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Inspired by the method of null-dimensional reduction and by the holographic correspondence between

Vasiliev’s higher-spin gravity and the critical OðNÞ model, a bulk dual of the unitary and the ideal

nonrelativistic Fermi gases is proposed.

DOI: 10.1103/PhysRevD.85.106001 PACS numbers: 11.25.Tq, 03.75.Ss

I. INTRODUCTION

The quantum many-body problem of a nonrelativistic
two-component Fermi gas with short-range attractive in-
teractions is a long-standing problem in condensed matter
physics. At low temperature, the system is known to be
superfluid and undergoes a smooth crossover from the
Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein-
Condensate (BEC) regime as the two-body attraction
is increased (see [1] for reviews). Recent progress in
experimental atomic physics has allowed the study of the
BCS-to-BEC crossover with unprecedented accuracy. The
regime in between BCS and BEC, known as the ‘‘unitary
Fermi gas,’’ is of special theoretical interest. The unitary
Fermi gas is strongly coupled and no obvious small pa-
rameter is available precluding the reliable application of a
perturbative expansion.

A characteristic of the unitary Fermi gas in vacuum is its
invariance under scale transformations and, more generally,
under the Schrödinger group of [2]. This nonrelativistic
conformal symmetry of the unitary Fermi gas allowed [3]
to apply themethods of gauge-gravity duality to this system.
While these seminal papers triggered an intensive search for
the holographic duals of various nonrelativistic systems
originating from condensed matter physics, a holographic
description of the unitary fermions still remains tantalizing.
In this work, inspired by the conjectured anti-de Sitter (AdS)
dual of the critical OðNÞ model [4], we make a next step
towards thegravity dual description of the unitary Fermi gas.

II. UNITARY FERMI GAS AND ITS
LARGE-N EXTENSION

Experimentally, a dilute two-component Fermi gas can
be cooled with lasers to ultralow temperatures close to
absolute zero. Theoretically, this system can be very
well-described as a Fermi gas with two-body contact in-
teractions governed by the microscopic BCS action
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where the two species of fermionic atoms of mass m are
represented by the Grassmann fields c " and c #, the chemi-

cal potential by �, and c0 measures the strength of the
interaction. This model has an internal Uð2Þ symmetry.
Because of the contact nature of the interaction term, in
three spatial dimensions (d ¼ 3) the quantum field theory
defined by the action (1) must be renormalized by trading
the bare interaction parameter c0 for a low-energy observ-
able: the s-wave scattering length. Experimentally, the
scattering length can be tuned via a Feshbach resonance
by applying an external magnetic field. The unitary regime
corresponds to an infinite scattering length. Hence, in
vacuum (i.e., � ¼ 0) there is no intrinsic length scale in
the unitary regime and the microscopic action (1) is invari-
ant under the Schrödinger symmetry. Most remarkably, the
quantum version of this theory is believed to be an example
of a strongly interacting nonrelativistic conformal field
theory (NRCFT) [5].
Aiming at a semiclassical holographic description, some

large-N extension of the unitary Fermi gas is necessary. A
sensible construction that preserves the pairing structure of
the interaction term was found in [6]. The model with N
‘‘flavors’’ is defined by the action
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where c denotes a multiplet of 2N massive fermions with
components c A ¼ c a

� with � ¼" , # and a ¼ 1; . . . ; N.
The symbol J represents the symplectic 2N � 2N matrix
JAB ¼ ��� � �ab. For N ¼ 1, one recovers the original
model (1). The extended model has Uð1Þ � Spð2NÞ as an
internal symmetry group. Its subgroup Uð2Þ �OðNÞ,
where Uð2Þ and OðNÞ transform independently the
‘‘spin’’ and ‘‘flavor’’ indices (respectively �, � and a, b)
will be central in our proposal. Via a Hubbard-Stratonovich
transformation in the Cooper channel, both theories (1) and
(2) can be reformulated as effective field theories in terms
of a complex scalar field (called dimer in the literature on
the unitary Fermi gas) associated with the Cooper pair
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c TJc � c " � c #. In the large-N limit the quantum parti-

tion function of (2) is equivalent to the mean field approxi-
mation for (1), as both correspond to the saddle point of the
dimer effective theory.

III. UNITARY FERMI GAS VS
RELATIVISTIC UðNÞ MODEL

Relativistic scalar OðNÞ models and their natural com-
plex UðNÞ extension are well-understood due to their
central role in the physics of critical phenomena. Despite
their different space-time symmetries, the relativisticUðNÞ
model in D ¼ dþ 2-dimensional space-time and the non-
relativistic BCSmodel in d spatial dimensions have several
features in common. Some of the properties of the models
are compared in the following table:

Models UðNÞ BCS

Space-time Relativistic Nonrelativistic

Fundamental fields Bosons � Fermions c ", c #
Components N complex 2N complex

Internal symmetry UðNÞ Uð1Þ � Spð2NÞ
Quartic interaction ð�y ��Þ2 jc " � c #j2
Collective field Particle density

�y ��
Cooper Pair

c " � c #
Scale-free m ¼ 0 � ¼ 0

Critical fixed point Wilson-Fisher Unitary regime

UðNÞ and BCS models have a similar renormalization
group topology exhibiting a pair of fixed points. Besides
the trivial fixed point, both theories can be tuned to criti-
cality: the Wilson-Fisher fixed point for the massless UðNÞ
model and the unitary fixed point for the BCS model at
� ¼ 0. In the large-N limit, the models at the interacting
fixed point are simply related to their noninteracting coun-
terparts. In particular, by applying the general observation
of [7] to nonrelativistic fermions, one can show that, in the
large-N limit, the free energies of the ideal and the unitary
Fermi gases are related by a Legendre transformation with
respect to the dimer field. Consequently, in this limit the
theory at the two fixed points has the same infinite set of
conserved currents and symmetries, most of which are
broken by 1=N corrections in the interacting theory.
Analogous observation also holds for the relativistic
UðNÞ model.

One also observes a simple relation between the scaling
dimensions of the collective field at the two fixed points for
both BCS and UðNÞ models [3,4]

�free ¼
�
d BCSmodel

D� 2 UðNÞmodel

�int ¼ 2

�
BCSmodel ðin vacuumÞ
UðNÞmodel ðN ¼ 1 limitÞ

(3)

In contrast to the relativistic UðNÞ model, due to the
simplicity of the nonrelativistic vacuum, the relation
�int ¼ 2 is exact in the theory of nonrelativistic fermions,
i.e., it receives no 1=N corrections.
The highest of the two scaling dimensions, denoted �þ,

is always above the unitarity bound and corresponds to an
infrared (IR)-stable fixed point on the boundary side and to
a standard (Dirichlet) boundary condition on the bulk side.
The lowest dimension, ��, corresponds to an ultraviolet
(UV)-stable fixed point and to an exotic (Neumann) bound-
ary condition. Thus the holographic dual of the boundary
Legendre transformation is a change of boundary condi-
tions on the bulk scalar field. When both dimensions are
above the nonrelativistic unitarity bound, �þ � �� �
d=2, both fixed points are admissible and thus correspond
to different choices of boundary conditions for the same
bulk theory.
The unitary fixed point corresponding to �int is physi-

cally admissible only for 0< d< 2 (IR-stable) and
2< d< 4 (UV-stable). Indeed, for d > 4 one obtains
�int ¼ 2< d

2 which violates the unitarity bound for dimers.

Moreover, in d ¼ 2 both fixed points merge together
(�free ¼ 2 ¼ �int) and only the trivial fixed point exists.
The situation can be summarized as:

d �� �þ Property

0< d< 2 �free �int Asymptotic

freedom

d ¼ 2 2 2 Triviality

2< d< 4 �int �free Asymptotic

safety

IV. NULL-DIMENSIONAL REDUCTION

This is an old trick relating mathematically, relativistic
and nonrelativistic theories at tree level (see, e.g., [8]). It is
based on the observation that the d’Alembertian of D ¼
dþ 2-dimensional Minkowski space-time expressed in
light-cone coordinates x� ¼ ðxþ; x�; xiÞ is proportional
to the Schrödinger operator in d spatial dimensions, mod-
ulo the identification of the null coordinate xþ with the
nonrelativistic time and of the null momentum �i@� with
the mass operator. Indeed, the kinetic operator of a rela-
tivistic scalar theory, h�M2 ¼ �2@þ@� þ��M2,
when acting on eigenmodes of the null momentum,

�ðxÞ ¼ e�imx�c ðxþ; xiÞ; (4)

is proportional to the kinetic Schrödinger operator of a
nonrelativistic theory, i@t þ �=2mþ�, via the identifica-
tion xþ ¼ t and M2 ¼ ��=2m. Hence, any solution �ðxÞ
of the free Klein-Gordon equation of the form (4) defines a
solution c ðt;xÞ of the free Schrödinger equation, and
conversely.
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By definition, symmetries map solutions on solutions,
thus the symmetries of the free Schrödinger equation can
be seen as those symmetries of the free Klein-Gordon
equation that commute with a fixed null momentum. For
instance, the Bargmann group (the central extension of the
Galilei group by the mass) and the Schrödinger group (the
Bargmann group enlarged by expansions and scale trans-
formations [2]) are, respectively, the kinematical symmetry
groups of the free Schrödinger equation with and without
chemical potential [9]. They can be viewed as the central-
izers of a given null momentum inside, respectively, the
Poincaré and the conformal group of kinematical symme-
tries of the Klein-Gordon equation with and without mass.

The dimensional reduction explains the similarities be-
tween the large-N critical UðNÞ model and the unitary
Fermi gas in vacuum. In fact, generally any Lagrangian
invariant under global Uð1Þ phase and Poincaré (confor-
mal) transformations can be consistently reduced to a
Lagrangian preserved by the Uð1Þ and Bargmann
(Schrödinger) groups. This universal relationship between
relativistic and nonrelativistic field theories in the semi-
classical (i.e., mean field) approximation has maybe not yet
received the attention that it deserves.

V. NONRELATIVISTIC HIGHER-SPIN
SYMMETRIES

A key feature of free conformal field theories (CFTs) is
that their symmetries are enhanced to an infinite-
dimensional higher-spin symmetry algebra. Following the
holographic dictionary, the associated infinite collection of
higher-spin conserved currents should be dual to a tower of
higher-spin gauge fields in the bulk. In particular, the
bilinear singlet sector of a free scalar CFT should be dual
to a Vasiliev theory [10]. Consequently, a crucial step
towards a bulk dual of the ideal Fermi gas is the identi-
fication of symmetries and currents of the nonrelativistic
free fermions as well as their relationship to their relativ-
istic parent. This lengthy analysis will be presented in
detail in [11] and here we only summarize our main results.

A target is the nonrelativistic counterpart of the theorem
of Eastwood [12] identifying the maximal symmetry alge-
bra of the d’Alembert equation in D ¼ dþ 2 flat space-
time. The latter infinite-dimensional algebra is denoted
here as ‘‘Vasiliev (dþ 2,2)’’, since it contains the confor-
mal algebra oðdþ 2; 2Þ and is used by Vasiliev as gauge
algebra in his bosonic higher-spin theories onAdSdþ3 [13].
Mimicking the definitions of [12], a symmetry generator of
the free Schrödinger equation (with � ¼ 0 from now on),�

i@tþ �

2m

�
c ðt;xÞ¼0, c ðt;xÞ¼eitð�=2mÞc ð0;xÞ; (5)

is a linear differential operator Â such that ði@t þ
�=2mÞÂ ¼ B̂ði@t þ �=2mÞ for some linear differential

operator B̂, because then Â maps solutions on solutions.
Two generators are equivalent if they only differ by a trivial

generator of the form Â ¼ Ĉði@t þ �=2mÞ for some linear

operator Ĉ, i.e., Â then maps solutions on zero. The
maximal symmetry algebra of the free single-particle
Schrödinger equation is the Lie algebra of all inequivalent
symmetry generators and it is [11]:
(i) isomorphic to the Weyl algebra [14], denoted ‘‘Weyl

(d),’’ of spatial differential operators (i.e., quantum
observables that are polynomials in positions and
momenta) evolved in the time-reversed Heisenberg
picture

Âð�tÞ ¼ e�itð�=2mÞÂð0Þe�itð�=2mÞ

that manifestly maps any solution (5) to a solution,
(ii) generated algebraically by (taking powers of) the

spatial translation and Galilean boost generators,

P̂i¼�i@i¼P̂ið�tÞ and K̂i¼mxiþit@i¼mX̂ið�tÞ
with canonical commutation relations ½K̂i; P̂j� ¼
i�ijm,

(iii) embedded in the Vasiliev algebra as the subalgebra
commuting with a given null momentum and con-
tains the Schrödinger algebra schðdÞ, as summa-
rized here:

Kinematical 	 Higher symmetries

CFT oðdþ 2; 2Þ 	 Vasiliev (dþ 2, 2)
[ [ [
NRCFT schðdÞ 	 Weyl (d)

where the vertical embedding corresponds to the null-
dimensional reduction, and the horizontal embedding
arises from the fact that the generators of kinematical
symmetries are first-order differential operators while
higher symmetries generators can be higher derivatives.
Notably [15], the Schrödinger algebra is contained in the
Weyl algebra because its generators can be realized as
polynomials of degree two in the spatial translation and
Galilean boost generators.
For an n-component scalar field, these higher-spin

space-time symmetry algebras of the d’Alembert and
Schrödinger equations can be tensored with an internal
uðnÞ algebra of Hermitian n� nmatrices. The correspond-
ing higher-spin theories then possess uðnÞ-valued gauge
fields [13] dual to boundary bilinear currents in the adjoint
representation of UðnÞ [4].

VI. FERMION BILINEARS AND COUPLING
TO SOURCES

The physical (N ¼ 1) BCS fermions are two-component
Grassmann scalars in the fundamental representation of the
internal symmetry group Uð2Þ. Together with the up and
down particle densities, the Cooper pair fits into an adjoint
multiplet of Uð2Þ, i.e., the 2� 2 Hermitian matrix:
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In the large-N extended theory, these considerations lead
us to focus on the sector of flavor-singlet two-fermion
composite fields in the adjoint representation of Uð2Þ.
They are spanned by the Uð1Þ-neutral conserved currents
[16] (no sum over the index � ¼" , # )
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and the Uð1Þ-charged symmetric tensors
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For s ¼ r ¼ 0, these composite fields, respectively, repro-

duce the up and down particle densities jð0Þ
� ¼ c �

� � c �

and the Cooper pair kð0Þ ¼ c " � c #. In the holographic

correspondence, the composite operators (6) and (7) should
couple minimally to sources, respectively, denoted by

hðrÞ�i1���is and ’ðrÞ
i1���is , representing the boundary data of

uð2Þ-valued bulk gauge fields. With the techniques of
[17], the difference of the free action S½c ; 0; N� and
of the minimal coupling term,X

r;s�0

Z
dtdxðjðrÞi1���ishðrÞi1���is þ kðrÞi1���is�’ðrÞ

i1���is þ c:c:Þ;

can be rewritten as the quadratic functional [11]Z
dtdx�y i@t þ �

2m � Ĥ" ’̂

’̂y i@t � �
2m þ Ĥ�

#

 !
�;

where�T ¼ ðc "; c �
# Þ defines the two-component Nambu-

Gorkov fermion, Ĥ�
�ðX̂; P̂Þ :¼ Ĥ�ðX̂;�P̂Þ and the differ-

ential operators Ĥ� and ’̂ are related to the respective
sources h� and ’. This compact rewriting is formally
identical to the Nambu-Gorkov formulation of the BCS
theory except that the chemical potential and the energy
gap are replaced by space-time differential operators. The
effective action can be obtained now via a Gaussian inte-
gration over the fermionic field and is a trace-log func-
tional of the above 2� 2 matrix. These results can be
reproduced through the null-dimensional reduction of a
free relativistic scalar theory [11].

VII. BULK DUAL

What might be the gravity dual of the unitary Fermi gas?
Keeping the above discussion in mind, we approach this
question by following these steps: (i) unitary fermions at
N ¼ 1 are Legendre conjugate to free fermions, (ii) a key

tool for understanding higher-spin symmetries of free
nonrelativistic fermions is the null-dimensional reduction
of free relativistic Grassmann scalars, (iii) free relativistic
scalar theories are expected to be dual to Vasiliev higher-
spin theories.
Therefore it is tempting to perform the null reduction on

both sides of the relativistic holographic duality, as in [18].
Schematically, our philosophy looks as follows:

with horizontal arrows denoting holographic correspon-
dence and vertical arrows relating relativistic to nonrelativ-
istic theories via the null reduction. The higher-dimensional
relativistic parents are mere auxiliary tools in our construc-
tion, used at tree level only since they may be sick as
quantumfield theories per se. For instance, the CFT violates
the spin-statistics theorem, but this is not a problem since
this theorem does not apply to nonrelativistic theories.
We thus propose that a candidate for the holographic

description of fermions at unitarity is the null reduction of
a Vasiliev higher-spin gravity [19]. More precisely, the
OðNÞ-invariant sector of the large-N unitary fermions in
d spatial dimensions might be dual to the null reduction of
the Vasiliev bosonic theory [13] on AdSdþ3 with Uð2Þ
internal symmetry. Scalar fields on AdSdþ3 admit two
distinct choices of boundary conditions for mass square

in the interval �
�
dþ2
2

�
2
<m2 < 1�

�
dþ2
2

�
2
. Since the

complex bulk scalar fields in the higher-spin multiplet
have m2 ¼ �2d, this possibility arises in the intervals 0<
d< 2 and 2< d< 4. In particular, the gravity dual of the
‘‘physical’’ three-dimensional (d ¼ 3) two-component
(N ¼ 1) UV-stable (�� ¼ 2) unitary Fermi gas should
be the null-dimensional reduction of Vasiliev theory de-
scribing interacting uð2Þ-valued higher-spin gauge fields
onAdS6 with exotic boundary condition for the bulk scalar
field dual to the Cooper pair. The intimate connection
between the unitary and the ideal Fermi gases together
with the universality of the null-dimensional reduction
method suggest that the holographic dual of the unitary
Fermi gas is within our immediate reach.
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