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We study compactifications of Matrix theory on twisted tori and noncommutative versions of them. As

a first step, we review the construction of multidimensional twisted tori realized as nilmanifolds based

on certain nilpotent Lie algebras. Subsequently, matrix compactifications on tori are revisited, and the

previously known results are supplemented with a background of a noncommutative torus with non-

constant noncommutativity and an underlying nonassociative structure on its phase space. Next, we turn

our attention to three- and six-dimensional twisted tori, and we describe consistent backgrounds of Matrix

theory on them by stating and solving the conditions which describe the corresponding compactification.

Both commutative and noncommutative solutions are found in all cases. Finally, we comment on the

correspondence among the obtained solutions and flux compactifications of 11-dimensional supergravity,

as well as on relations among themselves, such as Seiberg-Witten maps and T-duality.
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I. INTRODUCTION

An attractive way to gain access to the nonperturbative
regime of superstring theories andM theory passes through
certain matrix models. The most prominent instances
include the matrix model of Banks-Fischler-Shenker-
Susskind (BFSS) [1], also known as Matrix theory, and
the type IIB matrix model of Ishibashi-Kawai-Kitazawa-
Tsuchiya (IKKT) [2]. They were suggested as nonpertur-
bative definitions of M theory and type IIB superstring
theory, respectively. As such, they provide frameworks
where brane dynamics can be studied and nonperturbative
duality symmetries can be tested.

An interesting program in the study of matrix models,
already initiated in Refs. [1,3], relates to their toroidal
compactification. This is defined by a restriction of the
action functional of the model under certain conditions
incorporating the geometry of the compactification space.
In Ref. [4], Connes, Douglas, and Schwarz perform a de-
tailed study of matrix compactifications on multidimen-
sional tori and unveil striking relations to noncommutative
geometry. They argue that noncommutative deformations
of tori are tantamount to turning on fluxes in supergravity
compactifications. Such a correspondence was supported
by subsequent work on the subject [5–8]. Matrix compac-
tifications on spaces other than tori were considered in
Refs. [9,10].

In this paper, we revisit matrix compactifications on tori
and perform a study of compactifications on multidmen-
sional twisted tori. The latter are smooth manifolds corre-
sponding to nontrivial fiber bundles with a toroidal
fiber over a toroidal base. They may be described equiv-
alently as nilmanifolds, namely, coset spaces obtained by

quotiening an appropriate discrete group out of a nilpotent
Lie group.1 Such a description, including illuminating
examples, is provided in Sec. II. In order to set the stage
for the compactification of Matrix theory, we review in
Sec. III the basics of the BFSS and IKKTmatrix models, as
well as their toroidal compactification. Apart from the
previously obtained results, we describe a solution of
the associated conditions which corresponds to a noncom-
mutative deformation of the torus with nonconstant
noncommutativity. This solution carries an underlying
nonassociative structure on the corresponding phase space.
The approach of matrix compactifications on tori is

used, with the necessary modifications, in order to study
compactifications on twisted tori. An analysis of the case
of the twisted 3-torus is performed, where a set of solutions
to the corresponding conditions is identified for commuta-
tive and noncommutative twisted 3-tori. The solution al-
ready found in Ref. [8] is recovered too. A similar analysis
is carried out for a particular six-dimensional twisted torus.
The resulting solutions are presented in a form which may
be directly generalized to any other higher-dimensional
nilmanifold.
The solutions of Matrix theory on tori and twisted

tori are related in certain ways among themselves as
well as with flux compactifications of string/M theory in
the supergravity approximation. Adopting the Connes-
Douglas-Schwarz correspondence between noncommuta-
tive deformations and supergravity fluxes, we suggest that
the toroidal background with nonconstant noncommutativ-
ity may be associated with a constant 4-form flux in
11-dimensional supergravity. Likewise, noncommutative
twisted tori may be related to compactifications where
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1The relevance of nonsemisimple Lie groups and their alge-
bras for matrix models was pointed out in Ref. [11] and found an
interesting application in Ref. [12].
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both Neveu-Schwarz (NS) fluxes and geometric fluxes are
present [13–15]. Moreover, in Sec. IV, we present certain
transformations relating the noncommutative solutions to
the commutative ones and inducing the Seiberg-Witten
(SW) maps [16] between the corresponding gauge theories.
Finally, we comment on the T-duality between toroidal
backgrounds with nonconstant B field and NS-fluxless
twisted tori. Sec. V contains our conclusions, and the
Appendix contains the geometric data of a certain class
of interesting five- and six-dimensional nilmanifolds.

II. TWISTED TORI AS NILMANIFOLDS

A. General considerations

In order to generate masses in four dimensions induced by
a higher-dimensional supergravity, Scherk and Schwarz in-
troduced a general consistent compactification scheme in
their pioneering paper [17]. Specific realizations of this
scheme are provided by the so-called twisted tori, and the
low-energy effective action resulting from a dimensional
reduction of the heterotic string on themwas studied in detail
in Ref. [13]. Later, it was shown that higher-dimensional
twisted tori also provide consistent backgrounds of Type II
string theories [18,19] andM theory [14,15].

Twisted tori may be described essentially in two com-
plementary ways. First of all, they arise as T-duals of
square tori endowed with a constant NS 3-form flux2

[18]. Here we shall concentrate on the second description,
which is directly related to the study of nilmanifolds.

Nilmanifolds are smooth manifolds constructed as quo-
tients of nilpotent Lie groups by discrete subgroups of them
[20]. Thus a nilmanifold M may be described as a coset
space A=� of a nilpotent group A and a discrete group
� � A. The nilpotent Lie groups of dimension up to six
and their corresponding Lie algebrasA are fully classified
(see, e.g., Ref. [21]). Here we shall follow the notation
appearing in the tables of Ref. [21], denoting a nilpotent
Lie algebra asAd;i, where d is the dimension of the algebra

(the number of its generators) and i is just an enumerating
index according to the aforementioned tables. Moreover,
when there is some parameter on which the algebra de-
pends, it will appear as superscript, e.g.A�

d;i, if there is one

parameter �. Let us also note that the generators of an
algebra will be denoted as Xa; a ¼ 1; . . . ; d.

Since we are willing to use nilmanifolds for compacti-
fication, it is self-evident that they had better be compact
manifolds. It turns out that a necessary condition for com-
pactness is that the group A is unimodular, i.e., its structure
constants satisfy faab ¼ 0 (this was already discussed in

Ref. [17]). This condition is in general not sufficient, but
for nilpotent groups it is enough to require that their
structure constants are rational [20]. Hereforth, we rely
on the above assumptions.

A fact which facilitates the coset construction of nilma-
nifolds is that the group elements g 2 A may always be
expressed as upper triangular matrices. Then the algorithm
for the construction of a nilmanifold consists of the follow-
ing steps:
(1) Express the basis elements Xa of the nilpotent Lie

algebra Ad;i as upper triangular d� d matrices.

(2) Choose a representative general group element g 2
Ad;i. A convenient choice is: g ¼ Q

d
a¼1 expðxaXaÞ,

xa 2 R.
(3) Consider the general discrete subgroup element

� 2 � as the restriction of g 2 Ad;i for integer

coefficients: � ¼ Q
d
a¼1 expð�aXaÞ, �a 2 Z.

(4) The subgroup � acts on Ad;i by matrix multiplica-

tion. Thus as a final step, one can construct the left
coset M ¼ Ad;i=�.

Having constructed the nilmanifold as above, it is then easy
to study its geometry. Most important, it is straightforward
to compute the Lie algebra 1-form

e ¼ g�1dg; (2.1)

which is Lie algebra valued, and therefore it might be
decomposed as e ¼ eaXa. The quantities ea correspond
to the usual vielbein basis, and they may be expressed in
terms of the coordinate basis 1-forms dxa as

ea ¼ UðxÞabdxb; (2.2)

for some x-dependent twist matrix UðxÞ. The vielbeins
satisfy the Maurer-Cartan equations

dea ¼ � 1

2
fabce

b ^ ec; (2.3)

where fabc are constant coefficients, which are identified

with the structure constants of the Lie algebra Ad;i. In the

context of flux compactifications, they are also referred to
as geometric fluxes.
Finally, in accord with the above, it is very useful to read

off the coordinate identifications which are made in the
process of the compactification of the nilpotent group. For
the square torus, e.g., in three dimensions with coordinates
x1, x2, x3, and unit radii, these identifications are very
simple and they read as

ðx1;x2;x3Þ�ðx1þ1;x2;x3Þ�ðx1;x2þ1;x3Þ�ðx1;x2;x3þ1Þ:
(2.4)

The corresponding identifications for nilmanifolds are
slightly less simple, but they are easily obtained from the
twist matrix UðxÞ, as it will become evident in the follow-
ing. For example, in the case of a three-dimensional
nilmanifold with coordinates xa, a ¼ 1, 2, 3 and unit radii,
we shall show that they are2Clearly this corresponds to a case of nonconstant B field.
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ðx1; x2; x3Þ � ðx1 þ 1; x2; x3Þ � ðx1; x2; x3 þ 1Þ
� ðx1 þ x3; x2 þ 1; x3Þ: (2.5)

A very illuminating consequence is that the latter identi-
fications allow the interpretation of the three-dimensional
nilmanifold as twisted fibration of a 2-torus over a circle,
namely, a 2-torus in the x1, x3 directions whose geometry
varies as it traverses the base circle in the x2 direction. This
is the reason why we may call it a twisted torus. In fact, the
above observation holds in higher dimensions as well, thus
providing a correspondence between nilmanifolds and
twisted fibrations of toroidal fibers over toroidal bases.

B. A three-dimensional example

Let us now provide a couple of examples of the previ-
ously described procedure. We start with the simplest
possible case, based on the unique three-dimensional nil-
potent Lie algebra, which is the algebra of the Weyl group.
We use the notation A3;1, in accord with Ref. [21]. The

only nontrivial commutation relation of this algebra is

½X2; X3� ¼ X1: (2.6)

Following the steps which were described in the previous
subsection, we first write down a basis for the algebra in
terms of 3� 3 upper triangular matrices

X1 ¼
0 0 1

0 0 0

0 0 0

0
BB@

1
CCA; X2 ¼

0 1 0

0 0 0

0 0 0

0
BB@

1
CCA;

X3 ¼
0 0 0

0 0 1

0 0 0

0
BB@

1
CCA:

(2.7)

Then, any element of the corresponding group A3;1 may be

parametrized as

g ¼
1 x2 x1

0 1 x3

0 0 1

0
BB@

1
CCA: (2.8)

This is clearly a noncompact group. According to the
previous discussion, in order to produce a compact mani-
fold out of it, a compact discrete subgroup � has to be
considered. Such a subgroup is given by those elements
g 2 A3;1 which have integer values of xa. Then the quo-

tient A3;1=� is indeed a compact nilmanifold.

The Lie algebra invariant 1-form e is given by

e ¼
0 dx2 dx1 � x2dx3

0 0 dx3

0 0 0

0
BB@

1
CCA: (2.9)

Clearly, its components are

e1 ¼ dx1 � x2dx3; e2 ¼ dx2; e3 ¼ dx3; (2.10)

which evidently satisfy the Maurer-Cartan equations, since
de2 ¼ de3 ¼ 0 and de1 ¼ �e2 ^ e3. The twist matrix has
the form

U ¼
1 0 �x2

0 1 0

0 0 1

0
BB@

1
CCA; (2.11)

and therefore the required identifications are

ðx1; x2; x3Þ � ðx1 þ 1; x2; x3Þ � ðx1; x2; x3 þ 1Þ
� ðx1 þ x3; x2 þ 1; x3Þ: (2.12)

From now on, we shall refer to Eq. (2.12) (and similar
ones) as twisted identifications.
Moreover, it is straightforward to determine the vector

fields ~ea, which are dual to the 1-forms of Eq. (2.10).
They are

~e 1 ¼ @1; ~e2 ¼ @2; ~e3 ¼ @3 þ x2@1: (2.13)

These do not deserve to be collectively called Killing
vector fields since only ~e1 generates an isometry while
the other two do not [18]. However, it should be noted
that these vector fields do not commute but instead they
satisfy

½~e2; ~e3� ¼ ~e1: (2.14)

This observation will be important in Sec. III.
Another simple observation is that rescaling the central

element X1 of the algebra by an integer, i.e., X1 ! 1
N X1,

N 2 Z, leads to the commutation relation

½X2; X3� ¼ NX1:

Then the effect on the above geometric data is that one
has to replace x2 in Eqs. (2.9), (2.10), and (2.11) with
Nx2, while the last identification in Eq. (2.12) becomes
(x1 þ Nx3, x2 þ 1, x3). This is related to the presence of
quantized flux, as we will discuss.
Let us briefly recall that the above twisted 3-torus also

can be obtained by T-dualizing a square torus with N units
of NS 3-form flux, proportional to its volume form, turned
on. Indeed, let us choose a gauge where the B field is

B31 ¼ Nx2; (2.15)

and the metric is the standard metric on the 3-torus, ds2 ¼
�abdx

adxb. Then one can use the Buscher rules [22] to
perform a T-duality along the x1 direction. For complete-
ness, let us be reminded of these rules for the metric and the
B field when a T-duality is performed along the direction i:

Gii!Ti 1

Gii

; Gai!Ti Bai

Gii

; Gab!Ti
Gab�GaiGbi�BaiBbi

Gii

;

Bai!Ti Gai

Gii

; Bab!Ti
Bab�BaiGbi�GaiBbi

Gii

; (2.16)

where Ti denotes the T-duality action. In the present case,
the result is that in the T-dual frame the B field vanishes
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and the dual metric corresponds exactly to that of the
twisted 3-torus, i.e., it is given by ds2 ¼ �abe

aeb, with
the 1-forms as in Eq. (2.10). Therefore, a twisted torus
background is T-dual to a square torus background with
nonconstant B field. We shall return to this point again,
after we will have studied matrix compactifications.

C. A six-dimensional example

Let us now move on to a less simple six-dimensional
example. In six dimensions, there are several nilpotent Lie
algebras and therefore several cases of nilmanifolds. In
fact, excluding algebras which are algebraic sums of

lower-dimensional ones, there are 22 nilpotent Lie
algebras3 up to isomorphism [21].
In the present subsection, we consider the algebraA�

6;5,

where the superscript � denotes that there is an additional
parameter in this case.4 This algebra has the following
commutation relations:

½X1; X3� ¼ X5; ½X1; X4� ¼ X6;

½X2; X3� ¼ �X6; ½X2; X4� ¼ X5:
(2.17)

A basis is given by the following 6� 6 upper triangular
matrices:

X1 ¼

0 0 0 1 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
; X2 ¼

0 0 1 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
; X3 ¼

0 0 0 0 0 0
0 0 0 0 0

0 0 0 �
0 1 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
;

X4 ¼

0 0 0 0 0 0
0 0 0 0 0

0 0 1 0
0 0 1

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
; X5 ¼

0 0 0 0 1 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
; X6 ¼

0 0 0 0 0 1
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
:

The general group element is found to be

g ¼

1 0 x2 x1 x5 x6

1 0 0 0 0

1 0 x4 �x3

1 x3 x4

1 0

1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (2.18)

while the 1-form e can be computed and it has the following form:

e ¼

0 0 dx2 dx1 dx5 � x2dx4 � x1dx3 dx6 � �x2dx3 � x1dx4

0 0 0 0 0

0 0 dx4 �dx3

0 dx3 dx4

0 0

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (2.19)

with components

ei ¼ dxi; i ¼ 1; . . . ; 4; e5 ¼ dx5 � x2dx4 � x1dx3; e6 ¼ dx6 � �x2dx3 � x1dx4: (2.20)

Then the twist matrix is

4A different case was examined in Ref. [11].

ATHANASIOS CHATZISTAVRAKIDIS AND LARISA JONKE PHYSICAL REVIEW D 85, 106013 (2012)

106013-4



U ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 �x1 �x2 1 0

0 0 ��x2 �x1 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (2.21)

and the twisted identifications are found to be

ðx1; x2; x3; x4; x5; x6Þ
� ðx1; x2; x3 þ c; x4; x5; x6Þ
� ðx1; x2; x3; x4 þ d; x5; x6Þ
� ðx1; x2; x3; x4; x5 þ e; x6Þ
� ðx1; x2; x3; x4; x5; x6 þ fÞ
� ðx1 þ a; x2; x3; x4; x5 þ ax3; x6 þ ax4Þ
� ðx1; x2 þ b; x3; x4; x5 þ bx4; x6 þ �bx3Þ;
a; b; c; d; e; f 2 Z: (2.22)

Under Eq. (2.22) we obtain the desired twisted
compactification.

The vector fields which are dual to the 1-forms of
Eq. (2.20) in the present case read as

~ei¼@i; i¼1;2;5;6; ~e3¼@3þx1@5þ�x2@6;

~e4¼@4þx2@5þx1@6:
(2.23)

Of them, only ~e5 and ~e6 are Killing vector fields, i.e., they
generate an isometry. The full set of vector fields of
Eq. (2.23) satisfies the algebra of Eq. (2.17).

As before, the central elements X5 and X6 may be
rescaled by integer numbers as X5 ! 1

MX5 and X6 !
1
N X6, leading to the modified commutation relations

½X1; X3� ¼ MX5; ½X1; X4� ¼ NX6;

½X2; X3� ¼ �NX6; ½X2; X4� ¼ MX5:
(2.24)

Then in Eq. (2.20), e5 and e6 change to

e5¼dx5�Mx2dx4�Mx1dx3;

e6¼dx6��Nx2dx3�Nx1dx4;
(2.25)

which modify the twist matrix and the twist identifications
accordingly.

The above background can also be obtained by
T-dualizing a square 6-torus with appropriate quantized
3-form fluxes. In particular, consider a 6-torus with the
standard square metric, endowed with fluxes generated by
the nonconstant B field with values

B53¼Mx1; B54¼Mx2; B63¼�Nx2; B64¼Nx1:

(2.26)

The corresponding fluxes are

H153¼H254¼M and H263¼�N; H164¼N: (2.27)

Then one can use the Buscher rules of Eq. (2.16) to show
that in performing two consequtive T-dualities along the
directions x5 and x6, the six-dimensional nilmanifold pre-
viously described is obtained, i.e., the B field vanishes and
the metric is given by ds2 ¼ �abe

aeb with 1-forms as in
Eqs. (2.20) and (2.25) respectively.
The same procedure may be followed for any

other nilmanifold in any dimension. In the Appendix
we collect the resulting twist matrices and twisted identi-
fications for a class of nilmanifolds in five and six
dimensions.

III. MATRIX THEORY COMPACTIFICATIONS

A. The BFSS and IKKT matrix models

Let us start by briefly describing the two basic string-
inspired matrix models (MMs), widely known as BFSS [1]
and IKKT [2]. The BFSS MM, also referred to as Matrix
theory, was suggested as a nonperturbative definition of
M theory. Its action, determining the dynamics of N D0
branes in uncompactified space-time, is given by the
following functional:

SBFSS ¼ 1

2g

Z
dtTr

�
_Xa

_Xa � 1

2
½Xa;Xb�2

þ 2c T _c � 2c T�a½c ;Xa�
�
; (3.1)

whereXaðtÞ; a ¼ 1; . . . ; 9 are nine time-dependent N � N
Hermitian matrices, c are their fermionic superpartners,
and �a furnish a representation of SOð9Þ. In the following,
we shall be concerned mainly with the bosonic part of the
above action.
The equations of motion resulting from the variation of

the action Eq. (3.1) with respect to Xa, setting c ¼ 0, are

€X a þ ½Xb; ½Xb;Xa�� ¼ 0; (3.2)

where indices are raised and lowered with �ab and there-
fore it does not make any difference whether they are upper
or lower. For static configurations, it is clear that the first
term in Eq. (3.2) may be dropped.
On the other hand, the IKKT MM was suggested as a

nonperturbative definition of Type IIB superstring theory
and may be regarded as the D-instanton analog of the
previous model. It is described by the following action:

S ¼ 1

2g
Tr

�
� 1

2
½Xa;Xb�2 � �c�a½Xa; c �

�
; (3.3)

where now the number of matrices Xa is ten, namely, the
index a takes the values 0; . . . ; 9 and c is a spinor of
SOð10Þ in the Euclidean model where the indices are raised
and lowered with the metric �ab.
The corresponding equations of motion are

½Xb; ½Xb;Xa�� ¼ 0; (3.4)
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which are formally the same as the time-independent
equations of the BFSS model.5

B. Compactification on tori

In the following, we shall consider compactifications of
the previous MMs, focusing on the BFSS model. Let us
start by reviewing the cases of compactification on multi-
dimensional tori and noncommutative versions of them [4].
Moreover, we supplement this discussion by providing the
matrix analog of a square 3-torus with NS 3-form flux in
the same approach. This will provide the guidelines for
the investigation of compactifications on twisted tori and
their noncommutative versions, which follows in the next
subsections.

A matrix compactification on a d-dimensional torus is
defined by a restriction of the matrix action under certain
periodicity conditions incorporating the cycles of the torus.
The simplest example involves compactification on a cir-
cle, but it is more illuminating for our purposes to start with
the case of a 3-torus.

For a T3 extending, say, in the directions X1, X2, X3,
the compactification involves three invertible unitary ma-
trices Ui obeying

X1 þ R1 ¼ U1X1U
�1
1 ; X2 þ R2 ¼ U2X2U

�1
2 ;

X3 þ R3 ¼ U3X3U
�1
3 ; Xa ¼ UiXaU

�1
i ;

a � i; a ¼ 1; . . . ; 9; i ¼ 1; 2; 3;

(3.5)

where Ri are complex constants.
Compactification on T3. A simple solution of the con-

ditions of Eq. (3.5) is given by

Xi ¼ iRiDi; Xm ¼ AmðUiÞ; m¼ 4; . . . ;9;

U1 ¼ eix
1
; U2 ¼ eix

2
; U3 ¼ eix

3
;

(3.6)

where xi are coordinates on T3 and Di are covariant
derivatives

D i ¼ @i � iAiðUjÞ; (3.7)

with @i � @=@xi. This is in fact the unique solution, up to
gauge equivalence, for the standard (i.e. commutative)
3-torus. Note that in the present case it holds that

½Ui;Uj� ¼ 0; (3.8)

which is enough to guarantee that the U-dependence of the
gauge potentialsA ensures that the conditions of Eq. (3.5)
are indeed satisfied.

Furthermore, substituting the above form of the solution
in the bosonic sector of the BFSS action functional
Eq. (3.1), one gets

S ¼ 1

2g

Z
dt

Z
d3xTr

�
�R2

i
_Di

_Di þ _Am
_Am

þ 1

2
RiRj½Di;Dj�2 � iRi½Di;Am�2 � 1

2
½Am;An�2

�
;

(3.9)

corresponding to the bosonic part of the action of a (1þ 3)-
dimensional supersymmetric Yang-Mills (SYM) theory.
The above are readily generalized in d dimensions.

In that case, one has to determine d unitary matrices Ui,
i ¼ 1; . . . ; d, such that

Xi þ Ri ¼ UiXiU
�1
i ; Xa ¼ UiXaU

�1
i ;

a � i; a ¼ 1; . . . ; 9; i ¼ 1; . . . ; d;
(3.10)

with d complex constants Ri. The solution is readily given
by the direct generalization of the previous one, namely,

Xi ¼ iRiDi; Xm ¼ AmðUiÞ;
m ¼ dþ 1; . . . ; 9; Ui ¼ eix

i
;

(3.11)

where xi are the coordinates of the torus Td, while again
the Us are commuting, i.e., Eq. (3.8) remains true. The
corresponding (1þ d)-dimensional SYM action is the di-
rect generalization of Eq. (3.9).
Compactification on noncommutative T3

�. The condi-

tions of Eqs. (3.5) and (3.10), apart from the solution on
a standard 3-torus and d-torus, respectively, allow in fact
for more general configurations [4]. Focusing on the gen-
eral d-dimensional case, this may be easily seen by con-
sidering the operator

QðijÞ ¼ UiUjU
�1
i U�1

j ; i � j: (3.12)

It is readily verified that, rather generally, this operator
satisfies

½QðijÞ;Xa� ¼ 0; 8 a ¼ 1; . . . ; 9: (3.13)

Let us mention that the latter condition carries less infor-
mation than Eq. (3.10), since its derivation assumes an
underlying associative structure. This will turn out to be
important in certain instances to follow. Keeping this re-
mark in mind, from Eq. (3.13) it follows that QðijÞ is a

scalar operator, which implies that

UiUj ¼ �ijUjUi; (3.14)

with complex constants �ij ¼ e2�i�
ij
. The special case of

�ij ¼ 0, or equivalently �ij ¼ 1, corresponds to commut-

ing Us, and thus it implements the previously discussed
case of the standard d-torus Td.
However, in general the �ij are not vanishing, in which

case the Us are not commuting operators. It is straight-
forward to verify [6] that a solution of the conditions
Eq. (3.10) in the present case is obtained for

5Note, however, that in the IKKT model, Euclidean time is
also treated as a matrix variable.
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Xi ¼ iRiD̂i; Xm ¼ AmðÛiÞ;
m ¼ dþ 1; . . . ; 9; Ui ¼ eix̂

i
:

(3.15)

The following important remarks are in order. First of all,
we have introduced hatted quantities in Eq. (3.15) because
the gauge potentials cannot depend anymore just on Us as
in the commutative case. In order for the conditions in
Eq. (3.10) to be satisfied, the dependence has to be on the

set of operators Ûi, which commute with all Ui, i.e.,

½Ûi; Uj� ¼ 0: (3.16)

Moreover, a direct implication of Eq. (3.14) is that the x̂i do
not commute as well, but instead they satisfy the relation

½x̂i; x̂j� ¼ �2�i�ij: (3.17)

Thus they may be interpreted as the ‘‘coordinates’’ of a
noncommutative d-torus Td

� (more precisely, they should

be called coordinate operators, since they are not coordi-
nates in the classical sense). Likewise, the covariant de-

rivative D̂i is now defined as

D̂ i ¼ @̂i � iAiðÛjÞ: (3.18)

Let us note that the operators @̂i commute among them-
selves, and therefore the vacuum solution for Xi satisfies
the equations of motion in Eq. (3.2), since ½Xi;Xj� ¼ 0.

This statement remains valid for all the solutions that we
describe here and in the following.

The general procedure one may follow in order to de-

termine the set of operators Ûi is described in Ref. [4]. This
includes cases where twisted gauge bundles are consid-
ered, which is beyond the scope of the present paper.6 In

the present case, the Ûs have the simple form

Û i ¼ eix̂
i�2��ij@̂j ; (3.19)

and they satisfy the requirement of Eq. (3.16) as well as

Û iÛj ¼ e2�i�̂
ij

ÛjÛi; �̂ij ¼ ��ij: (3.20)

Therefore, the compactification on a noncommutative to-
rus leads to a SYM theory where the gauge fields and
scalars Aa, a ¼ 1; . . . ; 9 are fields on a dual noncommu-

tative torus with parameter �̂. Clearly, the same holds for
fermions when they are included in the action. The form of
this SYM action is similar to Eq. (3.9) but with all com-
mutators exchanged with ?-commutators, e.g.,

½Am;An� ! ½Am;An�? � Am ?An �An ?Am:

(3.21)

The ? product is a deformation of the ordinary product for
functions, and it encodes the noncommutative algebraic

information of the theory. In order to represent the
(noncommutative) algebra on the space of commuting
coordinates, one needs to map the basis in the algebra7 to
the basis of monomials of commuting coordinates. This
map provides a representation of the elements of the ab-
stract algebra in terms of functions of commuting
coordinates, and these functions are then multiplied with
the ? product. Furthermore, one needs to map derivatives
from the abstract algebra to the space of commuting
coordinates.

In the present case of constant noncommutativity �̂ij, the
? product is given by the well-known expression

f ? g ¼ eði=2Þð@=@xiÞ2��̂
ijð@=@yjÞfðxÞgðyÞjy!x; (3.22)

corresponding to the Moyal-Weyl product, while the de-
rivatives in the algebra are mapped to the usual derivatives
on the space of commuting coordinates.
In the spirit of noncommutative geometry [24,25], theUi

are the generators of an algebraA� serving as the defining
algebraic structure of the noncommutative torus. In anal-

ogy, Ûi comprise the algebra A�̂ of the dual noncommu-

tative torus, where the gauge theory resides. Moreover, D̂
serves as a linear connection defined on a projective mod-
ule overA�̂, the analog of a connection on a vector bundle

in ordinary smooth geometry. We shall not go any further
on these matters. Detailed expositions may be found, for
example, in Refs. [4,24].
Compactification on noncommutative T3

x . Apart from the
solutions that we already reviewed, here we suggest that
there are alternative ways to solve the conditions of
Eq. (3.5) of the compactification on a 3-torus. These cor-
respond to noncommutative tori with nonconstant non-
commutativity, which we denote as T3

x .
Let us consider again the set of matrices Eq. (3.15),

specializing to the case of d ¼ 3, although our discussion
may be directly generalized for any d. Moreover, let us
require that the only nonvanishing commutation relation of
x̂i is

½x̂1; x̂3� ¼ iNx̂2; (3.23)

for an arbitrary scale N, while keeping the Heisenberg

commutation relations ½x̂i; @̂j� ¼ ��i
j. It is directly veri-

fied that the conditions Eq. (3.5) are satisfied, and therefore
the above solution serves as a consistent background for
the compactification of the matrix model. However, it is
clear that Eq. (3.13) is not satisfied. This is due to the
following subtlety. In the present case the associator,

½@̂2; x̂1; x̂3� � ½@̂2; ½x̂1; x̂3�� þ ðcyclic permutationsÞ, does
not vanish. Indeed, we find

½@̂2; x̂1; x̂3� ¼ iN: (3.24)

6In the richer case of twisted gauge bundles, the vacuum
solution for Xi still satisfies the equations of motion in
Eq. (3.2), although in a less trivial way since ½Xi;Xj� � 0.

7An algebra needs to fulfil the Poincaré-Birkoff-Witt property
[23].
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Because of this nonassociativity, the relation Eq. (3.13)
does not directly follow from the conditions of Eq. (3.5)
anymore. Therefore, although the latter are satisfied, as
they should, the former is not. This, of course, does not
spoil the consistency of the solution. Let it be stressed that
the associator Eq. (3.24) is the only nonvanishing one,
while all the rest of the Jacobi identities still hold, e.g.,
½xi; xj; xk� ¼ 0, ½@i; @j; @k� ¼ 0, ½@i; @j; xk� ¼ 0. This en-

sures the compatibility of the solution with the gauge
invariance of the matrix model action. Indeed, the
latter is based only on the Jacobi identities
½Ui;½Xj;U

�1
i ��þðcyclic permutationsÞ¼0, ½Ui;½Xj;Xk��þ

ðcyclic permutationsÞ¼0, which stem from the vanishing
associators and therefore they are satisfied.

According to the above, it is reasonable to interpret the
resulting compactification as one on a noncommutative
torus T3

x with an additional nonassociative structure on
the corresponding phase space. In the present case, the
noncommutativity is nonconstant and the nonassociativity
a constant one. In Sec. IV, we shall associate this solution
to the background of a square 3-torus carrying an constant
NS 3-form flux8 which was described in Sec. II. It is worth
mentioning that indications of nonassociativity in back-
grounds carrying a nonvanishing 3-form flux were given
recently in a different context [27–29].

For the solution at hand, it is straightforward to check
that the Us satisfy the commutation relations

½U1;U2�¼0; ½U2;U3�¼0; U1U3¼e�iNx̂2U3U1:

(3.25)

A set of operators Ûi commuting with the Us is given by

Û 1 ¼ eix̂
1þNx̂2@̂3 ; Û2 ¼ eix̂

2
; Û3 ¼ eix̂

3�Nx̂2@̂1 ;

(3.26)

and they satisfy the commutation relations

½Û1; Û2� ¼ 0; ½Û2; Û3� ¼ 0; Û1Û3 ¼ eiNx̂2Û3Û1;

(3.27)

which are dual to Eq. (3.25). These operators generate the
algebra of the dual torus and they provide the dependence
of the gauge potentials.9

The noncommutativity of the resulting theory may be
again encoded in the appropriate ? product, which does not

have the Moyal-Weyl form due to the x̂-dependence in
Eq. (3.27). Indeed, the relevant ? product is now given by

f ? g ¼ eði=2ÞNx2ðð@=@y1Þð@=@z3Þ�ð@=@y3Þð@=@z1ÞÞfðyÞgðzÞjy;z!x:

(3.28)

Note that this ? product is associative.10 However, the
nonassociativity Eq. (3.24) is mapped to the usual phase
space by mapping the derivatives in the algebra to the usual
derivatives on the space of commuting coordinates:

½@j; xi� ¼ �i
j; ½@2; ½x1; x3�?� ¼ iN � 0: (3.29)

It is worth mentioning that a class of nonassociative but
commutative gauge theories was studied in Ref. [31]. It
would be interesting to examine in detail how the non-
associativity encountered in the present context manifests
itself within the gauge theory over the (dual) noncommu-
tative torus Eq. (3.27).
It is reasonable to ask whether the background Eq. (3.15)

may be further generalized along the same lines, i.e., with
nonconstant noncommutativity. First of all, the conditions
Eq. (3.5) impose the constraint that the commutation rela-
tions between coordinates and momenta remain un-

changed, i.e., ½x̂i; @̂j� ¼ ��i
j. Furthermore, in the present

paper, we discuss trivial gauge bundles, and therefore we

assume that ½@̂i; @̂j� ¼ 0. In order to be able to provide a

solid argument on possible extensions of Eq. (3.23) let us
also require that the commutators between the x̂i are linear
in x̂i. A final constraint, imposed again by the conditions
Eq. (3.5), is that there should exist a set of operators,

constructed from x̂i and @̂i, which commute with x̂i. The
most general algebra respecting the above constraints and
requirements is

½x̂1;x̂2�¼2�i�12;

½x̂1;x̂3�¼ iNx̂2þ2�i�13�2�N�12@̂1þ2�N�23@̂3;

½x̂2;x̂3�¼2�i�23:

(3.30)

The solution Eq. (3.23), which was described previously, is
a special case of Eq. (3.30) with all �s vanishing, and it will
be useful in Sec. IV.
These commutation relations lead to

U1U3¼�13U3U1; �13¼e�iNx̂2�2�i�12þ2�N�12@̂1�2�N�23@̂3 ;

(3.31)

U1U2 ¼ �12U2U1; �12 ¼ e�2�i�12 ; (3.32)

U2U3 ¼ �23U3U2; �23 ¼ e�2�i�23 : (3.33)

8A different approach on this matter may be found in Ref. [26],
where instead the conditions Eq. (3.5) are modified.

9More exactly, the gauge potentials of Eq. (3.18) should be
modified in the present case. In particular, A2ðÛÞ should be
replaced by Â2 ¼ A2ðÛÞ þ iA2ðÛÞ@1 þ iA2ðÛÞ@3 in order
to ensure that the space of gauge potentials is well-defined under
gauge transformations Û. This modification leaves the compac-
tification conditions satisfied, up to gauge transformations. A
more detailed account on the resulting gauge theory will be
given elsewhere.

10Nonassociative ? products were studied in Ref. [30], where
they are also associated to nonvanishing H flux backgrounds.
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One can construct the operators Ûi, which commute with

Us as Ûi ¼ eiŷ
i
, where

ŷ 1 ¼ x̂1 � 2�i�12@̂2 � 2�i�13@̂3 � iNx̂2@̂3

þ 2�N�12@̂1@̂3 � 2�N�23ð@̂3Þ2;
ŷ2 ¼ x̂2 � 2�i�23@̂3 þ 2�i�12@̂1;

ŷ3 ¼ x̂3 þ 2�i�23@̂2 þ 2�i�13@̂1 þ iNx̂2@̂1

þ 2�N�23@̂3@̂1 � 2�N�12ð@̂1Þ2:

(3.34)

These operators satisfy dual (� ! 1=�) relations to
Eqs. (3.31), (3.32), and (3.33). Relaxing the requirements
that were posed above, it is in principle possible to reach
more general algebraic structures. However, this task is
beyond the scope of this paper.

Finally, it is natural to ask whether nonassociativity
could be avoided in the present approach. The answer is
yes; indeed one can describe a solution where the x̂i satisfy
Eq. (3.23); moreover, it holds that

½@̂2; x̂1� ¼ iN@̂3; (3.35)

while the U1 in Eq. (3.15) is modified to U1 ¼ eix̂
1þNx̂2@̂3 .

Then one obtains a consistent solution of the conditions
Eq. (3.5), while ensuring that all the Jacobi identities for

the algebra of x̂i and @̂i are satisfied. However, in that case
the Us turn out to be commutative, i.e., they generate a
commutative algebra of functions. Thus the gauge theory
turns out to be a commutative one and the information from
the nontrivial commutation relations of x̂i is lost at the level
of the action. This situation is not interesting for our
purposes, and the corresponding solutions will not be dis-
cussed further.

C. Compactification on twisted 3-tori

Having discussed the compactification of the MMs on
multidimensional tori and their noncommutative counter-
parts, the stage is all set to move on to the study of
twisted tori. We shall follow the same lines as before,
starting with the special case of a standard (i.e., commu-
tative) twisted torus and subsequently treating the case of
a noncommutative one. In the present subsection, we
focus on the simplest case of the twisted 3-torus, while
in the next one, higher-dimensional twisted tori are
discussed.

Compactification on twisted ~T3. The simplest
example of a twisted torus arises for d ¼ 3, as we
described in Sec. II. In that case, a (twisted) compacti-
fication is achieved by imposing and solving an appro-
priately extended set of constraints, incorporating the
twisted identifications Eq. (2.12). These twisted con-
straints involve three unitary matrices U1, U2, U3, and
they are

X1þR1¼U1X1U
�1
1 ; X2þR2¼U2X2U

�1
2 ;

X3þR3¼U3X3U
�1
3 ; X1þR2X3¼U2X1U

�1
2 ;

Xa¼UiXaU
�1
i ;

a� i; a¼1; . . . ;9; i¼1;2;3; ða;iÞ� ð1;2Þ:
(3.36)

The latter constraints generalize the ones for the square
torus appearing in Eq. (3.5), thus incorporating the twist
of the three-dimensional nilmanifold ~T3. Indeed, as in
the torus case the constraints Eq. (3.5) reflect the defin-
ing relations Eq. (2.4) of T3, likewise the constraints
Eq. (3.36) are tantamount to the defining relations
Eq. (2.12) of the nilmanifold. Therefore, the restriction
of the matrix action under Eq. (3.36) defines a compac-
tification on the ~T3 (see also Ref. [8]).
A solution of the above constraints is now given by

Xi¼ iRiDi; Xm¼Am; m¼4; . . . ;9;

U1¼eix
1
; U2¼eix

2�ððR2R3Þ=R1Þx1@3 ; U3¼eix
3
:

(3.37)

Let us comment on the above solution. First of all, for this
solution the coordinates xi are ordinary commutative co-
ordinates on the twisted 3-torus ~T3. Unlike the coordinates,
the matrices Ui do not commute, but instead they satisfy a
single nontrivial commutation relation,

U2U3 ¼ e�iððR2R3Þ=R1Þx1U3U2: (3.38)

This relation is not associated to any noncommutative
properties of the manifold. It just reflects in the present
framework the non-Abelian nature of the algebra of vector
fields along the three directions of the twisted torus [see
Eq. (2.14)], and therefore it is totally expected. Regarding
the gauge potentials, note that A1 in X1 has to be modi-

fied to Â1 ¼ A1 þ i R2R3

R1
A3@2 in order to satisfy the

fourth equation in Eq. (3.36). The same modification has
to be done in the noncommutative case that follows.
Furthermore, since the compactification manifold is com-
mutative, the gauge potentialsAi and the scalar fieldsAm

depend directly on the commuting coordinates xi.
Compactification on noncommutative twisted ~T3

x. In
analogy to the square tori, it is also possible to consider a
solution of the conditions Eq. (3.36) where all the Ui have

the same form, namely Ui ¼ eix̂
i
, but with noncommuting

coordinates x̂i. This was already noticed and elaborated on
in Ref. [8]. Setting

½x̂2; x̂3� ¼ iRx̂1; ½x̂1; x̂j� ¼ 0;

½@̂1; x̂2� ¼ iR@̂3; ½@̂i; x̂i� ¼ 1;
(3.39)

where R ¼ R2R3

R1
, the conditions Eq. (3.36) are satisfied and

Eq. (3.38) is reproduced. It is worth noting that although the
present case resembles Eq. (3.23), it is in fact very different.
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Here, due to Eq. (3.39), associativity is guaranteed and the
compactification is on a noncommutative twisted torus.

As far as the dependence of the fields of the gauge theory
is concerned, in the present noncommutative case, they

depend on the set of operators Ûs commuting with the Us.
This set is given as follows:

Û 1¼eix̂
1
; Û2¼eix̂

2þRx̂1@̂3 ; Û3¼eix̂
3�Rx̂1@̂2 ; (3.40)

satisfying the relation

Û 2Û3 ¼ eiRx̂
1
Û3Û2; (3.41)

dual to Eq. (3.38). Once more, one can define a ? product
of the form

f ? g ¼ eði=2ÞRx1ðð@=@y2Þð@=@z3Þ�ð@=@y3Þð@=@z2ÞÞfðyÞgðzÞjy;z!x;

(3.42)

to represent the algebra relations Eq. (3.39) on the space of
commuting coordinates. However, in the present case the
derivatives in the algebra are not mapped in the usual

derivatives @̂i ! @�i � @i. One constructs @�i derivatives

by comparing ð@̂ f̂Þðx̂Þ and ð@�i ? fÞðxÞ expanded in the
appropriate basis. This results in a perturbative (in the
noncommutative parameter) expression for @�i , which can
be generalized to a closed expression in some cases.
In the present example, we obtain @�2 ¼ @2, @

�
3 ¼ @3, @

�
1 ¼

@1 þ iR
2 @2@3 þOðR2Þ.

Compactification on noncommutative twisted ~T3
�;x. Let

us finally go one step further and follow a general approach
for the treatment of the conditions of Eq. (3.36), which will
lead us to more general solutions than the ones we obtained
previously for the twisted 3-torus. This may be made clear
by considering once more the operator

Q � QðijÞ ¼ UiUjU
�1
i U�1

j :

It is straightforward to show that

½Qð13Þ;Xa� ¼ ½Qð12Þ;Xa� ¼ 0; 8 a; (3.43)

however,

½Qð23Þ;X1� ¼ �R2R3Qð23Þ � 0: (3.44)

Therefore, we encounter a mixed situation, where the two
operators Qð12Þ and Qð13Þ commute with all theXa, but the

remaining one does not. It follows that the former ones are
scalar operators and thus

U1U3 ¼ �13U3U1; �13 ¼ e�2�i�13 ; (3.45)

U1U2 ¼ �12U2U1; �12 ¼ e�2�i�12 ; (3.46)

while this is not true for Qð23Þ. The commutation relation

betweenU2 andU3 does not have the same form and it is in
fact expected to be x̂-dependent as previously. Let us note
that for �12 ¼ �13 ¼ 1, we recover either the case of the
commutative twisted torus or the one on noncommutative

twisted torus with purely nonconstant noncommutativity,
both discussed previously. Therefore, any solution in the
present case should reduce either to the solution Eq. (3.37)
or to Eq. (3.39) in the limit of �12 ¼ �13 ¼ 0.
Without further ado, let us write down the solution of the

conditions Eq. (3.36) for general �12 and �13,

X i¼ iRiD̂i; Xm¼Am; m¼4; . . . ;9; Ui¼eix̂
i
;

(3.47)

where

½x̂1; x̂2� ¼ 2�i�12; ½x̂1; x̂3� ¼ 2�i�13;

½x̂2; x̂3� ¼ iRx̂1 þ 2�i�23: ½@̂1; x̂2� ¼ iR@̂3;
(3.48)

with R � R2R3

R1
as before. In the present case, all the Ui do

not commute among themselves. In particular, along with
Eqs. (3.45) and (3.46) we obtain

U2U3 ¼ e�2�i�23�iRx̂1U3U2: (3.49)

For the solution Eqs. (3.47) and (3.48) we can find the set

of Ûs which give the connection on a trivial gauge bundle.

They have the form Ûi ¼ eiŷ
i
, where

ŷ1 ¼ x̂1 � 2�i�13@̂3 � 2�i�12@̂2;

ŷ2 ¼ x̂2 þ 2�i�12@̂1 � iRx̂1@̂3 � 2�i�23@̂3 � �R�13ð@̂3Þ2;
ŷ3 ¼ x̂3 þ 2�i�13@̂1 þ iRx̂1@̂2 þ 2�i�23@̂2 þ 2�R�13@̂2@̂3

þ �R�12ð@̂2Þ2: (3.50)

We observe that in the latter case, the commutation rela-
tions of the coordinates x̂i involve both constant and non-
constant parts.
Summarizing, we were able to find consistent solutions

of Eq. (3.36), corresponding to compactifications of Matrix
theory on the ordinary twisted 3-torus or on different
versions of noncommutative twisted 3-tori. Let us remind
at this point that these solutions solve the equations of
motion Eq. (3.2), since ½Xi;Xj� ¼ 0 in the vacuum. This

remains true in the six-dimensional case which follows.

D. Compactification on twisted 6-tori

The approach of the previous subsection for the matrix
compactification on twisted 3-tori may be directly gener-
alized to twisted tori of any dimension, such as the
ones described in Sec. II C and the Appendix. Higher-
dimensional twisted tori comprise richer structures than
the three-dimensional case, since they generically include
more than one twist and therefore they can be associated to
string/M theory compactifications with more fluxes.
Indeed, in Sec. II C we saw that the twisted torus based
on the six-dimensional nilpotent group A�

6;5 is T-dual to a

square 6-torus with NS fluxes given in Eq. (2.27). In the
present section, we study the compactification of Matrix
theory on this example.
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Let us therefore consider the case of the twisted 6-torus
constructed by the algebra A�

6;5. For simplicity we set the

parameter � ¼ 1, since it does not affect the generality of
the discussion. Guided by the identifications of Eq. (2.22),
it is easy to write down the necessary constraints, which
now involve six unitary matrices Ui, i ¼ 1; . . . ; 6, and they
take the form

XiþRi¼UiXiU
�1
i ; X5þR1X3¼U1X5U

�1
1 ;

X5þR2X4¼U2X5U
�1
2 ; X6þR1X4¼U1X6U

�1
1 ;

X6þR2X3¼U2X6U
�1
2 ; Xa¼UiXaU

�1
i ;

a� i; ða;iÞ� ð5;1Þ;ð5;2Þ;ð6;1Þ;ð6;2Þ: (3.51)

The solutions we consider again involve trivial gauge
bundles, and therefore we choose the Xa to be

X i¼ iRiD̂i and Xm¼Am; m¼7; . . . ;10; (3.52)

where the gauge potentials in the hatted covariant deriva-

tive generically depend on some Ûi which commute with
all the Ui, as before. More precisely, Ai are modified

according to the relation Âi¼Aiþi
RjRk

Ri
fjkiAk@j;j<k.

Commutative twisted ~T6. The commutative case is rela-
tively easy to describe. It amounts to choosing the follow-
ing set of unitary operators:

U1 ¼ eix
1�ððR1R3Þ=R5Þx5@3�ððR1R4Þ=R6Þx6@4 ;

U2 ¼ eix
2�ððR2R4Þ=R5Þx5@4�ððR2R3Þ=R6Þx6@3 ;

Us ¼ eix
s
; s ¼ 3; 4; 5; 6:

(3.53)

Here, xi are ordinary commutative coordinates, and it is
straightforward to show that the only nontrivial commuta-
tion relations for the Ui are

U1U3 ¼ e�iððR1R3Þ=R5Þx5U3U1;

U1U4 ¼ e�iððR1R4Þ=R6Þx6U4U1;

U2U3 ¼ e�iððR2R3Þ=R6Þx6U3U2;

U2U4 ¼ e�iððR2R4Þ=R5Þx5U4U2:

(3.54)

As we also discussed in the three-dimensional case, for the
commutative manifold these relations just reflect the non-
Abelian nature of the algebra of vector fields on it, which
were described in Eq. (2.23). Therefore, the compactifica-
tion here is on an ordinary manifold, the gauge potentials
and the scalar fields depend directly on the commutative
coordinates xi, and the resulting theory is a (1þ 6)-
dimensional YM theory.

Noncommutative twisted ~T6
�;x. After the brief exposition

of the commutative case, let us now turn our attention to
the general case. Considering the operators QðijÞ, one ob-

tains that the ones which do not commute with Xa are the
ones with the index pairing ði;jÞ¼ fð1;3Þ;ð1;4Þ;ð2;3Þ;
ð2;4Þg�I , which satisfy

½Qð13Þ;X5�¼�R1R3Qð13Þ; ½Qð14Þ;X6�¼�R1R4Qð14Þ;
(3.55)

½Qð23Þ;X6�¼�R2R3Qð23Þ; ½Qð24Þ;X5�¼�R2R4Qð24Þ:
(3.56)

The rest of the commutators among QðijÞ and Xa vanish.

This means that

UiUj ¼ e2�i�
ij
UjUi; ði; jÞ =2 I : (3.57)

Then we may consider the solution Eq. (3.52) with

Ui ¼ eix̂
i
and the following commutation relations:

½x̂i; x̂j� ¼ iRðijÞfijkx̂
k þ 2�i�ij; ½@̂i; @̂j� ¼ 0;

½@̂i; x̂j� ¼ �j
i þ iRðjkÞfjki@̂k; j < k:

(3.58)

The fij
k are the structure constants of the algebra A6;5,

f13
5 ¼ f14

6 ¼ f23
6 ¼ f24

5 ¼ 1; (3.59)

which are antisymmetric in the lower indices. Moreover,
the quantities RðijÞ in the example at hand are

Rð13Þ¼R1R3

R5

; Rð14Þ¼R1R4

R6

; Rð23Þ ¼R2R3

R6

; Rð24Þ ¼R2R4

R5

:

(3.60)

Clearly, the subscripts in parentheses are labels and not
indices, and therefore they are not summed in Eq. (3.58).
Furthermore, it holds that RðijÞ ¼ RðjiÞ.
It is straightforward to check that the above set ofUi and

Xa furnishes a consistent solution of Eq. (3.51). The last
relation in Eq. (3.58) is crucial for this consistency; more-
over, it guarantees the associativity of the full algebra of
coordinates and momenta. However, apart from the above,

it is important to be able to construct the set of operators Ûi

which commute with Ui. This is only possible upon im-
posing some additional constraints. Indeed, these operators

can be written as Ûi ¼ eiŷ
i
, where

ŷ i¼ x̂i�2�i�ij@̂j� iRðijÞfijkx̂
k@̂jþ�RðijÞfifjk�

lgk@̂l@̂j;
(3.61)

where the notation �fj�lg for the superscripts denotes
symmetrization or antisymmetrization as follows:

�fj�lg ¼

8>>><
>>>:
�j�l � �l�j; for i ¼ 1; 2; ðj; lÞ 2 I ;

�j�l þ �l�j; for i ¼ 3; 4; ðj; lÞ 2 I ;

�j�l; for ðj; lÞ =2 I

:

For i ¼ 5, 6, the related term is absent due to Eq. (3.59).

The Ûi constructed in that way commute with theUi under
the following conditions:
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�56 ¼ 0;
�36

R3R6

¼ �45

R4R5

;
�15

R1R5

¼ �26

R2R6

;

�16

R1R6

¼ �25

R2R5

;
�35

R3R5

¼ �46

R4R6

:
(3.62)

It is worth noting that an appropriate ? product may be
defined in the present case as well. It is of a mixed form and
it is given by

f ? g ¼ eði=2ÞðRðijÞfijkx
kþ2��ijÞð@=@yiÞð@=@zjÞfðyÞgðzÞjy;z!x:

(3.63)

Because of the last relation in Eq. (3.58) the derivatives in
the algebra are not mapped to the usual derivatives, but

instead @̂i ! @�i ¼ @i þ i
2RðjkÞfjki@j@k þOðR2Þ, j < k.

The above procedure may be directly generalized
for the compactification of Matrix theory on any higher-
dimensional nilmanifold, such as the five- and six-
dimensional ones of the Appendix. Then, the general
expressions Eqs. (3.58) and (3.61) will still hold for an
appropriate set of index pairs I and the structure constants
fij

k of the corresponding nilpotent algebra.

IV. DUALITIES AND SEIBERG-WITTEN MAPS

Having studied several backgrounds corresponding to
compactifications of the BFSS model in Sec. III, let us now
discuss how they may be related among themselves as well
as with known backgrounds of M theory/Type IIA string
theory in the supergravity approximation. It is useful at this
stage to summarize the solutions that we have described so
far in order to facilitate their comparison. This is done in
Table I.

Connes-Douglas-Schwarz conjecture. The starting point
is that the BFSS model corresponds to a nonperturbative
definition ofM theory in the infinite momentum frame [1].
Therefore, one expects that known backgrounds of 11-
dimensional supergravity (the field theory limit of M
theory) should be reproduced in the matrix framework.
Indeed, Connes, Douglas, and Schwarz suggested that
that the deformation parameters �ij defining the noncom-

mutative tori as in Sec. III B correspond to moduli of the
11-dimensional supergravity [4]. The latter contains a
3-form CIJK, which is the gauge potential of the 4-form
field strength of the theory, where I, J, K are 11-
dimensional indices. Then the claim is that

�ij /
Z

dxidxjCij�; (4.1)

where � denotes the light cone direction x� [4]. It is also
useful to rephrase this statement in the language of the
Type IIA theory, which is obtained by 11-dimensional
supergravity upon compactification on a circle. In that
process, the 3-form C gives rise to the NS 2-form field B
of the Type IIA supergravity.11 Therefore, in IIA language,
Eq. (4.1) may be restated as

�ij /
Z

dxidxjBij: (4.2)

In the following, we shall retain this auxilliary Type IIA
language in our discussion.
According to the above, the deformation of a commuta-

tive torus to a noncommutative one in the matrix model
corresponds to turning on background values for the B field
in Type IIA string theory. Let us now use this statement as a
guiding principle in order to unveil relations between the
backgrounds we studied in Sec. III and known Type IIA
backgrounds.12 For this purpose we will use the following
notation: When we want to refer to a solution of the
compactified matrix model, such as the ones appearing in
Table I, we write, e.g., ‘‘MM on T3

�’’ for the solution on the

noncommutative 3-torus with constant noncommutativity
�ij. Similarly, for the auxiliary Type IIA background, we

TABLE I. Solutions of the BFSS model compactified on three- and six-dimensional tori and twisted tori. C stands for commutative,
NC stands for noncommutative, and NA for nonassociative. Indices run from 1 to 3 for the three-dimensional cases and from 1 to 6 for
the six-dimensional ones. The last column contains the associated supergravity fluxes for each compactification, and it is discussed in
Sec. IV.

½x̂i; x̂j� QðijÞ Torus type Twist SuGra Flux

1 0 1 3d C No . . .
2 �2�i�ij e2�i�

ij
3d NC No Bij

3 iN	ij2x̂
2 e�iN	ij2 x̂

2
3d NC, NA No H123

4 0 e�iððR2R3Þ=R1Þ	ij1x1 3d C Yes f23
1

5 i R2R3

R1
	ij1x̂

1 e�iððR2R3Þ=R1Þ	ij1x̂1 3d NC Yes H123, f23
1

6 i R2R3

R1
	ij1x̂

1 þ 2�i�ij e�iððR2R3Þ=R1Þ	ij1 x̂1�2�i�ij 3d NC Yes Bij, H123, f23
1

7 0 e�iRðijÞfijkx̂
k

6d C Yes fij
k

8 iRðijÞfijkx̂
k þ 2�i�ij e�iRðijÞfijkx̂

k�2�i�ij 6d NC Yes Bij, Hijk, fij
k

11We do not discuss here issues related to the Ramond-Ramond
forms of the Type IIA theory. A related discussion may be found
in Ref. [32].
12We use here the term ‘‘background’’ in a somewhat loose
sense. Some of the situations we discuss are not fully consistent
string backgrounds and need to be appropriately lifted [18].
However, here we are interested in relations between fluxes
and deformations, and this discussion in beyond our scope.
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write, e.g. ‘‘IIA on ~T3’’ for a compactification on the
twisted 3-torus.

In the above notation, the Connes-Douglas-Schwarz
conjecture reads as

MM onT3
�$

CDS
IIA onT3

B; (4.3)

corresponding to Eq. (4.2). The left-hand side (lhs) of the
conjecture refers to the solution Eq. (3.15) described in
Sec. III B, which is solution 2 in Table I. This correspon-
dence was further justified in Refs. [5,7].

Along the same lines, we suggest the following corre-
spondences for the solutions which appear in Table I:

(i) Solution 3 of Table I describes the compactification
of the BFSS model on a torus with nonconstant
noncommutativity. On the supergravity side, this
should correspond to a background with nonconstant
B field and therefore a constant 3-form flux H.
Schematically,

MM onT3
x$CDS

IIA onT3
H; (4.4)

The right-hand side (rhs) of this correspondence was
already referred to in Sec. II B, Eq. (2.15). In other
words, we suggest that deforming the torus to a
noncommutative one with nonconstant noncommu-
tativity corresponds to turning on a constant 3-form
flux through the torus on the supergravity side. In
11-dimensional language, this situation corresponds
to a constant 4-form background.

(ii) Turning to the compactification of the BFSS model
on twisted 3-tori, solution 5 of Table I should be
associated with a nonconstant B field on a twisted
3-torus on the supergravity side,

MM on~T3
x$CDS

IIA on ~T3
H: (4.5)

This was discussed in detail in Ref. [8], while
supergravity backgrounds with both geometric
fluxes and NS fluxes were studied, for example, in
Refs. [13–15]. Moreover, in the present study, we
described more general solutions associated to
twisted 3-tori, given by Eqs. (3.47) and (3.48). On
the supergravity side, these should be associated to
twisted 3-tori with mixed (constant and nonconst-
ant) B field.

(iii) Finally, as far as the compactification on a twisted
6-torus is concerned, the situation is very similar.
In particular, for solution 8 in Table I and
vanishing �ij,

MM on~T6
x$IIA on ~T6

H; (4.6)

where the NS fluxes H are given in Eq. (2.27).
The above correspondences are plausible in view of

previous work on the subject, but in order for them to be
fully demonstrated, one has to study in detail the resulting

(1þ d)-dimensional theory. We plan to perform such an
analysis in a forthcoming publication.
T-duality and Seiberg-Witten maps. Previously, we dis-

cussed relations of matrix model backgrounds with certain
supergravity ones. However, here we suggest that there
exist also relations among the matrix backgrounds them-
selves and among the gauge theories on them.
Looking at the solution of the constraints for the com-

pactification on a noncommutative torus T3
�, Eqs. (3.15)

and (3.17), we observe that there exists a mapping from the
noncommutative torus to a commutative one:

f: x̂i ! xi � �i�ij@j; f: @̂i ! @i; (4.7)

where x̂i and @̂i are the coordinates and the corresponding
derivatives on the noncommutative torus, while xi and @i
are the usual commuting coordinates and derivatives.

Under this mapping, the Us and Ûs of the solution
Eq. (3.15) go to:

f:Ui¼eix̂
i !eix

iþ��ij@j ; f: Ûi¼eix̂
i�2��ij@̂j !eix

i���ij@j ;

(4.8)

preserving the algebras of Us and Ûs. Thus the mapp-
ing Eq. (4.7) induces the Seiberg-Witten map, i.e., the
transformation from noncommutative Yang-Mills fields
Eq. (3.21) to ordinary Yang-Mills fields Eq. (3.6) over the
same commutative torus. This construction of the SW map
goes along the lines of the original construction introduced
in the seminal paper, Ref. [16]. More abstractly, it is
enough to assume that the noncommutative gauge trans-
formation is induced by the ordinary one [23]. One uses the
representation of the elements of the noncommutative
algebra in terms of functions of commuting coordinates
which are multiplied with the ? product. Assuming that the
noncommutative gauge transformation is induced by the
ordinary one provides enough data to express the non-
commutative fields and gauge parameter as functions of
the commutative ones. As the analysis of the Yang-Mills
theory resulting from the compactification is beyond the
scope of this paper, we do not construct the SW map(s)
explicitly.
A similar map can be constructed in the nonassociative

case, i.e., for the compactification on T3
x defined by the

relations Eqs. (3.23), (3.24), and (3.25). There exists a
mapping from the aforementioned solution of Eq. (3.5)
into the solution of the same condition but on a commuta-
tive torus:

f: x̂1 ! x1 þ iN

2
x2@3; f: x̂2 ! x2;

f: x̂3 ! x3 � iN

2
x2@1; f: @̂i ! @i;

(4.9)

where
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½xi; xj� ¼ 0; ½@i; @j� ¼ 0; ½@i; xi� ¼ 1;

½@2; x3� ¼ iN

2
@1; ½@2; x1� ¼ � iN

2
@3:

(4.10)

Note that the last two relations imply

½@2; x1; x3� ¼ iN:

The operators Ui and Ûi are mapped to

U1 ¼ eix
1�ðN=2Þx2@3 ; U2 ¼ eix

2
;

U3 ¼ eix
3þðN=2Þx2@1 ; Û1 ¼ eix

1þðN=2Þx2@3 ;

Û2 ¼ eix
2
; Û3 ¼ eix

3�ðN=2Þx2@1 ;

(4.11)

and satisfy the same algebras as before. This induces the
SWmap between gauge theories over noncommutative and
commutative tori with the (same) nonassociativity in the
phase space. It is easy, but not very illuminating, to con-
struct a similar mapping for the more general solution
described by relations Eqs. (3.30), (3.31), (3.32), (3.33),
and (3.34).

As a final example of the relation between the gauge
field theories over the compact spaces we discuss, we
provide a map for a twisted compactification given by
the relations Eqs. (3.47), (3.48), (3.49), and (3.50):

f: x̂i!xiþ�i�ij@jþ i�i3Rx1@3; f: @̂i!@i: (4.12)

In the gauge sector this map induces the SW map between
noncommutative and ordinary Yang-Mills theories over a
(commutative) twisted torus.

Let us close this section with the following observation.
It is well-known that there exists a T-duality among a
square torus with nonconstant background B field, i.e.,
with constant H flux, and a twisted torus with vanishing
B field. This T-duality was briefly reviewed in Sec. II B.
Schematically, this means that

IIA onT3
H$T IIB on ~T3; (4.13)

where T-duality relates Type IIA and Type IIB string
theory as usual. We observe that the lhs of the T-duality
appears in Eq. (4.4), while the rhs is directly associated
with the solution Eq. (3.37) on a commutative twisted
3-torus (solution 4 in Table I). This allows us to construct
the following diagram:

The vertical arrow on the lhs of this diagram is the corre-
spondence Eq. (4.5), while the one on the rhs simply relates
two situations without fluxes or deformations. Then the
horizontal arrow between the two MM solutions provides a

possible realization of T-duality at the level of Matrix
theory, which deserves further investigation. A similar
diagram holds for the six-dimensional case as well, where
the T-duality is performed in two different directions as
explained in Sec. II C.

V. CONCLUSIONS

In the present paper, we studied compactifications of
Matrix theory on twisted tori and noncommutative versions
of them. Our starting point was the construction of twisted
tori realized as nilmanifolds based on nilpotent Lie alge-
bras. Certain explicit examples were provided, and their
T-duality to square tori endowed with constant NS 3-form
flux was discussed. Next, the toroidal compactification of
the BFSS matrix model was revisited. Apart from the
previously obtained results [4], we described a solution
of the compactification conditions which corresponds to a
noncommutative deformation of the torus with nonconst-
ant noncommutativity. This solution carries an underlying
nonassociative structure on the corresponding phase space.
Thenceforth we moved on to study compactifications on
twisted tori. Analyzing the case of the twisted 3-torus, we
identified a set of solutions to the corresponding conditions
for commutative and noncommutative twisted 3-tori.
A similar analysis was carried out for a particular six-
dimensional twisted torus leading to solutions which
were presented in a form allowing direct generalization
to any other higher-dimensional nilmanifold.
In addition, we presented arguments relating known

backgrounds of M theory/Type IIA string theory in the
supergravity approximation to the solutions of the BFSS
model corresponding to the compactifications we studied.
In particular, along the lines of the Connes-Douglas-
Schwarz correspondence [4], noncommutative deforma-
tions of tori and twisted tori were associated to turning
on fluxes in 11-dimensional supergravity. Moreover, star
products associated with the corresponding noncommuta-
tive algebras were constructed and relations connecting
noncommutative and commutative backgrounds, inducing
the Seiberg-Witten map between the corresponding gauge
theories, were determined. Finally, we indicated a possible
realization of T-duality between twisted and untwisted tori
in Matrix theory. However, these issues should be ad-
dressed in more detail by analyzing the resulting gauge
theories. In this process, the spectra of Bogomol’nyi-
Prasad-Sommerfield states should be carefully studied,
along the lines of Refs. [4,8,33]. We plan to report on
this issue on a future publication.
An interesting future direction along the lines of the

present paper would be to identify ways to describe
analogs of nongeometric backgrounds in the framework
of Matrix theory. Such backgrounds arise by performing
a T-duality along the base of twisted tori instead of
the fiber [18]. Relations between nongeometry, T-folds
[34], and noncommutativity were already reported in
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Refs. [27,29,35]. Moreover, in recent work [36], it was
argued that a ten-dimensional perspective of nongeometric
fluxes may be gained by describing backgrounds in terms
of variables yielding the geometry globally well-defined.
This path goes through generalized geometry and uses an
antisymmetric bivector field as a sign of nongeometry. It
would be interesting to investigate whether such a bivector
can be traced in a noncommutative deformation of the
compactification manifold in Matrix theory.
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APPENDIX A: GEOMETRIC DATA FOR
HIGHER-DIMENSIONAL NILMANIFOLDS

In this Appendix, we collect the twist matrices and the
identifications for a class of nilmanifolds. These data are
useful in order to fully determine the geometry of each case
and classify the associated geometric fluxes.

Before proceeding, let us explain the requirements
which single out the cases which we shall present.
According to the tables of Ref. [21], there exists a certain
number of isomorphism classes of nilpotent Lie algebras in
each dimension which are not algebraic sums of lower-
dimensional ones. We focus our attention on such cases.
They include one three-dimensional case, which was
treated in the main text, one four-dimensional case, six
five-dimensional, and 22 six-dimensional cases. Out of the
latter, the A�

6;5 was treated in the main text. Here we shall

not present all the above cases. Instead, we find it reason-
able to impose the restriction that the Lie algebra satisfies
the equations of motion of the BFSS and IKKT matrix
models, in the former case at least for time-independent
backgrounds,

½Xb; ½Xb; Xa�� ¼ 0 , fabc fdcb Xd ¼ 0: (A1)

Such cases were studied from a different perspective in
Ref. [11]. It turns out that the relevant algebras are the
A5;1, A5;4, A6;3, A6;4, A�1

6;14, plus the already studied

cases of A3;1 and A�
6;5. Let us now proceed to their

geometric data.
A5;1. Let us first note that this case was also studied in

Ref. [18]. The commutation relations of the algebra are

½X3; X5� ¼ X1; ½X4; X5� ¼ X2: (A2)

Then we find the invariant 1-forms

e1¼dx1�x3dx5; e2¼dx2�x4dx5;

ei¼dxi; i¼3;4;5;
(A3)

which determine the twist matrix ea ¼ UðxÞabdxb,

U ¼

1 0 0 0 �x3

0 1 0 0 �x4

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
: (A4)

The identification conditions for the compactification are

ðx1; x2; x3; x4; x5Þ � ðx1 þ a; x2; x3; x4; x5Þ
� ðx1; x2 þ a; x3; x4; x5Þ
� ðx1 þ ax5; x2; x3 þ a; x4; x5Þ
� ðx1; x2 þ ax5; x3; x4 þ a; x5Þ
� ðx1; x2; x3; x4; x5 þ aÞ; a 2 Z:

(A5)

A5;4. The commutation relations in the present case are

½X2; X4� ¼ X1; ½X3; X5� ¼ X1: (A6)

The corresponding 1-forms are found to be

e1 ¼ dx1 � x2dx4 � x3dx5; ei ¼ dxi;

i ¼ 2; 3; 4; 5;
(A7)

and the twist matrix

U ¼

1 0 0 �x2 �x3

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
: (A8)

The identification conditions for the compactification are

ðx1;x2;x3;x4;x5Þ�ðx1þa;x2;x3;x4;x5Þ
�ðx1þax4;x2þa;x3;x4;x5Þ
�ðx1þax5;x2;x3þa;x4;x5Þ
�ðx1;x2;x3;x4þa;x5Þ
�ðx1;x2;x3;x4;x5þaÞ; a2Z: (A9)

A6;3. The commutation relations are given as

½X1; X2� ¼ iX6; ½X1; X3� ¼ iX4; ½X2; X3� ¼ iX5;

(A10)

leading to the 1-forms
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e1 ¼ dx1; e2 ¼ dx2; e3 ¼ dx3;

e4 ¼ dx4 � x1dx3; e5 ¼ dx5 � x2dx3;

e6 ¼ dx6 � x1dx2:

(A11)

Thus the twist matrix turns out to be

U ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 �x1 1 0 0

0 0 �x2 0 1 0

0 �x1 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (A12)

and the twisted identifications are

ðx1;x2;x3;x4;x5;x6Þ�ðx1;x2;x3þa;x4;x5;x6Þ
�ðx1;x2;x3;x4þa;x5;x6Þ
�ðx1;x2;x3;x4;x5þa;x6Þ
�ðx1;x2;x3;x4;x5;x6þaÞ
�ðx1þa;x2;x3;x4þax3;x5;x6þax2Þ
�ðx1;x2þa;x3;x4;x5þax3;x6Þ; a2Z:

(A13)

A6;4. The commutation relations in the present case are

½X1;X2�¼X5; ½X1;X3�¼X6; ½X2;X4�¼X6: (A14)

Then we find

e5 ¼ dx5 � x1dx2; e6 ¼ dx6 � x1dx3 � x2dx4;

ei ¼ dxi; i ¼ 1; 2; 3; 4; (A15)

and the twist matrix

U ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 �x1 0 0 1 0

0 0 �x1 �x2 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (A16)

The identification conditions for the compactification are

ðx1;x2;x3;x4;x5;x6Þ�ðx1þa;x2;x3;x4;x5þax2;x6þax3Þ
�ðx1;x2þa;x3;x4;x5;x6þax4Þ
�ðx1;x2;x3þa;x4;x5;x6Þ
�ðx1;x2;x3;x4þa;x5;x6Þ
�ðx1;x2;x3;x4;x5þa;x6Þ
�ðx1;x2;x3;x4;x5;x6þaÞ; a2Z:

(A17)

A�1
6;14. The Lie algebra commutation relations are

½X1; X3� ¼ X4; ½X1; X4� ¼ X6;

½X2; X3� ¼ X5; ½X2; X5� ¼ �X6:
(A18)

The invariant 1-forms are found to be

ei¼dxi; i¼1;2;3; e4¼dx4�x1dx3;

e5¼dx5�x2dx3;

e6¼dx6�x1dx4þððx1Þ2þðx2Þ2Þdx3þðx2x3�x5Þdx2;
(A19)

while the following additional relations are obtained

x1dx1 þ x2dx2 ¼ 0 , ðx1Þ2 þ ðx2Þ2 ¼ const;

x2dx3 þ x3dx2 ¼ 0 , x2x3 ¼ const
(A20)

The twist matrix is

U¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 �x1 1 0 0

0 0 �x2 0 1 0

0 x2x3�x5 ðx1Þ2þðx2Þ2 �x1 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (A21)

and determining the identification conditions for the com-
pactification in the present case turns out to be complicated
due to the x5 dependence of U.
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