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We introduce analytical quantum gravity modifications of the production cross section for terascale

black holes by employing an effective ultraviolet cutoff l. We find the new cross sections approach the

usual ‘‘black-disk’’ form at high-energy, while they differ significantly near the fundamental scale from

the standard increase with respect to s. We show that the heretofore discontinuous step function used to

represent the cross section threshold can realistically be modeled by two functions representing the

incoming and final parton states in a high-energy collision. The growth of the cross section with collision

energy is thus a unique signature of l and number of spatial dimensions d. Contrary to the classical black-

disk result, our cross section is able to explain why black holes might not be observable in LHC

experiments while they could be still within the reach of ultra-high-energy cosmic ray events.
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I. INTRODUCTION

Despite decades of theoretical advances and experimen-
tal progress, we are in reality no closer to a formulating a
workable framework of quantum gravity—let alone find-
ing related definitive experimental evidence—and must be
content to speculate about its nature and phenomenology.
This need not be only an academic exercise: probing a
deeper understanding of the physical processes potentially
able to unveil quantum gravity signatures would be a major
breakthrough in an otherwise stagnating and discouraging
situation. In this spirit, we return to the foundational con-
nection between classical and quantum gravitation,
i.e.. Hawking radiation. Thanks to its robustness in the
semiclassical limit, Hawking radiation is a widely accepted
benchmark for any reliable theory of quantum gravity.

Unfortunately, the chances of a direct detection of the
Hawking radiation are remote. Since T �M�1

BH, astrophys-
ical black holes are too big to display any relevant quantum
mechanical effects. It has alternatively been conjectured
that smaller primordial black holes with masses MBH �
1011 kg and radii rH � 10�16 m may have formed in the
extreme density fluctuations of the early universe. With
temperatures T � 1012 K, these black holes would be so
bright that we should be able to observe them, but as of
now the Fermi Gamma-ray Space Telescope satellite has
been unsuccessful in detecting any such evidence [1]. At
even shorter length scales, one enters the domain of mod-
ern particle physics accelerators. It has been suggested,
however, the possibility of a ‘‘particle black hole’’ is very
unlikely: the energy densities required to squeeze a mass
completely inside its own gravitational radius is of the

order of the Planck mass MPl [2], almost 15 orders of
magnitude higher than the LHC energy and eight orders
higher than the most energetic cosmic ray ever detected
[3]. It may thus seem Hawking radiation, and maybe also
any hint quantum gravity, is inaccessible at least in the
immediate future.
The advent of large extra spatial dimensions acces-

sible at a fundamental scale to M� � 1 TeV allows such
gravitational collapse to occur for matter compressed at
distances of the order of 10�4 fm [4]. Despite the
myriad fascinating possibilities unveiled in such
scenarios, the theoretical foundations are far from
being understood. Perhaps most problematic is the ma-
jor limitation concerning the description of micro-black
holes, in that it is impossible to correctly describe end-
stage black hole evaporation in the semiclassical limit
when T �MBH �M�.
Utilizing the current literature base of inadequate clas-

sical metrics, one cannot take into account the local loss of
resolution which plagues the spacetimewhen it is probed at
high energies/short scales. We thus propose a new frame-
work to describe in an effective way the nature of a
quantum spacetime and its signatures in the physics of
microscopic black holes. As a preliminary step we seek
to address the fundamental question: how does quantum
gravity affect microscopic black hole formation?

II. BLACK HOLE PRODUCTION

The standard expression for the semiclassical black hole
production cross section is a translation of the ‘‘hoop
conjecture’’ [2] (for improved versions of this result and
comments see [5–9]): a black hole is produced whenever a
parton of energy

ffiffiffi
s

p
hits a target with an impact parameter

b < rH, i.e., smaller than the Schwarzschild radius of the
effective two-body system,
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2�b

d�ðs; bÞ
db

¼ �HðrHðsÞ � bÞ: (1)

Here, �H is the Heaviside step function implementing the
constraint b � rH ¼ 2GN

ffiffiffi
s

p
. Since the impact parameter b

is not observable, it must be integrated over to obtain the
experimentally measurable production cross section

�ðsÞ ¼ 2�
Z 1

0
dbb�HðrHðsÞ � bÞ ¼ �r2HðsÞ: (2)

We thus recover the ‘‘black-disk’’ cross section typically
found in the literature.

For a neutral, nonspinning black hole of mass MBH ¼ffiffiffi
s

p
in dþ 1 dimensions, the horizon radius is

rH ¼ ð2G�Þ1=ðd�2Þs1=2ðd�2Þ; (3)

where we have introduced the higher-dimensional gravita-
tional coupling constant G� � ld�1� ¼ M1�d� . We note a
peculiar feature of black hole ‘‘particle’’ physics. As
mass (energy) increases, the linear dimension of the black
hole increases, in contrast to the expected behavior of
normal particles whose effective scales are determined by
the Compton wavelength. This unique behavior leads to a
possible UV self-completion of quantum gravity [10]. By
inserting Eq. (3) in (2), we get

�ðsÞ ¼ �ð2G�
ffiffiffi
s

p Þ2=ðd�2Þ: (4)

For typical LHC energies
ffiffiffi
s

p � 1� 10 TeV, one obtains
cross sections of the order �� 1 nb. Given the most
recently reported LHC peak luminosity L� 3:65�
1037 m�2 s�1 [11], this would imply that about 10 black
holes per second would form. In hindsight we find that,
according to the black-disk cross section, black holes
would have formed at a non-negligible rate even in early
particle physics experiments. By combining (4) with Super
Proton Synchrotron (SPS) parameters

ffiffiffi
s

p � 630 GeV and
L� 3:6� 1033 m2 s�1, one finds that roughly one black
hole a day would have formed in 1985 [12].

The aforementioned production rate estimates have
since been improved to much lower values [7–9]. These
results, however, conflict with the latest experimental in-
vestigations that effectively rule out the possibility of black
hole formation at the LHC [13], at least as far as the
semiclassical regime is valid [14]. The weak point of the
hoop conjecture is that for any s black holes can be
produced provided b is small enough. On the contrary,
we expect the black hole production channel to open
only above some threshold energy. The inaccuracy of
predictions due to (4) follows from the assumption that
the impact parameter, b, can take on aribitrarily small
values, which is not the case in any theory of quantum
gravity where a minimal length emerges as a new funda-
mental constant of nature [15]. We thus have to introduce a
nonvanishing lower integration limit into Eq. (2) to account
for the breakdown of any semiclassical description of
spacetime in a true quantum regime. In theories with large

extra dimensions, the constraint l� � lPl: yields quantum
gravitational excitations. Any chance to observe at least
some indirect signal of quantum gravitational phenomena
at LHC requires taking l� as the ‘‘minimal length.’’
Moreover, instead of demanding a cutoff b � l� in the
scale size, we introduce a proper exponential suppression
that drives the integral to zero faster than any power of s

�ðsÞ ¼ 2�
Z 1

0
dbbe�l2�=b2�HðrHðsÞ � bÞ: (5)

Integration can be carried out and gives

FIG. 1 (color online). Top: Black hole cross sections (6) as a
function of

ffiffiffi
s

p
for different values of d in l�-units (from top to

bottom on the right: d ¼ 3, 4, 5, 6). All values are modified at
low energies while matching the standard predictions at large s.
Bottom: The same plot as above for d ¼ 3 (solid curve) with
different ordinate scale to facilitate comparison with the standard
black-disk approximation (dotted curve) in the low-energy re-
gime

ffiffiffi
s

p
< l�1� .
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�ðsÞ ¼ �l2��ð�1; l2�=r2HÞ; rH ¼ rHðsÞ; (6)

where �ð�1; l2�=r2HÞ is the upper incomplete gamma func-
tion defined as

�ð�; xÞ �
Z 1

x
dtt��1e�t: (7)

�ð�; xÞ is a smooth function with the following behavior.
For s ! 0 we get

�ðsÞ 	 �l2�
�
rH
l�

�
4
e�l2�=r2H ! 0: (8)

Equation (8) means that the production of arbitrary small
black holes at low energy is zero, as we expected. The
high-energy limit of (6) is obtained by means of the
asymptotic

�ð�; xÞ
x�

! � 1

�
; x ! 0: (9)

We thus reproduce the semiclassical black-disk cross
section

�ðsÞ 	 �l2� �
�
l2�
r2H

��1 ¼ �r2Hðs; l�Þ: (10)

In summary, at energy above the higher-dimensional uni-
fication scale,

ffiffiffi
s

p
>M� ¼ l�1� the production cross section

takes on the semiclassical black-disk form, while it drops
to zero very quickly for

ffiffiffi
s

p
<M� (see Fig. 1).

III. QUANTUM GRAVITY IMPROVED
BLACK HOLES

In the following analysis, we take a further step to im-
prove�ðsÞ by considering that in the presence of a minimal
length, whatever it is, the spacetime geometry itself is
subjected to modifications. This step is motivated by the
fact that semiclassical black holes offer reliable spacetime
descriptions [e.g., in (3)] only when their masses are well
above the fundamental mass, while they become increas-
ingly inaccurate for energies at or just above the fundamen-
tal scale. This particular phenomenology is the goal of the
present investigation. To this purpose, we recall that in
recent years there have been several attempts to incorporate
in black hole spacetimes the presence of quantum gravity
effects through effective quantum geometries [16–20]. The
resulting metrics [quantum gravity black holes (QGBHs)]
tend to agree on some highly desired general characters like
the absence of any curvature singularity and a thermody-
namically stable cooling down at the end of the evaporation
[21]. In addition one finds that QGBHs do not suffer from a
relevant back reaction, a fact that permits a safe employ-
ment of quantum field theory in curved space without any
breakdown of the formalism.QGBHs have distinctive emis-
sion spectra: they tend to emit a larger number of softer
particles than semiclassical black holes with a suppressed

bulk emission [22]. As a consequence QGBHs are a natural
alternative to improve the scenario at hand.
A common features of such models is the introduction of

a generic minimum length l, which is obtained by means of
a modified structure of metric coefficients

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ r2d�2; (11)

fðrÞ � 1� GdðrÞ
�
2MBH

rd�2

�
: (12)

The function GdðrÞ models quantum gravity corrections
and is subject to the following model-independent con-
straints (for more detailed discussions see [21]):
(1) for r � l the function GdðrÞ matches its classical

value, i.e., GdðrÞ ! G�;
(2) for r� l the function GdðrÞ enters an ‘‘asymptoti-

cally safe regime’’ by decreasing with respect its
classical value, i.e.,GdðrÞ<G� in order to allow the
horizon extremization, i.e., fðr0Þ ¼ f0ðr0Þ ¼ 0 [see
Fig. 2 and (13) for more details] and a black hole
phase transition to a positive heat capacity cooling
down phase;

(3) for r & l the function GdðrÞ is vanishing in order to
improve the curvature singularity, i.e., GdðrÞ �
Oððr=lÞd�2Þ.

The minimum length l is not fixed a priori but is
assumed to be in the range lPl: � l � l�, where the
Planck length lPl: is the usual four-dimensional gravita-
tional length scale and l� is its higher-dimensional counter-
part at the TeV scale. Such a minimal length bears critical
importance to the production cross section of any QGBHs
that may result in high-energy collisions [23].

FIG. 2 (color online). The function fðrÞ in l�-units. The solid
curve is QGBH extremal configuration, while the dotted curve is
the corresponding classical black hole having the same mass
MBH ¼ M0.
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It would be tempting to say that �ðsÞ is given by Eq. (6),
with l� replaced by l. This is almost correct as it properly
takes into account the role of l, but ignores the existence of
a minimum mass M0 below which QGBHs do not form
[24]. This minimum mass is a common feature of QGBHs
and corresponds to the mass of the extremal configuration.
The value of M0 can be calculated by solving the system

fðrÞ ¼ 1�GdðrÞ
�
2MBH

rd�2

�
¼ 0

f0ðrÞ ¼ 2MBH

rd�3

�
d� 2� r

G0
d

Gd

�
¼ 0

(13)

in terms of M0 ¼ M0ðr0Þ. Since the creation channels
opens up only for

ffiffiffi
s

p � M0, we thus need to include this
threshold condition in the cross section through a second
step function

�ðsÞ ¼ �l2�ð�1; l2=r2HÞ�ð ffiffiffi
s

p �M0Þ: (14)

Equation (14) describes the sharp opening of the produc-
tion channel at the energy M0, but quantum mechanics
introduces uncertainty and makes the step less sharp. The
way the edges of the step are smoothed is determined by
the ‘‘golden rule,’’ derived by previous investigations in
noncommutative geometry, leading to regular line ele-
ments [16]. In a nutshell, the presence of a minimal length
(whatever is its origin) translates into the replacements of
Dirac delta functions into minimal-width Gaussian distri-
butions. Furthermore, since the Dirac delta is the ‘‘deriva-
tive’’ of the Heaviside function, it can be shown that in the
framework of a minimal length a modified step-function
can be defined without the limit l ! 0

�ðxÞ!�lðxÞ¼ 1

ð4�l2Þ1=2
Z x

�1
e�y2=4l2dy¼ 1

2þ 1
2 erfðx=2lÞ:

To derive the profile of the new cross section, we also
need to determine the horizon radius by solving the equa-
tion fðrÞ ¼ 0. This can best be done by iteration on the
expression

rd�2
H ¼ 2

ffiffiffi
s

p
GdðrHÞ; (15)

giving the terms

0thorder ���! rHð0Þ ¼ ð2G�
ffiffiffi
s

p Þ1=ðd�2Þ (16)

1storder ���! rHð1Þ ¼ rHð0Þ
�GdðrHð0ÞÞ

G�

�
1=ðd�2Þ

(17)

As a first step, we consider just the zeroth-order result (16)
and we truncate the iteration process there. For illustrative
purposes we can assume M0 �M�. In the next section we
will show that, though the zeroth-order approximation of
the radius may still be acceptable, the assumption of the
threshold mass becomes inadequate when quantum gravity
corrections of black hole metrics are properly taken into
account.

Using x ¼ ffiffiffi
s

p �M0 and rH ’ ð2G�
ffiffiffi
s

p Þ1=ðd�2Þ at first
order, we obtain

�ðsÞ
�r2HðsÞ

¼ l2

ð2G�
ffiffiffi
s

p Þ2=ðd�2Þ �
�
�1;

l2

ð2G�
ffiffiffi
s

p Þ2=ðd�2Þ

�

��lð
ffiffiffi
s

p �M0Þ: (18)

This implies d-dependent cross section suppressions, de-
pendent also on the presence of a mass threshold [25].
We stress the different roles of the two functions in (18).

The first [�ð. . .Þ] comes from the hoop conjecture once the
impact parameter is integrated over with a proper short-
distance cut off, while the second [�lð. . .Þ] describes the
smooth opening of the production channel for

ffiffiffi
s

p
>M0.

Generically, these can be understood to represent the out-
going (black hole) and incoming (beam) states of the
collision, respectively.

IV. BLACK HOLE PARAMETERS/ENERGY
RELATIONS

In the previous section we estimated the cross section by
considering zeroth-order parameters. This basically corre-
sponds to ignoring the exact nature of quantum corre-
ctions to obtain an approximate expression for the cross
section which, at the given order, turns out to be model-
independent. This procedure can be improved in order to
obtain more accurate results. To this purpose, one has to
specify a given model of QGBH and determine horizon
radii and minimum masses. In doing so, one opens the
possibility of discriminating among the proposed quantum
gravity corrections in the class of QGBHs by comparing
the resulting cross sections with experimental data.
To illustrate the procedure, we will focus on noncom-

mutative geometry inspired black holes (NCBHs) only
[16], leaving the analysis of the whole array of QGBHs
in future contributions.
This choice is motivated by the following reasons.

NCBHs are for now the richest family of QGBHs, since
they include the higher-dimensional charged [26,27], spin-
ning [28] and charged-spinning [29] solutions. NCBHs are
thus the only family of solutions able to describe the
complete life cycle of a black hole from its formation to
the end of the evaporation, a crucial necessity for phe-
nomenological studies [30,31]. Second, NCBHs not only
capture the two primary features of QGBHs (i.e., regularity
of the manifold and cooling down phase at the end of the
evaporation [25]), but being a subfamily of another class of
QGBHs—namely black holes in nonlocal gravity theories
[20]—pave the way to model-independent phenomeno-
logical conclusions.
The simplest realization of a noncommutative (dþ 1)-

dimensional spacetime due to a collapsing parton system is
given by equation

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ r2d�2; (19)
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fðrÞ �
�
1� 2MBH

Md�1� rd�2

�ðd=2; r2=4l2Þ
�ðd=2Þ

�
; (20)

where, to avoid notational confusion, we again indicate
with l the minimal length related to the size of spacetime
discretization cells, while we keep G� ¼ M1�d� for the
gravitational coupling. The above line element can be
equivalently identified by the function

G dðrÞ ¼ 1

Md�1�

�ðd=2; r2=4l2Þ
�ðd=2Þ (21)

in which deviations from the traditional line element are
taken into account by the lower incomplete gamma func-
tion

�ðd=2; r2=4l2Þ ¼
Z r2=4l2

0
dttd=2�1e�t: (22)

While the above metric can exhibit Killing, Cauchy and
degenerate horizons, the singularity at r ¼ 0 has been
removed by ‘‘spreading’’ the total mass energy MBH over
a region of linear size l. In addition the mass spectrum is
bounded from below by an extremal configuration which
exists even in the case of neutral, nonspinning black holes.
As expected for any QGBH, the ‘‘classical’’ relation (3)
between horizon radii and

ffiffiffi
s

p
is still valid in the high-

energy limit
ffiffiffi
s

p � l�1. Conversely, relevant quantum
gravity deviations occur for

ffiffiffi
s

p � l�1.
The choice (21) for the profile of Gd lets us determine

the quantities r0 and M0 in terms of l from the system

f0ðr0Þ ¼ 0 ! r0 ¼ ðd� 2Þ1=d
2ð1�dÞ=d l�

�
�

�
d

2
;
r20
4l2

��
1=d

er
2
0
=4dl2

fðr0Þ ¼ 0 ! 2G�M0 ¼ rd�2
0

�ðd2Þ
�ðd2 ;

r2
0

4l2
Þ
:

(23)

Note that (23) can be solved only through numerical meth-
ods, whose results are given in Table I [25].

The discrepancy between M0 and M� underlines the
need to properly account for black hole quantum gravity
corrections beyond the rudimentary assumption M0 �M�.

We stress the above values depend on the definitions of
the fundamental scale M�, which may differ for multi-
plicative constants (see [22] for more detailed comments
on the interrelationship between them). In Tables II and III
we show the black hole threshold parameters according to
two other major definitions of the fundamental mass. For

the cases in Tables I and II, the minimum mass increases
with spatial dimensionality, which at LHC energies would
yield a virtually vanishing cross section for d � 6.
Curiously, according to the Particle Data Group notation
(Table III), we find the minimum mass decreases with
spatial dimensionality for any d � 5. When d ¼ 10 we
find the most promising case, corresponding to a minimum
mass of roughly 6 TeVabove the maximum LHC center-of-
mass energy.
One may wonder what is the production rate related to

the final formula

�ðsÞ ¼ �l2�ð�1; l2=r2HðsÞÞ�lð
ffiffiffi
s

p �M0Þ; (24)

assuming the LHC’s current peak luminosity. Unfor-
tunately, we cannot determine the horizon radius rH as a
function of

ffiffiffi
s

p
in a closed form. From the data presented in

the above tables, however, we see that quantum gravity
deviations are largely a function of the threshold energy.
Conversely, the horizon radii are less sensitive to non-
classical effects and approach the range of classical values
�10�4 fm even in the realm of maximum corrections, i.e.,
in the vicinity of the extremal configuration. This is the
case irrespective of the definition of the fundamental mass,
since r0 is determined through the first equation of the
system (23).
We can show this from the equation fðrHÞ ¼ 0, by

considering the parton energy to contribute to both classi-
cal (zeroth order) and nonclassical horizons, i.e.

ffiffiffi
s

p
ð0Þ andffiffiffi

s
p

respectively, whose ratioffiffiffi
s

p
ð0Þffiffiffi
s

p ¼ �ðd=2; r2H=4l2Þ
�ðd=2Þ (25)

is plotted in Fig. 3. We see that the above approximation
works very well not only in the high-energy regime
(i.e., for rH � 6l), but also below the production thresh-
old where the function �lð. . .Þ excludes the discrepancies
arising from the zeroth-order approximation of the actual

TABLE I. M0 and r0 for different values of d and l ¼ l� ¼
M�1� ¼ 1 TeV�1 For d ¼ 10 one findsM0 ’ 3:4� 104 TeV and
r0 ’ 4:40 TeV�1.

d 4 5 6 7 8 9

M0 (TeV) 6.7 24 94 3:8� 102 1:6� 103 7:3� 103

r0 (10�4 fm) 2.68 2.51 2.41 2.34 2.29 2.26

TABLE II. M0 and r0 for different values of d and l ¼ l� ¼
M�1� ¼ 1 TeV�1 according to Myers-Perry definition for the
fundamental mass M� [32]. For d ¼ 10, M0 ’ 3:13� 105 TeV
and r0 ’ 2:23 TeV�1.

d 4 5 6 7 8 9

M0 (TeV) 15.8 102 581 3:02� 103 1:48� 104 6:91� 104

r0 (10�4 fm) 2.68 2.51 2.41 2.34 2.29 2.26

TABLE III. M0 and r0 for different values of d and l ¼ l� ¼
M�1� ¼ 1 TeV�1 using the Particle Data Group notation for the
fundamental mass M� [31].

d 4 5 6 7 8 9 10

M0 (TeV) 63.2 65.2 58.8 48.6 37.9 28.2 20.3

r0 (10�4 fm) 2.68 2.51 2.41 2.34 2.29 2.26 2.23
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nonclassical horizon. It is therefore not difficult to improve
the result in (18) by considering the correct threshold
masses, while keeping horizon radii approximated at the
zeroth order

rH � rHð0Þ ¼ ð2G�
ffiffiffi
s

p Þ1=ðd�2Þ: (26)

In the process, the production rate is mildly overesti-
mated by virtue of the fact Gd � G� implies rHð0Þ * rH (or

correspondingly
ffiffiffi
s

p
<

ffiffiffi
s

p ð0Þ), i.e., classical horizon for-
mation requires less energy). Consequently, use of (18) is
justified under proper choice of M0. Tighter constraints
may be obtained by simply proceeding with a more so-
phisticated approximation for the horizon radius, i.e., rHð1Þ.
Figure 4 demonstrates the resulting profile of cross sections
for the choice of fundamental mass M� of Table I. In light
of the resulting rates being extremely suppressed at LHC
energies for all d, we can make just an example of a
hypothetical collision at energies

ffiffiffi
s

p ¼ 90–100 TeV. In
Table IV, we show the black hole production rate _N for
varying energy

ffiffiffi
s

p
and number of dimensions d. Note the

data are very sensitive to both
ffiffiffi
s

p
and d. For d ¼ 5,

energies above the production threshold �24 TeV and _N
saturate at the black-disk result. Remarkably for d ¼ 7 and
energies below the production threshold �380 TeV, the
rate _N is so low that the production time for a single black
hole would be greater than the present age of the universe
(i.e., TU � 13:7 Gyr). Finally for d ¼ 6, we are at energies
close to the production threshold �94 TeV and _N varies

dramatically with
ffiffiffi
s

p
ranging from formation time scale of

a second to a month. This example shows how in principle
the black hole production described by (18) can also be
used to indirectly determine the number of dimensions d.
As a check of the huge variation of _N, we can write the

near-threshold cross section for the production of extremal
black holes. For

ffiffiffi
s

p �M0, the leading term reads

�ðsÞ � �l2�ð�1; l2=r20Þ
�
1

2
þ 1

2l
ð ffiffiffi

s
p �M0Þ

�
; (27)

which describes the approximately linear behavior of the
cross section near the production threshold. The above
formula can be employed to improve the results of
Table IV when considering rates at near-threshold energies,
i.e., for d ¼ 6 and

ffiffiffi
s

p ¼ 90–100 TeV. The corresponding
values in Table V show that the zeroth-order approxi-

FIG. 3 (color online). The ratio
ffiffiffiffiffiffiffi
sð0Þ

p
=

ffiffiffi
s

p
of the parton ener-

gies required for the formation of classical (zeroth order) and
nonclassical horizons, in units l ¼ 1. Curves from bottom to top
refer to d ¼ 3–10. All ratios are less than unity, indicating
quantum gravity effects slow down production rates by requiring
more energy for horizon formation. When rh � 6l quantum
gravity corrections quickly die off, while for smaller radii the
dotted curves indicate the regime where nonclassical horizon do
not form for the presence of threshold energies.

TABLE IV. The number of black holes per unit of time _N for
different values of d and

ffiffiffi
s

p
. Here, TU ¼ 13:7 Gyr is the age of

the universe. Values of _N have been calculated from (18) by
considering threshold masses as in Table I, the fundamental mass
M� ¼ l�1 ¼ l�1� ¼ 1 TeV, the current LHC luminosity L�
3:65� 1038 m�2 s�1 and the classical black-disk cross section
for each d and value of energy

ffiffiffi
s

p
.

ffiffiffi
s

p
= 90 TeV 91 TeV 92 TeV 94 TeV 100 TeV

d ¼ 5 129 s�1 130 s�1 131 s�1 132 s�1 138 s�1

d ¼ 6 12 yr�1 0:55 h�1 6min�1 23 s�1 51 s�1

d ¼ 7 <1TU
�1 <1TU

�1 <1TU
�1 <1TU

�1 <1TU
�1

FIG. 4 (color online). The ratio of �ðsÞ with and without
threshold masses versus the classical value �r2HðsÞ as a function
of

ffiffiffi
s

p
in M�-units (M� ¼ l�1 ¼ 1016 TeV for d ¼ 3 and M� ¼

l�1 ¼ 1 TeV for d > 3). From top to bottom (solid): d ¼ 3, 4, 5,
6, 7 and 10 without threshold masses M0. Dashed curves take
into account the threshold masses M0. The dotted curve is the
classical black-disk cross section which has the same profile for
any s.
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mation can capture the orders of magnitude of productions
rates even in this limit. As expected, the quantum gravity
corrections of horizon radii result in slightly suppressed
rates.

Estimates of _N for the Myers-Perry definition will not
give higher production rates due to the heavier threshold
masses, as is evident from Table II. Consequently, it may
be interesting to explore the case of the Particle Data
Group definition, whose gravitational coupling constant
turns out to be

G� ! G� ¼ 2d�4

d� 1
�ðd�6Þ=2�ðd=2ÞM1�d� : (28)

Table VI lists the production rates for the case d ¼ 10.
Despite the low threshold mass, we find that at typical LHC
energies the production of black hole turns out to be
improbable: at 14 TeV, roughly one black hole every 60�
106 years would be produced in particle detectors. Because
of the vicinity to the threshold mass, however, the data
strongly vary and already at 16 TeVone finds a promising
value of one black hole per month being produced. The
above results can be improved by using (27), which works
better near threshold and provides tighter constraints. In
this case the maximum LHC beam energy significantly
lowers the production rate to one black hole every 225�
106 years, while at 16 TeVone finds a rate of approximately
one black hole every four months. Table VII shows the
complete results that confirm how the zeroth-order ap-
proximation can be considered valid to estimate orders of
magnitude.

V. FINAL REMARKS

We have presented a first step in modeling black hole
production in a post-semiclassical limit, with quantum
gravity effects being introduced by a minimal length l.
Black production cannot occur among the variety of quan-
tum gravity corrections we have considered, implemented
below their respective threshold masses. We have provided
a complete analysis of the associated cross sections for the
case of NCBHs. The related black hole production rates are
highly sensitive to the value of the threshold masses, which
vary not only according to the number of extra dimensions
but also to the definition of the fundamental mass. Our
results show that microscopic black hole production is not
a likely scenario for energies below 100 TeV with a mini-
mum d ¼ 6 spatial dimensions. However for the case of
Particle Data Group definition of the fundamental mass, we
find that the LHC would be just a couple of TeV below a
reasonable production rate, provided that d ¼ 10. Our
approach assumes the extra-dimensional characteristics
of spacetime are those of the ADD mechanism [33], but
we acknowledge that other terascale gravity models also
produce similar phenomenology, including Randall-
Sundrum [34], ungravity [35], etc. Additionally, even if
we believe to have found the correct method to study these
issues, our conclusions cannot be considered definitive: we
still miss a complete analysis of all the remaining quantum
gravity corrected black holes whose threshold masses
might be at the reach of the LHC. Consequently, our result
can be used by reversing the logic: instead of predicting
production rates, one may determine the correct quantum
gravity theory from experiment, i.e., through the value of
the observed threshold mass for non-negligible production
rates at LHC.
Whatever the case, even in the most pessimistic scenario

such novel phenomenology is still potentially observable in
ultra-high-energy cosmic ray collisions.

ACKNOWLEDGMENTS

J.M. and P. N. would like to thank the Dipartimento di
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TABLE V. The number of black holes per unit of time _N for
d ¼ 6 and

ffiffiffi
s

p ¼ 90–100 TeV. Values of _N have been calculated
from (27) by considering threshold mass M0 ¼ 94 TeV and the
extremal black hole radius r0 ¼ 2:41 TeV�1 as in Table I, the
fundamental mass M� ¼ l�1 ¼ l�1� ¼ 1 TeV and the current
LHC luminosity L� 3:65� 1038 m�2 s�1.

ffiffiffi
s

p
= 90 TeV 91 TeV 92 TeV 94 TeV 100 TeV

d ¼ 6 3:7 yr�1 0:20 h�1 2:2min�1 8 s�1 16 s�1

TABLE VI. The number of black holes per unit of time _N as a
function of

ffiffiffi
s

p
for d ¼ 10, calculated from (18) by considering

threshold mass M0 ¼ 20:3 TeV as in Table III (Particle Data
Group notation), the fundamental mass M� ¼ l�1 ¼ l�1� ¼
1 TeV, the current LHC luminosity L� 3:65� 1038 m�2 s�1

and the classical black-disk cross section for each value of
energy

ffiffiffi
s

p
.

ffiffiffi
s

p
= 10 TeV 14 TeV 16 TeV 17 TeV 20 TeV

d ¼ 10 <1TU
�1 0:016 Myr�1 13 yr�1 2:3 h�1 30 s�1

TABLE VII. The number of black holes per unit of time _N as a
function of

ffiffiffi
s

p
for d ¼ 10, calculated from (27) by considering

threshold mass M0 ¼ 20:3 TeV and the extremal horizon radius
r0 ¼ 2:23 TeV as in Table III (Particle Data Group notation), the
fundamental mass M� ¼ l�1 ¼ l�1� ¼ 1 TeV and the current
LHC luminosity L� 3:65� 1038 m�2 s�1.

ffiffiffi
s

p
= 10 TeV 14 TeV 16 TeV 17 TeV 20 TeV

d ¼ 10 <1TU
�1 0:004 Myr�1 3:2 yr�1 0:52 h�1 6:6 s�1
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