
Rolling tachyons for separated brane-antibrane systems
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We consider tachyon condensation between a D-brane and an anti–D-brane in superstring theory, when

they are separated in their common transverse directions. A simple rolling tachyon solution, which

describes the time evolution of the process, is studied from the point of view of boundary conformal field

theory. By computing the boundary beta functions of the system, one finds that this theory is conformal

and hence corresponds to an exact solution of the string theory equations of motion. By contrast, the time-

reversal-symmetric rolling tachyon is not conformal. These results put constraints on the space-time

effective actions for the system.
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I. INTRODUCTION

Annihilation of D-branes of opposite Ramond-Ramond
charge is one of the fundamental processes of string theory.
Tachyon condensation on brane-antibrane systems also has
important cosmological applications, either as a tractable
model of a time-dependent process in string theory, or
concretely in D-brane inflation models [1]. It also appears
in holographic models of QCD, to describe chiral symme-
try breaking [2].

Whenever the distance between the branes is smaller than
the critical value rc, the ground state in the brane-antibrane
open string sectors becomes tachyonic. It was conjectured
long ago that the condensation of this complex-valued
tachyon leads to the closed string vacuum, corresponding
to the minimum of the tachyon potential [3] and partially
confirmed by string field theory computations [4].

In the case where the brane and the antibrane are coinci-
dent in their common transverse directions, this system has
been thoroughly studied using background-independent
string field theory [5–7]. In this approach, one considers
the two-dimensional world-sheet-conformal field theory on
the disk withmarginal and relevant boundary perturbations.
It allows one to compute the exact off-shell tree-level
tachyon potential [8,9].

On-shell configurations corresponding to real-time
tachyon condensation on unstable D-branes are also of
interest, especially whenever the boundary conformal field
theory (BCFT) is known. For unstable D-branes, a first
type of solution, known as the full S-brane was found by
Sen and represents a time-reversal symmetric process [10].
The second type of solution, known as the half S-brane

[11,12], represents the more realistic case of a tachyon
starting, from t ! �1, at the maximum of its potential.
It is straightforward to extend these results to coincident
brane-antibrane pairs.
Although the gradient of the tachyon field on the rolling

tachyon solutions is very large, it should make sense to
consider a space-time effective action that describes slowly
varying perturbations thereof. Remarkably, as was shown
by Kutasov and Niarchos [13], it is possible to find
unambiguously the effective action for the tachyon and
its first derivative asking only that (i) the rolling tachyon
discussed above is a solution to its equations of motion and
that (ii) the on-shell Lagrangian on this solution is equal to
the disk partition function with the timelike zero-mode
unintegrated. Upon a simple field redefinition, it coincides
also with the Tachyon-Dirac-Born-Infeld action that was
earlier proposed by Garousi [14],1 and is able to reproduce
correctly N-point tachyon amplitudes [17].2

Surprisingly, not much of this program has been carried
out for the system of a D-brane and an anti–D-brane at
finite distance—letting aside the even more interesting and
challenging case of brane-antibrane scattering. The brane
separation is a modulus at tree level, even though a brane-
antibrane potential is generated at one string loop [19].
Hence, we can ask whether tachyon condensation at fixed
separation is possible. One may expect different space-
time physics compared to the coincident case, especially
in the limit where the absolute value of the tachyon mass is
small in string units.
With cubic string field theory, an approximation of the

tachyon potential as a function of the fixed brane-antibrane
separation r was computed a few years ago using level
truncation at next-to-leading order in Ref. [20]. In
background-independent string field theory, the framework*israel@iap.fr
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1Ramond-Ramond couplings were added to this action in
Refs. [15,16].

2A different and interesting approach to tachyon effective
actions on brane-antibrane pairs was given in Ref. [18].

PHYSICAL REVIEW D 85, 106002 (2012)

1550-7998=2012=85(10)=106002(24) 106002-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.106002


for studying the T-dual configuration—a brane-antibrane
pair compactified along a world-volume direction, with a
relative Wilson line—was set in the works [21,22]. There,
the world sheet action of the system, including the back-
ground space-time gauge fields along with the complex
tachyon, was set. Unfortunately, the Abelian gauge field
T-dual to r was set to zero in order to simplify the path-
integral computation.3

Finally, the half S-brane rolling tachyon solution de-
scribing condensation at fixed, finite distance is not really
understood, let alone the effective action of which it should
be a solution. In Ref. [20], this problem was studied using
conformal perturbation theory, which is expected to be
valid, in space-time terms, for very early times at the onset
of tachyon condensation. Surprisingly, it was found that the
boundary interaction corresponding to the rolling tachyon
ceases to be marginal for a countable set of values of jrj
larger than rc=

ffiffiffi
2

p
.

In this note, we show that, taking into particular account
the effect of contact terms that are dictated by world sheet
supersymmetry, the rolling tachyon boundary interaction
seems to be exactly marginal for all values of jrj below the
critical separation. Study of beta functions for the system
illuminates the crucial role of the contact term. The latter is
able to cancel the powerlike short-distance singularity that
arises at second order in perturbation theory for jrj> 1=2.
At fourth order, it cancels all but one powerlike singularity

that is present for jrj> ffiffiffi
7

p
=4, for which an higher-order

contact term is needed. Nevertheless, the potentially dan-
gerous logarithmic singularities, which could occur for
certain values of jrj, vanish by themselves without the
help of the contact term.

We find that the beta functions of the theory are zero to

all orders for jrj< ffiffiffiffiffiffi
17

p
=6, while for larger values of jrj,

they vanish at least up to order five in perturbation theory.
Thus, we expect that the perturbative expansion in the
boundary tachyon perturbations does not break conformal
invariance on the boundary, for any subcritical separation.

Unexpectedly, we find that the full S-brane rolling
tachyon is not a boundary conformal field theory, for any
nonzero separation between the branes. In that case, the
beta-function for the distance-changing boundary operator
does not vanish. It implies that the corresponding space-
time tachyon profile is not a solution of the equations of
motion. It seems nevertheless that a more general solution
than the half S-brane exists, for which the tachyon starts
from and comes back to the tachyon vacuum; its physical
meaning is not obvious though, since the phase of the
complex tachyon cannot stay constant.

From these results, we learn that there should exist a
space-time effective action for the system, which is valid

for any 0 � jrj< rc (to be more precise, the effective
action for the tachyon and distance field should admit a
solution where the distance is a constant). Effective actions
were proposed in the past by Sen [24] and Garousi [25].
However, its domain of validity is not clear. Indeed, it does
not allow as a solution a tachyon condensation at fixed
distance, even in the regime of small brane separation in
string units.
Imposing the existence of the half S-brane solution at

fixed distance fixes the effective action up to second order
in the tachyon field. In order to get the fully explicit
effective action around this rolling tachyon at fixed
distance without further hypothesis, we can proceed as
Ref. [13] and try to fix all the coefficients of a generic
first-order Lagrangian expressed in power series. It fails
to give a single answer for two reasons. First, as the full
S-brane solution seems to not be allowed, the constraints
from the tachyon equations of motion are weaker. Second,
wewould need to compute the disk partition function, to all
orders in the tachyon coupling; for a generic distance,
analytical results for the perturbative integrals seem out
of reach, from the fourth order.
This work is organized as follows. In Sec. II, we give

some background on the brane-antibrane world sheet
action on the disk, emphasizing the role of the Fermi
multiplets which realize the Chan-Patton degrees of free-
dom. In Sec. III, we discuss the role of contact terms in
canceling the divergences that arise when tachyon pertur-
bations collide. In Sec. IV, we examine the system from the
point of view of boundary renormalization group flow and
obtain our main results about the marginality of the rolling-
tachyon profile. Finally, in the discussion, we give the
implications of our results for space-time effective actions.
Some lengthy computations are given in the appendices.

II. BRANE-ANTIBRANE WORLD SHEETACTION

In this section we discuss in detail the boundary world
sheet action of the brane/antibrane system, and set our
conventions.

A. Superspace action on the disk

As a starting point, one considers the world-sheet
action for coincident D1-brane and anti-D1-brane wrapped
around a circle in a compactified direction Y, T-dual to
the system of interest. We set �0 ¼ 1 everywhere in the
following .
The N ¼ ð1; 1Þ superspace action on the disk was

written in Refs. [21,22,26], including the coupling to back-
ground gauge and tachyon fields. In the present context,
one considers nontrivial Wilson lines along the circle,
T-dual to the brane positions x1 and x2 along X, the T-dual

of Y. They naturally appear in the form xð�Þ ¼ x1 � x2.
Setting aside the ‘‘spectator’’ dimensions, one considers

a pair of N ¼ ð1; 1Þ superfields on the disk, one timelike
(X0) and the other compactified on a circle (Y), with

3Using these results, the space-time effective action with non-
zero gauge field profileswas conjectured inRef. [23] as a plausible
covariantization; however, it was not derived from first principles.
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e.g. X0 ¼ X0 þ iffiffi
2

p ð�c 0 þ �� �c 0Þ þ � ��F0. The superspace

coordinates are denoted as ẑ ¼ ðz; �; ��Þ.
At the boundary of the disk, the Grassmann coordinates

satisfy the boundary condition � ¼ � ��. The algebra of the
Chan-Patton factors for the brane-antibrane system is con-
veniently implemented by the canonical quantization of
boundary fermions [27] (see below). These boundary fer-
mions are the bottom components of Fermi superfields of
the boundary N ¼ 1 superspace. For the brane-antibrane
system, one needs a complex superfield

�� ¼ �� þ �F�: (1)

with �� ¼ ð�þÞ�.
Then the world-sheet action on the disk,4 including the

tachyon background as well as Wilson lines around the
circle, reads:

SBCFTð�þ; ��Þ ¼ 1

2�

Z
D2

d2zd2�ð�DX0 �DX0 þDY �DYÞ

þ i
I
S1
dud�

xðþÞ

4�
DuY

�
I
S1
dud�

�
�þ

�
Du þ i

xð�Þ

2�
DuY

�
��

� �þTþ � ��T�
�
; (2)

with the measure d2� ¼ d�d ��, the superspace holomor-
phic derivativeD ¼ @� þ �@ and the superspace boundary
derivativeDu ¼ @� þ �@u, with the boundary coordinate u
on S1.5

We consider simple rolling-tachyon profiles of the form

T� ¼ ��

2�
e!X0

; (3)

with 0<! � 1
ffiffiffi
2

p
. In order to get a real action, one

chooses ð�þÞ� ¼ ��. These are actually the tachyons
that we are expecting to be solutions of the space-time
effective action. It is understood in this expression that the
superfield X is taken on the (super)boundary of the disk.

The space-time gauge field Að�Þ ¼ � xð�Þ
4� dy being

locally pure gauge, its minimal coupling to the Fermi
superfields can be absorbed by a ‘‘gauge’’ transformation.6

One has to be careful with this transformation
if Y-dependent insertions appear in the path integral; a
prescription must be chosen (see below):

�� ! ��e�iðxð�Þ=2�ÞY: (4)

After this field redefinition, the boundary Fermi superfields
are free, with the propagator on the real axis:

h�þðẑÞ��ðŵÞi ¼ �̂ðẑ� ŵÞ
¼ �ðz� wÞ � 2�z�w�ðz� wÞ; (5)

with the sign function �ðzÞ ¼ �ðzÞ ��ð�zÞ. This implies
that �ð��Þ ¼ 0, i.e. vanishing conformal dimension.
In terms of these new variables, the world sheet action

(2) reads

SBCFTð�þ;��Þ ¼ 1

2�

Z
D2
d2zd2�ð�DX0 �DX0þDY �DYÞ

þ i
I
S1
dud�

xðþÞ

4�
DuY

�
I
S1
dud�ð�þD����þTþ���T�Þ;

(6)

where the tachyon fields now have the expression

T� ¼ ��

2�
e�iðxð�Þ=2�ÞYþ!X0

: (7)

Conformal invariance of the action at leading order then
imposes

!2 þ
�
xð�Þ

2�

�
2 ¼ 1

2
: (8)

This is the standard mass-shell condition of an open string
tachyon with Uð1Þ �Uð1Þ Wilson lines turned on.
The world-sheet action that describes a system of sepa-

rated brane and antibrane is obtained from the previous
one by a T-duality along y. In the bulk, the superfield Y is
traded for the superfield X that has Dirichlet boundary

conditions. Renaming Y as ~X, the tachyon interaction of
interest reads

T� ¼ ��

2�
e�iðxð�Þ=2�Þ~Xþ!X0

: (9)

Action (6) will be our starting point. In the free theory,
one has two different boundary conditions on the disk
boundary, related to the distinct positions of the branes :

X ¼ xð1Þ or Y ¼ xð2Þ. We introduce the notations

xð�Þ ¼ xð1Þ �xð2Þ ¼ 2�r xðþÞ ¼ xð1Þ þxð2Þ ¼ 2xcm; (10)

where on the first line, r is such that !2 þ r2 ¼ 1=2. On
the second line, xcm is simply the center-of-mass coordi-
nate of the system.

B. Action in components and quantization of the
Fermi superfields

Starting from the action (6), renaming Y as ~X and
integrating over the fermionic coordinates, one gets the
action

4Our convention is that any amplitude is computed with e�S.
5The boundary current superfield DuY is defined to be the

boundary superderivative of Y first taken to the boundary (where
Y has Neumann boundary conditions).

6This is a slight abuse of language, as this is not a gauge
symmetry from the world sheet perspective.
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SBCFTð�þ;��Þ¼ 1

2�

Z
D2
d2zð�@X0 �@X0þ@X �@XÞþ i

I
S1
du

xðþÞ

4�
@u ~Xþ

I
S1
du

�
�þ@u����þ

2�
�þcþTþ���

2�
��c�T�

�

�
I
S1
duðFþF��FþTþ�F�T�Þ; (11)

with

c� ¼ �ir
ffiffiffi
2

p
~c x þ!

ffiffiffi
2

p
c 0 T� ¼ e�ir ~Xþ!X0

: (12)

Auxiliary fields F� are then integrated to give

SBCFTð�þ; ��Þ ¼ 1

2�

Z
D2

d2zð�@X0 �@X0 þ @X �@XÞ þ i
I
S1
du

xðþÞ

4�
@u ~X

þ
I
S1
du

�
�þ@u�� � �þ

2�
�þcþTþ � ��

2�
��c�T� þ "1�4r2 �

þ��

4�2
TþT�

�
: (13)

A contact term at the end of the second line shows up, with
a UV cutoff ". This term, which does not follow from the
equations of motion, contributes nevertheless to correla-
tion functions when 1=2< jrj< 1=

ffiffiffi
2

p
. Its role will be

discussed in Sec. III C.
Finally, as the center-of-mass perturbation completely

factorizes and commutes with any operators in Eq. (13),

one can set xðþÞ ¼ 0 without loss of generality.
Upon quantizing canonically the boundary fermions��,

one recovers the Chan-Patton algebra corresponding to the
brane-antibrane system [22]. It leads to the following
identifications:

�þ , �þ ¼ �1 þ i�2

2

�� , �� ¼ �1 � i�2

2

�þ��ðzÞ , ½�þ; ���
2

¼ �3

2
;

(14)

where now the prescription for the path integral is Z ¼
Tr
R
DXiDc iPe�S½Xi;c i�, which includes a path ordering

for the operator insertions and a trace over the CP factors.
In this context, the tachyon becomes a boundary-changing
operator; when inserted on the boundary of the disk, it
interpolates between the two distinct boundary conditions
corresponding to the brane and to the antibrane.

The world-sheet action on the disk takes finally the form

S¼Sbulk�
I
S1
du

�
�þ

2�
�þ�cþeir ~Xþ!X0

þ��

2�
���c�e�ir ~Xþ!X0 ��þ��

4�2
"1�4r2e2!X0

�
: (15)

III. PERTURBATIVE INTEGRALS AND
CONTACT TERMS

In this section, we discuss in more detail the contact
term, quadratic in the tachyon field, which appears in the

action (6) after integrating out the auxiliary fields from the
Fermi superfields ��, and quantizing their fermionic
components. As was discussed long ago by Green and
Seiberg [28] for closed string correlation functions, contact
terms, dictated by world-sheet supersymmetry, can cancel
unphysical divergences in correlation functions. We shall
see below that it indeed cancels the short-distance singu-
larity when two tachyons perturbations collide in the per-
turbative expansion.

A. Free-field correlators

In order to fix the conventions, we use the following
Green functions on the upper half-plane Hþ for a free-
field X with Dirichlet boundary conditions, and its T-dual
field ~X:

hXðz1ÞXðz2Þi ¼ ��xx

2
lnjz12j2 þ �xx

2
lnjz1�2j2

h ~Xðz1Þ ~Xðz2Þi ¼ ��xx

2
lnjz12j2 � �xx

2
lnjz1�2j2

hXðz1Þ ~Xðz2Þi ¼ ��xx

2
ln
z12
z�1 �2

� �xx

2
ln
z1�2
z�12

;

(16)

with, e.g., z12 ¼ z1 � z2 and z1�2 ¼ z1 � �z2. Finally, the
two-point function for fermions with Dirichlet boundary
condition (b.c.) read

hc xðz1Þc xðz2Þi ¼ �xx

z1 � z2
(17a)

h �c xð�z1Þ �c xð�z2Þi ¼ �xx

�z1 � �z2
(17b)

hc xðz1Þ �c xð�z2Þi ¼ � 	�xx

z1 � �z2
; (17c)

where 	 ¼ �1 corresponds to the spin structure. It corre-
sponds to the boundary conditions for the supercurrent
GðzÞ � 	 �Gð�zÞjz¼�z ¼ 0. For the Virasoro superfield G ¼
Gþ �T, this is naturally associated with the superspace
boundary ðz; �Þ ¼ ð�z; 	 ��Þ. With Neumann b.c., Eq. (17c)
gets a minus sign on the right-hand side.
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Finally, the boundary Green function for a superfield X
with Neumann boundary conditions reads

hXðẑ1ÞXðẑ2Þi=z¼0;�¼	 �� ¼ �2�xx lnẑ12

¼ �2�xx lnðz12 � �1�2Þ; (18)

while it vanishes with Dirichlet b.c.

B. Contact term in the world-sheet action

As was explicited in Sec. II B, upon integrating out the
auxiliary fields F� which appear in the Fermi multiplets
��, one obtains a contact term for the tachyon in the
world-sheet action.

The auxiliary field has the two-point function
hFþðuÞF�ðvÞi ¼ 2�ðu� vÞ. It is regularized at short dis-
tances according to

hFþðtÞF�ðsÞi ¼ 2�ðt� sÞ ! �ðjt� sj � "Þ: (19)

It was shown in Ref. [29] that this point-splitting regulari-
zation that we use preserves world-sheet supersymmetry
(unless one considers bulk-boundary correlators for which
more care is needed).
Then the contact term is given by the following nonlocal

interaction on the disk (with u ¼ eit, v ¼ eis):

1

2

Z 2�

0
dt
Z 2�

0
ds�ðjt� sj � "Þ ??eir ~Xþ!X0ðuÞ ?? ?

?e
�ir ~Xþ!X0ðvÞ ??

¼ 1

2

Z 2�

0
dt
Z 2�

0
ds�ðjt� sj � "Þju� vj2ð!2�r2Þ ?

?e
ir ~Xþ!X0ðuÞe�ir ~Xþ!X0ðvÞ ??

¼ 1

2

�
2 sin

"

2

�
1�4r2 Z 2�

0
ds
�
?
?e

ir ~Xþ!X0ðvþ "Þe�ir ~Xþ!X0ðvÞ ?? þ ?
?e

ir ~Xþ!X0ðvÞe�ir ~Xþ!X0ðvþ "Þ ??
�

� �"!0
"1�4r2

I
S1
du ?

?e
2!X0ðuÞ ??: (20)

By ?
? ?

?
?, we denote the boundary normal ordering (see, e.g., Ref [30]).7 This treatment of the contact term may seem a bit

ad hoc; however, we will find in the next section that the term (20) appears naturally when one considers
the renormalization of the world-sheet action, justifying a posteriori this presentation.

We will use in the next section the contact term on the upper half-plane. It is similarly written as

"1�4r2

2

Z þ1

�1
dv
�
?
?e

ir ~Xþ!X0ðvþ"Þe�ir ~Xþ!X0ðvÞ??þ ?
?e

ir ~Xþ!X0ðvÞe�ir ~Xþ!X0ðvþ"Þ??
�
�"!0

"1�4r2
I
R
dv?

?e
2!X0ðvÞ??: (21)

In order to compute all the counterterms generated from
this contact term, one will need to work with its complete
nonlocal expression, though the dominant term, here the
only divergent one, in its Taylor expansion (in terms of
local operators) is sufficient to compute most of them.
Indeed, it is found that working directly with the dominant
term, a local operator, seems to be equivalent toworkingwith
the complete nonlocal contact term. It may be explained by
the fact that after Taylor expansion of T�ðxþ �Þ and
commutation of the sum and the integral, all other terms
in the series of integrated local operators vanish as � goes
to zero. One may object that we are forgetting subdomi-
nant terms, but, as the UV cutoff is an artifact signaling
our lack of ability to manipulate infinite quantities, it is to
be understood as being strictly equal to zero from the very
beginning. From this point of view, we expect that only
the divergent terms in Eq. (21) contribute. Then it should
be equivalent to use either the dominant (local) term or the
complete (nonlocal) contact term. This statement seems to

be confirmed numerically in the fourth-order computa-
tions of Sec. IV.
As one can see, in the limit " ! 0, when one takes the

UV cutoff to infinity, the contact term vanishes when jrj<
1=2. Therefore, the results of the computations made in
Ref. [24], where the contact term was not taken into
account, remain unchanged.8 It can be seen also by work-
ing directly with the N ¼ 1 boundary superspace ampli-
tudes; the contact terms contributions from the ��
correlators vanish for jrj< 1=2.
However, the contact term diverges when jrj> 1=2.

This contact term may ensure that the amplitudes do not
diverge for jrj> 1=2. The divergence associated with the
contact term, which arises from the fusion of two-tachyon
vertices, corresponds to the unphysical integrated vertex
operator

7We added a 1=2 normalization such that to take into account
the factor 2 coming from the trace over the CP factor, since the
contact term is multiplied by the identity matrix.

8As a side remark, for the rolling tachyon on a non-BPS
D-brane, it was already noticed in Ref. [31] that the contact
terms, which were absent in the original computation of the
partition function performed in Ref. [32], did not contribute to
the final result.
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Z
du

Z
d�� ?

?e
2!X0ðuÞ ?

? ¼
Z

du ?
?e

2!X0ðuÞ ?
?; (22)

which is not supersymmetric. Hence, as in Ref. [28], one
can understand the contact term as necessary to preserve
world-sheet superconformal invariance on the boundary,
when jrj> 1=2. In other words, divergences corresponding
to integrated operators of the form (22) cannot occur for a
consistent, hence super-BRST invariant, superstring world-
sheet theory. We will discuss below higher-order divergen-
ces coming from the fusion of more than two operators, for
which the analysis is more involved.

C. Boundary one-point function

In order to illustrate more precisely the role of the contact
term, we compute the one-point function on the disk for a
tachyon boundary vertex operator. This one-point function
does not have to vanish because of the rolling tachyon
background and contains potentially a divergence at first
order when the inserted tachyon vertex collides with the
integrated tachyon coming from the perturbative expansion.
We will find that the contact term cancels the two-tachyon

divergence for all values of r in the range 1=2< jrj � 1=
ffiffiffi
2

p
.

At first order in the couplings ��, the one-point function
for one of the boundary tachyon vertex operators is given
by the integrated correlator

Trh�� � c�e�ir ~Xþ!X0ðeit1Þi � �	

2�
Tr���	 Z t1

0
dt2hc�e�ir ~Xþ!X0ðeit1Þc	e	ir ~Xþ!X0ðeit2Þi0

þ �	

2�
Tr�	�� Z 2�

t1

dt2hc	e	ir ~Xþ!X0ðeit2Þc�e�ir ~Xþ!X0ðeit1Þi0

� �	

2�
ð1� 4r2Þ

Z t1þ2�

t1

dt2

��������2 sint1 � t2
2

��������2!2�2r2�1Z þ1

�1
dx0e2!x0 : (23)

The integration over t2 is not defined for jrj> 1=2; nevertheless, the result

Tr h�� � c�e�ir ~Xþ!X0ðeit1Þi � �	

2�
ð1� 4r2Þ21�4r2

ffiffiffiffi
�

p �ð12 � 2r2Þ
�ð1� 2r2Þ

Z þ1

�1
dx0e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þ�r2

p
x0 (24)

is analytic for any r 2 ½0; 1= ffiffiffi
2

p �.
In order to show how the divergence for jrj> 1=2 is canceled, we can compute directly this quantity in superspace, using

the Fermi multiplets ��. Setting aside for a moment the zero-mode integral over x0, one considers the superspace integralZ
d�1h��e�ir~Xþ!X0ðẑ1Þi � ��	

2�

Z
d�1d�2

Z
dt2�ðẑ1 � ẑ2Þhe�ir~Xþ!X0ðẑ1Þe	ir~Xþ!X0ðẑ2Þi0

���	

2�
e2!x0

Z
d�1d�2

Z
dt2½�ðt1 � t2Þ � 2�1�2�ðt1 � t2Þ�

�
���������2 sint1 � t2

2

��������1�4r2��1�2ð1� 4r2Þ�ðt1 � t2Þ
��������2 sint1 � t2

2

���������4r2
�
�

� �	

2�
e2!x0

Z
dt2

�
ð1� 4r2Þ

��������2 sint1 � t2
2

���������4r2þ2�ðt1 � t2Þ
��������2 sint1 � t2

2

��������1�4r2
�
: (25)

Now, we introduce a point-splitting regularization, asking that jt1 � t2j> ". As we wish to keep the contact term in the
computation, it is natural to include this point splitting in the � and � distributions that appear in the above integral as

�ðjt1 � t2j � "Þ ¼ �ðt1 � t2 � "Þ þ�ðt2 � t1 � "Þ �ðjt1 � t2j � "Þ ¼ �ðt1 � t2 � "Þ þ �ðt2 � t1 � "Þ: (26)

In other words, we ‘‘spread’’ the contact term at the boundary of the interval jt1 � t2j< ". Then, the contribution to the
one-point function becomes

� �	

2�

Z
dt2

�
ð1� 4r2Þ�ðjt1 � t2j � "Þ

��������2 sint1 � t2
2

���������4r2þ�ðjt1 � t2j � "Þ
��������2 sint1 � t2

2

��������1�4r2
�

¼ ��	

2�
ð1� 4r2Þ

Z t1�"

t1�2�þ"
dt2

��������2 sint1 � t2
2

���������4r2�2
�	

2�

��������2 sin"2
��������1�4r2

���	

2�
ð1� 4r2Þ21�4r2

ffiffiffiffi
�

p �ð12 � 2r2Þ
�ð1� 2r2Þ þ 2

�	

2�
"1�4r2 � 2

�	

2�

��������2 sin"2
��������1�4r2

; (27)
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where two first terms in the last line come from the
expansion of the following function:

ð1� 4r2Þ22�4r2 cos
"

2
F1

�
1

2
;
1þ 4r2

2
;
3

2
; cos2

"

2

�
: (28)

The second term of Eq. (27) is the only divergent one if
4r2 > 1. It simplifies to

� �	

2�
ð1� 4r2Þ21�4r2

ffiffiffiffi
�

p �ð12 � 2r2Þ
�ð1� 2r2Þ þ 2

�	

2�
"1�4r2

� 2
�	

2�
"1�4r2 : (29)

Divergences compensate correctly, so that we eventually
have, at first order,

Trhð�� � c� � F�Þe�ir ~Xþ!X0ðz1Þi

� ��	 �ð2� 4r2Þ
�2ð1� 2r2Þ

Z þ1

�1
dx0e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þ�r2

p
x0 : (30)

This quantity is UV-finite but has an IR divergence due to
the zero-mode integral. This divergence, which appears
when x0 ! 1, simply signals the breakdown of perturba-
tion theory in ��. Note that for the homogeneous rolling
tachyon on a non-BPS brane, for which the all-orders
computation is doable, summing up the whole perturbative
expansion gives a finite zero-mode integral.9

IV. COMPUTATION OF BETA FUNCTIONS

In this section, we argue that the theory defined in
Eq. (6) is exactly conformal, with the rolling-tachyon

profile (9), for any value of jrj below rc ¼ 1=
ffiffiffi
2

p
. This

will imply that for the space-time effective action of the
brane-antibrane system, there exists a half S-brane rolling-
tachyon solution at fixed separation of the equations of
motion. This is an important point since the effective action
proposed in Ref. [25] did not admit a solution at fixed
distance; in fact, in this action, for a nonvanishing tachyon,
the distance field has an attractive potential towards the
origin.

Our motivation for looking closely at this issue was
in part due to the results of Bagchi and Sen [20]. They
found that the boundary deformation corresponding to

the tachyon (9) was only marginal in the range 0 � jrj<
rc=

ffiffiffi
2

p
. For rc=

ffiffiffi
2

p � jrj< rc, it was found that for an
infinite but countable set of distances, the theory was not
conformal. This is puzzling, as we expect that everything
goes smoothly up to the critical separation rc.

At the end of the day, the basic difference between those
two approaches is the contact term. However, the latter is
not responsible for restoring marginality, since it cannot

cancel the logarithmic divergences that could spoil confor-
mal invariance, as we shall see. Rather, the actual compu-
tation of the possible conformal symmetry-violating terms
in the path integral gives zero thanks to the different
contributions that cancel among themselves at a given
order. Nevertheless, the contact term is able, as expected,
to cancel the powerlike two-tachyon divergences in the
perturbative integrals.
The cleanest way to show that the action (6), with the

rolling-tachyon perturbation (7), is a BCFT is to compute
the boundary beta functions for all the boundary couplings
involved. On top of the coupling constants �� for the
rolling tachyon perturbations, one needs to introduce
in the computation a perturbation corresponding to the
separation-changing boundary operator �3 � i@uX.

10 The
brane-antibrane separation is classically fixed at some
value r, but still, in the quantum theory, one has to check
that the corresponding beta function vanishes for any r. In
other words, that it is not ‘‘sourced’’ by terms in ��. On
top of this, more operators need to be considered in the
analysis as jrj increases.

A. Generalities about boundary beta-functions

In order to compute the beta functions for their boundary
couplings, we follow mostly the clear presentation of
Ref. [33].
One considers a conformal field theory on the upper

half-plane Hþ ¼ fz;Imz 
 0g perturbed by boundary
operators that can be marginal or relevant. The action of
the theory is defined to be

Sð�
Þ ¼ Sbulk þ
X



‘�y
�

Z

dx�
ðxÞ þ Sct; (31)

in terms of the renormalized dimensionless couplings f�
g
and the anomalous dimensions y
 ¼ 1� h
. The renor-

malization scale is denoted by ‘. The last term Sct stands
for boundary counterterms whenever they are necessary.
The boundary fields �
 are normalized as11

ð��

ð1Þj�
ð0ÞÞ ¼ 1; (32)

with ��

 the conjugate field to �
.

12

At second order in perturbation theory, one encounters
the integral (which lies inside a correlator with arbitrary
other insertions)13:

9If we Wick-rotate the theory to a Euclidean target space, for
which perturbation theory is well-defined, the zero-mode inte-
gration gives �ð2!Þ, which is zero for any value of jrj< 1=

ffiffiffi
2

p
.

10To be exact, we will have to add it in superspace as �þ��DX
11The Zamolodchikov correlators are defined as
ð�að1Þj�bðzbÞÞ ¼ limz!1z2ha �z2

�ha h�aðzÞ�bðzbÞi.
12In the case of theories with several boundary conditions, one
has to trace over the Chan-Patton factors, which would be here
included inside the fields, e.g., as Trð��


ð1Þj�
ð0ÞÞ ¼ 1.
Considering deformations by boundary-changing operators, the
CP factors induce selection rules.
13We will use the convention that operators (with CP factors)
are ordered from right to left with increasing boundary parame-
ter; this is the opposite convention than in Ref. [33].
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1

2

X

;�

‘h
�h��2
Z
dx1

�
Z
dx2�
ðx1Þ��ðx2Þ�ðjx1�x2j�"Þ�ðL�jx1�x2jÞ:

(33)

This integral has been regularized by point splitting with a
UV cutoff ", and with an IR cutoff L. In order to compute
the integral, one can use the boundary operator product
expansion (OPE):

�
ðx1Þ��ðx2Þ¼
X



D


�

ðx1�x2Þh
þh��h

�
ðx2Þþ . . . x1>x2:

(34)

In this case, Eq. (33) is rewritten asX

<�

‘h
�h��2

�I yþL

yþ�
dx
I

dy�
ðxÞ��ðyÞ

þ
I yþL

yþ�
dx
I

dy��ðxÞ�
ðyÞ
�
: (35)

1. Minimal substraction scheme

In this scheme, we aim to isolate the divergences that
occur in the integral (33) when two perturbations collide.
One has to consider separately two cases. The subset of
boundary fields f�
g, such that y
 þ y� � y
 < 0 (which

are all relevant) gives a divergent contribution to the action
(31) of the form (after removing the IR cutoff):

Sd ¼ 1

2

X

;�;


D



�

y
 þ y� � y

"y
þy��y
‘y
þy��
��

Z
dx�
:

(36)

In the minimal substraction scheme, this divergence is
canceled by a similar counterterm Sct ¼ �Sd.

The subset of boundary fields f��g, such that y
 þ y� �
y� ¼ 0 gives logarithmic divergences, or resonances (cut-
ting the integration at the renormalization scale ‘):

Sd ¼ 1

2

X

;�;�

D�

� lnð"=‘Þ‘�y��
��

Z
dx��: (37)

This divergent piece is again canceled by an appropriate
counterterm Sct ¼ �Sd. Now, equating the bare couplings
to the two corresponding contributions from the renormal-
ized action (31), one gets the beta function at second order:

�MS

 :¼ ‘

d



d‘
¼ y
�


 � X

;�jy
þy�¼y


D



��
��: (38)

So, nonlinear contributions at quadratic order occur only in
the cases of resonances, if they exist.14 One can show that,

in the minimal substraction scheme, this property holds to
all orders in perturbation theory.
Note that there is a sign difference between the above

result and what appears in Ref. [33]. This comes from their
convention of using eS instead of e�S as we did. One could
obtain the same definition by simply changing the sign of
the couplings.

2. Wilsonian scheme

In this scheme, we equate the renormalization scale ‘
with the UV scale ", viewed as a fundamental high-energy
scale. We demand that the renormalized theory does not
depend on the UV cutoff scale, i.e. that "@"e

�Sbdy ¼ 0.
Then, the renormalized boundary couplings depend on the
UV scale " (as the regularized perturbative integrals do).
At second order, the corresponding beta functions read

�ws

 :¼ "@"

 ¼ y
�


 �X

;�

D



��
��: (39)

In contrast with the minimal substraction scheme,
Eq. (38), there is no restriction to ‘‘resonant’’ boundary
couplings in the sum giving the quadratic term of the
beta function (39).15

We will see below that both schemes are useful in the
study of the rolling-tachyon perturbations when it comes to
understanding the role of the contact terms.

B. Beta functions for the brane-antibrane system
at second order

Coming back to the brane-antibrane system, we consider
the following world-sheet action on the upper half-plane,
as a function of the boundary couplings. So, now we take
the boundary variable to be u 2 R. For convenience, we
rescale the coupling according to �� ! 2���:

S ¼ Sbulk �
Z

dx

�
�þ�þ � cþeir ~Xþ!X0

þ ���� � c�e�ir ~Xþ!X0 � i
�r

2
�3 � @u ~X

�
: (40)

We omitted for the moment the contact term, which wewill
reintroduce later on in the discussion.

1. Distance coupling

Let us start by discussing the beta function for the
distance perturbation. According to the general discussion
above, one has

14Notice that, if the boundary perturbations in Eq. (33) are
superficially marginal, the resonances correspond to the appear-
ance of a marginal operator in the boundary OPE.

15The linear term, as well as the resonant quadratic terms,
which are common to both schemes, can be shown to be
‘‘universal,’’ i. e. independent of the scheme chosen for the
computations.
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�r ¼ ð1� hrÞ�r2 � ðDrþ� þDr�þÞ���þ

�Dr
rþ

�r

2
�þ �Dr

r�
�r

2
�� . . . ; (41)

where the ellipses here stand for higher-order terms. The
first term on the right-hand side vanishes because the
conformal dimension of the distance perturbation is
one. At the second order, all the structure constants for
the three boundary operators under study appear, since,
being all of conformal dimension 1, they potentially lead to
resonances.

Without much work, we have that Dr�	 ¼ 0. The fusion
of the tachyon vertex operators T� will never produce the
current @uX, as the e

!X0 factors just add up. The structure
constants Dr

r� also have to vanish, since the fusion of
T� with the boundary current i�3@u ~X comes with the
Chan-Patton factor ���3 ¼ 	��; hence, not �3.
However, this product participates to the beta function of
T�, as we will see.

At higher orders in perturbation theory, we would find
a similar behavior. Namely, the fusion of any number
of tachyon vertices cannot produce the distance-changing
operator; hence, the beta function for �r does not get
tachyon ‘‘source terms’’ (which would be proportional to
ð�þ��Þn at order 2n). In other words, the distance coupling
does not run in the rolling-tachyon background (9).

We can also be less specific and consider, instead of
Eq. (9), a more general tachyon profile of the form:

T� ¼ 1

2�
e�ir~Xð��e!X0 þ ��e�!X0Þ; (42)

the hermiticity of the action imposing that �� ¼ ��þ and
�� ¼ ��þ.

The conclusion can be different, as the structure con-
stants Dr�	 do not have to vanish by similar arguments. To
this end, we use the 0-picture tachyons OPE:

�þ�� � Tþ
ð0ÞðzÞT�

ð0ÞðwÞ ¼
1þ�3

4
�
�
. . .þ ir

@u ~X

z�w
þ . . .

�

���þ � T�
ð0ÞðzÞTþ

ð0ÞðwÞ ¼
1��3

4
�
�
. . .� ir

@u ~X

z�w
þ . . .

�
;

(43)

where we only highlighted the interesting term. It is not
difficult then to obtain the second-order beta function for
the distance coupling:

�r ¼ ��þ�� þ ���þ

4�2
r ¼ � 1

2�2
Reð�þ ��þÞr: (44)

The beta function (44) is scheme-independent, as the di-
vergence is logarithmic. If one introduces a real parameter

, the most general solution of this equation is then

T� ¼ ��

2�
e�ir~Xðe!X0 � i
e�!X0Þ; 
 2 R: (45)

Notice that, so far, the marginality of this solution has
been checked only at second order. The fourth-order (and
higher) beta functions would be nontrivial to compute,
and marginality at this order is a priori not obvious.
In any case, the physical meaning of the general solution

(45) is not clear. If, for instance, one chooses �þ real
(which is always possible by a shift of ~X), it corresponds
to a case where the real part of the tachyon condenses,
while the imaginary part evolves in the opposite direction.
There is no clear reason why the phase of the tachyon
condensate has to change by �=2 during its evolution, as
the constraints on the solution (45) suggest. By symmetry
arguments, the tachyon potential of the effective action
should depend only on its square modulus, i.e. of

jTðx0Þj2 ¼ �þ��

4�2
ðe2!x0 þ
2e�2!x0Þ; (46)

which, for nonzero 
, goes through a minimal value

jTj2 ¼ 
�þ��
2�2 at finite time.

If we consider instead the time-reversal-symmetric
tachyon profile (full S-brane) as in the case of the non-
BPS brane,

T� ¼ ��

2�
e�irX cosh!X0; (47)

the beta function (44) indicates a renormalization group
(RG) running of the distance coupling, unless r ¼ 0. This
result has far-reaching consequences. Unlike the case of
coincident brane-antibrane or of a non-BPS brane, the
effective action of the brane-antibrane system at finite
distance should be such that, while the half S-brane rolling
tachyon is allowed as a solution of its equations of motion,
the full S-brane should not be.

2. Tachyon couplings at quadratic order

We now compute the beta functions for the tachyon
couplings �� at order �þ�� for the half–S-brane profile.16

The boundary OPEs to consider at quadratic order are
the distance-tachyon OPE,

� i�3 � @u ~Xðx1Þ�� � c�e!X0�ir ~Xðx2Þ
� �2

x1 � x2
ð���Þ � ð�rÞc�e!X0�ir ~Xðx2Þ þ . . . ; (48)

and the tachyon-tachyon OPE,

16Let us remark in passing that, by shifting the zero mode of the
timelike field X0 ! X0 þ �, there is a common rescaling of the
couplings �� ! ��e!�. This is a common feature of Liouville-
like theories. For this reason, the perturbative expansion in ��
does strictly make sense only in the Euclidean theory obtained
by X0 ! iXE.
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�þ � ?
?c

þe!X0þir ~Xðx1Þ ??�� � ?
?c

�e!X0�ir ~Xðx2Þ ??
�� 1 0

0 0

� �
ð1� 4r2Þ 1

ðx1 � x2Þ4r2
e2!X0ðx1Þ ?? þ . . . ;

(49)

both for x1 > x2. The ellipses stand for less singular terms.

3. Beta function for jrj< 1=2

Whenever jrj< 1=2, the OPE (49) does not lead to
singularities when integrated. Hence, in the minimal sub-
straction scheme, no corresponding counterterm is needed.
This reflects the fact that the contact term is zero in this
range.17 This extends to all orders in perturbation theory.

The case of the OPE (48) is different, as it leads to a
logarithmic divergence for any r � 0. From Eq. (38), the
relevant beta functions are of the form18

�� ¼ ð1� h�Þ�� þ ðD�
r� þD��rÞ

�r

2
�� þ . . . (50)

We get at second order that

�� ¼ ð12 � r2 �!2 � 2r�rÞ��: (51)

This is valid in any scheme, as only universal quantities
appear. If one keeps the distance perturbation at zero (�r ¼
0), then the rolling-tachyon background is marginal at
second order, provided that the on-shell condition !2 þ
r2 ¼ 1=2, as expected.

Otherwise, the marginality of the perturbation is re-
stored, at this order, if we use instead the on-shell condition

!2 þ ðrþ �rÞ2 ¼ 1=2: (52)

This is compatible with the interpretation of the boundary
perturbation �3 � i@u ~X, which changes the relative posi-
tion of the D-brane and the anti–D-brane. It is T-dual to the
relative Wilson line that appears in the action (2).19 One
checks that the normalization of this coupling in Eq. (2) is
compatible, through T-duality, with relation (52). This
analysis shows that, at least at this order, the rolling-
tachyon perturbations T� ‘‘adjust themselves’’ to a change
of brane-antibrane separation in order to stay marginal.

4. Beta-functions for 1=2< jrj< rc and contact term

When 1=2< jrj< rc, the situation is different. The
operator exp2!X0 (which appears also in the contact
term) becomes relevant and, hence, should be considered

in the discussion. As stated earlier, this operator is
unphysical from the superstring theory point of view (at
zero superghost number).
The corresponding boundary coupling is denoted by
c.

The tachyon-tachyon OPE (49) gives a singular perturba-
tive integral at second order:Z

dx1
Z x1�"

x1�L
dx2

?
?c

þe!X0þir ~Xðx1Þ ?? ?
?c

�e!X0�ir ~Xðx2Þ ??

� �r�1=2
"1�4r2

Z
dx1

?
?e

2!X0ðx1Þ ??; (53)

after removing the IR cutoff (L ! 1 limit).
In the minimal substraction scheme, the following local

counterterm is needed at this order to cancel the divergence:

Sct ¼ �þ��"1�4r2
Z

dx ?
?e

2!X0ðxÞ ??: (54)

Naturally, it agrees precisely with the expression of the
contact term in the action (15). Since this divergence is
powerlike, it does not add any nonlinear term in theminimal
scheme beta function �ms

c for the coupling 
c. Hence, the
latter can be consistently set to zero in the renormalized
theory at this order.
For the distance jrj ¼ 1=2, amplitudes are finite without

the counterterm, so it is not strictly needed,20 but it con-
tributes nevertheless finitely to the amplitudes.
In the Wilsonian scheme, the beta function reads, at

second order,

�ws
c ¼ ð1� 4r2Þ
c � ð1� 4r2Þ�þ�� : (55)

One sees here an interesting phenomenon. The operator
exp2!X0 is relevant at linear order, but the RG flow gives
an IR fixed point for this coupling at quadratic order, for

c ¼ �þ��.
Comparing the outcomes of both schemes, one gets

the same results but the interpretation is different. In the
minimal substraction scheme, the contact term appears as
a counterterm, but the corresponding renormalized cou-
pling is consistently set to zero. On the contrary, in the
Wilsonian scheme, the RG flow has a fixed point with
nonzero renormalized coupling 
c. Both points of view
are ‘‘nonsupersymmetric.’’ since in the superspace formu-
lation, this term is present from the beginning and removes
the divergence under discussion.

C. Marginality beyond quadratic order

Part of the quadratic order results generalizes immedi-
ately to higher orders. Indeed, only the fusion of distance
perturbations with, say, Tþ can produce Tþ itself (since the
fusion of n tachyons goes as en!X0 , as far as the X0

dependence is concerned). Hence, if we set �r ¼ 0 from
the very beginning, we expect that the beta functions ��
vanish to all orders in perturbation theory. With the same

17In the Wilsonian scheme, the contact term is an irrelevant
operator in this range.
18The sign is opposite here since the sign in front of the tachyon
perturbation in Eq. (40) is opposite.
19To be more correct, as auxiliary fields from the Fermi super-
field couple to this perturbation, some �i�r��c xe�ir ~Xþ!X0

correction should be included. We verify that it does not modify
the beta function at quadratic order. Moreover, this term shows
up naturally if we work directly with the superspace distance
perturbation i�r�þ��DuX.

20But partition function appears to be discontinuous at jrj ¼
1=2 without its contribution.
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reasoning, the operator expð2!X0Þ which we had to con-
sider for jrj> 1=2 cannot receive higher-order contribu-
tions to its beta function.

However, the study of the marginality at higher orders is
quite messy when jrj is getting closer to the critical dis-
tance, as the fusion of tachyon vertex operators produces
more and more relevant boundary operators. For a given
value of r, these operators, of the form e2n!X0 with n 2
Zþ, become (superficially) relevant if n < ð2� 4r2Þ�1=2

and are of dimension 1 when they saturate this bound.

These resonances occur all for 1=2 � jrj< 1=
ffiffiffi
2

p
; this

range was excluded by Bagchi and Sen in their analysis
[20] for this precise reason.

A given operator e2n!X0 appears first at order 2n in the
perturbative expansion in the tachyon perturbations; hence,
the beta function �n for its coupling �n is of the form

�n ¼ ð1� 4n2!2Þ�n þOðð�þ��ÞnÞ: (56)

It is easier then to work in the minimal substraction
scheme, where one just has to worry about logarithmic
divergences, i.e. resonances. As we emphasized above, if
the fusion of (superficially) marginal operators produces a
(superficially) marginal operator, it generates a source term
in the corresponding minimal scheme beta function. It is
nevertheless interesting to consider whether powerlike di-
vergences are also present.

At second order, the potentially marginal operator is
nothing but the contact term itself, e2!X0 , for the distance
jrj ¼ 1=2. Fortunately, thanks to its fermionic part, the
OPE (49) vanishes; hence, there is no logarithmic diver-
gence to cancel.

1. Marginality for
ffiffiffi
7

p
=4< jrj< ffiffiffiffiffiffi

17
p

=6

The next possible resonance occurs when the operator

e4!X0
becomes of dimension 1, i.e. for ! ¼ 1=4 (equiv-

alently, jrj ¼ ffiffiffi
7

p
=4). The potential logarithmic divergence

would occur at fourth order in perturbation theory. In order to
investigate this issue, we compute below all the possible
divergent terms that occur at order ð�þ��Þ2 from the pertur-
bative integrals, which involve both the tachyon and contact-

termvertex operators. In the computations of this subsection,
we use the full nonlocal contact term (21), as even the
subleading terms contribute a priori to the divergences.
The first contribution comes from two contact-term in-

sertions (symbolically contact-contact [CC]). Using the

notations a ¼ 4!2 and T� ¼ e�ir ~Xþ!X0 , it reads

CC ¼ 1 0

0 1

 !
"2a�2

4

Z
dx1

Z x1�2"

x1�Lþ"
dx2

� ð ??Tþðx1 þ "ÞT�ðx1Þ ?? þ ?
?T

�ðx1 þ "ÞTþðx1Þ ??Þ
� ð ??Tþðx2 þ "ÞT�ðx2Þ ?? þ ?

?T
�ðx2 þ "ÞTþðx2Þ ??Þ;

(57)

the contact term being multiplied by the Chan-Patton
identity matrix. The short-distance regularization chosen
here prevents any operator to approach another one at less
than ", before integration of the auxiliary fields. The most
natural IR cutoff prescription is to constrain two ordered
operators not to move away from each other by more than
", also before integration of auxiliary fields. One then gets

CC� 1 0

0 1

 !�
1

2aþ 1

�
L

"

�
2�2a�

�
L

"

�
1�2a

� 5� 6a�ð2a� 1Þ22aþ2
2F1ð1�a;�a� 1

2 ;�aþ 1
2 ;

1
4Þ

4ð2aþ 1Þð2a� 1Þ
�
�
L

"

�
1�4a

�
�L4a�1

Z
dx1

?
?e

4!X0 ?
?ðx1Þ: (58)

The second contribution, from two tachyons and a con-
tact term, is more involved, as one has to integrate over two
operator positions, leading to various types of singularities.
One has to be careful with path ordering of the contact term
with the tachyon; we have to distinguish three contribu-
tions, symbolically noted CTT, TCT and TTC. One finds
that the contributions of CTT and TTC are equal, but TCT
is different. We have to sum these three contributions
together. Using the notation CðxÞ ¼ ?

?T
þðxþ "ÞT�ðxÞ�

?
? þ ?

?T
�ðxþ "ÞTþðxÞ ??, one has

CTTþ TCTþ TTC ¼ � 1 0

0 0

 !
"a�1

2

�Z
dx1

Z x1�"

x1�Lþ"
dx2

Z x2�"

x2�L
dx3

?
?Cðx1Þ ?? ?

?c
þTþðx2Þ ?? ?

?c
�T�ðx3Þ ??

þ
Z

dx1
Z x1�"

x1�L
dx2

Z x2�"

x2�Lþ"
dx3

?
?c

þTþðx1Þ ?? ?
?c

�T�ðx3Þ ??

�
Z

dx1
Z x1�"

x1�L
dx2

Z x2�2"

x2�L
dx3

?
?c

þTþðx1Þ ?? ?
?c

�T�ðx2Þ ?? ?
?Cðx3Þ ??

�
: (59)

Here, thewhole computation ismultiplied by the upper part of
the identitymatrix, sinceTþ andT� are themselvesmultiplied
by�þ and��, respectively.One should also take into account
the permutated version of Eq. (59), which has ordering T�Tþ

instead of TþT�. From symmetry of the OPEs under this
permutation, it contributes the same result, but multiplied by
the lower part of the identity matrix. Thus, the computation of
the divergent terms gives the result (see Appendix A)
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CTTþTCTþTTC� 1 0

0 1

 !�
� 2

1þ 2a

�
L

"

�
2�2aþ 1

a

�
L

"

�
1�2aþ 2ða� 1Þ

3a

�
L

"

�
1�a

�
2F1ð�a;aþ 1;aþ 2;�1Þ

aþ 1

þ 2F1ð�a;a� 1;a;�1Þ
a� 1

þ 2F1ð2�a;aþ 1;aþ 2;�1Þ
aþ 1

�
�VðaÞ

�
L

"

�
1�4a

�
L4a�1

Z
dx1

?
?e

4!X0 ?
?ðx1Þ:
(60)

The coefficient VðaÞ is given by (we did not find a closed form for it)

VðaÞ ¼ ða� 1ÞX1
n¼0

X1
s¼0

�ðaÞ
�ða� nÞ�ð1þ nÞð3a� s� nÞ

�
2F1ðn� a;1þ n� 2a; 2þ n� 2a;�1Þ

1þ n� 2a

þ 2F1ðs� a;1þ s� 2a; 2þ s� 2a;�1Þ
1þ s� 2a

þ 2F1ðn� a; sþ n� 1� 2a; sþ n� 2a;�1Þ
sþ n� 1� 2a

þ 2F1ðs� a;nþ s� 1� 2a;nþ s� 2a;�1Þ
nþ s� 1� 2a

�
þ ða� 1Þ X1

n;p¼0

�ðaÞ�ða� 1Þ
�ða� nÞ�ð1þ nÞ�ða� 1� pÞ�ð1þ pÞ

� 2F1ð1� a;nþp� 3a;nþpþ 1� 3a;�1Þ
3a� n�p

� 2F1ð2þ p� a;nþpþ 1� 2a;nþpþ 2� 2a;�1Þ
nþ pþ 1� 2a

þ ða� 1Þ X1
n;p¼0

�ðaÞ�ða� 1Þ
�ða� nÞ�ð1þ nÞ�ða� 1�pÞ�ð1þ pÞ

2F1ð1� a;nþp� 3a;nþ pþ 1� 3a;�1Þ
3a� n�p

� 2F1ð2þp� a;nþ pþ 1� 2a;nþ pþ 2� 2a;�1

nþpþ 1� 2a
þ ða� 1ÞX1

p¼0

X1
s;t¼0

�ða� 1Þ
�ða� 1� pÞ�ð1þ pÞð3a� s� t� pÞ

� 2F1ð2þp� a; sþ pþ 1� 2a; sþ pþ 2� 2a;�1Þ
sþ pþ 1� 2a

: (61)

Finally, one has to consider the contribution from four-tachyon insertions in the path integral (TTTT). The method of
computation of the multiple integral is explained in Appendix B. After a lengthy computation, one gets21

TTTT ¼ 1 0

0 1

 !Z
dx1

Z x1�"

x1�L
dx2

Z x2�"

x2�L
dx3

Z x3�"

x3�L
dx4

?
?c

þTþðx1Þ ?? ?
?c

�T�ðx2Þ ?? ?
?c

þTþðx3Þ ?? ?
?c

�T�ðx4Þ ?? ?
?

� 1 0

0 1

 !	
1

2aþ 1

�
L

"

�
2�2a þ a� 1

a

�
L

"

�
1�2a � 2ða� 1Þ

3a

�
L

"

�
1�a

�
�
2F1ð�a; aþ 1; aþ 2;�1Þ

aþ 1
þ 2F1ð�a; a� 1; a;�1Þ

a� 1
þ 2F1ð2� a; aþ 1; aþ 2;�1Þ

aþ 1

�

þ ðL"Þ1�4a � 1

1� 4a

�
ða� 1Þ2

�
2F1ð1� 2a; a� 1; a;�1Þ

a� 1
þ 2F1ð1� 2a; 2� 3a; 3� 3a;�1Þ

2� 3a

�

�
�
2F1ð�a; a� 1; a;�1Þ

a� 1
þ 2F1ð�a; 1� 2a; 2� 2a;�1Þ

1� 2a
þ 2F1ð2� a; aþ 1; aþ 2;�1Þ

aþ 1

þ 2F1ð2� a; 1� 2a; 2� 2a;�1Þ
1� 2a

�
þ ð2ða� 1Þ2 � 1Þ

�
2F1ð1� a; a; 1þ a;�1Þ

a

þ 2F1ð1� a; 1� 2a; 2� 2a;�1Þ
1� 2a

�
�
�
2F1ð1� 2a; a; aþ 1;�1Þ

a
þ 2F1ð1� 2a; 1� 3a; 2� 3a;�1Þ

1� 3a

��

þUðaÞ
�
L

"

�
1�4a



L4a�1

Z
dx1

?
?e

4!X0 ?
?ðx1Þ; (62)

with UðaÞ a numerical coefficient which is not singular at a ¼ 1=4.

21The term with ordering T�TþT�Tþ contributes the same result; thus, the total computation is directly multiplied by the identity
matrix as in Eq. (60).
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As in the previous computation, the coefficient UðaÞ is known only as a series expansion:

UðaÞ ¼ ða� 1Þ2
4a� 1

�
2F1ð1� 2a;a� 1;a;�1Þ

a� 1
þ 2F1ð1� 2a;�3a; 1� 3a;�1Þ

3a

�
�
�
2F1ð�a;1� 2a; 2� 2a;�1Þ

1� 2a

þ 2F1ð�a;a� 1;a;�1Þ
a� 1

þ 2F1ð2� a;1� 2a; 2� 2a;�1Þ
1� 2a

þ 2F1ð2� a;aþ 1;aþ 2;�1Þ
aþ 1

�

þ ð2ða� 1Þ2 � 1Þ
4a� 1

�
2F1ð1� 2a;1� 3a; 2� 3a;�1Þ

3a� 1
þ 2F1ð1� 2a;a;aþ 1;�1Þ

a

�

�
�
2F1ð1� a;1� 2a; 2� 2a;�1Þ

1� 2a
þ 2F1ð1� a;a;aþ 1;�1Þ

a

�

þ ða� 1Þ2 X1
n¼0

�ðaþ 1Þ
�ðnþ 1Þ�ða� nþ 1Þðaþ n� 1Þð3a� nÞ

�
2F1ðn� a;�2aþ nþ 1;�2aþ nþ 2;�1Þ

�2aþ nþ 1

þ 2F1ðn� a;�2aþ n� 1;n� 2a;�1Þ
�2aþ n� 1

�
þ ða� 1Þ2 X1

n¼0

�ða� 1Þ
�ðnþ 1Þ�ða� n� 1Þðaþ nþ 1Þð3a� n� 2Þ

�
�
2F1ð�aþ nþ 2;�2aþ nþ 1;�2aþ nþ 2;�1Þ

�2aþ nþ 1
þ 2F1ð�aþ nþ 2;�2aþ nþ 3;�2aþ nþ 4;�1Þ

�2aþ nþ 3

�

þ 2ð2ða� 1Þ2 � 1ÞX1
n¼0

�ðaÞ
�ðnþ 1Þ�ða� nÞðaþ nÞð3a� n� 1Þ

2F1ð�aþ nþ 1;�2aþ nþ 1;�2aþ nþ 2;�1Þ
�2aþ nþ 1

:

(63)

The last three sums are rapidly converging; thus, UðaÞ is known with good accuracy for any value of a � 1=4
(or ! � 1=4).

Let us now investigate the possible logarithmic divergences, which can only occur from the TTTT integral. Since we
have that

ðL"Þ1�4a � 1

1� 4a
!a!1=4

log
L

"
; (64)

only the second-to-last term in Eq. (62) could lead to a logarithmic divergence at ! ¼ 1=4. It turns out that, in this limit,
the coefficient of this term vanishes exactly. Looking more closely at this computation, one sees that each multiple integral
which one gets from the three different fermionic contractions—see Eq. (C5)—has a logarithmic term as expected.
However, the sum of them precisely cancels. Hence, the same occurs as at order two; the coefficient in front of the
potentially resonant term in the beta function vanishes.22

In order to check whether powerlike divergences remain at fourth order, one has to resum the three contributions
obtained above. The full contribution at order (ð�þ��Þ2) is given by CCþ CTTþ TCTþ TTCþ TTTT. Comparing
Eqs. (57), (59), and (62), one sees that the coefficients in front of all divergent terms vanish exactly for any value of
! 
 1=4. Hence, in this range, if one includes the two-tachyon contact term dictated by world-sheet supersymmetry,
perturbative expansion is finite.23

22This is confirmed by a direct evaluation of the TTTT integral at ! ¼ 1=4 (with MATHEMATICA), which gives

TTTT¼ 1 0

0 1

 !
4
Z

dx1
Z x1�"

x1�L
dx2

Z x2�"

x2�L
dx3

Z x3�"

x3�L
dx4

?
?c

þeX0=4þir ~Xðx1Þ?? ?
?c

�eX0=4�ir ~Xðx2Þ?? ?
?c

þeX0=4þir ~Xðx3Þ?? ?
?c

�eX0=4�ir ~Xðx4Þ??

�
�
2

3

�
L

"

�
3=2þ

�
7

ffiffiffiffi
�

p
�ð54Þ

3�ð34Þ
��

��
L

"

�
3=4 � 3

�
L

"

�
1=2
�Z

dx1
?
?e

X0 ðx1Þ??;

with � ’ 1:24 . . . . Logarithmic divergences are again found to vanish.

23This is not taking into account possible operator renormalization if there are operator insertions in the path integral.
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As stated before, we were not able to compute the coeffi-
cient associated to the term of order �1�4a, which becomes
divergent for !< 1=4 in a closed form. Using a numerical
evaluation, we find that the sum of the contributions gives a
nonzero coefficient for any !< 1=4. Hence, a powerlike
divergence remains in this range. By dimensional counting,
this uncanceled divergence corresponds to four-tachyon op-
erators coming close together at the same point. It is not
unexpected that this divergence is not canceled by the contact
term, as the latter corresponds to a two-tachyon collision.
Since this remaining divergence is nonlogarithmic, it does

not mean that the boundary theory is not conformal, but
rather that it shouldbe renormalizedat quartic order. It should
be possible to cancel this divergence with a higher-order
contact term. Itmay correspond to additional nonlinear terms
in the superspace action (6) (a four-auxiliary field vertex is
needed then).
As mentioned in Sec. III B, we also obtained an unex-

pected result. If we assume that the computations of CTT-
and CC-type terms could be equivalently done with the use

of the simple dominant term "a�1e2!X0
in Eq. (21), then we

get the following contribution:

CCþ CTTþ TCTþ TTC ¼ 1 0

0 1

 !	
� 1

1þ 2a

�
L

"

�
2�2a þ 1

a

�
L

"

�
1�2a þ 2ða� 1Þ

3a

�
L

"

�
1�a

�
�
2F1ð�a; aþ 1; aþ 2;�1Þ

aþ 1
þ 2F1ð�a; a� 1; a;�1Þ

a� 1
þ 2F1ð2� a; aþ 1; aþ 2;�1Þ

aþ 1

�

�
�
L

"

�
1�4a

�
2
a� 1

3a

�
2F1ð2� a; 1� 2a; 2� 2a;�1Þ

1� 2a
þ 2F1ð�a; 1� 2a; 2� 2a;�1Þ

1� 2a

� 2F1ð�a;�1� 2a;�2a;�1Þ
1þ 2a

�
þ 1

2aþ 1

�

L4a�1

Z
dx1

?
?e

4!X0 ?
?ðx1Þ . . . (65)

One recognizes the coefficients of the three first divergen-
ces; these are precisely the ones appearing in the sum of
Eqs. (57) and (59) Moreover, numerical comparison of the
ðL"Þ1�4a coefficients gives almost identical results; the tiny
difference could reasonably originate from the approxi-
mated evaluation of the infinite sums. This seems to show
the equivalence of the two computations—Eq. (65) being,
of course, significantly easier to perform—and then of the
two (local and nonlocal) expressions of the contact term.

C. Marginality to all orders

Computations become intractable for the next reso-

nance, which occurs for ! ¼ 1=6 (or equivalently jrj ¼ffiffiffiffiffiffi
17

p
=6), as we have to consider sixth-order perturbation

theory, with contributions from both counterterms found so
far. However, we assume that the same occurs; the coeffi-
cient in front of the logarithmic six-tachyon divergence
should vanish as well.

To summarize, we have found that, to all orders in
perturbation theory, the theory defined by the boundary
action (15) is a boundary conformal field theory when

jrj< ffiffiffiffiffiffi
17

p
=6. In the range

ffiffiffiffiffiffi
17

p
=6< jrj< 1=

ffiffiffi
2

p
, the theory

is conformal at least up to order 5. We naturally expect that
the theory is conformal to all orders in this range as well.

As a side remark, the theory defined by the limit r ! r�c
seems not well-defined. In this case, all the operators
e2n!X0 are relevant, and by doing the perturbative expan-
sion in the tachyon couplings, we would need an infinite
number of counter-terms. By contrast, the theory defined

directly at r ¼ rc ¼ 1=
ffiffiffi
2

p
seems fine. The boundary inter-

action (with T� � e�iX=
ffiffi
2

p
) is similar to a boundary

sine-Gordon theory, with additional CP factors. Other
puzzling features of the r ! r�c limit will be discussed in
the next section.

V. DISCUSSION

We argued in this work that, for all values of the brane-
antibrane distance below the critical value rc, the homoge-
neous rolling-tachyon solution with a fixed separation is an
exact boundary conformal field theory. Thus, a space-time
effective action which is valid around this particular solu-
tion should have such a tachyon profile as a solution of
its equations of motion. An effective action for the brane-
antibrane system was proposed by Garousi [25]. In a differ-
ent parameterization of the tachyon field,24 it reads

LGðT; _T; r; 0Þ ¼ � 2

cosh
ffiffiffiffi
�

p jTj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2r2jTj2 � j _Tj2 � �2 _r2

q
: (66)

One checks readily that, with _r ¼ 0, �rLG � 0 for any
nonzero separation. Hence, this Lagrangian cannot admit
solutions with constant brane-antibrane separation. This is
not unexpected, since it was obtained by a fermion-number
orbifold of the non-Abelian tachyon-DBI action for a pair
of coincident non-BPS D-branes. Therefore, it could only
be valid for an infinitesimal brane separation. Since �rLG

is linear in r, it seems to not even be valid in this limit.

24This field redefinition was discussed in Ref. [13] for the r ¼ 0
case.
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In order to find the space-time effective action from
first principles, we could proceed as in Ref. [13]. In this
approach, one considers a generic space-time Lagrangian
of the D0- �D0 system, depending on the tachyon field �, its
first derivative, the distance field r and its first derivative.25

Since, as we argued before, rolling-tachyon solutions at
constant separation exist. The effective Lagrangian describ-
ing nearby field configurations should satisfy the condition

�Lð�; _�; r; _rÞ
�r

�������� _r¼0; _�¼!�
¼ 0; (67)

where !2 ¼ 1
2 � r2, as well as the equation of motion for

the tachyon with a profile of the form � ¼ 
 exp!t.
Solving these equations at quadratic order in the tachyon

field, one obtains a unique result, if we ask that for r ¼ 0,
one should recover the known Lagrangian for the coinci-
dent case:

L ð�; _�;r;0Þ¼�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2r2

p �
�2

2
þ _�2

1�2r2

�
þ . . . (68)

Unlike in the case of the non-BPS brane considered by
Kutasov and Niarchos in [13], we did not impose above
that the more generic profile � ¼ 	e!t þ �e�!t (with ar-
bitrary coefficients 	 and �) is a solution, since it does not
correspond to an exactly marginal deformation on the
world sheet as long as r � 0. A straightforward general-
ization of the effective Lagrangian found by these authors
exists for r � 0 but should not be considered, since,
by construction, it allows the time-reversal-symmetric
tachyon profile �� cosh!t as a solution.

Imposing only the half S-brane as a solution leads to an
underconstrained (finite) system of equations and not to a
single recurrence relation as in Ref. [13]. However, below
Eq. (44), we have shown that a solution of this form is
marginal at second order, provided � ¼ i
	 with 
 real.
Besides the necessity to prove its conformal invariance at
all orders (by going through an even more tedious analysis
as we have done for the half S-brane solution), it would
again lead to an underconstrained system. Indeed, this
tachyon satisfies the identity j _�j2 ¼ !2j�j2. One can
show that, as a consequence, the relation between the
coefficients in the Lagrangian does not organize into a
single recurrence relation, but rather separates into a sys-
tem of independent equations which is underconstrained.
Thus, it does not lead to a unique effective Lagrangian at
higher orders in the tachyon couplings.26

The world-sheet theory contains more information about
the tachyon effective action, besides imposing that the

rolling-tachyon background of interest should be a solution
of its equations of motion. Following Refs. [13,17], we
expect to get the effective Lagrangian evaluated on-shell to
be given by the disk partition function, with the timelike
zero modes kept unintegrated:

L j�;!�;r;0ðx0Þ ¼ �Zðrjx0Þjdisk: (69)

With this equation, one can test whether any proposal
for the effective Lagrangian of the system is sensible. At
second order, one can compare the space-time Lagrangian,
given by Eq. (68), with the partition function given in
Appendix C:

Zðrjx0Þ ¼ 2� �ð2� 4r2Þ
�2ð1� 2r2Þ�

þ��e2!x0 þOðð�þ��Þ2Þ:
(70)

In order to match these two computations, we see that a
distance-dependent field redefinition of the tachyon field is
necessary:

�ðtÞ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r2

p �ð2� 4r2Þ
�2ð1� 2r2Þ

�
1=2

�þe!t: (71)

As one can see, with this definition, the space-time tachyon

vanishes at the critical distance r ¼ 1=
ffiffiffi
2

p
, for any finite

value of the world-sheet coupling �þ. It could be the way
string theory deals with the fact that, when r ! rc, the
tachyon becomes a light field, and we could wonder how a
local action along the brane world-volume dimensions—
that is a priori well-defined, as the tachyon is lighter than
all string modes—would make sense, since the separation
between the brane and the antibrane is significant in this
regime.
The validity of the field redefinition (71) should be

tested beyond quadratic order.27 For this, one would have
to first compute analytically the perturbative ‘‘screening
integrals’’ at higher order, which does not seem trivial. For
the special value of the distance r ¼ 1=2, the computation,
up to order 8 in the tachyon amplitude, is given in
Appendix C:

Z

�
1

2

��������x0
�
¼2

�
1��þ��e!x0

2�
þ
�
1��2

6

��
�þ��e!x0

2�

�
2

�
�
1� 128

3�2

��
�þ��e!x0

2�

�
3

þ
�
1þ205

108
þ 3575

162�2
þ�2

2
þ�4

70

�

�
�
�þ��e!x0

2�

�
4þO

��
�þ��e!x0

2�

�
5
��
: (72)

This does not seem to trace back to the Taylor expansion of
a known function.

25We assume that, by the symmetries of the problem, only even
powers of the fields and their derivative appear, i.e one has
Lðj�j2; j _�j2; r2; _r2Þ. Without loss of generality, as the phase of
the tachyon for the half S-brane solution under study is constant,
we take �ðtÞ real.
26Note, on the other hand, that Eq. (68) is still valid with
Eq. (47) under the replacement �2 ! j�j2 and _�2 ! j _�j2.

27One can check already that plugging this redefinition in
Garousi’s Lagrangian (66) does not lead to a consistent effective
Lagrangian.
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Since the space-time effective action approach seems to
have important limitations for branes-antibranes at finite
separation, the boundary string field theory may be more
appropriate in order to know the properties of the system.
Even though it does not contain information about the
dynamics of the system, it allows us to find the exact tachyon
potential (as well as the appearance of lower-dimensional
branes), and hence can illuminate the fate of the tachyon.
These computations seem not to be out of reach. We plan to
come back to these issues in the near future.

A heuristic argument gives a good motivation for this
study. Following Refs. [34,35], one could describe the
result of this condensation by studying the closed string
emission from the time-dependent boundary state. It was
found in Ref. [34] that, knowing the one-point function on
the disk BðEÞ ¼ heiEX0i, one can compute the density of
closed-string states emitted by the decay of a non-BPS
brane, which goes as


c �
X
N

1

EN

DðNÞjBðENÞj2; (73)

where the asymptotic Hagedorn density of closed-string

states at level N has the form DðNÞ � N�� expð4� ffiffiffiffi
N

p Þ,
with �> 0, and EN � 2

ffiffiffiffi
N

p
. The one-point function for an

unstable non-BPS D-brane goes as jBðEÞj2 � expð�2�EÞ.
Therefore, in this case, the sum is governed by the sub-
leading powerlike corrections to the Hagedorn density and
typically diverge, giving the so-called ‘‘tachyon dust’’ of
massive closed strings. In the case of nonzero separation,

by dimensional analysis, we may expect that jBðEÞj �
expð� ffiffiffi

2
p

�E=jmtachðrÞjÞ. This would lead to a convergent

closed string production when jmtachj< 1=
ffiffiffi
2

p
(i.e. for r �

0), signaling that the tachyon does not condense com-
pletely at a finite distance.
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APPENDIX A: COMPUTATION OF THE DIVERGENCES IN CTT-TYPE TERMS

We give below one example of computation of the divergence occurring in an integral involving one contact operator
insertion. We study here the CTT term. With a bit of care, one can compute them exactly. With the expression of C given in
Eq. (21), the CTT term is

� "a�1

2

Z
dx1

Z x1�"

x1�Lþ"
dx2

Z x2�"

x2�L
dx3

?
?Cðx1Þ ?? ?

?T
þðx2Þ ?? ?

?T
�ðx3Þ ??

¼ ða� 1Þ "
a�1

2

Z
dx1

Z x1�"

x1�Lþ"
dx2

Z x2�"

x2�L
dx3ððx1 � x2 þ "Þðx1 � x3 þ "Þa�1ðx1 � x2Þa�1ðx1 � x3Þðx2 � x3Þa�2

þ ðx1 � x2 þ "Þa�1ðx1 � x3 þ "Þðx1 � x2Þðx1 � x3Þa�1ðx2 � x3Þa�2Þ; (A1)

with a ¼ 4!2. Note that the IR cutoff is chosen such
that two ordered operators do not move away from each
other more than L. Then, since CðxÞ � T�ðxþ "ÞT	ðxÞ,
the cutoff for x2 in relation to x1 is L� ". One can get
read of the path ordering with the following change of
variable :

x2 ¼ �L�1 þ x1 x3 ¼ �L�2 þ x2; (A2)

such that it gives, introducing � ¼ "=L,

ða� 1ÞL4a�1 �
a�1

2

Z 1��

�
d�1

Z 1

�
d�2ðð�1 þ �Þ

� ð�1 þ �2 þ �Þa�1�a�1
1 ð�1 þ �2Þ�a�2

2

þ ð�1 þ �Þa�1ð�1 þ �2 þ �Þ�1ð�1 þ �2Þa�1�a�2
2 Þ

�
Z

dx1e
4!X0ðx1Þ: (A3)

The integral over �i’s can be done with the use of the series
representation of ð1þ �

�1þ�2
Þ�, since �1 þ �2 >�, and

ð1þ �
�1
Þ�, since �1 >�. These are given by

ð1þ xÞ� ¼ X1
n¼0

�ð1þ �Þxn
�ð1þ �� nÞ�ð1þ nÞ ; with jxj< 1:

(A4)

Convergence of the series all along the domain of inte-
gration allows us to commute the integral and sum sign,28

such that one has

ða� 1ÞX1
s¼0

X1
n¼0

�ðaÞ
�ða� nÞ�ð1þ nÞ�

a�1þsþn

�
Z 1��

�
d�1

Z 1

�
d�2ð�a�s

1 �a�2
2 ð�1 þ �2Þa�n

þ �a�n
1 �a�2

2 ð�1 þ �2Þa�sÞ: (A5)

As one can see, the two integrals to compute are symmetric
by permutation of s and n. We then only focus on the first

28It is true at least a fortiori from the convergence of the
integrals and the series of the integrals. Note, besides, that we
do not integrate over any pole.
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one. There are two ways to proceed now: integrate directly
and exactly, since it is possible, or use an indirect method
that reintroduces some path ordering. We use the second,
and apparently more complicated, method because it is
needed to compute TTTT integrals. Indeed, one will see

that hypergeometric functions will receive argument z,
which has an absolute value less than 1, which is much
easier to handle for approximations, since the series rep-
resentation is known exactly. We separate the first integral
of Eq. (A5) into

Z 1��

�
d�1

Z �1

�
d�2�

2a�n�s
1 �a�2

2

�
1þ �2

�1

�
a�n þ

Z 1��

�
d�1

Z 1

�1

d�2�
a�s
1 �2a�2�n

2

�
1þ �1

�2

�
a�n

¼
Z 1��

�
d�1�

2a�n�s
1

�
�a�1
2

a� 1 2F1

�
n� a; a� 1; a;��2

�1

��
�1

�

þ
Z 1��

�
d�1�

a�s
1

�
�2a�1�n
2

2a� 1� n 2F1

�
n� a; 1þ n� 2a; 2þ n� 2a;��1

�2

��
1

�1

¼
Z 1��

�
d�1�

3a�1�s�n
1

�
2F1ðn� a; a� 1; a;�1Þ2

a� 1
þ 2F1ðn� a; 1þ n� 2a; 2þ n� 2a;�1Þ

1þ n� 2a

�

� �a�1

a� 1

Z 1��

�
d�1�

2a�s�n
12 2F1

�
n� a; a� 1; a;� �

�1

�

þ 1

2a� 1� n

Z 1��

�
d�1�

a�s
12 2F1ðn� a; 1þ n� 2a; 2þ n� 2a;��1Þ: (A6)

Let us remark at this stage that the z argument in 2F1ða; b; c; zÞ verifies jzj< 1 in the above integrals. The first one is
trivial and gives

I1 ¼ ð1� �Þ3a�s�n � �3a�s�n

3a� s� n

�
2F1ðn� a; a� 1; a;�1Þ

a� 1
þ 2F1ðn� a; 1þ n� 2a; 2þ n� 2a;�1Þ

1þ n� 2a

�

¼ 1� �3a�s�n

3a� s� n

�
2F1ðn� a; a� 1; a;�1Þ

a� 1
þ 2F1ðn� a; 1þ n� 2a; 2þ n� 2a;�1Þ

1þ n� 2a

�
þ oð�Þ: (A7)

The second one is a bit more involved:

I2 ¼��3a�s�n

a� 1

�
��sþn�1�2a

1 ða� 1Þ
3a� s� n

�
2F1ðn� a;a� 1; a;��1Þ

a� 1
� 2F1ðn� a; sþ n� 1� 2a; sþ n� 2a;��1Þ

sþ n� 1� 2a

��
1

�=ð1��Þ

¼ �3a�s�n

3a� s� n

�
2F1ðn� a;a� 1; a;�1Þ

a� 1
� 2F1ðn� a; sþ n� 1� 2a; sþ n� 2a;�1Þ

sþ n� 1� 2a

�

��a�1ð1��Þ�s�nþ1þ2a

3a� s� n

�
2F1ðn� a;a� 1; a;� �

1��Þ
a� 1

� 2F1ðn� a; sþ n� 1� 2a; sþ n� 2a;� �
1��Þ

sþ n� 1� 2a

�

¼ �3a�s�n

3a� s� n

�
2F1ðn� a;a� 1; a;�1Þ

a� 1
� 2F1ðn� a; sþ n� 1� 2a; sþ n� 2a;�1Þ

sþ n� 1� 2a

�

þ �a�1

ða� 1Þðsþ n� 1� 2aÞ þ
�a

a� 1

�
1þ ða� nÞða� 1Þ

aðsþ n� 2aÞ
�
þ oð�aþ1Þ: (A8)

On the last line, we used the series representation of 2F1:

2F 1ða; b; c; zÞ ¼
X1
k¼0

ðaÞkðbÞkzk
ðcÞkk! ; (A9)

for jzj< 1. In particular, for c ¼ bþ 1, we have

2F 1ð�a; b; bþ 1;�zÞ ¼ X1
k¼0

�ð1þ aÞb
�ð1þ a� kÞ�ð1þ kÞðbþ kÞ z

k: (A10)

Finally, the third one is
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I3¼ 1

2a�1�n

�
��aþ1�s

1 ð1þn�2aÞ
sþn�3a

�
2F1ðn�a;1þn�2a;2þn�2a;��1Þ

1þn�2a
�2F1ðn�a;1þa�s;2þa�s;��1Þ

1þa�s

��
1��

�

¼ð1��1Þaþ1�s

sþn�3a

�
2F1ðn�a;1þn�2a;2þn�2a;�1þ�Þ

1þn�2a
�2F1ðn�a;1þa�s;2þa�s;�1þ�Þ

1þa�s

�
�oð�aþ1�sÞ

¼ �1

3a�s�n

�
2F1ðn�a;1þn�2a;2þn�2a;�1Þ

1þn�2a
�2F1ðn�a;1þa�s;2þa�s;�1Þ

1þa�s

�
þoð�aþ1�sÞþoð�Þ: (A11)

Collecting these results, one finally get the sum

a� 1

2

X1
s¼0

X1
n¼0

�ðaÞ
�ða� nÞ�ð1þ nÞ�

a�1þsþn
Z 1��

�
d�1

Z 1

�
d�2ð�a�s

1 �a�2
2 ð�1 þ �2Þa�n þ �a�n

1 �a�2
2 ð�1 þ �2Þa�sÞ

¼ a� 1

2

X1
s¼0

X1
n¼0

�ðaÞ
�ða� nÞ�ð1þ nÞ�

a�1þsþnðI1 þ I2 þ I3 þ ðs $ nÞÞ

� � �2a�2

2aþ 1
þ �2a�1

2a
� �a�1 a� 1

3a

�
2F1ð�a; aþ 1; aþ 2;�1Þ

aþ 1
þ 2F1ð�a; a� 1; a;�1Þ

a� 1

�

� �4a�1
X1
n¼0

X1
s¼0

�ðaÞ
�ða� nÞ�ð1þ nÞð3a� s� nÞ

�
2F1ðn� a; 1þ n� 2a; 2þ n� 2a;�1Þ

1þ n� 2a

þ 2F1ðs� a; 1þ s� 2a; 2þ s� 2a;�1Þ
1þ s� 2a

þ 2F1ðn� a; sþ n� 1� 2a; sþ n� 2a;�1Þ
sþ n� 1� 2a

þ 2F1ðs� a; sþ n� 1� 2a; sþ n� 2a;�1Þ
sþ n� 1� 2a

�
: (A12)

A similar computation was done for the TCT and TTC terms, with the correct cutoff prescriptions. Note, however, that
CTT ¼ TTC.

APPENDIX B: COMPUTATION OF THE DIVERGENCES IN THE TTTT TERM

The computation of an amplitude with four-tachyon insertions is clearly a lot more involved than the above one, since
three integrations have to be done. The straightforward OPE of the four tachyons is doable and gives, from Eq. (C5),

Z
dx1

Z x1�"

x1�L
dx2

Z x2�"

x2�L
dx3

Z x3�"

x3�L
dx4

?
?c

þTþðx1Þ ?? ?
?c

�T�ðx2Þ ?? ?
?c

þTþðx3Þ ?? ?
?c

�T�ðx4Þ ??

¼
Z

dx1e
4!X0

Z x1�"

x1�L
dx2

Z x2�"

x2�L
dx3

Z x3�"

x3�L
dx4ðða� 1Þ2ðx1 � x2Þa�2ðx1 � x3Þðx1 � x4Þa�1ðx2 � x3Þa�1ðx2 � x4Þ

� ðx3 � x4Þa�2 � ðx1 � x2Þa�1ðx1 � x4Þa�1ðx2 � x3Þa�1ðx3 � x4Þa�1 þ ða� 1Þ2ðx1 � x2Þa�1ðx1 � x3Þ
� ðx1 � x4Þa�2ðx2 � x3Þa�2ðx2 � x4Þðx3 � x4Þa�1Þ: (B1)

This integrand is too much coupled in its variables and not analytically computable in this form. But one can show using
the identity

ðx1 � x2Þðx3 � x4Þ � ðx1 � x3Þðx2 � x4Þ þ ðx1 � x4Þðx2 � x3Þ ¼ 0 (B2)

that the integrand can be reexpressed as

Z
dx1e

4!X0
Z x1�"

x1�L
dx2

Z x2�"

x2�L
dx3

Z x3�"

x3�L
dx4ðða�1Þ2ðx1�x2Þa�2ðx2�x3Þaðx3�x4Þa�2ðx1�x4Þaþð2ða�1Þ2�1Þ

�ðx1�x2Þa�1ðx1�x4Þa�1ðx2�x3Þa�1ðx3�x4Þa�1þða�1Þ2ðx1�x2Þaðx2�x3Þa�2ðx3�x4Þaðx1�x4Þa�2Þ: (B3)

If we use the change of variable

x2 ¼ �L�1 þ x1 x3 ¼ �L�2 þ x2 x4 ¼ �L�3 þ x3; (B4)

the integral becomes
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Z
dx1e

4!X0
Z 1

�
d�1

Z 1

�
d�2

Z 1

�
d�3ðða� 1Þ2�a�2

1 �a
2�

a�2
3 ð�1 þ �2 þ �3Þa þ ða� 1Þ2�a

1�
a�2
2 �a

3ð�1 þ �2 þ �3Þa�2

þ ð2ða� 1Þ2 � 1Þ�a�1
1 �a�1

2 �a�1
3 ð�1 þ �2 þ �3Þa�1Þ: (B5)

It is possible to extract the divergences by analytic integration, but we need to be careful since wewill need at some point
to commute the integrals and sums. For this reason, the z argument in the 2F1ða; b; c; zÞ should satisfy jzj< 1.

We will not develop the whole computation but give as an example one of the three integrals. Let us study the following
one:

Z 1

�
d�1

Z 1

�
d�2

Z 1

�
d�3�

a
1�

a�2
2 �a

3ð�1 þ �2 þ �3Þa�2: (B6)

Integration of �3 imposes to separate the domain of integration in three parts:

�1 þ �2 > 1 and �3 2 ½�; 1�< �1 þ �2 �1 þ �2 < 1 and �3 2 ½�;�1 þ �2�< �1 þ �2

�1 þ �2 < 1 and �3 2 ½�1 þ �2; 1�> �1 þ �2 :
(B7)

This makes three integrals:

I1 ¼
Z 1

�
d�1

Z 1

1��1

d�2

Z 1

�
d�3�

a
1�

a�2
2 �a

3ð�1 þ �2Þa�2

�
1þ �3

�1 þ �2

�
a�2

I2 ¼
Z 1

�
d�1

Z 1��1

�
d�2

Z �1þ�2

�
d�3�

a
1�

a�2
2 �a

3ð�1 þ �2Þa�2

�
1þ �3

�1 þ �2

�
a�2

I3 ¼
Z 1

�
d�1

Z 1��1

�
d�2

Z 1

�1þ�2

d�3�
a
1�

a�2
2 �2a�2

3

�
1þ �1 þ �2

�3

�
a�2

;

(B8)

which integrate to

I1 ¼
Z 1

�
d�1

Z 1

1��1

d�2�
a
1�

a�2
2 ð�1 þ �2Þa�2

�
�aþ1
3

aþ 1 2F1

�
2� a; aþ 1; aþ 2;� �3

�1 þ �2

��
1

�

I2 ¼
Z 1

�
d�1

Z 1��1

�
d�2�

a
1�

a�2
2 ð�1 þ �2Þa�2

�
�aþ1
3

aþ 1 2F1ð2� a; aþ 1; aþ 2;� �3

�1 þ �2

��
�1þ�2

�

I3 ¼
Z 1

�
d�1

Z 1��1

�
d�2�

a
1�

a�2
2

�
�2a�1
3

2a� 1 2F1ð2� a; 1� 2a; 2� 2a;��1 þ �2

�3

��
1

�1þ�2

:

(B9)

We will not develop the computations for all the three integrals. Let us focus on the third, which is easier to present. The
method is similar for the two other ones.

I3¼
Z 1

�
d�1

Z 1��1

�
d�2�

a
1�

a�2
2

�
1

2a�12F1ð2�a;1�2a;2�2a;��1��2Þ�ð�1þ�2Þ2a�1

2a�1 2F1ð2�a;1�2a;2�2a;�1Þ
�
:

(B10)

These are two different integrations to do. We have

I13 ¼
Z 1

�
d�1

Z 1��1

�
d�2�

a
1�

a�2
2

1

2a� 1 2F1ð2� a; 1� 2a; 2� 2a;��1 � �2Þ

I23 ¼ �
Z 1

�
d�1

Z 1��1

�
d�2

ð�1 þ �2Þ2a�1

2a� 1 2F1ð2� a; 1� 2a; 2� 2a;�1Þ:
(B11)

Each of these separates again in three parts:

�12
�
�;

1

2

�
and �22½�;�1� �12

�
�;

1

2

�
and �22½�1;1��1� �12

�
1

2
;1

�
and �22½�;1��1�: (B12)

There is no known expression for the integration of I13 , but it is not much of a problem since we only want to extract

divergences. Because j�1 þ �2j< 1, one can express 2F1 as its series expansion given in Eq. (A10). Since the series is
convergent everywhere in the integration domain, we can commute the sum and the integral, such that
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I13 ¼ �X1
n¼0

�ða� 1Þ
�ða� 1� nÞ�ð1þ nÞð1� 2aþ nÞ

�Z 1=2

�
d�1

Z �1

�
d�2�

a
1�

a�2
2 ð�1 þ �2Þn

þ
Z 1=2

�
d�1

Z 1��1

�1

d�2�
a
1�

a�2
2 ð�1 þ �2Þn þ

Z 1

1=2
d�1

Z 1��1

�
d�2�

a
1�

a�2
2 ð�1 þ �2Þn

�
: (B13)

These integrals are very similar to the ones studied in Appendix A. Following the method presented there, and with a
careful power analysis in �, we can obtain

I13 ¼ �X1
n¼0

�ða� 1Þ
�ða� 1� nÞ�ð1þ nÞð1� 2aþ nÞ �

�
� 2�a�1�n�a�1

ðaþ 1þ nÞða� 1Þ þ oð1Þ þ ð2�a�1�n � 1Þ�a�1

ðaþ 1þ nÞða� 1Þ
�

¼ � �a�1

3aða� 1Þ
�
2F1ð2� a; 1� 2a; 2� 2a;�1Þ

2a� 1
þ 2F1ð2� a; aþ 1; aþ 2;�1Þ

aþ 1

�
þ oð1Þ: (B14)

The computation of I23 is less difficult. With the method of Appendix A and Eq. (B12), it gives

I23 ¼
Z 1=2

�
d�1�

4a�2
1

�
2F1ð1� 2a; a� 1; a;�1Þ

a� 1
þ 2F1ð1� 2a; 2� 3a; 3� 3a;�1Þ

2� 3a

�
2F1ð2� a; 1� 2a; 2� 2a;�1Þ

1� 2a

þ �4a�1

3aða� 1Þð4a� 1Þ ð3a2F1ð1� 2a; a� 1; a;�1Þ þ ða� 1Þ2F1ð1� 2a;�3a; 1� 3a;�1ÞÞ

� 2F1ð2� a; 1� 2a; 2� 2a;�1Þ
1� 2a

þ �a�1

3a
2F1ð2� a; 1� 2a; 2� 2a;�1Þ

a� 1
þ oð1Þ: (B15)

We do not integrate explicitly the first term so that the logarithm appears unambiguously at a ¼ 1=4. This has to be
compared to the second term, which does not become a logarithm, since it is finite at a ¼ 1=4. Indeed, for this precise value

a� 1 ¼ �3a, and one gets �0

3aða�1Þ .
Finally, summing up I13 with I23 , one obtains

I3 ¼
Z 1=2

�
d�1�

4a�2
1

�
2F1ð1� 2a; a� 1; a;�1Þ

a� 1
þ 2F1ð1� 2a; 2� 3a; 3� 3a;�1Þ

2� 3a

�
2F1ð2� a; 1� 2a; 2� 2a;�1Þ

1� 2a

þ �4a�1

3aða� 1Þð4a� 1Þ ð3a2F1ð1� 2a; a� 1; a;�1Þ þ ða� 1Þ2F1ð1� 2a;�3a; 1� 3a;�1ÞÞ

� 2F1ð2� a; 1� 2a; 2� 2a;�1Þ
1� 2a

� �a�1

3a
2F1ð2� a; aþ 1; aþ 2;�1Þ

aþ 1
þ oð1Þ: (B16)

Similarly, one computes I1 and I2, for which we obtain

I1 ¼ oð1Þ (B17)

and

I2¼
Z 1=2

�
d�1�

4a�2
1

�
2F1ð1�2a;a�1;a;�1Þ

a�1
þ 2F1ð1�2a;2�3a;3�3a;�1Þ

2�3a

�
2F1ð2�a;aþ1;aþ2;�1Þ

aþ1

þ �4a�1

3aða�1Þð4a�1Þð3a2F1ð1�2a;a�1;a;�1Þþða�1Þ2F1ð1�2a;�3a;1�3a;�1ÞÞ2F1ð2�a;aþ1;aþ2;�1Þ
aþ1

þ�4a�1
X1
n¼0

�ða�1Þ
�ðnþ1Þ�ða�n�1Þðaþnþ1Þð3a�n�2Þ

�
2F1ð�2aþnþ1;�aþnþ2;�2aþnþ2;�1Þ

�2aþnþ1

þ 2F1ð�2aþnþ3;�aþnþ2;�2aþnþ4;�1Þ
�2aþnþ3

�
��a�1

3a
2F1ð2�a;aþ1;aþ2;�1Þ

aþ1
þoð1Þ: (B18)

One expresses then the whole integral (B6) as
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Z 1

�
d�1

Z 1

�
d�2

Z 1

�
d�3�

a
1�

a�2
2 �a

3ð�1þ�2þ�3Þa�2

�
Z 1=2

�
d�1�

4a�2
1

�
2F1ð1�2a;a�1;a;�1Þ

a�1
þ 2F1ð1�2a;2�3a;3�3a;�1Þ

2�3a

��
2F1ð2�a;1�2a;2�2a;�1Þ

1�2a

þ 2F1ð2�a;aþ1;aþ2;�1Þ
aþ1

�
þ�4a�1

�
1

ð4a�1Þ
�
2F1ð1�2a;a�1;a;�1Þ

a�1
þ 2F1ð1�2a;�3a;1�3a;�1Þ

3a

�

�
�
2F1ð2�a;1�2a;2�2a;�1Þ

1�2a
þ 2F1ð2�a;aþ1;aþ2;�1Þ

aþ1

�
þX1

n¼0

�ða�1Þ
�ðnþ1Þ�ða�n�1Þðaþnþ1Þð3a�n�2Þ

�
�
2F1ð�2aþnþ1;�aþnþ2;�2aþnþ2;�1Þ

�2aþnþ1
þ 2F1ð�2aþnþ3;�aþnþ2;�2aþnþ4;�1Þ

�2aþnþ3

��

�2
�a�1

3a
2F1ð2�a;aþ1;aþ2;�1Þ

aþ1
þoð1Þ: (B19)

Similar techniques apply to the two other kinds of integrals.

APPENDIX C: PARTITION FUNCTION TO EIGHTH ORDER

The disk partition function for the system, unintegrated over the timelike zero modes, can be expressed as a series:

Zðrjx0Þ ¼
X1
n¼0

ð��þ��e2!x0ÞnIn; (C1)

with In a coefficient which is equal to the sum time-ordered integrals that appear at order n in the perturbative expansion.
We can express it in a condensed form as

In ¼
Z

½dt�2n
>

�������� 1 3 5 . . . 2n� 1
2 4 6 . . . 2n

���������4r2 X
perm P

ð�1ÞP
����������������

a1a2
a3a4
. . .

a2n�1a2n

����������������
ð1� 4r2Þðn=2Þ�ð1=2ÞPn

i¼1
ð�1Þa2i�1�a2i

; (C2)

with the time-ordered measure

½dt�2n
>

¼ Y2n
i¼1

dti
2�

Y2n�1

i¼1

�ðti � tiþ1Þ: (C3)

We have also introduced convenient notations for the integrand, defined as��������������������

a1a2

a3a4

. . .

a2n�1a2n

��������������������
¼ Yn

i¼1

Y2n
j¼2iþ1

Sða2i�1; ajÞSða2i; ajÞ;
�����������

i1i2 . . . ip

j1j2 . . . jn

�����������¼
Yp
�¼1

Yn
a¼1

Sði�; jaÞ; (C4)

where Sði; jÞ ¼ j2 sinti�tj
2 j. The sum in Eq. (C2) is done over all permutations within the set f1; 2; 3 . . . 2ng.29 Up to n ¼ 2,

the partition function, for given jrj< 1=
ffiffiffi
2

p
, reads

Zðrjx0Þ ¼ 2� 2�þ��e2!x0
Z

½dt�2
>

�������� 1

2

���������4r2ð1� 4r2Þ þ 2ð�þ��e2!x0Þ2

�
Z

½dt�4
>

�������� 1 3

2 4

���������4r2
�
ð1� 4r2Þ2

�������� 1 2

3 4

���������
�������� 1 3

2 4

��������þð1� 4r2Þ2
�������� 1 4

2 3

��������
�
þ . . . (C5)

The computation at second order in T, for r � 1=2, gives the result

Zðrjx0Þ¼2� �ð2�4r2Þ
�2ð1�2r2Þ�

þ��e2!x0þOðð�þ��Þ2Þ; (C6)

29To be precise, we have Pðf1; 2; 3 . . . 2ngÞ ¼ fa1; a2; a3 . . .a2ng.
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where we used the Dyson integral [36]:

Z 2�

0

Yn
i¼1

dti
2�

Yn
i<j

jeiti � eitj j2� ¼ �ð1þ n�Þ
�nð1þ �Þ : (C7)

We notice that the result (C6) is analytic in r for all values

below the critical distance rc ¼ 1=
ffiffiffi
2

p
. The reason for this

property should now be familiar to the reader. For jrj< 1=2,
the contact term vanishes and hence gives no contribution to
Eq. (C6). The value r ¼ 1=2 is particular. We see that the
prefactor of the second-order integral in Eq. (C5) vanishes; at
the same time, the contact term gives a finite contribution,
ensuring the continuity of the result in Eq. (C6). For any
1=2< jrj< rc, the second-order integral in Eq. (C6) is
divergent. As we explained in Sec. IIIC, the divergence is
canceled by the contribution from the contact term, which
appears in the world-sheet action (15), where " is chosen to
be the same as the short-distance cutoff inEq. (C5). The finite
part that remains agrees precisely with Eq. (C6). Hence, the
presence of the contact term gives (at least at this order) a
continuous result all the way to the critical distance.

The r ¼ 1=2 case

Finding the complete expression of the disk partition

function at any jrj< 1=
ffiffiffi
2

p
seems to be out of reach,

since integrals involve complicated highly coupled
multidimensional integrals with path ordering.

For this reason, we want to compute the partition func-
tion in the special case where ! ¼ 1=2, which is tractable.
We recall that the perturbative expansion of the world-
sheet action is given by Eq. (6):

Zðr; �þ; ��Þ ¼ he��Si
¼ he�ð�þ=2�Þ

R
dt̂�þTþðt̂Þ�ð��=2�Þ

R
dt̂��T�ðt̂Þi

¼ X1
n;p¼0

ð�1Þnþp ð�þÞn
n!

ð��Þp
p!

� X
perm�

Z
½dt̂�nþph��ðt̂1Þ . . .��ðt̂nþpÞi

� hT�ðt̂1Þ . . .T�ðt̂nþpÞi; (C8)

with n and p of the same parity and T� ¼ eð�i~Xþ!X0Þ=2.
Because of the Fermi multiplets correlators, the

only nonvanishing terms are the ones which have as
much þ as �. The correlators of the Fermi multiplets are
easy to compute using Wick theorem and the Green func-
tion (5). It leads to one product of supersymmetric sign
functions

Q
�̂ð2i; 2iþ 1Þ, which decomposes into a sum of

2ðn!Þ2 supersymmetric path orderings. One finds that these
path orderings are all equivalent under permutations of
Tþ’s (T�’s) with Tþ’s (T�’s) and permutations of integra-
tion variable. So one chooses one path ordering, symboli-
cally t̂1 > t̂2 > . . .> t̂2n multiplied by a factor 2ðn!Þ2. We
should then compute

Zðr; �þ; ��Þ ¼ 2
X1
n¼0

ð�þ��Þn
Z

½dt�2n
>

hTþðt̂1ÞT�ðt̂2Þ . . .T�ðt̂2nÞi

¼ 2
X1
n¼0

ð�þ��Þneinx
Z

½dt̂�2n
>

Yn
i<j

Ŝð2i; 2jÞŜð2i� 1; 2j� 1Þ ¼ 2
X1
n¼0

ð�þ��ÞneinxIn; (C9)

with Ŝði; jÞ ¼ j2 sinti�tj
2 j � �ði; jÞ�i�j.

The computation of the integrals In is as follows, using
the notation of Eq. (C4). We have first

I1 ¼ � 1

2�

Z
½dt�1 ¼ � 1

2�
: (C10)

Then I2, which is still easy, is

I2¼ 1

ð2�Þ2
Z ½dt�2

2!

��������1

2
jj2
1

���������
Z ½dt�4

4!
¼ 1

ð2�Þ2�
1

4!
;� (C11)

and

I3 ¼ 1

2�

Z ½dt�5
5!

C5
1

�������� 1

2345

��������
� 1

ð2�Þ3
Z ½dt�3

3!

�������� 1

23

��������
�������� 2

13

��������
�������� 3

12

��������
¼ 212

4!ð2�Þ5 �
1

ð2�Þ3 ¼
16

3�5
� 1

8�3
: (C12)

I4 is a bit more complicated to compute, but in terms of
integrals, we find

I4 ¼
Z

½dt�8
>

13

57

" #
24

68

" #
� 1

ð2�Þ2
Z ½dt�6

6!
C6
2

�������� 1

2

��������
�������� 2

1

��������
�������� 12

3456

��������þ 1

ð2�Þ4
Z ½dt�4

4!

�������� 1

234

��������
�������� 2

134

��������
�������� 3

124

��������
�������� 4

123

��������
¼ 1

1120
þ 143

144�6
� 55

192�4
þ 13

480�2
�
�
� 1001

2592�6
� 175

432�4
� 1

240�2

�
þ 1

16�4

¼ 1

1120
þ 3575

2592�6
þ 205

1728�4
þ 1

32�2
þ 1

16�4
; (C13)
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where we introduced the totally antisymmetric form

ab . . .
cd . . .

� �
¼X

P

ð�1ÞP pðaÞpðbÞ . . .
pðcÞpðdÞ . . .

� �
¼ ab . . .

cd . . .

� �
� ac . . .

bd . . .

� �
þ ad . . .

bc . . .

� �
þ . . . ; (C14)

with the partially antisymmetric form

abc . . .

def . . .

 !
¼ �ða; bÞ�ða; cÞ�ðb; cÞ � . . .� �ðd; eÞ�ðd; fÞ�ðe; fÞ � . . .�

�������� abc . . .

def . . .

��������: (C15)

The bigger n is, the more complicated the corresponding term in the partition function is. This is because more and more
contribution of the contact term appears and the path ordering cannot be always removed. For the special value r ¼ 1=2,
the contact term has indeed a nonzero, but finite, contribution to the final result.

We end up with the following expansion. The terms coming from pure ‘‘noncontact’’ contributions are underlined:

ZðxÞ
2

¼ 1� �þ�� eix

2�
þ ð�þ��Þ2

4�2
e2ix

�
1� �2

6

�
� ð�þ��Þ3

8�3
e3ix

�
1� 128

3�2

�

þ ð�þ��Þ4
16�4

e4ix
�
1þ 175

27
þ 1001

162�2
þ �2

15
� 55

12
þ 143

9�2
þ 13�2

30
þ �4

70

�
. . . ; (C16)

where we recognize the trivial expansion

1� �þ�� eix

2�
þ ð�þ��Þ2 e

2ix

4�2
� ð�þ��Þ3 e

3ix

8�3
þ . . . ¼ 1

1þ �þ��
2� eix

: (C17)

In fact, this factorization is exact to all orders; by looking at the integrals In, one can see that the maximal contact term is
always present and has a standard form, which we recognize as a Vandermonde determinant.

The remaining terms should come from a nontrivial function that multiplies (C17):

ZðxÞ¼ 2

1þ�þ��
2� eix

�
1�

�
�þ��

2�

�
2�2

6
e2ixþ

�
128

3�2
��2

6

��
�þ��

2�

�
3
e3ixþ

�
205

108
þ 10487

162�2
þ�2

2
þ�4

70

��
�þ��

2�

�
4
e4ixþ . . .

�
:

(C18)

This does not seem to come from the Taylor expansion of a simple expression.
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