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We explore the relationship between the quantum effective action and the ground state (and excited

state) wave functions of a field theory. Applied to the Yang-Mills theory in 2þ 1 dimensions, we find the

leading terms of the effective action from the ground state wave function previously obtained in the

Hamiltonian formalism by solving the Schrödinger equation.
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I. INTRODUCTION

This article will be in the nature of continued work on
Yang-Mills theories in 2þ 1 dimensions, along the lines of
the Hamiltonian approach initiated a few years ago [1–3].
Our attempt will be to elucidate a general direct relation-
ship between the quantum effective action and the ground
state, and to some extent, the excited state wave functions
of a field theory. The previously obtained ground state
wave function for Yang-Mills (2þ 1) will then be used
to identify the leading terms of the effective action for the
theory.

We begin with a brief recapitulation of those features of
our previous work which are relevant to the present dis-
cussion. The Hamiltonian analysis was done in the A0 ¼ 0
gauge, with the spatial components of the gauge potentials
parametrized as

Az ¼ 1
2ðA1 þ iA2Þ ¼ �@MM�1;

A�z ¼ 1
2ðA1 � iA2Þ ¼ My�1 �@My; (1)

where we use complex coordinates z ¼ x1 � ix2, �z ¼
x1 þ ix2. M is an element of the complexified group; i.e.,
it is an SLðN;CÞ matrix if the gauge transformations take
values in SUðNÞ. Wave functions are gauge-invariant and
are functions of H ¼ MyM, with the inner product

h1j2i ¼
Z

d�ðHÞ exp½2cASwzwðHÞ���
1�2; (2)

where Swzw is the Wess-Zumino-Witten (WZW) action
given by

SwzwðHÞ ¼ 1

2�

Z
Trð@H �@H�1Þ

þ i

12�

Z
����TrðH�1@�HH�1@�HH�1@�HÞ:

(3)

In Eq. (2), d�ðHÞ is the Haar measure for the gauge-
invariant variable H which takes values in
SLðN;CÞ=SUðNÞ. Further, cA is the value of the quadratic

Casimir operator for the adjoint representation; it is equal
to N for SUðNÞ. The Hamiltonian and other observables
can be taken to be functions of the current J of the WZW
action, namely, of

J ¼ 2

e
@HH�1: (4)

(This is not exactly the current as conventionally defined,
we have multiplied by some constant factors to simplify
some formulae later.) Explicitly,H ¼ H 0 þH 1, where

H 0 ¼ m
Z
z
Jað~zÞ �

�Jað~zÞ þ
2

�

Z
z;w

1

ðz�wÞ2
�

�Jað ~wÞ
�

�Jað~zÞ
þ 1

2

Z
x
: �@JaðxÞ �@JaðxÞ:

H 1 ¼ iefabc
Z
z;w

Jcð ~wÞ
�ðz�wÞ

�

�Jað ~wÞ
�

�Jbð ~zÞ ; (5)

where m ¼ e2cA=2�.
Our basic strategy was to solve the Schrödinger equation

keeping all terms in H 0 at the lowest order and treating
H 1 as a perturbation. Since m ¼ e2cA=2�, in ordinary
perturbation theory, one would expand in powers of m as
well. So our expansion corresponds to a partially re-
summed version. Formally, we keep m and e as indepen-
dent parameters in keeping track of different orders, only
setting m ¼ e2cA=2� at the end. The lowest order compu-
tation of the wave function in this scheme was given in [4]
and gave the string tension as �R ¼ e4cAcR=4�. More
recently, we calculated corrections to this formula, taking
the expansion to the next higher order (which still involves
an infinity of correction terms) and found that these were
small, of the order of �0:03% to �2:8% [5].
We shall also recall briefly a short argument from [6] on

the nature of the wave function. For this, absorb the factor
e2cASwzw in (2) into the definition of the wave function by
writing � ¼ e�cASwzw�. The Hamiltonian acting on � is
given by H ! e�cASwzwH e�cASwzw . We now expand H as
H ¼ expðta’aÞ � 1þ ta’

a þ � � � ; this ‘‘small ’’’ expan-
sion is suitable for a (resummed) perturbation theory. The
Hamiltonian is then*vpn@sci.ccny.cuny.edu
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H ¼ 1

2

Z �
� �2

��2
þ�ð�r2 þm2Þ�þ � � �

�
; (6)

where �að ~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cAk �k=ð2�mÞ

q
’að ~kÞ. This is the

Hamiltonian for a field of mass m and gives the vacuum
wave function

�0 � exp

�
� 1

2

Z
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �r2

p
�a

�
: (7)

Transforming back to the �’s, we find

�0 � exp

�
� cA
�m

Z
ð �@@’aÞ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2 þm2
p

þm

�

� ð �@@’aÞ þ � � �
�
: (8)

Now comes the key argument: On general grounds, see
[2,6], the full wave function must be a functional of the
current J. So we can ask: Is there a functional of the current
J which reduces to (8) in the small ’ approximation, when
Ja � ð2=eÞ@’a þOð’2Þ? The only form consistent with
this is

�0 ¼ exp

�
� 2�2

e2c2A

Z
�@JaðxÞ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2 þm2
p

þm

�
x;y

� �@JaðyÞ þ � � �
�
: (9)

This is, of course, the wave function we found by directly
solving the Schrödinger equation,H 0�0 � 0. Notice also
that we may write this wave function as

�0 ¼ exp

�
� 2�2

e2c2A

Z
�@JaðxÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
�m

k2

�
x;y

� �@JaðyÞ þ � � �
�
: (10)

In the integral kernel in the exponent, the termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
=k2 is due to the fact that we have a mass for

the fields �, while the second part �m=k2 is from trans-
forming using ecASwzw from the measure. This argument for
�0 thus emphasizes the role of the measure in both gen-
erating a massm and in providing the crucial�m=k2 term.
The latter is important in obtaining the low momentum
limit ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p

�m

k2
� 1

2m
(11)

so that the exponent in��
0�0 is the two-dimensional Yang-

Mills action,
R
�@J �@J � R

F2=4g2, g2 ¼ me2. This was, in
turn, the key to obtaining the formula for the string tension.

We can now phrase the basic question we address in this
paper: Can we find an effective three-dimensional action
which will give this wave function including the crucial
�m=k2 term in the kernel? We are focusing on terms to the
quadratic order in the currents or gauge potentials, so that it
is useful to rewrite �0 as

�0 � exp

�
�1

2

Z
AaT
i ðxÞ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
�m�x;yAaT

i ðyÞ þ � � �
�
;

(12)

where we use the transverse component of Aa
i as the gauge-

invariant variable; this is an adequate representation for our
argument to the quadratic order.

II. THE EFFECTIVE ACTION AND WAVE
FUNCTIONS

A. Ground state wave function

Starting from the Yang-Mills action, we can construct
the Hamiltonian operator and solve the Schrödinger equa-
tion to find the ground state wave function. This is the path
we have followed in previous work. As for the effective
action, it will include a gauge-invariant mass term for the
fields, which must be nonlocal, including nonlocality in
time. The Hamiltonian set up is thus nontrivial. Of course,
the effective action has the quantum dynamics built in, so
we should not quantize it. Nevertheless, being nonlocal,
even a classical Hamiltonian formulation is not simple. We
will need a more direct way to connect the quantum
effective action and wave functions. This can be done as
follows. We will use a scalar field to illustrate this basic
connection. First of all, by using a complete set of energy
states j�i, we can write

h’je�	H j’0i¼X
�

h’j�ih�j’0ie�	E�

¼X
�

��ð’Þ��
�ð’0Þe�	E�

!�0ð’Þ��
0ð’0Þe�	E0 ; as	!1: (13)

Sowe can extract�0ð’Þ by calculating this matrix element
with fixed boundary values of the field at the Euclidean
time boundaries, 
 ¼ 0, 	. The second step is to write this
matrix element as a functional integral,

h’je�	H j’0i ¼
Z
½d��e�Sð�Þ ¼

Z
½d��e�Sð�þ�Þ: (14)

The boundary conditions on �ð
; ~xÞ and �ð
; ~xÞ are
�ð0; ~xÞ ¼ ’0ð ~xÞ; �ð	; ~xÞ ¼ ’ð ~xÞ
�ð0; ~xÞ ¼ �ð	; ~xÞ ¼ 0 (15)

�ð
; ~xÞ is a fixed field configuration with the boundary
values specified; it contains no additional degree of free-
dom to be integrated in (14). Since � gives the requisite
boundary behavior, � must vanish at both 
 ¼ 0 and

 ¼ 	. Thus, in carrying out the � integration in (14),
we must use Dirichlet conditions in 
 for the � propagator.
However, rather than explicitly carrying out the � integra-
tion, we may note that the quantum effective action �½�� is
defined, for arbitrary �, by

e��ð�Þ ¼
Z
½d�� exp

�
�Sð�þ �Þ þ

Z ��

��
�

�
: (16)
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From this equation, we see that, if we choose � as a
solution of ��=�� ¼ 0, with the boundary behavior
� ! ’0 at 
 ¼ 0 and � ! ’ at 
 ¼ 	, and with � going
to zero at both ends, then

e�� ¼
Z
½d��e�Sð�þ�Þ ¼ h’je�	H j’0i

! �0ð’Þ��
0ð’0Þe�	E0 ; as 	 ! 1: (17)

In other words, if we solve the equation

��

��
¼ 0 (18)

for �, subject to the boundary conditions (15), and sub-

stitute this back in �ð�Þ, then e��ð�Þ which is now a func-
tional of ’0, ’, will give �0ð’Þ as 	 becomes large. This
relates �0ð’Þ and �ð�Þ directly.

We want to emphasize that, depending on the boundary
conditions used for the �’s in carrying out the functional
integration in (16), there are different �’s we can define.
For our purpose, to get agreement between (14) and � as
defined by (16), the �’s in the functional integral in (16)
must vanish at 
 ¼ 0, 	. As a result, the Green’s functions
which may occur in � obey Dirichlet boundary conditions
for the Euclidean time direction. We can see this more
explicitly by considering an example, say, a�4 theory with
the action

S ¼
Z �1

2
ð _�2 þ ðr�Þ2 þ�2�2Þ þ 
�4

�
: (19)

The effective action � can be examined in a loop expansion

� ¼ Sþ ℏ�ð1Þ þ ℏ2�ð2Þ þ � � � . Using this in (16) we find

�ð1Þð�Þ ¼ � log

�Z
½d��e�ð1=2Þ

R
�ðxÞMðx;yÞ�ðyÞ

�

¼ 1

2
log detM

Mðx; yÞ ¼
�

�2S

��ðxÞ��ðyÞ
�
x;y

¼ ½ð�hþ�2Þ þ 12
�2ðxÞ��ðx� yÞ: (20)

The determinant must be evaluated using eigenfunctions
which vanish at 
 ¼ 0, 	, since �’s obey this condition.
For the contributions from the Oð�3Þ terms which give the
higher loop terms, we will need the inverse ofM which can
be expanded as

M�1ðx; yÞ ¼ Gðx; y;�Þ
�
Z
z
Gðx; z; �Þ½12
�2ðzÞ�Gðz; y; �Þ þ � � � ;

(21)

where Gðx; y;�Þ ¼ ð�hþ�2Þ�1. This Green’s function
must also vanish at 
 ¼ 0, 	. We see from this procedure
that all the Green’s functions appearing in �ð�Þ so eval-
uated will obey Dirichlet conditions at 
 ¼ 0, 	. Basically

this means that the expression for � will be identical to the
usual one, except that the Feynman propagators (or their
Euclidean versions) will be replaced by their Dirichlet
versions.
In practice, the evaluation of � on its critical point can be

simplified a bit further, at least for the case of interest to us
in what follows. Let W denote � evaluated on the solution
�� of (18), subject to the boundary values (15). If we vary
the boundary value ’ of � and also change 	 slightly, the
resulting variation of � or W can be written in the form

�W ¼ ��½��� ¼
Z

d2x��’þH E�	: (22)

This defines� (which may depend on the time-derivatives
of ’) and also the Euclidean Hamiltonian H E, which is
generally not positive semidefinite. Sincewe are evaluating
� on the solution of (18), the terms involving three-
dimensional volume integrals are zero.
Generally,H E will give the zero-point energy, but for a

relativistically invariant vacuum, we know that the zero-
point energy must be zero. Therefore, we can impose
H E ¼ 0. Further, � may be taken as �W=�’. Thus we
can find W by solving the equations

H E ¼ 0; � ¼ �W

�’
: (23)

The ground state wave function is then given by
�0 ¼ e�W . Needless to say, this is a Euclidean version
of the usual Hamilton-Jacobi approach.
It is useful to work this out in a simple example such as

the �4 theory. The effective action � for this theory is of
the form

� ¼
Z 1

2
ð _�2 þ ðr�Þ2 þ�2�2Þ

þ
Z

Vðx1; x2; x3; x4Þ�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þ þ � � � ;
(24)

where Vðx1; � � � ; x4Þ and higher point terms are nonlocal
vertices. The variation at the time slice 
 ¼ 	 gives

�� ¼
Z

_���þH E�	 ¼ X
k

_ckdck þH E�	; (25)

where we introduced a mode expansion � ¼ P
kckukðxÞ in

terms of the eigenmodes of r2 and

H E ¼�1

2

Z
_�2 þ

�
1

2

Z
ððr�Þ2 þ�2�2Þ

þ
Z

Vðx1; x2; x3; x4Þ�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þþ � � �
�

¼�1

2

X
k

_c2k þ
�
1

2

X
k

!2
kc

2
k

þX
fkig

Vðk1; k2; k3; k4Þck1ck2ck3ck4 þ�� �
�

(26)
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with !2
k ¼ k2 þ�2. The Hamilton-Jacobi equation thus

reduces to

1

2

X
k

�
@W

@ck

�
2 ¼

�
1

2

X
k

!2
kc

2
k

þX
fkig

Vðk1; k2; k3; k4Þck1ck2ck3ck4 þ � � �
�
:

(27)

By taking an ansatz forW as a power series in the ck’s and
treating V perturbatively, this is easily solved as

W ¼ 1

2

X
k

!kc
2
k þ

X
fkig

Vðk1; k2; k3; k4Þ
!1 þ!2 þ!3 þ!4

ck1ck2ck3ck4

þ � � � : (28)

B. Excited states

The ground state wave function also contains some
information about the excited states. So, once we have
obtained �0 (or W) from the quantum effective action �,
we can set up Schrödinger equations involving excited
states as follows. We illustrate this by considering a scalar
field theory again, taking the action as

SM ¼
Z �1

2
_�2 �Uð�Þ

�
; (29)

where Uð�Þ contains the spatial derivative terms and in-
teraction terms (which could be something more involved
than�4). The subscriptM on S is to emphasize that we are
in Minkowski space now. Given such an action, we can, in
principle, determine � and eventually �0 as outlined
above. Now consider a slightly modified action

~SM ¼ SM þ
Z

�ð ~xÞ _�; (30)

where � is an external source taken to be independent of
time, so that the last term is actually a total derivative. In
carrying out the quantization of this action, we find

_� ¼ �i
�

��
� �

~HM ¼
Z �1

2
_�2 þUð�Þ

�

¼
Z �

� 1

2

�2

��2
þUð�Þ

�
þ i

Z
�

�

��
þ 1

2

Z
�2

¼ HM þ i
Z

�
�

��
þ 1

2

Z
�2: (31)

Since we have added an external source, we do not have an
argument for Lorentz invariance and hence it is not a priori

obvious that the ground state energy is zero. Let ~�0 be the
new ground state wave function and E0ð�Þ (which may
depend on �) be the new ground state energy. We can then
write

�
HM þ i

Z
�

�

��
þ 1

2

Z
�2

�
~�0 ¼ E0ð�Þ ~�0: (32)

We now consider the matrix element of expð�	 ~HMÞ
and taking � to be a small enough perturbation that there is
still a ground state, we can write

h’je�	 ~HM j’0i ! ~�0ð’Þ ~��
0ð’0Þe�	E0ð�Þ; as 	 ! 1:

(33)

Now, once again, wewrite the left-hand side as a functional
integral,

h’je�	 ~HM j’0i¼
Z
½d��expð�SEð�Þþ i

Z
� _�Þ

¼ei
R
�’
Z
½d��e�SEð�Þe�i

R
�’0

¼ei
R
�’h’je�	HM j’0ie�i

R
�’0

!e�	E0ð�¼0Þ½ei
R
�’�0ð’Þ�½ei

R
�’0

�0ð’0Þ��;
(34)

where it is implicit in the functional integrals in the first
and second lines of this equation that the boundary con-
ditions are � ¼ ’ at 
 ¼ 	 and � ¼ ’0 at 
 ¼ 0.
Comparing (33) and (34), we see that we can still take
E0ð�Þ to be zero, since E0ð� ¼ 0Þ is zero by the Lorentz
invariance argument; further,

~� 0ð’Þ ¼ expði
Z

�’Þ�0ð’Þ: (35)

The Schrödinger equation for ~�0, namely, Eq. (32), then
becomes

H M½ei
R

�’�0� ¼
�
1

2

Z
�2þ i

Z
�
�W

�’

�
ei
R

�’�0; (36)

where we have used the expression �0 ¼ expð�WÞ. The
expansion of this equation in powers of � will give a set of
equations which correspond to the Schrödinger equation
for excited states. The basic ingredient which went into this
equation is that the action is quadratic in the time deriva-
tives. (Otherwise we will get additional terms involving
�’s.) The ground state wave function determines the nature
of various terms in this equation via the function W.
It is instructive to see how the Schrödinger Eq. (36)

works out in a simple case, say, for the theory given by
(19). In this case, W is given by (28), which we write as
W ¼ 1

2

P
k!kc

2
k þW1. The �-independent term of (36)

gives just the expected resultHM�0 ¼ 0. The term linear
in � gives

H M½ck�0� ¼ !k½ck�0� þ @W1

@ck
�0: (37)

If interactions are ignored, we get the expected one-particle
result. The term involving W1 shows that this state mixes
with the higher states. Likewise, the terms quadratic in �
gives
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H M½ckcl�0� ¼
�
ð!k þ!lÞckcl � �kl þ ck

@W1

@cl

þ cl
@W1

@ck

�
�0: (38)

The state ckcl�0 is not orthogonal to the ground state. Let

hckcli �
Z

��
0ckcl�0

¼
Z
½dc� exp

�
�X

k

!kc
2
k � 2W1

�
ckcl: (39)

We can rewrite Eq. (38) as

HM½ðckcl � hckcliÞ�0�
¼ ð!k þ!lÞ½ðckcl � hckcliÞ�0� þ

�
ð!k þ!lÞhckcli

� �kl þ ck
@W1

@cl
þ cl

@W1

@ck

�
�0: (40)

In the absence of interactions hckcli ¼ �kl=2!k, so the
second line is zero and the equation correctly gives the
two-particle eigenstate. With interactions, the second line
describes possible mixing with other higher states.

It is clear that the process can be continued to obtain
equations for higher states. The action of HM on a given
state has other orthogonal states on the right-hand side. So
while we do not have a diagonal form forHM, the point is
that all matrix elements of HM are determined by the
ground state wave function. Notice that the expectation
values needed for orthogonalization are calculated with the
full ground state wave function. This does have implica-
tions for the simplification of the higher terms in (40). For
example, we can have a term with four c’s, such as
Kðk1; k2; k3; k4Þck1ck2ck3ck4 on the right-hand side arising

from W1, where Kðk1; k2; k3; k4Þ is the appropriate kernel.
This means that the two-particle equation mixes with the
four-particle states. In a truncation to the two-particle level,
we can approximate the product of the c’s as

ck1ck2ck3ck4 � ck1ck2hck3ck4i þ permutations: (41)

(This is very much in the spirit of an operator product
expansion for the product of the c’s.) The result is then a
two-particle equation with the constituent particles inter-
acting via a potential

V �
Z
k3;k4

Kðk1; k2; k3; k4Þhck3ck4i þ permutations: (42)

The expectation value hck3ck4i is calculated with the full

ground state wave function and it determines the potential
involved in the construction of the higher excited states.

C. Summary

We now briefly recapitulate the results of this section.
(1) To find the ground state wave function:

(i) We begin with the Euclidean quantum effective ac-
tion � calculated with Dirichlet boundary conditions
in the time-direction

(ii) Find the solution �� of ð��=��Þ ¼ 0 with the
boundary conditions �ð0; ~xÞ ¼ ’0ð ~xÞ, �ð	; ~xÞ ¼
’ð ~xÞ.

(iii) expð��ð��ÞÞ then gives the ground state wave
function, up to normalization, as 	 becomes large.

(iv) Alternatively, we can solve the Euclidean
Hamilton-Jacobi equation H E ¼ 0, � ¼
�W=�’, where H E and � are defined by (22).
e�W then gives the ground state wave function.

(2) For the excited states:
(i) Once �0 is obtained, we construct the Schrödinger

Eq. (36). Expansion in powers of � will give a series
of equations.

(ii) These are not yet eigenstates of the Hamiltonian, a
rediagonalization is, in general, needed. This equa-
tion basically gives us the matrix elements of the
Hamiltonian in a chosen basis. It is W which deter-
mines the nature of this equation and hence some
nonperturbative information can be built in via
this function if we have a way of obtaining it
nonperturbatively.

(iii) The procedure can be generalized to obtain excited
states which are given by composite operators,
rather than powers of ’, acting on �0 and to cases
where the time-derivative in the Hamiltonian is not
a simple quadratic form.

III. THE EFFECTIVE ACTION FOR
YANG-MILLS (2þ 1)

We are now in a position to state the main result of this
paper. The leading terms of the quantum effective action
for three-dimensional Yang-Mills theory are given by

� ¼
Z 1

4
Fa
��F

a
�� þ SmðAÞ þ ð��D��AÞayð��D��AÞa

þ � � � ; (43)

where SmðAÞ is a gauge-invariant nonlocal mass term for
the gauge field. The particular choice of this mass term is
not important at this stage. We will discuss this later. �a

A,
a ¼ 1; 2; � � � ; ðN2 � 1Þ, A ¼ 1, 2, is a complex field trans-
forming according to the adjoint representation of SUðNÞ,
and transforming as a 2-component spinor under the
Lorentz group. ��, � ¼ 1, 2, 3, are the Pauli matrices
andD� denotes the gauge-covariant derivative. A complex

spinor field with a quadratic derivative term in the action is
unusual, but it is not to be considered as an observable
field. It is to be viewed simply as a method of capturing the
physics of the wave function (10) or (12). The action has an
additional Uð1Þ symmetry � ! ei��, which the original
Yang-Mills theory does not have. We will eliminate this
unwanted symmetry by requiring that all physical opera-
tors must have equal numbers of �’s and ��’s.
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We will first show how this action leads to the wave
function (12), before discussing further properties. The
equations of motion corresponding to (43) are

� ðD�F��Þa þ �Sm
�Aa

�

¼ eððD��ÞyTa���yTaD��Þ;
(44)

D�ð����D��Þ ¼ 0; (45)

where fTag are a basis of the Lie algebra generators in the
adjoint representation. In the first equation, we will keep
the mass term at the lowest order, but treat the effect of the
current due to � [the right-hand side of (44)] in a pertur-
bation expansion. We will solve the second equation as it
is. This expansion scheme is thus similar to what we did in
the Hamiltonian approach in [4,5]. This means that we can
treat the Yang-Mills part and the �-dependent terms of �
in (43) separately to the lowest order. Also we may just
retain the terms linear in A on the left-hand side of (44) [or
terms quadratic in A at the level of �] to the same order.
The quadratic term in SmðAÞ, for any choice of the mass
term, has the same form, namely, �AT2. Writing AT

� ¼
A� � R

y @�Gðx; yÞ@ � AðyÞ, we see that it is invariant under
the (Abelian) gauge transformation A� ! A� þ @��, pro-

vided Gðx; yÞ obeys Dirichlet conditions and � vanishes at

 ¼ 0, 	. In this case, we can write

SmðAÞ ¼ m2

2

Z
AT2 þ � � �

¼ m2

2

Z
½A2 � @ � AðxÞGðx; yÞ@ � AðyÞ þ � � ��:

(46)

For the Yang-Mills part of the action, we then find

�WYM ¼
Z

d2xFT
0i�A

T
i

þ
Z

d2x
1

2
½�F2

0i þ AT
i ðk2 þm2ÞAT

i ��	: (47)

Setting H E to zero, we find

WYM ¼ 1

2

Z
d2xAT

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
AT
i þ � � � : (48)

This is entirely as expected. In the A0 ¼ 0 gauge, for the
�-dependent terms, we find

�W ¼
Z
½��y

1 ð _�1 þ 2 �D�2Þ þ ��y
2 ð _�2 � 2D�1Þ þ c:c:�

þH E�	

H E ¼
Z
½4ð �D�2Þyð �D�2Þ þ 4ð �D�1Þyð �D�1Þ

� _�1
_�1 � _�2

_�2�: (49)

Solving H E ¼ 0, we find

W;� ¼ �yK�

K ¼ 4
0 �D

�D 0

" #
; �a ¼ �a

1

�a
2

 !
: (50)

As mentioned above, the field �a
A is to be considered

an auxiliary field and observables are only made of the
Yang-Mills fields. For such an observable O,

hOi ¼
Z

d�ðAÞ½d����
YM�YM�

�
���O

¼
Z

d�ðAÞ½d����
YM�YMe

�2W�O

¼
Z

d�ðAÞ��
YM�YM

1

detK
O

�
Z

d�ðAÞ��
YM�YM

1

detð�D �DÞO

�
Z

d�ðAÞ��
YM�YM expðm

Z
AaTAaT þ � � �ÞO:

(51)

This is equivalent to using

�0 � exp

�
�1

2

Z
AaT
i ðxÞ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
�m�x;yAaT

i ðyÞ þ � � �
�
;

(52)

where we used the result detð�D �DÞ ¼ expð2cASwzwðHÞÞ.
With this result, we have shown that the effective action
(43) does indeed lead to the wave function we obtained, at
least as far as the leading 2J term in the exponent of �0.
The procedure clearly admits systematic improvement. As
the next step, we can calculate the OðeÞ terms in �0

resulting from the action (43) and compare with the OðeÞ
terms of�0 as calculated from the Schrödinger equation. If
these do not match, we can improve � by the addition of a
gauge-invariant monomial with at least three A’s (such
as�F3) to obtain a match. We can continue this procedure
to higher orders in e, thus using the solution of the
Schrödinger equation to obtain � in a systematic fashion.
This will be considered in a future publication.
As emphasized before, the spinor field which is bosonic

must be regarded as an auxiliary field and as a shorthand
way of writing a nonlocal term. This way is useful because
of the way the expansion scheme works. We use such a
field so that we can get exactly detð�D �DÞ in (51); if
a scalar (spin zero) field is used, we would get
detð�ðD �Dþ �DDÞÞ, which does not reproduce SwzwðHÞ
exactly.

IV. COMMENTS, DISCUSSION

Equation (43) which gives the leading terms in � which
give the �0 as in (12), or (52), is the main result of this
paper. The rest of this paper will be made of some com-
ments and discussion about the nature of this �. This is in
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the nature of a first look at the new directions suggested by
� and which are currently under investigation.

One of the issues which arises in considering a massive
gluon field is the following. Exchange of massive gluons
would suggest short range forces or potentials; how can
this be compatible with the existence of long range poten-
tials as implied by the area law for the Wilson loop? This
has led to the suggestion that there must be some kind of
auxiliary massless fields in the problem [7]. It is eminently
sensible to identify the field�a

A with the expected massless
field. The crucial �m=k2 term in the kernel in the wave
function (10) arises from�a

A; this is also in agreement with
this identification.

We now turn to the nature of the mass term. One may
think of it, in the context of the effective action, as arising
from resummations using a seed mass term, as has been
done by a number of authors [8,9]. The results have slight
variations depending on the seed mass term used. In these
cases, it is useful to ask about the nature of threshold
singularities [10]. The mass term of [8] has no singularities
at p2 ¼ 0 for the one-loop contribution to the gluon propa-
gator, other suggested expressions do. This suggests that
even though we have obtained a mass for the gluon via
resummation, there are still some massless (likely compos-
ite) fields in the problem; these are revealed by considering
unitarity cuts of the one-loop contribution. (Strictly speak-
ing, the imaginary part has the wrong sign, corresponding
to a magnetic-type instability; this can be interpreted in
terms of massless fields with additional magnetic moment
interactions.) So for the mass term to be used in (43), the
minimal choice would be the mass term in [8]. This does
not mean that other choices are to be ruled out; rather, other
choices are possible, and can be used with some modifica-
tion of the � terms.

One of the most important results suggested by the
effective action (43) is the possible existence of ZN vorti-
ces. For an ordinary scalar field in the adjoint representa-
tion coupled to A, the energy functional for static fields,
choosing A0 ¼ 0, is of the form

E¼
Z �1

2
B2þðDi�Þ�ðDi�Þþ
ð����ðv2=2ÞÞ2

�
(53)

with Di� ¼ @i � ieAi�. This admits topological vortex
solutions of vortex number Q [11], whereZ

d2xF ¼ 2�

e
Q: (54)

Finiteness of energy requires that Di� go to zero at spatial
infinity. An ansatz of the form

� ¼ vffiffiffi
2

p hðrÞei�; eAi ¼ � �ijx
j

r
fðrÞ; (55)

where f and h are zero at r ¼ 0 and go to 1 as r ! 1 will
give the single vortex solution. In this case, Ai goes to a
pure gauge and Di� vanishes as r ! 1. The rate of

approach to the asymptotic value is controlled by ev for

the vector field and
ffiffiffiffiffiffi
2


p
v for the scalar field. In particular,

for 
 	 e2=2, the scalar field is spread out over a large
range of r.
In our case, for static fields with A0 ¼ 0, we have

� ¼ 4
Z

d2x½ð �D�2Þyð �D�2Þ þ ðD�1ÞyðD�1Þ�: (56)

Vortices are obtained by considering a gauge field of the
form

eAi ¼ � �ijx
j

r
fðrÞY; (57)

where Y is the diagonal element of the Lie algebra which
exponentiates to the ZN elements. In the fundamental
representation, it is the matrix

Y ¼ diag

�
1

N
;
1

N
; � � � ; 1

N
;�1þ 1

N

�
: (58)

We see from (56) that �a
A can go to a nonzero constant

value at spatial infinity, up to a gauge transformation. An
ansatz of the form (55) will give finite energy for the� part
of �. As for the gauge field part, the Yang-Mills action will
be as in the scalar field case. The mass term, being gauge-
invariant, will also have a rapidly decreasing integrand. We
expect to get a finite value for the integral. Thus, using our
�, we can get vortices of winding number Q, the magnetic
flux being 2�Q=e. The holonomy at spatial infinity for the
field configurations (57) in the fundamental representation
then gives an element of ZN , namely, expð2�i=NÞ for
elementary vortex. For fields in the adjoint representation,
the holonomy will be 1.
In �, we do not have the analogue of the scalar potential

energy. However, consider, for the sake of the argument, �
with an additional term

V ¼ 

Z

d2x

�
ð�a

AÞ��a
AÞ �

v2

2

�
2
: (59)

The constant 
 now controls the profile of the field �. We
can see that, as we let 
 go to zero, the vortices would
spread out over an increasing range of r. The energy of the
vortices will become smaller as well.
Another key difference in our case is that �a

A is a spinor
under Lorentz transformations. The behavior under
Lorentz transformations can be analyzed by introducing a
collective coordinate for these via

�a
A ¼ gAB�

ð0Þa
B ; (60)

where�ð0Þa
B is a particular solution for the vortex and gAB is

a Lorentz matrix depending on the time-variable 
. Using
this in �, we get terms like
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� ¼ �
Z

d
Tr½Iðg�1@0gg
�1@0gÞ� þ � � �

IBA ¼
Z

d2x�ð0Þay
A �ð0Þa

B :
(61)

In general, if � approaches a nonzero value at spatial
infinity, IBA will be divergent. (This is very similar to
what happens with the issue of global color for monopoles
[12].) Thus, even though vortices can exist, for Lorentz
invariance, we will need net zero vortex number so that the
holonomy at spatial infinity is zero, and, correspondingly,
the asymptotic value of � is zero. Thus the only allowed
configurations are a gas of vortices and antivortices such
that the net vortex number is zero.

What are the physical implications of these vortices? We
may expect, in accordance with the arguments of many
authors [13], that these vortices play a key role in the
screening of the screenable representations (ZN-invariant
representations). It is possible that with a proliferation of
vortices the contribution of the j� �D�j2 term to the wave
function is altered, may be eliminated; this could lead to a
scenario for deconfinement, as the crucial �m=k2 term in
�0 is lost. It would also be interesting to connect this with
the gluelump state analyzed in [14]. The possible existence
of the vortices is very suggestive for the issue of screening.
However, as mentioned above, the allowed configurations
must have net vortex number equal to zero. Further, con-
sidering that these are also rather spread-out configura-
tions, their importance to physics needs more detailed
investigation.

We have outlined a general procedure for analyzing the
excited states as well. In applying this to the Yang-Mills
theory for glueball states, we must look for gauge-invariant
combinations, rather than just products of the fields like
ckcl. In other words, we must consider shifts of the action
of the form

~SM ¼ SM þ
Z

�ð ~xÞdO
dt

; (62)

where O is a gauge-invariant monomial of the fields with
zero color charge (like F2 for the tower of 0þþ glueballs).
A corresponding modified version of (36) can then be
obtained. As mentioned after (41), the four-point and
higher point terms can lead to potentials between the
constituent A’s in O which involve hAið ~xÞAjð ~yÞi. Since
such expectation values are calculated with the full ground
sate wave function (and hence the two-dimensional Yang-
Mills action), we can expect terms proportional to a linear
potential to appear in the many-particle equations. While
the derivation of these equations is a tedious and difficult
task, there will be at least one advantage for the gauge
fields compared to nongauge field theories: The mixing
between glueball states is suppressed at large N [15], so
single glueball equations should be obtainable in this limit.

It is also interesting to see how our procedure for the
action applies to some of the other approaches using wave
functions. For example, Kogan and Kovner have suggested
the use of variational wave functions for compact electro-
dynamics [16]. They have also used a similar strategy,
resulting in a wave function which is somewhat different,
for QCD in 3þ 1 dimensions [17]. Their solution for
compact electrodynamics in 2þ 1 dimensions is [16]

�0 � exp

�
� 1

2

Z
AT
i ðxÞGðx; yÞAT

i ðyÞ þ � � �
�

� exp

�
� 1

2

Z
AT
i ðxÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

� m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
�
x;y
AT
i ðyÞ þ � � �

�
; (63)

where Gðx; yÞ is variationally determined and, in the sec-
ond line of (63), we have used the variational solution they
have obtained. The parameter m is essentially arbitrary; it
can be related to other parameters of the theory but that
formula involves the (arbitrary) value of the upper cut-off

on momenta. The kernel
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
� ðm2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
Þ in

(63) differs from our kernel in (12) only in the second term,
and, indeed, the second term reduces to �m for low
momentum modes and agrees with our formula, except
for m being a free parameter. Therefore, the effective
action for this case can be written as an Abelian version of
(43). Instead of the � fields in the adjoint representation,
we should have complex �A coupling to the electromag-
netic field with a charge e�, with m ¼ e�2=4� and
D��A ¼ @��A � ie�A��A. Thus the action is

�¼
Z 1

4
F��F��þSmðAÞþð��D��AÞyð��D��AÞþ��� :

(64)

For the 3þ 1 dimensional case, the calculation of the
effective action cannot be taken to this stage, because the
crucial result that the Dirac determinant leads to an
A2-type term (the passage from the second to the third
line of (51)) is not obtained. Nevertheless, it is an interest-
ing case to study, but is beyond the scope of this paper.
Another wave function which is closely related to ours is

in the work of Leigh, Minic and Yelnikov [18]. The kernel
they have used involves Bessel functions and the explicit
calculation of the effective action has proven to be impos-
sible so far. However, if we restrict attention to the terms
quadratic in the currents in their approach as well, the low
and high momentum limits agree with ours and, for all
momenta, the kernel is very close to ours; see the numeri-
cal comparison in [3]. Therefore the effective action (43)
should be a very good approximation for the LMY wave
function as well.
Finally, we can ask whether the procedure for identify-

ing the effective action from the wave function can
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be applied to other simple systems for which the wave
functions are known. The BCS wave function for super-
conductivity is an interesting example. In this case, the
analysis presented in this paper is not directly applicable,
we need a fermionic version. We hope to take this up in a
future publication.
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