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In this work, we consider the light front quantum electrodynamics in (3þ 1) dimensions and evaluate

the photon polarization tensor at one loop for both zero and finite temperatures. In the first case, we apply

the dimensional regularization method to extract the finite contribution and find the transverse structure

for the amplitude in terms of the light front coordinates. The result agrees with one-loop covariant

calculation. For the thermal corrections, we generalize the hard thermal loop approximation to the light

front and calculate the dominant temperature contribution to the polarization tensor, consistent with the

Ward identity. In both zero as well as finite temperature calculations, we use the oblique light front

coordinates.
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I. INTRODUCTION

In recent years, light front (LF) quantized field theories
have been successfully generalized to finite temperature.
The light front frame was introduced by Dirac [1], and the
quantization of field theories on the null-plane has found
applications in many branches of physics [2,3]; see also
Ref. [4] for a review and a guide to the extensive literature.

The proper thermal description of LF quantized field
theories was pointed out in a number of publications,
including Refs. [5–10]. It was shown that the thermal
contributions to the self-energy in scalar theories at one
loop [11] coincide with the results from conventional
calculations. Furthermore, the anomaly term and fermion
condensate at zero and finite temperature in the LF
Schwinger model match their conventional counterparts
[7]. Thermodynamical properties were computed nonper-
turbatively using discrete light cone quantization [12] in
the massive Schwinger model [13], two-dimensional
supersymmetric theories [14,15], and, in four dimensions,
for SUðNcÞ pure gauge theory in the large Nc approxima-
tion using the transverse lattice approach [16]. Moreover,
the formalism was applied investigating the in-medium
properties of quark bound states [17,18] and the nontrivial
vacuum structure of the Unruh effect [19].

Particularly in Refs. [8,11], it has been shown that there is
a convenient coordinate system: the oblique one, in which
the study of thermal effects is straightforward. One can
collect both the usual light front coordinates as well as the
oblique one in the general light cone coordinate frame,

�t ¼ tþ z; �z ¼ Atþ Bz; �x ¼ x; �y ¼ y;

(1)

where A and B are arbitrary real constants with the restric-
tion that A� B � 0 and x� ¼ ðt; x; y; zÞ are the usual
Minkowski coordinates. In particular, for A ¼ 0, B ¼ 1,
Eq. (1) represents the oblique light front coordinates
(OLFC) proposed in Ref. [5] and used in Refs. [7,11,13]
to carry out the discussions of statistical mechanics within
the LF.
One of the distinct features of LF dynamics is the

energy-momentum dispersion relation which is linear in
the LF energy. This property is also present in the OLFC
coordinates. Accordingly, the propagators in the OLFC
momentum space behave differently at �k0 ! 1. For in-
stance, the propagator of a scalar particle reads

iGðkÞ ¼ i

k2 �m2 þ i�

¼ i

�2k0k3 � k21 � k22 � k23 �m2 þ i�

¼ i

�2k0k3 � k2i �m2 þ i�
; i ¼ 1; 2; 3: (2)

Because of the 1=k0 dependence of the propagator, the
computation of loop integrals is more demanding. One
has to properly take into account contributions from the
arc contours, used to close the complex integration at
infinity, and singular point contributions from moving
poles to recover the correct covariant result [20,21].
Particularly, in Ref. [21], various techniques were used to
demonstrate the equivalence between equal time and light
front dynamics for certain one-loop computations at zero
temperature.
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In this work, we use OLFC to analyze the polarization
tensor for the quantum electrodynamics, both at zero and
finite temperature. At zero temperature, working in dimen-
sional regularization, we find the instant form textbook
result for the transverse photon self-energy.

In order to obtain the thermal contribution, we consider
the hard thermal loop (HTL) approximation. This tech-
nique was developed by Braaten and Pisarski [22] for the
thermal quantum field theory at equal times and is particu-
larly useful to extract the leading thermal contributions to
the amplitudes in perturbative quantum field theories. HTL
theory has found its way into textbooks, e.g. see Ref. [23]
for an introduction. At equal times, the vertex functions in
HTL approximation respect the Ward identities. We dem-
onstrate that the Ward identity also holds at finite tempera-
ture in OLFC and use this fact to determine the �00

component of the polarization tensor whose direct LF
computation is challenging due to the k0 dependence of
the LF propagator, as explained above.

Since HTL is a high-energy approximation to the ther-
mal amplitudes and LF dynamics is especially suitable for
high-energy, highly relativistic systems, we think it is
rewarding to bring these two formalisms together. This
contribution presents a first step in this direction.

The paper is organized as follows. In Sec. II, we briefly
review the finite temperature formalism for light front
quantum field theories. The imaginary time propagators
for scalar and the fermionic fields are given. For the latter,
we choose to work with the full Dirac space without elim-
inating the constrained variables. This proposal was made
in Refs. [6,7] where the authors showed that using the full
Dirac propagator, calculations are usually simplified, as one
does not having to worry about additional noncovariant
contact interactions in the propagator and the vertex.

In Sec. III A, we present the HTL approximation on the
light cone, considering as a first example the scalar �3

theory and evaluating the two-point function. Sec. III B is
concerned with the photon self-energy at one loop, both at
zero and finite temperature in HTL approximation. We
discuss the Ward identity in both cases.

Our conclusions are given in Sec. IV.

II. LIGHT FRONT QUANTUM FIELD THEORYAT
FINITE TEMPERATURE

Light front field theories do not admit a naive general-
ization to finite temperature, basically because it is not
possible to have a heat bath at rest on the light front
[5,10]. One way of introducing thermal effects into the
LF quantization is to consider the generalized light front
coordinates [8]. A particular choice of these coordinates is
given by

x� ! �x�; � ¼ 0; 1; . . . ; 3; (3)

such that

�x 0 ¼ x0 þ x3; �xi ¼ xi; i ¼ 1; . . . ; 3: (4)

Through the dynamical equations, the system evolves in
the lightlike �x0 direction, while �xi ¼ xi coordinates are
kept constant. The method is different from usual light
front quantization, where x1, x2 and x� ¼ x0 � x3 are
kept constant during LF time evolution.
The components of the momentum vector transform as

�p 0¼p0; �p3¼�p0þp3; �p�¼p�; �¼1;2: (5)

Therefore, the dispersion relation of a massive particle
takes the form

�p 2 �m2 ¼ �2 �p0 �p3 � �pi �pi �m2 ¼ 0; (6)

from which one finds the light front energy

�p 0 ¼ � �p2
i þm2

2 �p3

¼ � !2
�p

2 �p3

: (7)

Finally, the density matrix for a system, interacting with
a heat bath at rest, takes the form

� ¼ e�� �P0 ; (8)

where � is the inverse equilibrium temperature (we set
kB ¼ 1).
The tree-level propagator for the scalar field at zero

temperature reads

iGð �pÞ ¼ i

�p2 �m2 þ i�
¼ i

�2 �p0 �p3 �!2
�p þ i�

: (9)

For fermionic fields, there are two suggestions for a LF
propagator. Traditionally, the constrained spinor degrees of
freedom are explicitly eliminated and expressed in terms of
the dynamical components. Thereby, noncovariant contact
interactions terms are added to the fermion propagator and
fermion photon vertex in QED. In standard LF coordinates
[(i.e. A ¼ 1 and B ¼ �1 in (1)], one finds the following
propagator [24]:

iSCðpÞ ¼ i

�
1

��p
� �mþ i"

þ �þ

2pþ

�

¼ i
��p

�
on þm

p2 �m2 þ i"
; (10)

where pon denotes the on-shell momentum. Furthermore,
one has to include a noncovariant piece �i�þ=2pþ to the
tree-level fermion photon vertex. As the noncovariant
terms cancel to all orders in perturbation theory, the
equivalence between LF and covariant formulation on the
level of the scattering matrix was established [24].
We follow an alternative proposal [7] and work in the

full Dirac space without integrating the constrained spinor
components out. The advantage is that noncovariant
contact terms are avoided, and no nonlocal terms are
introduced to the theory. The details of the Dirac con-
strained quantization procedure in this case for scalar,
fermionic, and gauge fields were clarified in Ref. [6].
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The fermion propagator and bare vertex of the theory are
then given by

iSð �pÞ ¼ ið �p� ��� þmÞð ��0 � ��3Þ
�2 �p0 �p3 �!2

�p þ i�
; (11)

and

�ee� ¼ eð ��0 � ��3Þ ���; (12)

where the transformed � matrices are

�� 0 ¼ �0 þ �3; ��i ¼ �i: (13)

In the imaginary time formalism of thermal field theory,
one puts �x0 imaginary. Note that going to imaginary time
does not commute with the coordinate transformation (4).
If one demands �x0 to be purely imaginary, then some of the
Cartesian coordinates become complex, namely

�x 0 ¼ �iðx0 þ x3Þ: (14)

The linear transformation from Minkowski coordinates
to imaginary time OLCF is given by

�x � ¼ L�
�x

�; (15)

where L�
� is the matrix

L�
� ¼

�i 0 0 �i

0 1 0 0

0 0 1 0

0 0 0 1

0
BBBBB@

1
CCCCCA:

We use here the same notation for the OLFC coordinates
(4) and their imaginary time counterparts (15). It is clear
from the context which coordinates are used.

Under the linear transformation (15), the metric tensor
transforms as

�g�� ¼ L�
�L

�
�	

�� ¼

0 0 0 i

0 �1 0 0

0 0 �1 0

i 0 0 �1

0
BBBBB@

1
CCCCCA; (16)

where 	�� is the usual Minkowski metric. Furthermore,
the energy-momentum four-vector is written as

�p� ¼

ip0

p1

p2

p3 � p0

0
BBBBB@

1
CCCCCA;

which leads to

�p 2 ¼ 2ipn
0 �p3 � �p2

i ¼ 4
nTi �p3 � �p2
i ; (17)

where the Matsubara frequencies pn
0 ¼ 2
nT for bosons

were explicitly inserted.

The gamma matrices change under Eq. (15) as

�� 0 ¼ �ið�0 þ �3Þ; (18)

such that

f ���; ���g ¼ 2 �g��; (19)

where �g�� is the complex metric (16).
Finally, the propagators in the imaginary time formalism

are given by

GðTÞð �pÞ ¼ 1

�p2 �m2
¼ 1

ð2
nTÞi �p3 � �p2
i �m2

(20)

and

SðTÞð �pÞ ¼ ð �p� ��� þmÞði ��0 � ��3Þ
2
ð2nþ 1ÞTi �p3 � �p2

i �m2
; (21)

for the scalar and fermionic fields, respectively.

III. POLARIZATION TENSOR

A. Scalar theory

We start with the �3 theory and evaluate the one-loop
self-energy in (3þ 1) dimensions in the HTL
approximation.
In the imaginary time formalism, the self-energy is

�ð �pÞ ¼
Z d3 �k

ð2
Þ3 T
X
n

1
�k2

1

ð �kþ �pÞ2

¼
Z d3 �k

ð2
Þ3 T
X
n

1

2ð2
nTÞi �k3 � �k2i

� 1

2ð2
nT þ �p0Þið �k3 þ �p3Þ � ð �kþ �pÞ2i
: (22)

Here, we are already considering the HTL approximation,
i.e. we can neglect the masses. In general, we apply the
following two rules to obtain the HTL approximation for
any diagram:
(1) neglect masses and soft momentum p dependence in

the numerator in favor of the hard loop momentum
k,

(2) expand distribution functions and denominators in
loop integrals to first order in p=k.

The Matsubara sum in Eq. (22) can be solved using [25]

T
X
n

1

nþ ix

1

nþ iy
¼ 


x� y
ðcothð
xÞ � cothð
yÞÞ: (23)

This immediately leads to

�ð �pÞ ¼
Z d3 �k

ð2
Þ3
� �1

8 �k3ð �k3 þ �p3Þ
coth

�
�E1

2

�
� coth

�
�E2

2

�
E1 � E2 þ i �p0

�
;

where we have defined
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E1 ¼
�k2i
2 �k3

; E2 ¼ ð �ki þ �piÞ2
2ð �k3 þ �p3Þ

: (24)

Finally, applying the HTL rule (2), we find the following
finite temperature contribution:

��ð �pÞ ¼ � 1

4

Z d3 �k

ð2
Þ3
1
�k23

�
1� i �p0

�k3
�	 � �p

�
dnBðEÞ
dE

; (25)

where we have introduced the four-vector

�	� ¼ ð�iE�ð �k3Þ; �k�; �k3Þ; (26)

with

E ¼
�k2i

2j �k3j
> 0 (27)

and the sign function �ð �k3Þ.
This new lightlike four-vector �	 is the LF generalization

of the four-vector 	 ¼ ð�i; k̂Þ which appears in the equal
time calculations. Furthermore, the structure of the integral
(25) is consistent with the results found in the literature
[23]. In the next section, we encounter integrals similar to
Eq. (25) in order to obtain the transverse polarization
tensor in QED.

B. QED

After the generalization of the HTL approximation to
the LF in the scalar�3 theory, we are now in position to use

this method to obtain the HTL polarization tensor �ðTÞ
�� in

QED at one loop. In the standard LF frame, the perturba-
tive computation of ��� at zero temperature is challeng-

ing, and the outcoming results are strongly affected by the
choice of the fermion propagator [26]. We therefore dis-
cuss first the calculation of the polarization tensor at zero
temperature in the OLFC.
Using Eqs. (11) and (12), the zero-temperature contri-

bution is given by

i���ð �pÞ ¼ �e2
Z d4 �k

ð2
Þ4 Trð ��0 � ��3Þ ���iSð �kÞ
� ð ��0 � ��3Þ ���iSð �kþ �pÞ: (28)

Choosing dimensional regularization, we rewrite the
previous equation in d ¼ 4� � dimensions as

i��
��ð �pÞ ¼ �e2��

Z dd �k

ð2
Þd Trð ��0 � ��3Þ ���iSð �kÞ
� ð ��0 � ��3Þ ���iSð �kþ �pÞ: (29)

The usual properties of the gamma matrices in d dimen-
sions, i.e.

Tr ��� ��� ��� ��� ¼ dð �g�� �g�� � �g�� �g�� þ �g�� �g��Þ; (30)

lead to

i��
��ð �pÞ ¼ �e2��

Z dd �k

ð2
Þd d
�k�ð �kþ �pÞ� þ �k�ð �kþ �pÞ� � �g��½ �k � ð �kþ �pÞ �m2�

ð �k2 �m2Þðð �kþ �pÞ2 �m2Þ : (31)

We follow next the analysis in Ref. [7] and change varia-
bles in Eq. (31),

�k0¼k0; �k3¼�k0þk3; �k�¼ki; ð�¼1;2; . . . ;d�2Þ;
(32)

such that
�k2 ¼ �2 �k0 �k3 � �k2i ¼ k2 ¼ k20 � k2i ; i ¼ 1; . . . ; d� 1:

(33)

One observes that the denominators, after substitution,
are the usual Minkowski coordinate ones. By the standard
argumentation, we then find

i��
��ð �pÞ ¼ �ie2

2
2
ð �g�� �p

2 � �p� �p�Þ
Z 1

0
dxxð1� xÞ

�
�
2

�
� ln

q2

4
�2
� �� 1

2

�
; (34)

with q2 ¼ m2 � xð1� xÞp2 and � as the Euler Mascheroni
constant. Note that the numerical factor is exactly the same

as the equal times one, and the polarization tensor is
transverse in the barred variables.
As a next step, we determine the finite temperature

contribution to the photon self-energy in the HTL approxi-
mation. Using the imaginary time formalism, one has

��ðTÞ
��ð �pÞ ¼ �e2T

X
n

Z d3 �k

ð2
Þ3 Trði ��0 � ��3Þ ���S
ðTÞð �kÞ

� ði ��0 � ��3Þ ���S
ðTÞð �kþ �pÞ; (35)

where the LF fermion propagator in the oblique coordi-
nates is given in Eq. (21). Evaluating the trace of the
gamma matrices using Eq. (30) and (16) leads to

�ðTÞ
�� ¼ e2

Z d3 �k

ð2
Þ3 T
X
n

�
8 �k� �k�

�k2ð �kþ �pÞ2 �
4 �g��

ð �kþ �pÞ2
�

� I�� � 4e2 �g��I: (36)

Even before calculating explicitly the components, one
can easily see that the Ward identity is satisfied. In fact,
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�p��
��ðTÞ ¼ 8e2

Z d3 �k

ð2
Þ3 T
X
n

ð �k � �pÞ �k�
�k2ð �kþ �pÞ2 � 4e2��

� �p�I

ffi 8e2
Z d3 �k

ð2
Þ3 T
X
n

½ð �kþ �pÞ2 � �k2� �k�
2 �k2ð �kþ �pÞ2

� 4e2��
� �p�I

¼ 4e2
Z d3 �k

ð2
Þ3 T
X
n

� �k�
�k2
� ð �kþ �pÞ�

ð �kþ �pÞ2
�
; (37)

where in the second line, we have neglected the �p2 term in
the numerator according to the HTL rules. The Ward
identity is now obtained by first evaluating the Matsubara
sums and then shifting ð �ki þ �piÞ ! �ki. For example, for
� ¼ �, we find

�p��
��ðTÞ ¼ 4e2

Z d3 �k

ð2
Þ3 T
X
n

� �k�
�k2

� ð �kþ �pÞ�
ð �kþ �pÞ2

�

¼ �4e2
Z d3 �k

ð2
Þ3 T
X
n

ð �kþ �pÞ�
ð �kþ �pÞ2 ;

by antisymmetry. Evaluating the Matsubara sum leads to

�p��
��ðTÞ ¼ e2

Z d3 �k

ð2
Þ3 ð
�kþ �pÞ� tanhð�jE2j=2Þ

ð �k3 þ �p3Þ2
:

Considering only the finite temperature contribution, we
are left with

�p��
��ð�Þ ¼ �2e2

Z d3 �k

ð2
Þ3 ð
�kþ �pÞ� nFðjE2jÞ

ð �k3 þ �p3Þ2
:

Once the finite temperature result is finite, we consider the
shift ð �kþ �pÞi ! �ki, and the Ward Identity follows for this
component by antisymmetry. For the other two compo-
nents, the calculations are similar, such that one can prove
that, in the HTL approximation, the identity is valid,

�p��
��ð�Þ ¼ 0; � ¼ 0; 1; 2; 3: (38)

The rest of this section is concerned with the explicit
evaluation of the polarization tensor. We will use Eq. (36)
to explicitly evaluate each one of its components. With
only one of them, the zero-zero component, the usual
method of evaluating the Matsubara frequencies will fail
because of the degree of divergence of the series involved.
We will use the Ward identity to indirectly obtain it.

Starting with the scalar part I, one finds

I ¼
Z d3 �k

ð2
Þ3 T
X
n

1

ð �kþ �pÞ2 ¼
Z d3 �k

ð2
Þ3 T
X
n

1
�k2

�
Z d3 �k

ð2
Þ3 S: (39)

Evaluating the Matsubara sum S, we use the relationX
n

fðnþ 1=2Þ ¼ 

X

Res fðzÞ
tanð
zÞfðzÞ: (40)

Subsequently, one finds

S ¼ T
X
n

1

2i �k0 �k3 � �k2i
¼ T

X
n

1

2ðnþ 1Þ
Ti �k3 � �k2i

¼ � tanhð�E=2Þ
4j �k3j

: (41)

Thus, the finite temperature contribution to I is given by

I� ¼ 1

2

Z d3 �k

ð2
Þ3
nFðEÞ
j �k3j

: (42)

To solve this integral, we utilize the following identity:

nFðxÞ ¼ nBðxÞ � 2nBð2xÞ; (43)

such that

I� ¼ 1

2

Z d3 �k

ð2
Þ3
1

j �k3j
�

1

e�E � 1
� 2

e2�E � 1

�

¼
�
T

2


�
2 Z 1

0
rdr

Z dz

z

�
1

e1=2ðr2=zþzÞ � 1
� 2

er
2=zþz � 1

�

¼ 2T2

ð2
Þ2
Z 1

0

dz

z

X1
n¼0

Z 1

0
rdre�nðr2=zþzÞ

¼ T2

4
2
ð2Þ

¼ þT2

24
; (44)

where we use cylindrical coordinates in the second line,
and the ðxÞ denotes the  function.
The integral for the spatial components Iij reads

Iij ¼ 8e2
Z d3 �k

ð2
Þ3
�ki �kjS1; (45)

with

S1 ¼ T
X
n

1
�k2ð �kþ �pÞ2

¼ � 1

8

1
�k3ð �k3 þ �p3Þ

tanhð�E1=2Þ � tanhð�E2=2Þ
E1 � E2 þ i �p0

:

(46)

The HTL approximation gives rise to the following
simplifications:

E1 � E2 ’ �	 � �p
�k3

� i �p0; (47)

with �	� defined in Eq. (26). Hence, one has the finite

temperature contribution to Iij as

I�ij �
2e2

ð2
Þ3
Z

d3 �k
�ki �kj
�k23

�
1� i �p0

�k3
�	 � �p

�
dnFðEÞ
dE

: (48)

The integrals containing only the derivative of the dis-
tribution function can be evaluated analytically. For

example, the first term of I�33 is given by
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Z d3 �k

ð2
Þ3
dnFðEÞ
dE

¼ �
d

d�

Z d3 �k

ð2
Þ3
nFðEÞ
E

¼ � 2T2


2

Z 1

0
zdz

X1
n¼1

Z 1

z2

du

u
e�ðn=zÞu

¼ � 2T2


2

Z 1

0
zdz

X1
n¼1

Z 1

1

dv

v
e�nzv

¼ þ 2T2


2

X1
n¼1

Z 1

0
zdzEið�nzÞ

¼ � T2


2
ð2Þ; (49)

where we have utilized the definition

Eið��Þ ¼ �
Z 1

1

e��xdx

x
for <�> 0 (50)

and the relation

Z 1

0
Eið��xÞx��1dx¼��ð�Þ

��� with <�; <�>0:

(51)

Inserting this result, I�33 can be expressed as

I�33 ¼ � e2T2

3
� 2e2

Z d3 �k

ð2
Þ3
i �p0

�k3
�	 � �p

dnFðEÞ
dE

: (52)

Analogously, the other components of Iij are

I�11 ¼ I�22 ¼ � e2T2

6
� 2e2

Z d3 �k

ð2
Þ3
1
�k3
Fð �p0; �	 � �p; EÞ;

(53)

I�12 ¼ �2e2
Z d3 �k

ð2
Þ3
�k1 �k2
�k3

Fð �p0; �	 � �p; EÞ; (54)

I��3 ¼ �2e2
Z d3 �k

ð2
Þ3
�k�Fð �p0; �	 � �p; EÞ; (55)

I�0j ¼
ie2T2

6
�j3þ2ie2

Z d3 �k

ð2
Þ3
�kjE

j �k3j
Fð �p0; �	 � �p;EÞ; (56)

with

Fð �p0; �	 � �p; EÞ ¼ i �p0

�	 � �p
dnFðEÞ
dE

: (57)

At this point, one can check the consistency of the
explicit calculations given above with the Ward identity
(38). For example, using Eq. (36) and considering
� ¼ 1, 2, one finds

�p��
�� ¼ 2e2

ð2
Þ3
Z

d3 �k
dnF
dE

i �p0

�k3
�k� ¼ 0 (58)

by antisymmetry. A similar computation shows that
�p��

�0 ¼ 0.

On the other hand, the explicit computation of I00 is
much more intricate; basically the assumptions of Eq. (40)
do not hold. Actually, proving Eq. (40), one needs the
residue theorem and the assumption that jfðzÞj 	 M

jzjk ,
with k > 1 and M being constants. If this is not the case,
then one has to include the contributions coming from the
arc and poles into the formula. At equal time field theories,
such contributions always vanish because the dispersion
relation is quadratic in k0. In LF dynamics, this is not the
case anymore. We think that these technical problems can
be cured by following a strategy analogous to the zero-
temperature discussions carried out in Ref. [20,21].
However, there is another way to obtain I00. Using the

� ¼ 3 component of the Ward identity [Eq. (38)], one has

0 ¼ �p��
�3 ¼ 8e2

Z d3k

ð2
Þ3 T
X
n

ð �k � �pÞ �k3
�k2ð �kþ �pÞ2 � 4e2 �p3I

¼ � �p3I00 � ð2i �p3 þ �p0ÞI03 � i �p�I0�

� ði �p0 � �p3ÞI33 þ �p�I�3 � 4e2ði �p0 � �p3ÞI: (59)

Solving for I00, one finds

I00 ¼ e2T2

6
þ 2e2

Z d3 �k

ð2
Þ3
E2

�k3

i �p0

�	 � �p
dnF
dE

: (60)

Collecting all the results, the polarization tensor can be
written as

���ðpÞ ¼ 2m2ð��0��0 � ��3��3 þ i��0��3 þ i��3��0Þ
� 2e2

Z
d3 �kFð �p0; �	 � �p; EÞ �	� �	�; (61)

where m2 ¼ e2T2=6 is the thermal mass.

IV. CONCLUSIONS

In this work, we have studied the QED polarization
tensor at one loop in the oblique light front coordinates
both at zero and at finite temperature in the HTL
approximation.
At zero temperature, we have shown how using the

fermion propagator (11) and dimensional regularization,
one is able to make close contact to the equal time result.
We have recovered the transverse structure in terms of the
oblique coordinates and the same numerical factor as in
covariant equal time calculations.
At finite temperature, we have considered the HTL

approximation to obtain the dominant temperature depen-
dent contributions. The finite temperature part of the
polarization tensor obeys the Ward identity. All compo-
nents of ���, except �00, were computed directly. For

�00, the usual analytic techniques, i.e. closing complex
contours in the evaluation of Matsubara sums, fail due to
the analytic structure of the integrand. This is one of the
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typical peculiarities of light cone coordinates. It is our
expectation that these problems can be solved by resorting
to more elaborated LF integration methods, as indicated in
Ref. [21]. However, the result for the 00 component as
given here will stay, as the Ward identity constitutes an
independent constraint.

It is worth mentioning that even though the finite tem-
perature results of Sec. (III B) were given in the imaginary
time formalism, we have also considered the closed time
path formalism. Using the real-time fermion propagator, as
given in Ref. [7], we have evaluated �11. The finite tem-
perature contribution to the retarded polarization tensor in
the closed time path formalism is

��
R ¼ ��

þþ þ��
þ�

/
Z

d3k
2 �k21nFðEÞ

j �k3jð �k3 þ �p3Þ
1

E1 � E2 � �p0 þ i�ð �p0�E1Þ
2ð �k3þ �p3Þ

� 2 �k21nFðjE2jÞ
j �k3 þ �p3j �k3

1

E1 � E2 � �p0 � i�ð �p0þE2Þ
2 �k3

þ 2
nFðEÞ
j �k3j

: (62)

On the other hand, the finite temperature contribution to
�11 in imaginary time is

�� ¼ I�11 þ 4e2I�

/
Z

d3k
2 �k21nFðEÞ

j �k3jð �k3 þ �p3Þ
1

E1 � E2 � �p0 þ i� �p0

2 �p3

� 2 �k21nFðjE2jÞ
j �k3 þ �p3j �k3

1

E1 � E2 � �p0 þ i� �p0

2 �p3

þ 2
nFðEÞ
j �k3j

: (63)

Equations (62) and (63) indicate that the two results are
consistent as long as the right analytic continuation in �p0 is
made. Any analytic continuation must handle the pole
structure in the complex plane. At the LF, even at zero
temperature, the poles inside loop integrals depend on the
integration variables [21], and it is not clear a priori which
is the correct analytic continuation method. This raises
very interesting questions as to how to compare the two
formalisms in general light cone field theory.
Another perspective of the presented work is the dis-

cussion of the three vanishing momentum limits of the LF
polarization tensor, namely:
(1) �k0 ¼ 0, �k3 ¼ 0 and j �k�j ! 0,
(2) j �k�j ¼ 0, �k3 ¼ 0 and �k0 ! 0,
(3) j �k�j ¼ 0, �k0 ¼ 0 and �k3 ! 0.
These different ways to approach the origin �k� ¼ 0 are

connected to collective excitations in the plasma. At equal

times, there are only two possible limits k0 ¼ 0, j ~kj ! 0

and j ~kj ¼ 0, k0 ! 0 because of rotational invariance.
Taking these different limits at equal times, one finds
screening and plasmon masses which should be indepen-
dent from the chosen quantization plane. For the self-
energy in scalar field theory, it was shown in Ref. [11]
how to restore rotational symmetry of the spacelike direc-
tions by a transformation in order to reduce the three LF
limits to two. Such a transformation should also exist for
the QED polarization tensor (61). We hope to show in the
future that this is indeed the case.
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