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We analyze UðNÞ Born-Infeld gauge theory in two spacetime dimensions. We derive the exact energy

spectrum on the circle and show that it reduces to N relativistic fermions on a dual space. This contrasts to

the Yang-Mills case that reduces to nonrelativistic fermions. The theory admits a string theory inter-

pretation, analogous to the one for ordinary Yang-Mills, but with higher-order string interactions. We also

demonstrate that the partition function on the sphere exhibits a large-N phase transition in the area and

calculate the critical area. The limit in which the dimensionless coupling of the theory goes to zero

corresponds to massless fermions, admits a perturbatively exact free string interpretation and exhibits no

phase transition.
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I. INTRODUCTION

Two-dimensional gauge theory is special in that local
gauge field excitations are absent and only global variables
(holonomies) remain as physically relevant degrees of
freedom. As such, it is usually amenable to an exact treat-
ment and provides a convenient testing ground for con-
jectures on the properties of gauge theory. In particular,
large-N properties, such as the equivalence of gauge theory
and string theory [1–4] and the analyticity of the strong
coupling expansion can be directly probed.

The case of ordinary Yang-Mills theory has been ana-
lyzed exhaustively. The standard plaquette action has been
shown to exhibit a large-N phase transition, leading to a
nonanalyticity of the strong coupling expansion below a
critical coupling [5,6]. The true fixed point of the plaquette
action was shown to be the so-called heat kernel action
[7,8], which gives analytic results and allows for the exact
calculation of Wilson loop expectation values and of the
partition function in terms of infinite sums over represen-
tations of the gauge group [9,10].

A particularly attractive feature of two-dimensional
Yang-Mills theory is its exact description as a string theory.
This was shown both at the level of Wilson loop expecta-
tion values, which admit an interpretation as string cover-
ings of the loop area with (taut) string world sheets of
various windings [9–11], and the partition function, which
can be calculated in terms of wrappings of the spacetime
manifold with string world sheets of various windings,
including string splitting and joining interactions
[12–14]. As usual, 1=N plays the role of the string coupling
constant. Nonperturbative effects of order expð�NÞ also
appear, with string winding number being conserved only
modulo N. These results hold without the benefit of super-
symmetry and are based on pure group theory of the gauge
manifold. Further, the partition function on spacetimes of

spherical topology exhibits a large-N phase transition in
the spacetime area, going from a strongly coupled (stringy)
phase for large area to a weakly coupled phase for smaller
area [15].
Two-dimensional Yang-Mills theory also admits alter-

native and equivalent descriptions as a collection of free
nonrelativistic fermions [16,17], a gauged unitary matrix
model [18] and a c ¼ 1 collective field theory [19].
Although the interconnection between these descriptions
is known, gauge theory presents a concrete physical real-
ization and allows for a convenient formulation of related
string or many-body problems. For instance, two-
dimensional Yang-Mills is related to the Sutherland model
[20], and generalized interacting Calogero-Sutherland type
integrable models of particles with internal degrees of
freedom can be obtained and solved in terms of Yang-
Mills theory on the cylinder with one or more Wilson
loop insertions [21].
Born-Infeld electrodynamics was introduced originally

as an attempt to provide a regularization of the short-
distance singularity problem of standard electrodynamics
while preserving relativistic invariance, at the price of a
nonpolynomial action. In more recent contexts, Born-
Infeld actions often arise for the gauge fields in string
and brane theory (see, e.g., [22,23]). The obvious question
is, then, whether such theories in two dimensions are
amenable to solution, admit a string interpretation and
share the qualitative and quantitative features of standard
Yang-Mills theory.
In this paper we analyze two-dimensional Born-Infeld

theory and address the above questions. Unlike Yang-Mills
theory, which has a unique fixed point, Born-Infeld theory
can flow to various inequivalent theories according to the
exact renormalization and ordering of its nonpolynomial
terms. Under the most ‘‘natural’’ choice, the theory be-
comes equivalent to a set of relativistic fermions, providing
a nice generalization of the corresponding Yang-Mills
result of nonrelativistic fermions. A string interpretation*alexios@sci.ccny.cuny.edu
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is still possible but involves higher-order string interac-
tions. On the sphere, a large-N third-order phase transition
is also present with the same qualitative features as in
Yang-Mills.

The limit in which the dimensionless coupling of the
theory goes to zero is particularly interesting: the corre-
sponding fermion picture involves massless particles and
admits a perturbatively exact free string interpretation.
Further, the would-be phase transition on the sphere dis-
appears, the theory being always in a nominally strongly
coupled phase, with a smooth crossover from a true stringy
phase to an effectively weakly coupled phase.

II. CLASSICAL ANALYSIS OF THE SYSTEM

Non-Abelian Born-Infeld actions are, in general, not
unique even at the classical level due to ordering ambigu-
ities [24]. Specifically, the determinant over spacetime
indices in their Lagrangian involves the product of the
components of the field strength tensor, which are matrices
and their ordering matters. The unique exception is two-
dimensional theory, where the field strength has a unique
nonzero component and there in no ambiguity.

We shall consider UðNÞ gauge theory on a cylindrical
spacetime manifold of spatial period L. The field strength
is

F�� ¼ @�A� � @�A� þ i½A�; A��; �; � ¼ t; x: (1)

The Lagrangian of the theory can be written as

L ¼ ��tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð��� þ F��=TÞ

q
; (2)

where the trace is over UðNÞ matrices while the determi-
nant is over spacetime indices. � and T are dimensionful
constants, playing the role of brane tension and string
tension, respectively. Classically, � is irrelevant and can
be set equal to T. Quantum mechanically, however, it is a
relevant parameter, and the ratio �=T becomes a dimen-
sionless coupling constant for the theory. In particular, the
‘‘tensionless’’ limit �=T ! 0 is particularly interesting as
will be shown in the sequel.

From now on we shall denote by

F ¼ Ftx ¼ @tAx � @xAt þ i½At; Ax� (3)

the unique nonzero component of the field strength, in
terms of which the action becomes

S ¼
Z

d2xL ¼ ��
Z

d2xtr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F2=T2

q
: (4)

In the limit jFj � T the above action becomes (up to an
irrelevant additive constant)

S’
Z
d2x

�

2T2
trF2¼

Z
d2x

�

4T2
trF2

���
Z
d2x

1

4g2
trF2

��;

(5)

which identifies the Yang-Mills coupling in that limit as

g2 ¼ T2

�
: (6)

At the large N limit the ’t Hooft scaling of the Yang-Mills
coupling is

g2 ¼ g2o
N

: (7)

It is useful to recast the theory in a first-order formalism.
To this end, we define the gauge-covariant momentum

B ¼ �L
�F

¼ �F

T2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F2=T2

p (8)

in terms of which the Hamiltonian density is

H ¼ trðBF�LÞ ¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2B2

p
; (9)

while the action becomes

S ¼
Z

d2xtrðBF�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2B2

p
Þ: (10)

The variation in B of this action yields its defining equation
(8), while the variation of A� gives the Gauss law con-

straint and equation of motion, respectively

DxB ¼ 0; DtB ¼ 0: (11)

We can use gauge invariance to put At ¼ 0, provided we
impose the Gauss law as a constraint. In terms of the
unique gauge field Ax � A the action is

S ¼
Z

dt
Z L

0
dxtrðB _A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2B2

p
Þ; (12)

while the Gauss law constraint remains

@Bþ i½A; B� ¼ 0; (13)

where overdot and @ stand for time and space differentia-
tion, respectively.
The above theory has no local excitations and its only

degree of freedom is the nontrivial holonomy (Wilson
loop) around the spatial circle. To reduce the theory to its
degrees of freedom, we proceed in close analogy to [16].
We define the spatial open Wilson loop

Wa;b ¼ Pei
R

b

a
Adx; Wb;a ¼ W�1

a;b (14)

and consider the dressed momentum

�ðxÞ ¼ W0;xBðxÞWx;0: (15)

Upon differentiating � with respect to x and using the
Gauss law we get

@� ¼ W0;xð@BðxÞ þ i½AðxÞ; BðxÞ�ÞWx;0 ¼ 0: (16)

So � is spatially constant and from �ðxÞ ¼ �ð0Þ we
obtain

BðxÞ ¼ Wx;0Bð0ÞW0;x ¼ W�1
0;x Bð0ÞW0;x: (17)
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The kinetic term in the action (12) can be expressed as

K¼
Z
dtdxtrðB _AÞ¼

Z
dttr½Bð0Þ

Z
dxW0;x

_AWx;0�: (18)

The time derivative of the full Wilson loop W0;L, on the

other hand, is

_W 0;L ¼
Z

dxW0;xi _AðxÞWx;L ¼ i
Z

dxW0;x
_AðxÞWx;0W0;L

(19)

and comparing with the kinetic term above we find

K ¼ �i
Z

dttrðBð0Þ _W0;LW
�1
0;LÞ: (20)

Similarly, the Hamiltonian becomes

H¼
Z
dxtr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þT2BðxÞ2

q

¼
Z
dxtr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þT2W�1

0;x Bð0Þ2W0;x

q
¼Ltr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þT2Bð0Þ2

q

(21)

due to the cyclicity of trace. So the full action can be
expressed in terms of the space-independent fields P �
Bð0Þ and U � W0;L as

S ¼
Z

dttrð�iP _UU�1 � L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2P2

p
Þ: (22)

In addition, there is one residual Gauss law constraint: the
periodicity condition Bð0Þ ¼ BðLÞ gives

P ¼ UPU�1 or ½P;U� ¼ 0: (23)

In conclusion, we see that the theory reduces to a matrix
model for the unitary matrix U and the Hermitian matrix P
that plays the role of its canonical right-momentum. This
model differs from the traditional unitary matrix model in
that its kinetic energy is a nontrivial (nonquadratic) func-
tion of the canonical momentum.

The above matrix model can be further reduced to non-
interacting particles upon use of the Gauss constraint (23).
Classically, upon use of the equations of motion, P is a
function of _UU�1, so the constraint implies

½P;U� ¼ ½U; _U� ¼ 0: (24)

This means that P and U can be simultaneously diagonal-
ized with a time-independent unitary transformation, re-
ducing them to their eigenvalues pn and ei�n , respectively.
To make this more explicit, we write P and U in the basis
where U is diagonal as

U ¼ V�V�1; P ¼ VðpþQÞV�1 (25)

with V the diagonalizer of U, � and p diagonal and Q
off-diagonal, that is

�¼diagfei�ng; p¼diagfpng; Qnn¼0ðno sum innÞ:
(26)

The canonical (time derivative) term in the action in terms
of the above variables is

�itrðP _UU�1Þ¼XN
n¼1

pn
_�nþ

X
n;m

ð1�eið�n��mÞÞQnmð _VV�1Þmn:

(27)

We see that the eigenvalues �n are canonically conjugate to
the diagonal elements pn of P, while Q��Q��1 is the
right-momentum of the angular part of U (the diagonalizer
V). The Gauss law (23) implies Q ¼ 0. This is a gauge
constraint and must therefore be complemented by gauge
fixing the coordinates corresponding toQ, that is V. Setting
V ¼ 1 we are left with a set on N coordinates on the unit
circle and the their canonical momenta. The reduced action
becomes

S ¼
Z

dt
XN
n¼1

ðpx
_�n � L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2p2

n

q
Þ (28)

and describes a set of noninteracting particles with a
relativistic energy-momentum relation:

E ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2p2

q
(29)

with LT and �=LT2 playing the role of the speed of light
and the particle’s mass, respectively.

III. QUANTIZATION

Quantum mechanically the story is similar, with some
additional twists. The wave function �ðUÞ is a function of
the matrix elements of U. From the canonical structure of
the action, P generates right-multiplications of U by uni-
tary matrices, while �UPU�1 generates left multiplica-
tions. Their sum P�UPU�1 generates the conjugation

U ! V�1UV: (30)

The Gauss constraint (23) implies that wave functions are
invariant under unitary conjugations of U and therefore
depend only on the eigenvalues of U. As usual, the change
of variables from U to its eigenvalues ei�n and the angular
variables V involves the Jacobian of the transformation
J ¼ j�j2, where � is the modified Vandermonde factor

�ð�Þ ¼ Y
n<m

sin
�n � �m

2
: (31)

The Jacobian can be absorbed by incorporating one factor
of �ð�Þ in the wave function, rendering the measure in �n
flat. The original wave function�ð�Þwas symmetric under
permutation of �n, so the new wave function
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�ð�Þ ¼ Y
n<m

sin
�n � �m

2
�ð�Þ (32)

becomes fermionic. (This is the famous fermionization of
the eigenvalues of a matrix model, which holds irrespective
of its action.)

The spectrum is evaluated by diagonalizing the
Hamiltonian

H ¼ Ltr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2P2

p
¼ L�

X1
n¼0

cn

�
T

�

�
2n
trP2n (33)

with cn the Taylor expansion coefficients of the square
root. Since P generates unitary transformations (left-
multiplications of U) it satisfies the UðNÞ algebra. The
quantum commutation relations of its matrix elements read

½Pmn; Pkl� ¼ iðPml�kn � Pkn�mlÞ (34)

and trPn is the n-th Casimir operator for UðNÞ (trP being
the Uð1Þ charge). These are diagonalized on states that are
irreducible representations (irreps) of the above algebra.
Given that states must also be singlets under conjugation of
U, they are the characters of the representations. The
fermionic eigenstates are

�R ¼ �ð�Þ�RðUÞ ¼ �ð�ÞtrRUR (35)

with R an irrep of UðNÞ and UR the R-matrix representa-
tion of the element U. For UðNÞ, the Casimirs of order
larger thanN are not independent but they are still diagonal
on irreps.

The above also leads to the result that the energy states
of the theory are simply free states of N fermions on the
unit circle determined by their momenta. Specifically, they
are given by the Slater determinant

�ð�Þ ¼ det
kn
ðeipk�nÞ: (36)

The fermion momenta pk can be ordered as pkþ1 < pk.
Since �n have period 2�, the momenta are quantized to
integer steps plus, perhaps, a constant shift. The shift is
determined by the properties of Vandermonde factor (31),
which is periodic for oddN and antiperiodic for evenN. So
the momenta pk are quantized to (half) integers for (even)
odd N. The ground state is in both cases

pk;o ¼ N þ 1

2
� k ¼

�
N � 1

2
;
N � 1

2
� 1; . . . ;�N � 1

2

�

(37)

representing a Fermi sea symmetric around p ¼ 0 with
Fermi momentum pF ¼ ðN � 1Þ=2. The Slater determi-
nant (36) for the ground state is exactly the Vandermonde
factor, �o ¼ �, leading to the bosonic ground state
�oðUÞ ¼ 1, that is, the singlet.

The relation of the momenta pk with the irreps they
correspond is standard: the excitation of each momentum
from its ground state

lk ¼ pk � pk;o ¼ pk þ k� N þ 1

2
(38)

satisfying lkþ1 � lk, represents the length of the k-th row in
the Young tableau of the irrep. The total number of boxesP

l ¼ P
p is the Uð1Þ charge. Negative lengths corre-

spond to conjugate irreps and can be turned positive by
adding a number of columns of length N, that is, by
increasing the Uð1Þ charge by multiples of N. Note that
for our UðNÞ matrix model the Uð1Þ charge Q and the
SUðNÞ irrep are correlated in that the ZN charge Z is
common to both and thus Z ¼ expðiQÞ.
Since the problem reduces to free particles classically,

we expect P to act essentially as the diagonal momenta pn

conjugate to �n, that is �i@=@�n. This is, indeed, true for
the first two Casimirs. trP reduces to the total momentum
of the particles

trP ¼ X
n

pn ¼ �i
X
n

@

@�n
; (39)

since the Uð1Þ charge is just an overall shift of the eigen-
values of U. trP2 is essentially their quadratic kinetic
energy:

trP2 ¼ X
n

p2
n ¼ �X

n

@2

@�2n
� C (40)

withC a c-number subtracting the ground-state value of the
right hand side operator. In fact, trP2 is the Laplacian on
the group UðNÞ and it is known to reduce to the above
expression when acting on Schur (conjugation-invariant)
states.
The situation with higher Casimirs is subtler. In fact,

trPn does not reduce to
P

pn
k for n > 2, but involves also

polynomials in lower-power sums of pk (see, e.g., [25] and
references therein). In the classical limit, that is, for jpkj �
N, the two expressions must agree. So we have

trPn ¼ X
k

p2
k þ lower order terms: (41)

This can be viewed as a quantum effect arising from order-
ing issues in the field theory. Even at the matrix model
level, the definition of the quantum Hamiltonian has order-
ing ambiguities. The first two traces, in terms of the matrix
elements of P,

trP ¼ X
n

Pnn; trP2 ¼ X
m;n

PmnPnm (42)

are uniquely defined. At the cubic level, however, we
already see that there are two possible orderings:

trP3 ¼ X
m;n;l

PmnPnlPlm or
X
m;n;l

PmnPlmPnl: (43)

The two are classically the same but quantum mechani-
cally inequivalent, differing by lower-order terms.
Although the first leads to the conventionally defined
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Casimir, there is no reason not to consider the second. In
fact, the sum of the two leads to an expression where the
first subleading correction to

P
p3
k cancels.

We see that the exact definition of the Hamiltonian
depends on the ordering of its terms. This is not surprising,
since the original field action contained infinitely high
powers of time derivatives and such terms require a precise
ordering.

We can see this ambiguity at the field theory level before
we reduce to the matrix model by a method analogous to
the heat kernel in standard two-dimensional Yang Mills:
we tesselate spacetime into small plaquettes of arbitrary
shape and size and perform the Euclidean path integral
over the gauge fields inside each plaquette. From gauge
invariance, the result for each plaquette will only depend
on the holonomy (Wilson loop) W of the gauge field
around the plaquette. The fixed-point expression must be
of the form

Z ¼ X
R

dRe
�AER�RðWÞ (44)

with A the area of the plaquette, dR the dimension of irrep
R and ER a number depending only on R. We can then
consider two adjacent plaquettes with Wilson element U
on their common boundary and holonomies W1U and
U�1W2 (W1 and W2 being the noncommon parts) and
integrate their path integrals Z1ðUW1ÞZ2ðU�1W2Þ over
the common part U to calculate the path integral for the
combined plaquette. Because of the orthogonality property
of the irreps

Z
½dU��RðWUÞ�R0 ðU�1VÞ ¼ 1

dR
�RR0�RðWVÞ; (45)

we see that the result will be of the form

Z12 ¼
X
R

dRe
�ðA1þA2ÞER�RðW1W2Þ; (46)

involving their total area and the holonomy W1W2 around
the total plaquette, verifying the consistency of the expres-
sion (44) for the fixed-point partition function.

The only extra requirement is that the above expression
be the quantization of a specific classical action. For this,
we need to ensure that for A ! 0 the expression in the
exponent of (44) goes over to the classical action for the
fields. For small A, the sum in (44) is dominated by large
irreps, that is, by large values of pk in the fermionic
description. For such irreps, we must have

ER ¼ XN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2p2

k

q
for jpkj � N: (47)

Any ER with the above property provides a consistent
gauge invariant quantization of the same Born-Infeld clas-
sical field theory. Choosing the expression (33) in terms of
the standard Casimirs in just one of many possibilities.

We can, therefore, adopt the simplest definition in which
the expression (47) holds for all irreps and define the
Hamiltonian as

H ¼ XN
n¼1

EðpnÞ ¼ L
XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2p2

n

q
: (48)

The above assigns a positive value to the energy of the
ground state, which is inconsequential for expectation
value calculations and can easily be removed. In some
sense, the above is the most natural definition, since the
dynamics of the gauge field reduce to those of a set of
uncoupled relativistic particles, admitting the interpreta-
tion of points on a relativistic brane in a dual description.
Our final result is that Born-Infeld gauge theory on the

cylinder reduces to a set of relativistic fermions on a dual
circle. If we incorporate a factor of LT in the momentum,
the energy expression for each particle becomes

~Eð~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2L2 þ ~p2

n

q
; ~p ¼ LTp; (49)

representing a particle of mass �L on a circle of radius R ¼
ðTLÞ�1. This is to be contrasted to regular two-dimensional
Yang Mills on the cylinder, which is equivalent to a set of
nonrelativistic fermions and in which there is no unique
identification of particle mass and radius of the dual circle,
the two appearing as one overall coefficient.

IV. THE LARGE-N LIMIT AND
STRING DESCRIPTION

There are various ways to take the large-N limit in the
above theory. The one relevant to the string interpretation
is what we can call the conformal field theory limit. In this
limit, the low-lying energy excitations of the theory be-
come equally spaced and approach those of a c ¼ 1 con-
formal field theory, that is, a relativistic fermion.
The excitations of the Born-Infeld theory consist of

fermion excitations above the Fermi level. There are two
Fermi levels, at p ¼ �ðN � 1Þ=2, leading to two left- and
a right-moving noninteracting sectors. (Depletion of the
Fermi sea corresponds to nonperturbative in 1=N interac-
tion effects.) Concentrating on excitations near the right-
moving Fermi level pF ¼ ðN � 1Þ=2, a fermion excited
from p ¼ ðN � 1Þ=2�m to ðN � 1Þ=2þ n, with m, n
positive and of order 1, has excitation energy

�E¼EðpF�mÞ�EðpFþnÞ’@pðpFÞðnþmÞðforN�1Þ:
(50)

So the scale of the energy gap is set by the Fermi velocity
(velocity of sound on dual space)

vF ¼ fðpFÞ; fðpÞ � @EðpÞ
@p

¼ LT2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2p2

p : (51)

For pF ¼ ðN � 1Þ=2 the above will be of order N0 if T
does not scale but � scales with N, that is,
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� ¼ �oN: (52)

From (6) we see that in the Yang-Mills limit the above
scaling is consistent with the standard ’t Hooft scaling,
with ’t Hooft coupling

g2o ¼ T2

�o

: (53)

From now on we will always assume the expression (52)
for � and will write � instead of �o to alleviate notation.

The string picture of the gauge theory on the cylinder
remains largely as in standard Yang-Mills: the leading-N
terms in the excitation energy represent a theory of free
strings wrapping around S1 with string tension

Tst ¼ vF

L
¼ T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�2 þ T2
p : (54)

The term of order n2 in the expansion of EðpF þ nÞ �
EðpFÞ is a 1=N correction that introduces a cubic string
interaction representing string splitting or joining. The
string coupling constant is

gst ¼ 1

2

@2EðpFÞ
@p2

¼ �2T2

Nð4�2 þ T2Þð3=2Þ : (55)

The difference from Yang-Mills theory comes from the
existence of higher orders in the expansion of EðpÞ in p,
which are absent in the Yang-Mills case. The cubic term, of
order N�2, introduces a quartic string interaction that
represents a localized double string interaction, that is,
two pairs of strings touching and reconnecting at the
same point of space and time. Such interactions are not
so natural from the world sheet point of view. Higher terms
lead to higher yet order string interactions. Overall, we
have a nonpolynomial string field theory.

V. LARGE N PHASE TRANSITION
ON THE SPHERE

The partition function on the circle is given by the path
integral on a Euclidean torus ðL;	Þ. The result is

Z ¼ X
fpkg

e
�A

P
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2N2þT2p2

n

p
(56)

with A ¼ L	 the area of the world sheet. The summation
is over all combinations of fermionic momenta p1>
p2 > � � �pN on a (half) integer lattice for (even) odd N.

For spacetimes of genus g, the partition function is

similar but with an extra measure factor d2�2g
R in each

term. This factor can be understood as a remnant from
the plaquette formula (44) as we coalesce the plaquettes on
spacetimes of different topologies. For spherical topology,
in particular, it can be understood as arising from the
insertion of a singular wave function at the north and south
pole of the sphere, representing the constraint W ¼ 1 at
these points in a canonical formulation [17]. In terms of

fermion momenta the extra factor d2R on the sphere is
expressed as a Vandermonde-like product

d2R ¼
Q
n<m

ðpn � pmÞ2Q
n<m

ðn�mÞ2 : (57)

The denominator is the product for the ground state mo-
menta, ensuring dR ¼ 1 for the singlet, and contributes an
overall normalization factor that will be omitted. The
resulting partition function on the sphere is

Zsph¼
X
fpkg

Y
n<m

ðpn�pmÞ2e
�A

P
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2N2þT2p2

n

p
¼X

fpkg
e�Seff :

(58)

The effective action contains the exponentiated measure
and reads

Seff ¼ A
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2N2 þ T2p2

n

q
�2

X
n<m

lnjpn � pmj: (59)

The measure introduces a repulsive logarithmic two-body
potential in the momenta.
For large N the effective action is of order N2, since pn

are of order N, and the partition will be dominated by the
classical minimal effective energy configuration in a
saddle-point approximation. By differentiating Seff with
respect to pn we obtain the minimal energy condition

A
T2pnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2N2 þ T2p2
n

p � X
mð�nÞ

2

pn � pm

¼ 0: (60)

For large N we can approximate the distribution of mo-
menta with a continuous density ~
ðpÞ. The minimum
energy condition becomes

A

2

T2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2N2 þ T2p

p ¼
Z ~
ðp0Þ

p� p0 dp
0 for ~
ðpÞ � 0 (61)

with ~
 satisfying

~
 	 0;
Z

~
ðpÞdp ¼ N: (62)

We can define a rescaled variable x ¼ p=N and a corre-
sponding density


ðxÞ ¼ ~
ðNxÞ;
Z


ðxÞdx ¼ 1: (63)

In terms of the new variable and density the condition (61)
becomes

A

2

T2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2x2

p ¼
Z 
ðyÞ

x� y
dy for 
ðxÞ � 0; (64)

eliminating all reference to N in the large-N limit.
The solution of the above equation is well known. The

function
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uðzÞ ¼
Z 
ðyÞ

z� y
dy (65)

is analytic on the upper half plane and behaves as 
ðzÞ 

1=z at z ! 1. Near the real axis it becomes

uðxþ i0Þ ¼ �i�
ðxÞ þ
Z 
ðyÞ

x� y
dy: (66)

For a symmetric distribution 
ð�xÞ ¼ 
ðxÞ that vanishes
outside of an interval ð�a; aÞ the solution for uðzÞ is

uðzÞ ¼ 1

2�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z2

p I AT2s

2ðs� zÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p ds:

(67)

In the above the square roots are defined with a cut along
ð�a; aÞ and the integration contour is clockwise around the
cut but not including the pole at s ¼ z. It is easy to see from
the above formula that uðxþ i0Þ is real for jxj> a, while
its imaginary part is the left-hand side of (64) for jxj< a.
Therefore it satisfies (64), provided it also has the proper
asymptotic behavior for large z. This will be ensured if

Z a

�a

AT2s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p ds ¼ 2�: (68)

The density 
ðxÞ is then recovered as


ðxÞ¼ 1

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

p Z a

�a

AT2s

2ðs�xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þT2s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�s2

p ds:

(69)

For the case of standard Yang-Mills, where fðpÞ ¼ Ag2p,
the corresponding integral (67) can be easily calculated by
blowing up the contour to infinity, and leads to the Wigner
semicircle distribution. In our case this is not so easy, since
the contour encounters the cut of the square root in the
denominator on the imaginary axis ði�=T;1Þ. The inte-
grals can be expressed in terms of elliptic functions and
implicitly define a and 
ðxÞ.

The above solution is valid as long asA is not too big, in the
so-called weak coupling phase. As A increases, a decreases
and the momentum distribution becomes denser. The mo-
menta, however, are fermionic and lie on a lattice of spacing
1, so their density cannot exceed 1. Correspondingly,
ðxÞ ¼
~
ðNxÞ cannot exceed 1. The maximum of 
ðxÞ occurs at
x ¼ 0. Therefore, when 
ð0Þ reaches the value 1, fermionic
momenta will start condensing and the above solution will
not bevalid anymore, signaling a phase transition.Tofind the
critical area we put 
ð0Þ ¼ 1:


ð0Þ ¼ aAcrT
2

2�2

Z a

�a

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p ¼ 1: (70)

Combining (68) and (70) we obtain an equation for thewidth
a at critical area:

Z a

�a

a� �s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p ds ¼ 0; (71)

which fixes a in terms of T=� and, upon inserting in (70), it
determines Acr.
ForA > Acr the solution develops a flat central part where

the fermion momenta condense, and an outer tail part:


ðxÞ ¼ 1jxj< b ¼ �
ðxÞb < jxj< a ¼ 0jxj> a: (72)

The contribution from the flat central part can be taken
explicitly into account in Eq. (64) producing an extra loga-
rithmic potential [15]. The remaining density �
ðxÞ vanishing
outside ð�a; aÞ and inside ð�b; bÞ can be found in a way
similar to 
ðxÞ. The solution for its analytic extension �uðzÞ
becomes a two-cut integral with an additional logarithm cut
between ð�b; bÞ:

�uðzÞ¼ 1

2�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2�z2Þðb2�z2Þ

q

�
I AT2s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þT2s2

p þ lns�b
sþb

ðs�zÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2�s2Þðb2�s2Þp ds (73)

with the contour encircling the square root cuts between
ð�a;�bÞ and ðb; aÞ but not the log cut and the pole at z. The
second part of the above integral, involving the logarithm,
can be explicitly evaluated by deforming the contour around
the log cut (we encounter the pole at s ¼ z and no other
cuts). The result is

1

2�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � z2Þðb2 � z2Þ

q I lns�b
sþb

ðs� zÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2 � s2Þðb2 � s2Þp ds

¼ ln
z� b

zþ b
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � z2Þðb2 � z2Þ

q

�
Z b

�b

ds

ðs� zÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2 � s2Þðb2 � s2Þp ds: (74)

For z ¼ xþ i0 the imaginary part of the logarithm above
vanishes for jxj> b and equals i� for jxj< b. It thus con-
tributes �1 to the density �
ðxÞ in the interval ð�b; bÞ and
zero outside. Therefore, removing it restores the density to
its full value 
ðxÞ (equal to 1 between �b and b). The
density is reproduced by the above integral plus the first
part (nonlogarithm) of the integral in (73). Taking also into
account the even nature of 
ðxÞ we obtain


ðxÞ¼ jxj
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2�x2Þðx2�b2Þ

q �Z a

b

AT2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þT2s2

p þ
Z b

�b
�

�

� ds

ðs2�x2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2�s2Þjb2�s2jp : (75)

(Note that in the case of standardYang-Mills the first integral
above vanishes, as can be shown by contour integration, and
only the second term, arising from the logarithm integral,
survives.) We must also ensure the proper asymptotic be-
havior of �uðzÞ at infinity, that is,
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�uðzÞ ¼ 0 � zþ 0 � 1þ 1� 2b

z
þOðz�2Þ: (76)

The vanishing of the constant term above is an identity, but
the terms of order z and z�1 give two conditions that fix, in
principle, a and b in terms of A.

The results for standard Yang-Mills theory can be
recovered as the limit � � T of the above results.
The ’t Hooft coupling g in that limit is

g2 ¼ T2

�
� T � �: (77)

This is essentially the nonrelativistic limit of the fermionic
system of momenta, in which the Fermi momentum is
much smaller than the rest mass of the particles: pF �
m or TN � �N. In that limit the factors

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2s2

p
in all

the previous integrands become simply � and the integrals
simplify. The condition (68) gives gAcra

2 ¼ 4, while the
saturation condition (70) gives gAcra ¼ 2�. These two
conditions give a ¼ 2=� and

gAcr ¼ �2; (78)

which is the standard Yang-Mills result [15]. As mentioned
before, the weak coupling eigenvalue distribution
(A < Acr) is a standard Wigner semicircle.

VI. THE LIMIT �=T ! 0

The case � � T is of particular interest: in terms of
fermions, the dispersion relation becomes linear and the
fermions become massless. The Fermi velocity is constant
and the corresponding string theory contains no higher-
order terms and becomes free. In a sense, this is the
‘‘stringiest’’ version of gauge theory and does not even
require a large-N limit to manifest a perturbative free string
behavior. Finite-N effects arise only as nonperturbative
corrections.

It is interesting that in this case the eigenvalue distribu-
tion can be calculated exactly. Putting � ¼ 0 and substitut-

ing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2x2

p
by Tjxj we obtain integrals with a cut

along the entire imaginary axis that can be explicitly
evaluated. The normalization condition (68) gives

a ¼ �

AT
; (79)

while the expression for 
 gives


ðxÞ ¼ AT

�2
ln
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � A2T2x2

p

ATjxj : (80)

We see that 
ð0Þ ¼ 1 for all A, and so the model is always
in the strong coupling (stringy) phase. The above solution,
therefore, is not really valid but we must instead calculate
the two-cut solution with a flat central region for 
ðxÞ. It is
still a good approximation to the exact solution for small
enough A, that is, AT � 1. In that case the solution for the
density is the above, for jxj> b, and 1 for jxj< b, with b

the value for which the above function reaches the value 1,
that is,

1

b
¼ AT

�
ch

�2

AT
: (81)

The above is clearly nonperturbative in A. For small areas,
the solution for 
ðxÞ differs very little from the would-be
weak coupling solution (80). For AT � 1, on the other
hand, the solution approaches a true ‘‘stringy’’ state of a
fully filled Fermi sea with few momenta spreading
above the Fermi levels and becomes identical to the cor-
responding Yang-Mills solution upon identifying the Fermi
velocities, or

2T ¼ g2 (82)

with g the ’t Hooft Yang-Mills coupling [go in (7)].
For small nonzero values of � (� � T) we can estimate

the critical area Acr. The integral in (68) is of order �0

while the integral (70) has a logarithmic divergence in �.
To leading order we obtain

�a ¼ ln
2Ta

�
; (83)

which has as leading log solution

a ¼ 1

�
ln
2T

��
: (84)

Altogether this gives the critical area

Acr ¼ �2

T ln2T
��

; (85)

which is, again, nonperturbative in �. The same conclusion
can be reached by putting b ¼ �=T in formula (81), which
is the value of s for which the two terms in the expressionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ T2s2

p
become comparable and thus � starts regulat-

ing the behavior at s ¼ 0. For b less than that we do not
expect 
ð0Þ to reach 1, so at this value of b in (81) we
expect a phase transition.
Finally, we can calculate the free energy F ðAÞ in the

weakly coupled case of small area. It will be given by the
value of the effective action for the saddle point distribu-
tion for pn. Since @Seff=@pn ¼ 0 at the classical saddle
point, we have

@F
@A

¼ @

@A
Seff ¼

X
n

Tjpnj¼T
Z
jpj~
ðpÞdp¼N2T

Z
jxj
ðxÞdx:

(86)

The density 
ðxÞ is given by (80) up to nonperturbative
corrections in A. An explicit calculation gives

@F
@A

¼ 1

A
! F ¼ lnA (87)

up to a constant. We should also subtract the ground state
energy of the fermions, such that the vacuum have zero
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energy. For the ground state momenta (37) and the large N
limit we have

	Eo ¼ AT
X
n

jpn;oj ¼ 1

4
ATN2; (88)

so overall the free energy is

F ¼ N2

�
lnA� 1

4
TA

�
(89)

up to an A-independent constant. The lnA part is essentially
fixed by the scaling properties of the fermion particle
energy. An expression EðpÞ 
 p� would contribute a
term ��1 lnA. In the case of Yang-Mills we have � ¼ 2,
while in our case � ¼ 1.

VII. CONCLUSIONS

The properties of Born-Infeld two-dimensional gauge
theory in general parallel those of standard Yang-Mills,
with some interesting twists. The disparity between the
two becomes apparent for large values of the gauge field,
as expected. On the cylinder, large energy excitations tend to
preserve their linear dispersion relation over a wider range,
although the deviations are nonpolynomial. On the sphere, a
phase transition also occurs, but the critical area decreases as
the Born-Infeld theory becomes more relativistic and van-
ishes in the tensionless limit � ! 0. In that limit, the theory

on the cylinder becomes a free string theory, receiving only
nonperturbative corrections in the large-N limit.
There are many issues that remain to be investigated.

The expansion of the free energy as a function of the area
and its nonanalyticity near the transition point on the
sphere could be examined with a view to clarify the stringy
nature of the strong coupling phase. The question of Uð1Þ
sectors is also an open one: a global momentum shift of the
fermions is in principle a low energy excitation but, in the
large-N limit, it becomes nonperturbative. The evaluation
of the partition function can be performed around an
isolated Uð1Þ (total momentum) sector, similar to the
Yang-Mills case [17].
Finally, the calculation and behavior of Wilson loop

expectation values is a very interesting issue. In the case
of the sphere they would probe the nature of the phase
transition, and of the validity of the string description. On
the cylinder, insertion of (one or several) timelike Wilson
loops would promote the fermion system into an interact-
ing one with internal degrees of freedom, which would
constitute integrable and solvable many-body systems
[26,27]. The obvious conjecture would be that these sys-
tems are generalizations of the Ruijsenaars-Schneider sys-
tem of ‘‘relativistic’’ fermions including internal degrees of
freedom, but the exact form of the Hamiltonian has to be
worked out.

[1] G. ’t Hooft, Nucl. Phys. B75, 461 (1974).
[2] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[3] B. Sakita, Phys. Rev. D 21, 1067 (1980).
[4] W.A. Bardeen, I. Bars, A. J. Hanson, and R.D. Peccei,

Phys. Rev. D 13, 2364 (1976).
[5] D. J. Gross and E. Witten, Phys. Rev. D 21, 446 (1980).
[6] S. R. Wadia, Phys. Lett. B 93, 403 (1980).
[7] A. A. Migdal, Zh. Eksp. Teor. Fiz. 69, 810 (1975) [Sov.

Phys. JETP 42, 413 (1975)].
[8] B. E. Rusakov, Mod. Phys. Lett. A 5, 693 (1990).
[9] V. A. Kazakov and I. K. Kostov, Nucl. Phys. B176, 199

(1980); B105, 453 (1981).
[10] V. A. Kazakov, Nucl. Phys. B179, 283 (1981).
[11] I. K. Kostov, Phys. Lett. 138B, 191 (1984).
[12] D. J. Gross, Nucl. Phys. B400, 161 (1993).
[13] J. A. Minahan, Phys. Rev. D 47, 3430 (1993).
[14] D. J. Gross and W. Taylor, Nucl. Phys. B400, 181

(1993).
[15] M.R. Douglas and V.A. Kazakov, Phys. Lett. B 319, 219

(1993).

[16] J. A. Minahan and A. P. Polychronakos, Phys. Lett. B 312,
155 (1993).

[17] J. A. Minahan and A. P. Polychronakos, Nucl. Phys. B422,
172 (1994).

[18] A. P. Polychronakos, Phys. Lett. B 266, 29 (1991).
[19] S. R. Das and A. Jevicki, Mod. Phys. Lett. A 5, 1639

(1990).
[20] A. Gorsky and N. Nekrasov, Nucl. Phys. B414, 213

(1994).
[21] J. A. Minahan and A. P. Polychronakos, Phys. Lett. B 326,

288 (1994).
[22] E. S. Fradkin and A.A. Tseytlin, Phys. Lett. 163B, 123

(1985).
[23] R. G. Leigh, Mod. Phys. Lett. A 4, 2767 (1989).
[24] A. A. Tseytlin, Nucl. Phys. B501, 41 (1997).
[25] M. R. Douglas, arXiv:hep-th/9303159; arXiv:hep-th/

9311130.
[26] J. Blom and E. Langmann, Phys. Lett. B 429, 336 (1998).
[27] A. P. Polychronakos, Nucl. Phys. B546, 495 (1999); B543,

485 (1999).

TWO-DIMENSIONAL BORN-INFELD GAUGE THEORY: . . . PHYSICAL REVIEW D 85, 105024 (2012)

105024-9

http://dx.doi.org/10.1016/0550-3213(74)90088-1 
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.21.1067
http://dx.doi.org/10.1103/PhysRevD.13.2364
http://dx.doi.org/10.1103/PhysRevD.21.446
http://dx.doi.org/10.1016/0370-2693(80)90353-6
http://dx.doi.org/10.1142/S0217732390000780
http://dx.doi.org/10.1016/0550-3213(80)90072-3
http://dx.doi.org/10.1016/0550-3213(80)90072-3
http://dx.doi.org/10.1016/0550-3213(81)90239-X
http://dx.doi.org/10.1016/0370-2693(84)91898-7
http://dx.doi.org/10.1016/0550-3213(93)90402-B
http://dx.doi.org/10.1103/PhysRevD.47.3430
http://dx.doi.org/10.1016/0550-3213(93)90403-C
http://dx.doi.org/10.1016/0550-3213(93)90403-C
http://dx.doi.org/10.1016/0370-2693(93)90806-S
http://dx.doi.org/10.1016/0370-2693(93)90806-S
http://dx.doi.org/10.1016/0370-2693(93)90504-B
http://dx.doi.org/10.1016/0370-2693(93)90504-B
http://dx.doi.org/10.1016/0550-3213(94)00153-7
http://dx.doi.org/10.1016/0550-3213(94)00153-7
http://dx.doi.org/10.1016/0370-2693(91)90739-D
http://dx.doi.org/10.1142/S0217732390001888
http://dx.doi.org/10.1142/S0217732390001888
http://dx.doi.org/10.1016/0550-3213(94)90429-4
http://dx.doi.org/10.1016/0550-3213(94)90429-4
http://dx.doi.org/10.1016/0370-2693(94)91324-2
http://dx.doi.org/10.1016/0370-2693(94)91324-2
http://dx.doi.org/10.1016/0370-2693(85)90205-9
http://dx.doi.org/10.1016/0370-2693(85)90205-9
http://dx.doi.org/10.1142/S0217732389003099
http://dx.doi.org/10.1016/S0550-3213(97)00354-4
http://arXiv.org/abs/hep-th/9303159
http://arXiv.org/abs/hep-th/9311130
http://arXiv.org/abs/hep-th/9311130
http://dx.doi.org/10.1016/S0370-2693(98)00505-X
http://dx.doi.org/10.1016/S0550-3213(99)00112-1
http://dx.doi.org/10.1016/S0550-3213(98)00862-1
http://dx.doi.org/10.1016/S0550-3213(98)00862-1

