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We explore string and M-theory constructions of holographic theories with Lifshitz scaling exponent z

and hyperscaling violation exponent �, finding a range of z, � values. Some of these arise as effective

metrics from dimensional reduction of certain kinds of null deformations of AdS spacetimes appearing in

the near-horizon geometries of extremal D3-, M2-, and M5-brane theories. The AdS5 solution, in

particular, gives rise to � ¼ 1 in d ¼ 2 (boundary) space dimensions. Other solutions arise as the IIA

D2- and D4-brane solutions with appropriate null deformations, and we discuss the phase structure of

these systems.
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I. INTRODUCTION

Gauge/gravity duality [1] has enabled fascinating explo-
rations of strongly coupled quantum field theories, with
various investigations over the last few years exploring
nonrelativistic and condensed matter systems [2]. These
typically have reduced symmetries compared to anti–
de Sitter space theories. An interesting class of theories
exhibits Lifshitz scaling symmetry of the form t ! �zt,
xi ! �xi, r ! �r, with z the dynamical exponent, and r is
the radial coordinate in the gravity duals,

ds2 ¼ � dt2

r2z
þ dx2i þ dr2

r2
: (1)

These Lifshitz spacetimes arise in effective gravity theories
with a negative cosmological constant with Abelian gauge
fields [3,4], and in various constructions in string theory
[5–13] (see also earlier work [14–18]). A simple subclass
[5,6] of such constructions involves the dimensional re-
duction of null deformations of AdS� X spacetimes that
arise in familiar brane constructions; for instance the
AdS5 � X5 null deformation is of the form

ds2 ¼ 1

r2
½�2dxþdx� þ dx2i þ dr2� þ gþþðdxþÞ2 þ d�2

S;

(2)

with gþþðxþÞ sourced by one or more fields. The long
wavelength geometry upon dimensional reduction along
the xþ direction resembles a z ¼ 2, d ¼ 3þ 1 Lifshitz
spacetime, dual to a 2þ 1-dimensional field theory (see
e.g. [19] for some recent progress on the field theory side).

Effective gravity theories with Abelian gauge fields as
well as scalar fields [3,4,20–27] are in fact quite rich and
have been shown to contain larger classes of solutions
exhibiting interesting scaling properties. In particular,
there exist (zero temperature) metrics with Lifshitz scaling
and hyperscaling violation

ds2 ¼ r�2ð1�ð�=dÞÞð�r�2ðz�1Þdt2 þ dx2i þ dr2Þ: (3)

These metrics, rewritten as ds2 ¼ r2�=dð� dt2

r2z
þ dx2iþdr2

r2
Þ,

can be seen to be conformal to Lifshitz spacetimes (1).
Here d is the ‘‘boundary’’ spatial dimension (i.e. the di-
mension of the xi) and � the hyperscaling violation ex-
ponent. These spacetimes exhibit the scaling

t ! �zt; xi ! �xi; r ! �r; ds ! ��=dds:

(4)

Various interesting discussions in this context, including
condensed matter perspectives, appear in [28,29]. Aspects
of holography for these metrics have been discussed in
[30]. In particular, a basic requirement for obtaining physi-
cally sensible dual field theories is the null energy condi-
tion T��n

�n� � 0, n�n
� ¼ 0, which gives using the

Einstein equations G�� ¼ T��,

ðd� �Þðdðz� 1Þ � �Þ � 0; ðz� 1Þðdþ z� �Þ � 0:

(5)

It is interesting to look for configurations in string theory
which in certain limits give rise to effective spacetime
descriptions of the form (3). Indeed the authors of [30]
already made the interesting observation that black
Dp-brane supergravity solutions that arise naturally in
string theory give rise to effective Lorentz invariant
(z ¼ 1) metrics with nontrivial hyperscaling violation.1

Condensed matter motivations apart, it is useful to explore
the space of possible spacetimes (3) and Lifshitz and
hyperscaling violation exponents z, � that arise from
string/brane configurations. With this perspective, we
study various classes of null deformations of AdS spaces
in string andM theory here and argue that they give rise to
effective metrics (3) with a range of nontrivial z, � expo-
nents. Some of these (Sec. II) comprise the dimensional

1Note that this has parallels with discussions in [23]. We have
also been informed that the solutions in [22] [similar to (3)] have
string constructions in [24], with broken scaling related to
dimensional reduction.
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reduction of null normalizable deformations of the form
of AdS shock waves. In this class, the null normalizable
deformation for AdS5 (arising from the extremal limit of
D3-brane stacks) gives rise to a solution with d ¼ 2, z ¼ 3,
� ¼ 1; this is thus in the family � ¼ d� 1, which has been
argued to correspond to a gravitational dual of a theory
containing hidden Fermi surfaces, as discussed in [28,29].
Others arise from the type-IIA string description of null
deformations of (extremal) M2- and M5-brane solutions in
M theory (Sec. III). These latter supergravity solutions are
best regarded as good descriptions in some regime of the
full phase structure of these theories along the lines of [31].

Dimensional reduction.—In what follows, we will dis-
cuss the dimensional reduction of various higher dimen-
sional spacetimes to obtain appropriate metrics of the
form (3), so we state the basic expressions we use. Con-
sider a (higher dimensional) metric ds2 ¼ gD��dx

�dx� þ
hðx�Þd�2

DI
that we want to dimensionally reduce on the

‘‘internal’’ DI-dimensional � space to obtain an effective
D-dimensional theory; here the warp factor for the internal
space depends only on the D-dimensional spacetime coor-
dinates x�. This has an effective action of the schematic

form S� R
dDx

ffiffiffiffiffiffi
gD

p
hDI=2ðRþ . . .Þ; to go to the effective

Einstein frame, we perform aWeyl transformation gDE;�� ¼
e2�gD��, with RE ¼ e�2�ðRþ . . .Þ. Thus we obtain a

D-dimensional spacetime with Einstein metric

ds2 ¼ gD��dx
�dx� þ hðx�Þd�2

DI
! ds2E

¼ hDI=ðD�2Þg��dx
�dx�: (6)

II.AdS5 NULLNORMALIZABLEDEFORMATIONS
AND HYPERSCALING VIOLATION

The gravity/fiveform sector of IIB string theory contains
as a solution the spacetime

ds2 ¼ R2

r2
½�2dxþdx� þ dx2i þ dr2�

þ R2Qr2ðdxþÞ2 þ R2d�2
5;

R4 � g2YMN�02; (7)

with no other sources, with Q a parameter of dimension
(boundary) energy density, and d�2

5 being the metric on S5

(or other Einstein space). Equivalently, the 5-dimensional
part of the metric is a solution to RMN ¼ � 4

R2 gMN arising

in the effective 5-dimensional gravity system with negative
cosmological constant. This is essentially a deformation of
the familiarAdS5 � S5 solution arising as the near-horizon
geometry of N D3-branes stacks (in the extremal limit),
with the boundary metric modification being �gþþ �
1
r2
Oðr4Þ. From the dual N ¼ 4 super Yang-Mills point

of view, this is thus a normalizable deformation [32] and
appears to be a nontrivial state of the gauge theory (by
comparison, the solutions (2) comprise non-normalizable

deformations). These solutions are of the form of shock
waves in AdS and have been studied elsewhere e.g. [33,34]
(see also [35]). This metric (7) has also appeared in [11], as
a certain double-scaled ‘‘zero temperature’’ limit of a black
3-brane solution, and some properties of this solution have
been discussed there.
Here we argue that upon dimensional reduction along a

compactified xþ direction, the resulting metric is confor-
mal to z ¼ 3 Lifshitz spacetimes in bulk 3þ 1 dimensions,
the conformal factor giving rise to hyperscaling violation.
Indeed the 5-dimensional part of the metric (7) can be
rewritten as (relabelling x� � t)

ds2 ¼ R2

�
� dt2

Qr6
þ dx2i þ dr2

r2
þQr2

�
dxþ � dt

Qr4

�
2
�
:

(8)

Then along the lines of [5,6], we regard the xþ direction
as compact2 and dimensionally reduce on it, using (6). This
gives the effective (bulk) 3þ 1-dimensional Einstein
metric

ds2E ¼ ðR2Qr2Þ1=ð4�2ÞR2

�
� dt2

Qr6
þ dx2i þ dr2

r2

�

¼ R3
ffiffiffiffi
Q

p
r

�
� dt2

Qr4
þ dx2i þ dr2

�
; (9)

electric gauge field A ¼ � dt
Qr4

, and scalar e� � r. (Closely

related solutions have also been discussed in appropriate
dimensional reductions of certain limits of Schrodinger
solutions [36].) We have retained the nontrivial scales R,
Q to illustrate their higher dimensional origin. This dimen-
sionally reduced metric has boundary spatial dimension
d ¼ 2 and is of the form (3) with

2

�
1� �

2

�
¼ 1 ) � ¼ 1 ¼ d� 1;

2ðz� 1Þ ¼ 4 ) z ¼ 3: (10)

The family � ¼ d� 1 has been argued to correspond to a
gravitational dual description of a theory with hidden
Fermi surfaces [28,29] (see also [30]). It would thus be
interesting to obtain a deeper understanding of the present
brane configuration.
We note that the higher dimensional metric (7) exhibits

xþ translations and the scaling symmetry

xi ! �xi; r ! �r;

x� ! �3x�; xþ ! ��1xþ; (11)

while that of (9) are (4) with d ¼ 2, z ¼ 3, � ¼ 1. Thus we
see that the higher dimensional metric exhibits z ¼ 3

2We note that gþþ > 0 implies that constant x� surfaces are
spacelike while constant xþ surfaces are null, somewhat similar
to (2) discussed in [5,6]; thus x� is the natural time coordinate.
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Lifshitz scaling in the t, xi, r subspace, while the hyper-
scaling violation arises from the xþ-dimensional reduction.

From the higher dimensional point of view, the space-
time (7) is asymptotically AdS5: from the lower dimen-
sional perspective, we have an asymptotically Schrodinger
spacetime arising from the xþ discrete light cone quantiza-
tion of AdS5 in light cone coordinates [37]. In this context,
it is worth noting that there is in fact a slightly bigger class
of solutions in a gravity-dilaton family with a nonzero gþþ
containing both normalizable and (dilaton� sourced) non-
normalizable pieces,

ds2 ¼ R2

r2
½�2dxþdx� þ dx2i þ dr2�

þ
�
1

4
R2ð�0Þ2 þQR2r2

�
ðdxþÞ2 þ R2d�2

S;

� ¼ �ðxþÞ: (12)

In the lower dimensional viewpoint, these interpolate
between an asymptotic z ¼ 2 3þ 1-dimensional Lifshitz
spacetime (2) [5] for small r and the z ¼ 3, � ¼ 1 hyper-
scaling violating metric (9) above for large r. It may be
interesting to explore such interpolating solutions further;
in this context, the metric (9) would appear as an effective
IR metric with some UV completion.

A. Holographic stress tensor, scalar modes

The holographic stress tensor [38–42] for these AdS
shock-wave-like spacetimes has been discussed in e.g.
[33,34]. To quickly review, consider an asymptotically
AdS solution to Einstein gravity with negative cosmologi-
cal constant, with metric of the form (we set R ¼ 1 for
convenience here)

ds2 ¼ dr2

r2
þ h��dx

�dx�

¼ dr2

r2
þ 1

r2
ðgð0Þ�� þ r2gð2Þ�� þ r4gð4Þ�� þ . . .Þdx�dx�

ðr ! 0Þ; (13)

in the Fefferman-Graham expansion about the boundary
r ¼ 0. Then holographic renormalization methods [41,42]
give rise to relations between the metric coefficients

gð0Þ��; g
ð2Þ
��; g

ð4Þ
��; . . . , and physical observables such as the

holographic stress tensor. In particular, for a flat boundary
metric, we have

gð0Þ�� ¼ 	�� ) gð2Þ�� ¼ 0; hT��i ¼ 1

4
G5

gð4Þ��: (14)

For the AdS5 shock wave spacetime (7), this gives Tþþ �
const. This can be checked directly also [38] by defining
the quasilocal stress tensor as ��� ¼ 2ffiffi

h
p �I

�h�� , where h�� is

the induced boundary metric on the timelike near-

boundary surface at r ¼ const, and I ¼ Ibulk þ Isurf þ

Ict ¼ 1
16
G5

R
M d5x

ffiffiffiffiffiffiffi�g
p ðR þ 12Þ � 1

8
G5

R
@M d4x

ffiffiffi
h

p �
ðK þ 3Þ is the total action including the surface term and
counterterm engineered to remove near-boundary (r ! 0)
divergences (with a flat boundary metric), and K ¼
h��K�� is the trace of the extrinsic curvature K��. Then

the quasilocal stress tensor and the gauge theory stress
tensor expectation value are

��� ¼ 1

8
G5

ðK�� � Kh�� � 3h��Þ;

hT��i ¼ lim
r!0

1

r2
���; (15)

where the overall 1
r2
factor arises from a regulated definition

of the (induced) boundary metric. For (7), the only depar-
tures from theAdS5 expressions are in fþþg components,3

and we have

K�� ¼ � 1

r2
	�� þQr2��;þ��;þ ) Tþþ ¼ 2Q

8
G5

; (16)

in agreement with the result above. Thus these shock
wave spacetimes correspond to a wave on the boundary
with nonzero constant energy momentum component
Tþþ.
Now we consider a massless scalar field probe propagat-

ing in the 5-dimensional part of the spacetime (7): the
action S ¼ R

d5x
ffiffiffiffiffiffiffi�g

p
g��@��@�� for modes with no xþ

dependence (@þ� ¼ 0) simplifies to

Z
d4x

dxþ

r5
ð�Qr6ð@��Þ2þr2ð@i�Þ2þr2ð@r�Þ2Þ; (17)

which is seen to map to that for a scalar in the background
(9).

B. General AdSD null normalizable deformations

Along the lines above, we have the (purely gravitational)
AdSD deformation,

ds2 ¼ R2

r2
½�2dxþdx� þ dx2i þ dr2� þ R2QrD�3ðdxþÞ2;

(18)

the xi being d-dimensional (boundary) spatial coordinates,
and D ¼ dþ 3, with Q a parameter of dimension energy
density in ðD� 1Þ dimensions. This is a solution to RMN ¼
� D�1

R2 gMN , i.e. to gravity with a negative cosmological

constant, and has the interpretation of an AdSD shock
wave along the lines of the previous sections. In particu-
lar, this includes the null normalizable deformations of
the M2-brane AdS4 � X7 and M5-brane AdS7 � X4 solu-
tions in M theory, dimensionally reduced on the X11�D

3The extrinsic curvature is K�� ¼ � 1
2 ðr�n� þr�n�Þ, where

n� is the outward pointing unit normal to the surface r ¼ const.
With r ¼ 0 being the boundary here, we have n ¼ � dr

r , giving
K�� ¼ r

2h��;r.
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space. Recalling that conformal dimensions satisfy
�ð��Dþ 1Þ ¼ m2R2 for AdSD, we see that these are
also normalizable deformations, the boundary metric
being deformed as �gþþ � 1

r2
OðrD�1Þ. This metric (18)

exhibits the scaling symmetry

xi ! �xi; r ! �r; x� ! �2þd=2x�;

xþ ! ��d=2xþ: (19)

Relabelling x� � t, the solution (18) can be rewritten
as

ds2¼R2

�
� dt2

QrDþ1
þdx2i þdr2

r2
þQrD�3

�
dxþ� dt

QrD�1

�
2
�
;

(20)

and dimensionally reduced on the xþ dimension using
(6) to obtain

ds2E ¼ R2ðR2QÞ1=ðD�3Þ

r

�
� dt2

QrD�1
þ dx2i þ dr2

�
: (21)

The dimensionally reduced metric above has boundary
spatial dimension d ¼ D� 3 and is of the form (3)
with

z ¼ d

2
þ 2; � ¼ d

2
: (22)

For the special case of d ¼ 2, this � value coincides
with � ¼ d� 1, as we have seen above.

It is worth discussing the general form of the solutions
from the lower dimensional point of view (the numerical
constants ‘‘#’’ below can be fixed); the D-dimensional
action reduces as

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðDÞ

q
ðRðDÞ�2�Þ¼

Z
dxþdD�1x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðD�1Þ

q
ðRðD�1Þ

�#�e�2�=ðD�3Þ�#ð@�Þ2
�#e2ðD�2Þ�=ðD�3ÞF2

��Þ; (23)

where the scalar is gDD ¼ e2�, the (purely electric)
gauge field is A ¼ � dt

rD�1 and the ðD� 1Þ-dimensional

metric undergoes a Weyl transformation as gðD�1Þ
�� ¼

e2�=ðD�3ÞgðDÞ
�� . It is straightforward to check that the

solution (21) is consistent with the equations of mo-
tion, with the scalar of the form e2� ¼ rD�3. These
are of the general form of the effective actions studied
in [20–27].

III. PHASES OF AdS NULL DEFORMATIONS
IN M THEORY

A. M2 branes with null deformations and D2 branes

Null deformations of AdS4 � X7 solutions obtained
from near-horizon regions of (extremal) M2-brane stacks
in M theory were discussed in [5,6] to obtain z ¼ 2

Lifshitz spacetimes in bulk 2þ 1 dimensions.4 Here we
have5

ds2 ¼ r4

R4
ð�2dxþdx� þ dx2i Þ þ

1

2
R2ð�0Þ2ðdxþÞ2

þ R2 dr
2

r2
þ R2d�2

7;

G4 ¼ 6r5

R6
dxþ ^ x� ^ dx ^ drþ Cd�ðxþÞ ^�3;

R6 � Nl6p;

(24)

with the scalar � ¼ �ðxþÞ (and �0 � d�
dxþ ), C� R3 being

a normalization constant, and �3 is a harmonic threeform
on some Sasaki-Einstein 7-manifold X7. With a trivial
scalar � ¼ const, this is the AdS4 � X7 solution. The
conditions d�3 ¼ 0, d ?�3 ¼ 0, dð?d�Þ ¼ 0 ensure
that the Bianchi identity and the flux equation d ? G4 þ
1
2G4 ^G4 ¼ 0 are satisfied by the fourform flux. In par-

ticular, taking X7 ¼ X3 � X4, and �3 ¼ volðX3Þ, these
are automatically satisfied.
Now let us take the 11-dimensional circle to be in the

X4-space, and study the IIA description of this M2-brane
AdS4-null-deformed system after dimensional reduction
on the 11th circle. Before we do this, let us recall the
standard dimensional reduction of M2 branes to D2 branes
(see e.g. [31]),

ds211 ¼ H�2=3dx2k þH1=3ðdr2 þ r2d�2
7Þ

¼ e�2�=3ds210 þ e4�=3ðdx11 þ A�dx
�Þ2; (25)

where ds210, �, A� are the IIA string frame metric, dilaton

and gauge field. With H � R6

r6
, we have the M2 branes

localized in the 8-dimensional transverse space. Taking
the 11th dimension to be compact and small, we can take
H� N

r5
to then dimensionally reduce, as discussed in [31],

and obtain the 10-dimensional D2-brane solution (r now
being the radial coordinate in the seven noncompact trans-
verse dimensions).
In the present case, since the null deformation along the

xþ direction is entirely along the brane world volume
directions, we expect that it simply filters through the
dimensional reduction on the 11th circle and appears along
with dx2k in the reduced metric. To elaborate, the extra

metric component gþþ is unaffected by the harmonic
function being smeared as H ! N

r5
in the 10-dimensional

solution; this extra gþþ is the only modification induced by
the null deformation to the standard dimensional reduction

4The 11-dimensional supergravity equations are RMN ¼
1
12GMB1B2B3

G
B1B2B3

N � 1
144 gMNGB1B2B3B4

GB1B2B3B4 , and the flux
equation d ? G4 þ 1

2G4 ^G4 ¼ 0, along with the Bianchi iden-
tity for G4; see e.g. [43] for conventions.

5In this entire section, we find it convenient to define the radial
coordinate r so that r ! 1 is the boundary of the corresponding
AdS space.
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of the M2 branes to D2 branes, and gives here a D2-brane
solution with null deformation. We then have the 10-
dimensional IIA metric and dilaton

ds2st ¼ r5=2

R5=2
2

�
dx2k þ

R6ð�0Þ2
r4

ðdxþÞ2
�

þ R5=2
2 dr2

r5=2
þ R5=2

2

r1=2
d�2

6;

e� ¼ gs
R5=4
2

r5=4
; R5

2 � g2YMN�03; g2YM ¼ gsffiffiffiffiffi
�0p ;

R6 � Nl6P � gsR
5
2

ffiffiffiffiffi
�0p
; (26)

with r now the radial coordinate in the seven noncompact

transverse dimensions (and we have used the relation lP ¼
g1=3s

ffiffiffiffiffi
�0p

between the 11-dimensional Planck length, the
string coupling, and the string length). We recall that the
scalar� here arises from the fourform flux; for� ¼ const,
this is the usual D2-brane supergravity solution [31,44],

with Fð4Þ
þ�ir � r4

R5
2

. The solution (26) can be checked inde-

pendently from the IIA supergravity equations of motion.
Note first that the M-theory G4-flux deformation in (24)
has no components along the 11th circle and thus reduces
in IIA to simply a deformation of F4 ¼ dA3. This means
that the effective action we need to study is simply of the
form S10 �

R
d10x

ffiffiffiffiffiffiffi�g
p ½e�2�ðRþ ðr�Þ2Þ � jF4j2�, with

the modifications arising only in the metric and F4. Since
the F4 modification is lightlike with nonzero Fþi1i2i3

alone, the equation of motion for F4 is automatically
satisfied. The equations of motion thus differ from those
of the usual D2-branes solution only in Rþþ �
e2�ðFþABCF

ABCþ � #gþþF2
4Þ, which can be seen to be

consistent. The resulting 10-dimensional spacetime is a
consistent solution, independent of any compactification
on the xþ direction. The 10-dimensional Einstein metric
here is

ds2E ¼ e��=2ds2st

¼ r25=8

R25=8
2

�
dx2k þ

R6ð�0Þ2
r4

ðdxþÞ2
�
þ R15=8

2

dr2

r15=8

þ R15=8
2 r1=8d�2

6: (27)

Keeping the xþ direction noncompact, we dimensionally
reduce this metric on the S6 using (6) (with dimensionless

conformal factor h ¼ r1=8

R1=8
2

, so as to obtain an effective

metric of the right physical dimension); this gives

ds2E;4d ¼ r7=2

R7=2
2

ð�2dxþdx� þ dx2i Þ þ
R6ð�0Þ2
R7=2
2 r1=2

ðdxþÞ2

þ R3=2
2

dr2

r3=2
: (28)

Now for � ¼ const, we see that this metric is of the form
(3) with z ¼ 1, � ¼ � 1

3 , in agreement with [30]. For�0 �

0, let us now consider compactifying the xþ dimension
to obtain, using (6), relabelling x� � t, and redefining

d�� r�5=2dr,

ds2E;3d ¼ c1�
�2ð�c2�

�8=3dt2 þ dx2 þ d�2Þ; (29)

with dimensionful constants c1, c2. Now d ¼ 1 and this is
of the form (3) with z ¼ 7

3 , � ¼ 0. This is simply a Lifshitz

spacetime with no hyperscaling violation. We note that
this dimensional reduction is not standard Kaluza-Klein
reduction, but we expect that the long wavelength geome-
try (e.g. for zero modes on the xþ circle) is of the above
form, along the lines of [5].
It is worth mentioning that the 10-dimensional solution

(26) approaches the standard D2-brane solution for large r,
i.e. in the UV. Far in the UV, the supergravity solution
breaks down and perturbative 2þ 1-dimensional super
Yang-Mills theory (with a null deformation) is a good
description; it would be interesting to understand this
deformation of the gauge theory better. We recall that in
the IR, the dual field theory description is expected to be a
discrete light cone quantization of an appropriate lightlike
deformation of the M2-brane Chern-Simons theory [45].
As a 10-dimensional solution (27), we see that the size

of the xþ dimension (Einstein frame, with coordinate size

Lþ) and that of the 11th circle compare as Rþ
R11

¼
ffiffiffiffiffiffiffi
gþþ

p
Lþ

e2�=3lP
�

r19=48 R3�0Lþ
R115=48
2

lP
. Thus the xþ circle is large relative to the 11th

circle for r sufficiently large; in this intermediate regime,
an xþ compactification in the 10-dimensional D2-brane
solution appears sensible.

B. M2 branes with null normalizable deformations

In this case, the G4 flux is the same as for the usual M2-
brane solution while the metric (18) with d ¼ 3 can be
recast as (after reinstating the X7)

ds2 ¼ r4

R4
ð�2dxþdx� þ dx2i Þ þ

QR5

r2
ðdxþÞ2

þ R2 dr
2

r2
þ R2d�2

7;

G4 ¼ 6r5

R6
dxþ ^ x� ^ dx ^ dr; R6 � Nl6P: (30)

On the IIA dimensional reduction as described previously,
this gives the 10-dimensional string frame metric and
dilaton for D2 branes with null normalizable deformation
[with R2 etc. defined in (26)]

ds2st ¼ r5=2

R5=2
2

�
dx2k þ

QR9

r6
ðdxþÞ2

�
þ R5=2

2

dr2

r5=2
þ R5=2

2

r1=2
d�2

6;

e� ¼ gs
R5=4
2

r5=4
: (31)

This is consistent with the IIA supergravity equations of
motion; the only new piece is Rþþ ��e2�gþþF2

4, which
can be seen to be consistent. Dimensionally reducing the
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10-dimensional Einstein metric on the S6 and compactify-
ing the xþ dimension, using (6), we obtain

ds2 ¼ c1�
�2=3ð�c2�

�4dt2 þ dx2 þ d�2Þ; (32)

with dimensionful constants c1 ¼ QR9

R16=3
2

, c2 ¼ R10
2

QR9 . This

effective metric is of the form (3) with d ¼ 1, z ¼ 3,
� ¼ 2

3 .

The 10-dimensional gravity solution breaks down in the
far UV, where perturbative super Yang-Mills theory is a
good description; the null normalizable deformation would
appear to be a shock-wave-like state in the gauge theory.

In the 10-dimensional Einstein metric, the size of the xþ

dimension and the 11th circle compare as Rþ
R11

¼
ffiffiffiffiffiffiffi
gþþ

p
Lþ

e2�=3lP
�

1
r49=24

QR9

R95=24
2

Lþ
lP
. It thus appears that for r sufficiently small,

there exists a regime of scales where an xþ compactifica-
tion in the 10-dimensional solution is sensible.

These solutions thus are of the form of null-deformed
D2-brane systems, which flow from the xþ-dimensional
reduction of a UV perturbative super Yang Mills regime
through a IIA supergravity region to an 11-dimensional
AdS4 � X7 null-deformed phase in the IR.

C. M5 branes with null deformation and D4 branes

We have the null deformation for the AdS7 � X4 solu-
tion (i ¼ 1 . . . 4) obtained from the near-horizon region of
(extremal) M5-brane stacks in M theory,

ds2 ¼ r

R
½�2dxþdx� þ dx2i � þ R2ð�0Þ2ðdxþÞ2 þ R2 dr

2

r2

þ R2d�2
4;

G4 ¼ CvolðX4Þ þ C0d�ðxþÞ ^H3; R3 � Nl3P;

(33)

(C, C0 being constants), i.e. H3 is a harmonic form
(dH3 ¼ 0, d ? H3 ¼ 0), and the 11-dimensional spacetime
is of the form AdS7 � X4, with X4 of the form X4 � X3 �
S1. In particular, we can take H3 ¼ volðX3Þ as the volume
form on X3. This thus reduces to the effective gravity-
scalar system corresponding to an AdS7-null deformation,
with the equation RMN ¼ �6gMN þ 1

2@M�@N�, M,

N ¼ �, r.
The M5-brane solution without any null deformation

arises as ds211 ¼ H�1=3dx2k þH2=3dx2? with H � R3

r3
in the

near-horizon region. Using the second equation in (25) and
dimensionally reducing the null-deformed solution (33) on
the 11th circle with the M5s wrap, we obtain the 10-
dimensional dilaton and string frame metric for D4 branes
with null deformation

ds2st ¼ r3=2

R3=2
4

�
dx2k þ

R3ð�0Þ2
r

ðdxþÞ2
�

þ R3=2
4

dr2

r3=2
þ R3=2

4 r1=2d�2
4;

e� ¼ gs
r3=4

R3=4
4

; R3
4 � g2YMN�0; g2YM � gs

ffiffiffiffiffi
�0p
:

(34)

This can be seen independently from the IIA super-
gravity equations too. We first note that the M-theory
G4-deformation above has no components along the 11th
circle. Therefore, as before in the case of D2 branes, this
deformation reduces in IIA to purely a modification of
F4 ¼ dA3, with an effective 10-dimensional action S10 �R
d10x

ffiffiffiffiffiffiffi�g
p ½e�2�ðRþ ðr�Þ2Þ � jF4j2�, the modifications

arising only in the metric and F4. Since the F4 modification
is lightlike with nonzero Fþi1i2i3 alone, the equation of

motion for F4 is automatically satisfied. The equations of
motion thus differ from those of the usual D4-branes
solution only in Rþþ � e2�ðFþABCF

ABCþ � #gþþF2
4Þ,

which can be seen to be consistent. Dimensionally reduc-
ing the 10-dimensional Einstein metric on the S4, using (6),
we obtain a 6-dimensional metric that, for � ¼ const, is of
the form (3) with d ¼ 4, z ¼ 1, � ¼ �1, in agreement with
[30]. Now with �0 � 0, we compactify the xþ-direction
obtaining the effective 5-dimensional metric

ds2E ¼ c1�
�8=3ð�c2�

�2dt2 þ dx2i þ d�2Þ; (35)

with dimensionful constants c1, c2. This is of the form (3)
with d ¼ 3, z ¼ 2, � ¼ �1. This is again not standard
Kaluza-Klein reduction, but we expect the long wave-
length geometry to be of the above form, along the lines
of [5]. We expect a range of scales for the regime of
validity of the xþ compactification of the 10-dimensional
solution, as before.

D. M5 branes with null normalizable deformations

The AdS7 � X4 null normalizable solution (18) can be
recast as

ds2 ¼ r

R
½�2dxþdx� þ dx2i � þ

QR8

r2
ðdxþÞ2

þ R2 dr
2

r2
þ R2d�2

4;

G4 ¼ CvolðX4Þ; (36)

with Q of dimension energy density in six dimensions.
Then after dimensional reduction to IIA, we obtain the 10-
dimensional dilaton and string frame metric for D4 branes
with null normalizable deformation
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ds2st ¼ r3=2

R3=2
4

�
dx2k þ

QR9

r3
ðdxþÞ2

�

þ R3=2
4

dr2

r3=2
þ R3=2

4 r1=2d�2
4;

e� ¼ gs
r3=4

R3=4
4

: (37)

In the IIA supergravity equations, the only new piece is
Rþþ ��e2�gþþF2

4, which can be seen to be consistent.
Dimensionally reducing the 10-dimensional Einstein met-
ric on the S4, using (6), and then compactifying the xþ
direction, we obtain

ds2E ¼ c1�
�4=3ð�c2�

�6dt2 þ dx2i þ d�2Þ; (38)

with c1 � R1=3
4 ðQR9Þ1=3, c2 � R9

4

QR9 . This is of the form (3)

with d ¼ 3, z ¼ 4, � ¼ 1
3 .

The 10-dimensional gravity solution breaks down in the
IR where perturbative super Yang-Mills theory with null
deformation is expected to be a good description. We
expect this to be a shock-wave-like state in the gauge
theory. In the UV, the description is in terms of null
deformations of M5-brane AdS7 � X4 solutions, or equiv-
alently null deformations of the dual (2,0) superconformal
M5-brane theory. It would thus appear that the dimensional
reduction along the 11th circle and the xþ direction effec-
tively yields a 3þ 1-dimensional nontrivial field theory. It
would be interesting to understand this better.

IV. DISCUSSION

We have studied various string/brane configurations and
argued that they give rise to effective metrics of the form
(3) with Lifshitz scaling and hyperscaling violation. The
AdS5 null normalizable deformation (9) corresponds to
d ¼ 2, z ¼ 3, � ¼ 1, lying in the family � ¼ d� 1, which
has been argued [28,29] to be a gravitational dual of a
theory with hidden Fermi surfaces. Clearly the construc-
tions here are by no means an exhaustive classification; we
expect that there exist various others too. We expect that
these deformations being lightlike preserve some super-
symmetry since the original brane solutions themselves are
half-BPS; it would be useful to clarify this.
It is interesting to note that the various z, � values

appearing in the effective metrics (9) and (21), (29) and
(32), (35) and (38), all satisfy the null energy conditions
(5). This is perhaps not surprising sincewe are starting with
reasonable matter in string andM theory. It is worth noting
that the null normalizable deformations have � > 0, while
the null non-normalizable solutions have � � 0; it would
be interesting to understand if there is some general corre-
lation here. It is also worth noting that some of the solu-
tions here, e.g. (29) (and others with d ¼ 1), have
d� 1 � � � d, and thus are expected to have violations
of the area law for entanglement entropy. We hope to
explore these further.
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