12(g +2)lg + 72(g + D) Y &

3,—1,01,—-1,0 piq
p=2

8
a;yi?;(l)“‘_l,o(sm) = (28(q + 3)! = 42(q +2)!qg — 504¢!q) D" 5.,
p=3

Pq

8
a; 200 1 o@lg) = (84(g + 3)! + 126(q + 2)1q — 1512(q + 1)! + 30244!1q) > &
’ ’ p=4 (60)

1,0[1,

8
a; >0 1o(5lg) = (=639(q + 3)! = 339(g + 2)!q + 4896(q + 1)! — 7560q!q) > &

1,01, pige
p=5

8
a;i?:(l)ll‘_l,o(ﬂq) = (1352(¢q + 3)! + 600(q + 2)!q — 6984(g + 1)! + 10080¢!q) D" 5,
p=06

8
ay o —10(7la) = (1158(q + 3)! — 3918(g + 2)!q + 7992(g + 1)! — 52920q!q) Z

*30] —
Lo(818) = 9!

% -1,0[1,—

This fully determines the « coefficients in the series (46).

APPENDIX B: BRST RELATIONS AND GAUGE TRANSFORMATIONS FOR w?! AND w??

In this appendix we present explicit expressions for BRST commutators leading to the gauge transformations for the
framelike fields and relating framelike and Fronsdal fields for spin 3. The gauge transformation for the w?'! field

Wi (p) = @3 (p) + puAle(p) (61)

leads to shifting the V2! vertex operator (21) by BRST-exact terms: V2! (p) — V2I1(p) + {0, lell (p)} where, up to overall
numerical factor,

Wil (p) ~ Aele(p) fdzce_s‘“"”x((pa Y)W 9°X), = 204,.0X,) + (Plﬂ)azlﬁcaXb)@ dL,0& — Laazf), (62)

where
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Ly = 0, = 200,06 + 15 057 + 90 9)) (©3)

and A has the same symmetry in the fiber indices as w?!. This operator is BRST-exact if w is transverse in the a, b fiber

indices (which, in turn, is the invariance condition). Next, if wi‘nblc(p) is antisymmetric in m and a (so that the

corresponding 2l is the two-row field), V2! is again the BRST commutator in the small Hilbert space:

v2I(p) = {0, Wi (p)} (64)
with

. 2
w3 (p) ~ w3 (p) f dzee 30PN (3 ,97X), — awcaxb)(gaw[maLa]af - aw['"La]azf)
2
+ 02,0, (S ML g€ WL ) (69)

Next, we analyze w2 and its vertex operator (22). The gauge transformation for the w?? field
i1 (p) = @i “(p) + p, A (p) (66)

leads to shifting the V2?2 vertex operator (21) by BRST-exact terms: V22(p) — V22(p) + {0, W12|2( p)} with

W22 (p) ~ Acbled(p) f dzce*&f”fﬂ{(}1 (phdNMIE — (pnN")aZ§)(acha3 P 10X 0K, — 2097 40X, 02X,

5 57
+ 3 .07 ,0X,0°X, + 6 a¢cazzpdazxaa2xb)}, (67)
where
3 1 17
N, = 9’X, — 3 %X, — 3 aXn<(a¢)2 s az¢). (68)

As before, this operator is BRST-exact if w is transverse in the a, b fiber indices. Finally, if 0 |"d( p) is antisymmetric in

m and a or b (so that the corresponding w2/ is the two-row field), V2 is again the BRST commutator in the small Hilbert
space:

V22(p) = {0, W3 (p)} (69)
with
) 1
W22(p) ~ wil<(p) fdzce—wﬂpx{(ZNmag - (Nm)82§)(a2¢ca3¢daXﬂaxb — 204,03 410X,0°X,
5 2 3 57 2 2 2
+§8¢C6 ¢daxaa Xb‘i‘ﬁalﬂca lpda Xaa Xb —(a<—>m) (70)
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